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PROPERTIES OF WEIGHTED GENERALIZED BETA
DISTRIBUTION OF THE SECOND KIND

by
YUAN YE

(Under the Direction of Broderick O. Oluyede)

ABSTRACT

In this thesis, a new class of weighted generalized beta distribution of the
second kind (WGB2) is presented. The construction makes use of the 'con-
servability approach’ which includes the size or length-biased distribution as
a special case. The class of WGB2 is used as descriptive models for the dis-
tribution of income. The results that are presented generalize the generalized
beta distribution of second kind (GB2). The properties of these distributions
including behavior of pdf, cdf, hazard functions, moments, mean, variance,
coefficient of variation (CV), coefficient of skewness (CS), coefficient of kurto-
sis (CK) are obtained. The moments of other weighted distributions that are
related to WGB2 are obtained. Other important properties including entropy
(generalized and beta), which are measures of the uncertainty in this class of
distributions are derived and studied. Top-sensitive index, bottom-sensitive
index, mean logarithmic deviation (MLD) index and Theil index obtained
from generalized entropy (GE) are also applied practically. Dagum distri-

bution is a special case of GB2, properties of Dagum and Weighted Dagum



distributions including hazard function, reverse hazard function, moments
are presented. Fisher information matrix (FIM) and estimates of model
parameters under censoring including progressive Type II for the Dagum
distribution are presented. WGB2 proved to be in the generalized beta-F
family of distributions, and maximum likelihood estimation (MLE) is used
to obtain the parameter estimates. WGB2 is applied as descriptive models
for the size distribution of income, and fitted to U.S. family income (2001-
2009) data with different values of parameters. The empirical results show

the length-biased distribution provides the best relative fit.

Key Words: GB2; WGB2; Moments; Generalized entropy; Beta entropy;
Dagum distribution; FIM; Size distribution of income; Generalized beta-F
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CHAPTER 1
INTRODUCTION

1.1 Generalized Beta Distribution of the Second Kind

The generalized beta distribution of the second kind (GB2) is a very flexible
four-parameter distribution. It captures the characteristics of income dis-
tribution including skewness, peakness in low-middle range, and long right
hand tail. This distribution, therefore provides good description of income
distribution (McDonald,1984). The GB2 also includes several other distribu-
tions as special or limiting cases, such as generalized gamma (GG), Dagum,
beta of the second kind (B2), Singh-Maddala (SM), gamma, Weibull and
exponential distributions.

The probability density function (pdf) of the generalized beta distribu-
tion of the second kind (GB2) is given by:

CLyapfl

~ w9 B(p, )1 + (Tyrra for y > 0, and 0 otherwise,
(1.1)
p

L(p)T'(q)
I'(p+q)

fGBQ(y; a, b7p7 q)

where a, p, g are shape parameters and b is scale parameter, B(p, q) =
is the beta function, and a, b, p, ¢ are positive real values.

The k" — order moments of GB2 are given by (McDonald and Xu, 1995):

b*T(p + S)I’(;} - %) (1.2)

Fop: (V") = L(p)L(q

The moments exist if —ap < k < aq.



1.2 Weighted Distribution

Weighted distribution provides an approach to dealing with model speci-
fication and data interpretation problems. It adjusts the probabilities of
actual occurrence of events to arrive at a specification of the probabilities
when those events are recorded. Fisher (1934) first introduced the concept
of weighted distribution, in order to study the effect of ascertainment upon
estimation of frequencies. Rao (1965, 1985) unified concept of weighted dis-
tribution and use it to identify various sampling situations. Cox (1962)
and Zelen (1974) introduced weighted distribution to present length biased
sampling. Patil (1978) used weighted distribution as stochastic models in
the study of harvesting and predation. The usefulness and applications of
weighted distribution to biased samples in various areas including medicine,
ecology, reliability, and branching processes can also be seen in Nanda and
Jain (1999), Gupta and Keating (1985), Oluyede (1999), Patil (1991), Zelen
and Feinleib (1969) are in references therein.

Suppose Y is a non-negative random variable with its natural pdf f(y; 6),

0 is a parameter, then the pdf of the weighted random variable Y"is given

by:

Fo(y:0.) = OO0, (13

where the weight function w(y, 5) is a non-negative function, that may de-
pend on the parameter 3, and 0 < w = E(w(Y,)) < oo is a normalizing

constant.



In general, consider the weight function w(y) defined as follows:

w(y) = y* e Fi(y)F (y). (1.4)

Setting k =0, k=j=1=0,l=i=7=0k=1=0;1—1—1;
j=n—i;k=1l=i=0and k=1=j =0 in this weight function, one at a
time, implies probability weighted moments, moment-generating functions,
moments, order statistics, proportional hazards and proportional reversed
hazards, respectively, where F(y) = P(Y < y) and F(y) = 1 — F(y). If

w(y) =y, then Y* = Y™ is called the size-biased version of Y.

1.3 Outline of Results

The outline of this thesis is as follows: In chapter 2, the weighted generalized
beta distribution of the second kind (WGB2) is introduced. Some proper-
ties including the cdf, hazard functions, monotonicity, income-share elastic-
ity, and moments ( mean, variance, coefficient of skewness and coefficient
of kurtosis ) are presented. Chapter 3 contains Renyi entropy and general-
ized entropy of generalize beta distribution and the weighted version. Top-
sensitive index, bottom-sensitive index, mean logarithmic deviation (MLD)
index and Theil index obtained from generalized entropy (GE) are also pre-
sented. Chapter 4 contains properties of the weighted Dagum distribution,
Fisher information matrix, and the estimates of the parameters under pro-
gressive type II censoring. Chapter 5 contains estimation of parameters in

the weighted beta distribution of the second kind with application to U.S.



family income data (2001-2009).



CHAPTER 2
WEIGHTED GENERALIZED BETA DISTRIBUTION OF THE
SECOND KIND

In particular, if we set [ = ¢ = j = 0 in the weight function (1.4),then we
have w(y) = y*. With the moments of GB2 in equation (1.2) we can obtain
the corresponding pdf of weighted generalized beta distribution of the second
kind (WGB2):

k
v f(y;a,b,p,q)
gWGBZ(y;a’J b7p7q7k) = E(Yk)

yFay™ T (p)T(q)
b B(p, q)[1 + (£)4]p+a - 0*T(p + E)T'(q — %)
ayaerkfl

_ , 2.1
B L Dy e Y

where y > 0, a,b,p,q > 0 and —ap < k < aqg. WGB2 has one more parameter

k compared to GB2.

2.1 Some Properties

The graphs of the pdf are given below:
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Figure 2.1: pdf of WGB2 (a=1, b=2, p=4, q=6)

Fig.2.1 depicts the pdf of WGB2 as the parameter k changes for repre-
sentative values of the parameters a,b,p,q : a = 1,0 = 2,p = 4,q = 6 for
k=0,1,2,3,4. We observe that: as the value of k increases, the "height” of
the pdf becomes lower, and the pdf is more skewed right. The parameter k
controls the shape and skewness of the density.

In order to further understand WGB2 with weight function w(y) = y*,
we discuss some related properties, including the cumulative distribution
function (cdf), hazard function, monotonicity properties and elasticity.

The cdf of WGB2 is given by:

y ayaerkfl
G ; 7b7 ) 7k - d
L - ey e
k k
= 1 - I[1+(%)a]—1 (p + aa q— 5)7 (2'2>

where I.(a, ) = % is the incomplete beta function, y > 0, a,b,p,q > 0

and —ap < k < aq.



The graphs of the cdf of WGB2 are given below:

e e
pELS /’ =T
K ap k=2 -
kT =2~
i -
1 -
07k Vd
f’ - k=4
y;
06f
i /
Sosl /
Sosp ¢ /
: /
D4t f ;
: /
031 . /
N /
n2p /
#oy
LR S
it/
a ;

Figure 2.2: cdf of WGB2 (a=1, b=2, p=4, q=6)

Fig.2.2 depicts the cdf of WGB2 as the parameter k changes for repre-
sentative values of the parameters a,b,p,q : a = 1,b = 2,p = 4,q = 6 for
k=0,1,2,3,4. We observe that as the value of k increases, the cdf increases
slowly.

In Tables 2.1 and 2.2, some percentiles of WGB2 are presented. In

particular, the 50", 75" 90 and 95" percentiles of WGB2 are given.



Table 2.1: Percentiles of WGB2 with k=1

a b p q 50th 75th 90th 95th
25 25 25 25 28986 3.7767 4.8844 5.7719
3 2.7696 3.4467 4.2578 4.8812
3.5 2.6949 3.2474 3.8859 4.3624
4 2.6477 3.1152 3.6411 4.0254
25 25 25 25 28986 3.7767 4.8844 5.7719
3 3.4784 4.532 5.8613 6.9262

3.5 4.0581 5.2873 6.8380 8.0806

4 4.6378 6.0427 7.8150 9.2348

25 25 25 25 28986 3.7767 4.8844 5.7719
3 3.1113 4.0262 5.1868 6.1196

3.5 3.3043 4.2542 5.4644 6.439

4 3.4818 4.4649 5.7217 6.7363

25 25 25 25 28986 3.7767 4.8844 5.7719
32,6265 3.3533 4.2249 4.8932

3.5 24265 3.0555 3.7831 4.3233

4 22713 2.8314 3.4619 3.9189




Table 2.2: Percentiles of WGB2 with k=2

a b p q 50th 75th 90th 95th
25 25 25 25 3396 4.5133 6.0133  7.281
3 3.0834 3.8815 4.8820 5.6804
3.5 2.9126 3.5359 4.2819  4.855
4 2.8084 3.3212 3.9151 4.3592
25 25 25 25 3396 4.5133 6.0133  7.281
3 4.0759 5.416 7.2160 8.7372
3.5 4.7552 6.3186 8.4187 10.1935
4 5.4346 7.2213 9.6214 11.6495

25 25 25 25 3396 4.5133 6.0133  7.281
3 3.6141 4.7791 6.3507 7.6818

3.5 3.8136 5.0242 6.6628  8.053

4 3.9987 5.2524 6.9541  8.3998

25 25 25 25 3396 4.5133 6.0133  7.281
3 3.0045 3.8736 4.9623 5.8277

3.5 2.7349 3.4591 4.3246 4.9849

4 25343 3.1631 3.8892 4.4269

The percentiles increases as b, p increases, and decreases as a, ( increases

with fixed k.
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The hazard function of WGB2 is given by:

Gwens (Us 00,0, ¢, k)
Puvess (0,000 k) = Ewm (y:a,b,p,q, k)
WGB2 y Wy Uy My Yy

Gwen (Y3 a,0,p,q, k)
1- GWGB2 (yv a, bvpa q, k)

- ay® 11 + (%)a]—(pﬂ) 23
baerkB(p + %7 q— S)I[l-ﬁ-(%)“]’l (p + S: q— 5)\ .

for y > 0, a,b,p,q >0 and —ap < k < aq.

The graphs of the hazard functions are given below:

k=0
03r
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/

Figure 2.3: Hazard functions of WGB2

Next, we study the monotonicity properties and discuss the income-
shared elasticity of WGB2. In order to discuss monotonicity of WGB2, we

take the logarithm of its pdf:

n(gyep (Y; a,b,p,q,k)) = InC+(ap+k—1)(Iny—Inb) — (p+q)in |:1—|— (%) ] 7

where C' is a constant. Note that



11

alngchz (y; a, b,p, q, k) _ (ap + k- 1)ba — (aq —k+ l)ya
Ay y(be +y°)

)

where y > 0, b,p,q > 0, and—ap < k < aq,soaq—k+1 > 0.

It follows therefore that

Q=

0lng,, ¢ (Y5, 0,0, ¢, k)
Oy

kE—1
>O<:)y<b(L)

ag—k+1

Q=

8lngWGBQ(y;a7b’p7Q7 k) _ O<=)>y _ b(ap—l—k— 1)

dy ag—k+1) "’
ol (y;a,b,p,q, k) bhk—1\"
ngWGBQ y;a,0,p,q, ap - “
<0&sy>b|l ———
dy Y (aq—k+1)

aq—k+1

1
The mode of WGB2 is yy = b(L]H> :

The income-share elasticity is defined as %ygy)’ where ¢'(y) = dil—(yy). See

Esteban (1986) for additional details. The derivative of g,,,,(y;a,b,p,q, k)

with respect to y is given by:

) ayap—i—k—l
Shor® = |Gty DT

- bB(p+a§,q Yy K%)GPHH {1 N (%y} (p+q)]

ay™*2lap + k —1— (p+ q) 5s)

b+ B(p + £ g — 5)[L+ (§)efr+e

!
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The income-share elasticity of WGB2 is given by:

_yg{/VGBQ(ya a, b7p7 q, k)
gWGB2<y; a, b7p7 q, k)

—ap—k+1. (2.4)

6GWGB2 (y;a’7 b7p7Q7 k) =

= (p+
(p q)ba%_ya

2.2 Moments of WGB2 and Related Special Cases

2.2.1 Moments

The non central (j%) moment of WGB2 is given by:

EGWGB2 (Yj> - / ngWGB2<y)dy
0

ap+k—1

B /“ Yy ay
o bHEB(p+ £ q— )L+ (§) et

_ abi—1 /oo y ap+k+j—1 - y a f(p+q)d
Blp+%£q-%Jo \b b Y

_ abi—1 /oo y arptE+i-t - y a *(Pﬂ)d
Blp+£,q-%) Jo b b Y-

Let () =t, then y = bté, dy = %tifldt, and

dy

. b] o ayj_ _
EMMJW)ZZB@+Eq—E%A R (14 6) P at
b B _|_E_|_l'7 _k_3J
_ (p a ka q ka a>' (25)
B(p+ an_a>

The mean and variance of the WGB2 distribution are given by:

bB(p—i_S—i_%vq_s_%)
HGyops = EGWGBQ (Y) - B(p 4k q— E) ! (26)
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and

VG/TGWGBZ (Y) = EGWG32 <Y2) - (EGWGBQ <Y))2
P[P (S Sy
B<p+§7q_§) B(p+§7q_§)

respectively.

The coefficient of variation (CV) is given by:

Varg Y)

WGB2 (

cvV =

’LLGWGBZ

\/B<p+%,q—%>3<p+§,q—§>
k+1 k+1
B p+*5.q - 5)

~1. (2.8)

Similarly, the coefficient of skewness (CS) and coefficient of kurtosis

es = £ (4]

(CK) are given by:

= p , (2.9)
and
4
ox = 5|(*74) ]
o
31 _ 3 2 21 a4
_ E[Y?] 4,uE[Y]1—6,u E[Y?] —3u | (2.10)
o
where
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PBlptit+ia—g—2)

: V'Blp+it+ia—t—13)
B(p‘i‘%,q_S) ’

B(p+§7q_§)

B[Y?] = E[YY] =

Since we have obtained the mode, mean, variance, CV, CS and CK of
WGB2, we set the values of the parameters a, b, p, q and compute the
values of these quantities in Tables 2.3 and 2.4. From the tables we observe
the following;:

1) When k = 1, mode increases as p increases, decreases as ( increases,
and does not change as a, b increases; when k = 2, mode increases as b, p
increases, decreases as a, ( increases.

2) Mean, variance decreases as a,q increases, increases as b, p increases.

3) CV decreases as a, p, ( increases, and does not change as b increases.

4) CS decreases as a, b, p, q increases.

5) CK decreases as a, q increases, increases as p increases, and does not

change as b increases.



Table 2.3: The mode, mean, variance, CV, CS and CK of WGB2 when k=1

15

a b p q mode mean variance CV CS CK
25 25 25 25 25 3187619 2.072506 0.451629 -13.398078 22.993346
3 2.5 2.954545 1.132674 0.360215 -21.542438 11.61182
3.9 2.5 2.824413 0.723843 0.301227 -32.416597 8.227137
4 2.5 2743821 0.50716  0.259547 -46.503715 6.672292
25 25 25 25 25 3187619 2.072506 0.451629 -13.398078 22.993346
3 2.5 3.825143 2.984408 0.451629 -14.081444 22.99334
3.5 2.5 4.462667 4.062111 0.451629 -14.569562 22.993346
4 2.5 5100191 5.305615 0.451629 -14.935651 22.993346
25 25 25 25 25 3187619 2.072506 0.451629 -13.398078 22.993346
3 2.6891 3.417945 2.263706 0.440195 -14.444185 23.727663
3.9 2.8602 3.627291 2.45092 0.431601 -15.321162 24.322348
4 3.0171 3.820056 2.634649 0.424905 -16.067381 24.813225
25 25 25 25 25 3187619 2.072506 0.451629 -13.398078 22.993346
3 23242 2.829373 1.287897 0.401098 -16.618157 11.383826
3.5 21852 2.580454 0.91433 0.370557 -19.08715  7.988561
4 2.0715 2394085 0.702145 0.350005 -20.958808  6.438066
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Table 2.4: The mode, mean, variance, CV, CS and CK of WGB2 when k=2

a b p q mode mean variance CV CS CK
25 25 25 25 28445 3.8378 3.9325 0.5167 -10.6613 137.0961
3 2.7339 3.3379 1.7017  0.3908 -18.6434 20.2011
3.5 2.6695 3.0807 0.9626  0.3185 -29.3114 11.2619
4 2.6286 2.9287  0.6268  0.2703 -43.1653  8.2368
25 25 25 25 28445 3.8378 3.9325 0.5167 -10.6613 137.0961
3 3.4134 4.6054 5.6628 0.5167 -11.0601 137.0961
3.5 3.9824 53729 7.7077 0.5167 -11.345 137.0961
4 4.5513 6.1405 10.0672 0.5167 -11.5587 137.0961
25 25 25 25 28445 3.8378 3.9325 0.5167 -10.6613 137.0961
3 3.0314 4.0802 4.305 0.5085 -11.1588 140.504
3.9 3.2024  4.303 4.6694  0.5022 -11.5722 143.2584
4 3.3607 4.5097  5.0268  0.4972 -11.9217 145.5293
25 25 25 25 28445 3.8378 3.9325 0.5167 -10.6613 137.0961
3 26116 3.2846 1.9893 0.4294 -15.0613 19.4437
3.5 24342 29348 1.2665 0.3835 -18.6267 10.6813
4 22929 26874 0.9093 0.3548 -21.4601  7.7605
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2.2.2 Special cases

WGB?2 includes several other distributions as special or limiting cases, such
as weighted generalized gamma (WGG), weighted beta of the second kind
(WB2), weighted Singh-Maddala (WSM), weighted Dagum (WD), weighted
gamma (WG), weighted Weibull (WW) and weighted exponential (WE) dis-

tributions.

Figure 2.4: Distribution Graph

We can also obtain the j* moments of these distributions with the

weight function w(y) = y*.!

e Weighted Singh-Maddala (p = 1)

L VBA+E4lg-k_ 1
EGWSM<Y]) = B(l n [ g E) . (2.11)

'In the special cases, one should consider the restrictions on the values of k and j.



Weighted Dagum (q=1)

EGWD (Yj) =

YB(p+Et+1 1k

2

B(p+§,1—§)

Weighted Beta of the Second Kind (a=1)

YVB(p+k+j.qg—k—3j)

EGWB2 (Y]) =

Bp+k,q—7)

Weighted Generalized Gamma ( b = gef3 as ¢ — 00 )

BT(p+5+1)

EGWGG (Yj) -

Weighted Fisk (p=1,q=1)

T(p+ %)

VB(1+E+4+11-k_

EGWF (YJ) =

Weighted Gamma (a =1, b= qef3 as ¢ — 00 )

EGWG (Y]) -

B(1+ %1k

BFT(p+k+j)

Weighted Weibull ( p = 1, b = fBqq as ¢ — 00 )

C(p+k)

Bk + D5+ 1)

EGWW (Yj) =

Weighted Exponential (a=p=1,b= Bqa as ¢ — oo )

EGWE (Y]) =

RE(G)

& (k +5)!

k!

5
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(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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2.3 Concluding Remarks

In chapter 2, the weighted generalized beta distribution of the second kind
(WGB2) is presented. We showed that WGB2 includes several other dis-
tributions as special and limiting cases. The limiting and special cases in-
clude weighted generalized gamma (WGG), weighted beta of the second kind
(WB2), weighted Singh- Maddala (WSM), weighted Dagum (WD), weighted
gamma (WG), weighted Weibull (WW) and weighted exponential (WE) dis-
tributions as well as their unweighted or parent versions. Statistical proper-
ties of the weighted generalized beta distribution of the second kind (WGB2)
including the cdf, hazard functions, monotonicity, and income-share elastic-
ity are also presented. The moments of WGB2 as well as the mean, variance,

coefficient of skewness and coefficient of kurtosis are presented.



CHAPTER 3
ENTROPY OF WEIGHTED GENERALIZED BETA
DISTRIBUTION OF THE SECOND KIND

3.1 Generalized Entropy

Generalized entropy (GE) is widely used to measure inequality trends and
differences. It is primarily used in income distribution. Kleiber and Kotz
(2003) derived Theil index for GB2 and Singh-Maddala model.

The generalized entropy (GE) I(«) is defined as:

Vot~ ¢ —1

=@

yaZ£0,a#1, (3.1)

where v, = [y*dF(y), p = E(Y) is the mean, and F(y) is the cumulative
distribution function (cdf) of the random variable Y. The bottom-sensitive
index is I(—1), and the top-sensitive index is 1(2).

The mean logarithmic deviation (MLD) index is given by:

I1(0) = lima—ol () = logp — vy. (3.2)
and Theil index is:
— 1 _ K
I(1) =limg1I(a) = i log . (3.3)
1

The generalized entropy of GB2 is given by Jenkins (2007) as:

B(p—i_%aq_%)B_a(p_'—%aq_%)_Bl_a(]%q)

fe= ala —1)B*(p,q) ar ol
with
1(0) = r(p+ E) +r<q _ _) _T(p) —T(q) — wflp) B @DSJ)’
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and
vip+,)  vle—3) 1 1
I(1) = - ~T(p+-)-Tlg—=)+T(p) +T().
a a a a
From our previous discussions about WGB2, v, and p are given by:
baB(p+§+%7q_§_%) bB(p—i_S—i_%aq_s_%)
Vo = k k , and  p= k k ,
Blp+5.9—7) Blp+5.94—7)
respectively.
Consequently, the generalized entropy of WGB2 is given by:
I(Oé): B(p+§+%’q_%_%)B—a(p+§+%’q_S_%)_Bl—a(p_i_g’q_%)

ala —=1)B=e(p+ L q-1)
(3.4)

where o« # 0 and o # 1. Note that I(a) does not depend on the scale
parameter b.

When oo = 0 or a = 1, set m(a) = vou~* — 1, n(a) = a(a — 1), then

I(a) = :);((5))' By L’Hopital’s rule, we have I(0) = —m/(0), I(1) = m'(1),

m' (@) = (1) v+ (W) (1) = —p~logn,

L _k_ @ !
w(p+a“+“)—w(q aa “)+logb], where @Zz(z)zll:g))

Consequently the MLD index and Theil index, I(0) and I(1) of WGB2

are
Blp+ bl g — k1 Lk _k
1(0) = log (p rail e ) vlp+y) (g a)’ (3.5)
Blp+c.q—1¢) a a

I
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and

ket _ ket Rl kel
I(1>:w(p+ AU )_lOgB(p+ 4= ")

a a B(p+§7q_§)

(3.6)
respectively. Note that 1(0) and I(1) does not depend on the scale parameter
b.

We select the values of the parameters a, p, q and compute the bottom-

sensitive index (I(-1)), top-sensitive index (I(2)), mean logarithmic deviation

(MLD) index (I(0)) and Theil index (I(1)) in Tables 3.1 and 3.2.

Table 3.1: Generalized entropy of WGB2 with k=1

a p aq 11 L2 1) I1)
25 25 25 00891 0.102 0.0841 0.2544

3 0.0594 0.0649 0.0572 0.2649
3.5 0.0426 0.0454 0.0414 0.2569
4 0.0322 0.0337 0.0315 0.2433

25 25 25 0.0891 0.102 0.0841 0.2544

3 0.0826 0.0969 0.0791 0.2497
3.5 0.0779 0.0931 0.0754 0.2464
4 0.0745 0.0903 0.0726 0.2438

25 25 25 0.0891 0.102 0.0841 0.2544
3 0.0739 0.0804 0.0712 0.5079
3.5 0.0678 0.0687 0.0633 0.701
4 0.0622 0.0613 0.058 0.8568




23

Table 3.2: Generalized entropy of WGB2 with k=2

a poq 1) 12 I0) I
25 25 25 0.102 0.1335 0.0981 -0.0294

3 0.0649 0.0764 0.0633 0.0908
3.5 0.0454 0.0507 0.0446 0.1389
4 0.0337 0.0365 0.0333 0.1579

25 25 25 0.102 0.1335 0.0981 -0.0294

3 0.0969 0.1293 0.0942 -0.033
3.5 0.0931 0.1261 0.0913 -0.0357
4 0.0903 0.1236  0.089 -0.0379

25 25 25 0102 0.1335 0.0981 -0.0294
3 0.0804 0.0922 0.0767 0.3079
3.5 0.0687 0.0735 0.0651 0.5465
4 0.0613 0.063 0.0579 0.7308

From the tables, we observe that:
1) I(-1), I(2) and I(0) decreases as a, p, q increases, and does not change as
b increases, since these indices do not depend on the scale parameter b.
2) There is no specific pattern for I(-1), I(1) increases as a increases for the

chosen values of the parameters.
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3.2 Renyi Entropy

Renyi (1961) extended the concept of Shannon’s entropy and define Renyi

entropy as follows:

Ia(/B) =

1i5log</ooofﬁ(y)dy)7 B>0,8#1. (3.7)

Renyi entropy is important in statistics as a measure of indices of diver-

sity, and tends to Shannon entropy (1948) as 5 — 0.

3.2.1 Renyi Entropy of GB2

Recall the pdf of GB2 distribution is given by:

ayap—l
b B(p,@)[1 + (3)]rte

fa2(y;a,b,p,q) for y > 0, and 0 otherwise

Note that:

a B s\ Blp—1) 7\ —B(p+q)
i~ 10T (]

where y > 0, a,b,p,q >0, 3 > 0. Let (¥)* = ¢, then dy = Sté_ldt, and

00 B—-1 oS B(p+q)
8 (o _ (¢ 1 / 8 _ﬁ+1_1( 1 )
ca,b.p,q)dy = — _ tPP e a —
/0 fGBz(y P, q)dy (b) Bﬁ(p,q) ; PR}

(g)‘“B(ﬁp— S+ Bate—t+2)
b B*(p,q) '

Consequently, Renyi entropy for GB2 simplifies to:

b logB B(fp—L2 41 B_ 1,9
]R(ﬁ):log<a>_ﬁoiq_(gm+ (Bp a+i_6qB+a . +t2)

for a,b,p,q >0, >0, 5 # 1.

, (3.8)
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3.2.2 Renyi Entropy of WGB2

Recall the pdf of WGB2 distribution is given by:

ayap-‘rk—l

T B+ B = DI+ (e

Gwens (U3 a,0,p, 4, k) (3.9)

for y > 0,a,b,p,q,k >0, and —ap < k < aq. Note that:
a a Bk_B al—
1 R L )1 B
Bﬁ(p + S? q— S)
for a,b,p,q > 0, —ap < k < aq, 8 >0, B # 1. Let ({)* =t, then dy =

92 (y;a,b,p,q, k) =

bta—ldt, and

o0 a\B—1 o0 BP+%—§+%_1 Bq_%"rg—g
/ go(y)dy = &) / P 1
0o ¥ B(p+Eq—1%) Jy 1+t 14t

(5" ' Bp+ 5 -0+ 5 Ba— T+ 58— 1 +2)
B/B(p—i_%aq_g)

Consequently, Renyi entropy for WGB2 reduces to:

™
|
=
+
[\
~

b logB Eg—%) JlogB Bk _ B 1 g, Bk
IR(ﬁ)IZOQ(E)—Bog (2194:261 o) logB(Bp+ 5 a+1a_55q L
(3.10)

for a,b,p,q >0, —ap < k <aq, 8 >0, 8 # 1.

We select values of the parameters a, b, p, q and compute Renyi entropy
for different values of [ in Tables 3.3 and 3.4. From the tables we observe
the following:

1) When k = 1: for 8 < 1, Renyi entropy increases as b, q increases; for § > 1,
Renyi entropy increases as b increases, and decreases as a, p, q increases.
2) When k = 2: for < 1, Renyi entropy increases as a, b increases; for § > 1,

Renyi entropy increases as b increases, and decreases as a, p, q increases.



Table 3.3: Renyi entropy of WGB2 with k=1
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a b p q =025 =05 =07 =125 =15
25 25 25 25 0.0043 0.53 4.5354  -17.6808 -13.5768
3 -0.0921 0.421 44616  -17.9609 -13.8119
3.5 -0.1795  0.3199  4.3792  -18.1696 -13.9942
4 -0.2599  0.2266  4.2964  -18.3358 -14.1437
25 25 25 25 0.0043 0.53 4.5354  -17.6808 -13.5768
3 0.1866  0.7124  4.7177  -17.4985 -13.3945

3.5 0.3407  0.8665  4.8719  -17.3444 -13.2404

4 0.4743 1 5.0054  -17.2108 -13.1068

25 25 25 25 0.0043 0.53 4.5354  -17.6808 -13.5768
3 -0.0843  0.5318 5.027  -19.6824 -15.0812

3.5 -0.169 0.5261 5.4507  -21.4444 -16.4077

4 -0.25 0.5158  5.8225  -23.0191 -17.5949

25 25 25 25 0.0043 0.53 4.5354  -17.6808 -13.5768
3 0.1044  0.8711  5.7364  -20.3785 -15.4183

3.5 0.1848 1.1532 6.75 -22.702 -17.0128

4 0.251 1.3931 7.6272  -24.7466 -18.4216




Table 3.4: Renyi entropy of WGB2 with k=2
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a b p q =025 =05 =07 =125 =15
25 25 25 25 -0.1758 0.1726  3.6929 -16.5623 -12.9325
3 -0.2436  0.1417 3.846 -17.231  -13.4088
3.5 -0.311 0.091 3.9028  -17.6653 -13.7291
4 -0.3764  0.0329  3.9124  -17.9732 -13.9639
25 25 25 25 -0.1758 0.1726  3.6929 -16.5623 -12.9325
3 0.0065 0.355 3.8752 -16.38  -12.7502

3.5 0.1607  0.5091  4.0294  -16.2259 -12.596

4 0.2942 0.6427 4.1629  -16.0923 -12.4625

25 25 25 25 -0.1758 0.1726  3.6929 -16.5623 -12.9325
3 -0.2704  0.1397  4.0278  -18.1282 -14.1235

3.5 -0.3602  0.1046  4.3179  -19.5189 -15.1831

4 -0.4454  0.0686  4.5734  -20.7701 -16.1377

25 25 25 25 -0.1758 0.1726  3.6929 -16.5623 -12.9325
3 -0.0429  0.6121 5.2145  -19.9289 -15.2229

3.5  0.0616  0.9675  6.4713 -22.7763 -17.173

4 0.1466  1.2651  7.5436  -25.2522 -18.8767
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3.3 Concluding Remarks

In chapter 3, the entropy of Weighted Generalized Beta Distribution of
the Second Kind (WGB2) are studied. Generalized entropy and beta en-
tropy which are measures of the uncertainty in this class of distributions are
derived.Top-sensitive index, bottom-sensitive index, mean logarithmic devi-
ation (MLD) index and Theil index obtained from generalized entropy (GE)

are also presented.



CHAPTER 4
RESULTS ON DAGUM AND RELATED DISTRIBUTIONS

4.1 Dagum Distribution

Camilo Dagum (1977) proposed the Dagum distribution for the size distribu-
tion of personal income. This distribution is a special case of generalized beta
distribution of the second kind(GB2), when q = 1. Kleiber (2007) traced the
genesis of Dagum distribution and summeraized several statistical properties
of this distribution. Domma (2011) provided the calculation of the Fisher
information matrix of Dagum distribution under type I right censoring.

The pdf of generalized beta distribution of the second kind is:

ayapfl
b B(p,q)[1 + ()]

fapa(y;a,b,p,q) for y > 0, and 0 otherwise.
(4.1)

When q = 1, 4.1 becomes the Dagum distribution, and the pdf is given

by:
apy™”!
“a.b _
fD(y7a7 ap> bap[l + (%)a]p+1‘
B apba (%)a p+1
o ya—I—l 1+ (%)a
= apb®y Oy 4+ 1)1y >0,a,b,p>0.
Let b* = A\, a = 0, p = 3, then the pdf of Dagum distribution can be
written as:

fo(y: B, A 6) = Ay Ty + 1)1y > 0,\, 8,0 > 0. (4.2)
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The corresponding cdf is given by:
Fp(y: ,7.6) = (1+Xy~") ",y > 0,1, 5.6 > 0. (4.3)

The hazard function and the reverse hazard function are given by:

bl B.0) — 2o B0) BT Oy + )

Fp(y; A, B, 6) I— 1+ 0B (4.4)

and
To(y; A, B,0) = BASy T Ay + 1)y > 0,0, 8,6 > 0. (4.5)

respectively.

The k' raw or noncentral moments are:

E(Y") = BAs B(B + %,1 — %),for §> k.

4.2 Weighted Dagum Distribution

Recall the pdf of WGB2 is given by:

ayap+k71

B+ Fg = DI ()

fap2(y;a,b,p,q) for y > 0, and 0 otherwise.

(4.6)
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When q = 1, this pdf becomes the weighted Dagum pdf:

ayap-i-k—l

B+ £, 1— B+ (5]
1 k—1 (ﬂ

Bp+E1-5 ¥ L+ (5T

B 1 aykfl ba |:1 N b)a:| —p—1
 Blp+E1-E) by y
(

fWD(y7 a, bapa Q> =

fory > 0,a,b,p, k > 0.

Let b = X\, a =9, p = 8, then Weighted Dagum pdf can be written as:

fwp(y; B, A, 6, k) = wa\l“ y Ty 1)

fory >0,6,\,0>0,—-08 < k <.

The cdf and hazard functions of Weighted Dagum distribution can be
obtained from equations (2.2) and (2.3) by setting: b* = X\, a = ¢, p = [,
qg=1.

The cdf of WD is given by:

k
FWD(y;)‘a(S?B?k):l_ (1+y (B‘i‘ 6)7

The hazard function of WD is given by:

oW A, 0, B, k)
» (Y3 A, 0,8, k)
5)\1—§y—6—1+k()\y—5 + 1)-5—1

B (A5 B K) = ;

BB+ 51-51 (142 <5+
fory>0,6,\6>0,-08 <k <.

o
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The j** raw or noncentral moments are:

, o 1 ks , s
E(Y?) = / B(G—E 1 k)(”l sy T (L4 Ay dy
0 — 51— 3
> 1 & : s N
N / B(G—E 1 ic)A (Y (AGy N dy) (14 Ay 0) P dy
0 — 51— 3
! 1 (1T
= / B(ﬁ k1 k))\_a( h\ ) 2P gt
0 — 5l
1 1 k| kti k+j ktj
S hEEonpt e
5 5
_ )‘%B(ﬁ_%vl_%)
B(B_ %71 - %) ’
for 6 > k.

4.3 Fisher Information Matrix
Let 0 = (5, A, §), the fisher information is given by:

1(6) = Bl log(F(V:0))1 (4.7)

If the second derivative with respect to 6 exists for all Y and 6, and the
second derivative with respect to 6 of [ f(Y;6)dy = 1 can be obtained by
differentiating twice under the integral sign, then the Fisher information

becomes:

1(0) = —Ep[7510g(f (Y53 0))]. (4.8)
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The logarithm of the weighted Dagum pdf is:

log(fwp(y))

log(fwp(y; B, A, 6, k))

logI'(B + 1) — logTl’ (6 + g) — logr<1 — %) +log(0) + (1 — g)log/\
—(0+ 1 —k)log(y) — (B + 1)log(1+ Ay™°).

The first, second and mixed partial derivatives are:

|
~ |

| T oo,
N———

Ologfwp(y) _ T'(B+1) T'(8

—log(1+ )\ny>

0B T(B+1)
= P+ -

=

+
+
+

- lOg(l + )\y_5>7

sy

d*logfwp(y)

/ / k;
i =w<6+1>—¢(5+5),

Plogfwply) _ Plogfly)  y~°
OBON ONDp L+ Ay~

Plogfwply) _ logf(y) _ 5& " (5 N @) | Ay ?log(y)

9505 0003 5) T T
Ologfwp(y) _ 1( kY _ y~°
o a5 U
Plogfwply) 1 (k (y°)?
=55 e g
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Plogfwply)  Plogfly) &k y’In(y)
Y R S R (F S V=i

Ologfwply) kI'(B+%5) K'(1-5) Lk 1M log(y)
P CST(B4E) -k 0 62

=5 (0(0+5) 0= 5)) 4 5+ gatosh) ~ gty + (5.4 I

and

logfwply) 2k k k K[, k , k 1
=5 (v 5) e (1-5)) - w (e 5) - (1-5)) -5

—%log(k) +AB+1) (%) .

We now take the expectations and simplify the results.

El = E(Y—_é) — /OO y_5 1 6)\1—%y—6—1+k()\y—5 + 1)—ﬂ—1dy
L+ MY o 1+ B(B+E51-5
%) 1 X

Let (Ay=°+1)"! = ¢, then y % = t_lT’l = L, and Aoy~ tdy = t72dt,

so that:
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o0 1
E, = / AT
! o BB+E1-E

(1— )% s 4PH5-1ay

B ko _k
6+ N 5,3 : (4.9)
Similarly, we obtain:
y -0 BB+L+1,2-1%
Ey = _ B s - ,j), (4.10)
(1+AY—9)2 AB(B+ 5 1-5)
Also,
Y logY > y~’logy 1 =k 61tk y =8 | 1\—f1
By=E(—%7 ) — SA s T+ 1)
=5(im) = [ s ey
o 1 K
= ON' oy IR Oy P2 (y)dy,

Let (\y~°+1)~! = ¢, then logy = —3[log(1 —t) —logA—log(t)], and we have:
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1 1-%
E :/ ! A—'Et”(i) 6t5+21[log(t) + log\ — log(1 — t)]dt
)y BB+ E) 5

k1-k At
1
1 k k
= (1 — )55 Hlog(t) + logh — log(1 — t)]dt
/0 NB(B+ 5 1-1%)
1 1 k k 1 k k
= lo A/ 1—t 1—stﬁ+a—1dt+/ 1 — ) 5815 Yog(t)dt
)\53(5+§,1—§){g (- - o(t)
1
—/ (1 =) 5¢P15 og(1 —t)dt}
0

1 kok E ok "
“ s s e (o 52 5) v 8(o e 5) (v(0+ )

—w(5+2>) —B(“??‘%) (w(2—§) wg§+2>>]

_ B(B+52-9%) k
_A5B(/B+§,1—§)[ZOQA+¢<6+3>_¢<2_ |

Similarly,
E —E(—Y_élogy ) _ BB+52-9) {loA+¢(6+E+1)—w(2—E)
R\ 2) T BB -E1-b | 5 5|
Also,
s logY \? by (logy)? 1 ks _ —p-
Es=E|Y° = ATy O O\ 4 1) P gy
] [ (1+AY—6H /0 1+ )2 BB +E51-5 Y Ay + )7 dy

Let (A\y™® +1)7* = t, then logy = —3[log(1 —t) — logA — log(t)], and
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k
5

1 1 5 11—\ 1
Fs = /\‘ét‘2<—) 53 _[log(t) + log\ — log(1 — t))?dt
= | s N Sllog(t) + log — log(1 — 1)

(1 — )55 [log(t) + logh — log(1 — t)]2dt

1
95 (1 — )5 [(log(1 — t) — logt)? + (log\)?

+ 2logA(logt — log(1 — t))]dt
_BB+5+1,2-%) 2 BN "

el ) nan(s ) (o)

By using F; to Ej, we obtain Fisher information matrix (FIM) for the

weighted Dagum distribution with the entries:

Igg = =/ (B+1) + 4 (ﬁ + %) (4.11)
Igy = Ey, (4.12)
Ips = —% "B+ %) — \Es, (4.13)
1 k
La = _E(S —1) = (B+1)Es, (4.14)
k
Iy = ——— — (B+1)Ey, (4.15)

A2
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and

=306+ H-va-h)+£(verh-va-h)+ 3

+2log(A\) + A(B + 1)Es. (4.16)

Fisher information matrix (FIM) of weighted Dagum is given by:

Isg I Isp
I(ﬁ,)\,é): [5,\ L sy

Igs Ing Iss

4.4 Parameter Estimation from Censored Data for Dagum

Model

4.4.1 Maximum likelihood estimators

Khedhairi(2007) used the maximum likelihood method to estimate the pa-
rameters of the generalized Rayleigh distribution under censoring, we use
similar method to obtain the estimates of the parameters of the Dagum dis-
tribution in this chapter.

Let t = (t1,---,tx), where t; < --- < t; denotes the predetermined
inspection times and tj is the completion time of the test, n; is the number
of failures recorded in the time interval (¢;_1,t;], ngy1 is the number of units
which have not failed by the end of the test, let t; = 0 and t;,.; = oo.

Therefore, the likelihood function is given by:
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k
L(t;0) = C[[[P(ticy < T < )™ [P(T > t;)]"+*,
i=1
where
P(tz‘_l <T< tz) = F(tl) — F(ti_1>,
and

Therefore, based on Dagum distribution, we obtain:
k

L(t;0) = C[1— F(ty)]™ H[F(ti) — F(ti)]™
k
= O — L+ M) e [T+ 07%) 77 = (1 A2) 7).

We let
Dz(/\7 67 ﬁ) = (1 + At;(s)iﬁ - (1 + /\t;_é1>7187

So that the log-likelihood function can be written as:
k+1
InL = InC' + Y ninDi(\, 6, 8)
i=1
The partial derivative of D;(A,d, 8) with respect to A is given by:
9D;(A, 4, B)
O\
= _5[(1 + )‘ti_(s)_ﬂ_lti_é - (1 + Ati_—él)_ﬁ_lti_—(le

Dy

Similarly, we can obtain the partial derivative of D;(A,d, 8) with respect
to S and 9:

DY = (14 M%) PIn(1+ M%) — (L+ A7) Pin(L + M),
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Dy = BAI(L+ M) P n(t) — (14 M) ™ (e,

where 1 =1,2,--- [k + 1.

So the partial derivatives of log-likelihood function are given by:

OlnL DY
ol _;ni—Di(A,ﬁ,é)' (4.17)

= i 4.1
55~ "D 5.0) (4.18)
dinL <~ DY
= ARt 4.1
% " BN (419)
The MLE of A\, 8 and J are obtained by solving EHBKL = 83’; = 818’? =0.

There is no close form solution, so numerical technique must be applied.

4.4.2 Asymptotic Confidence Interval

Let 6§ = (A, 3,9), by using the large sample approximation, the MLE esti-
mators of # is approximately normal with mean # and variance-covariance

matrix /1. The elements of the 3 x 3 matrix 1! can be approximated by the

: : : N _ ?IinL | ~ _ 9%InL
elements of information matrix, and [;;(f) = —F {aeiaej] R = g Also,

D5y = BB+ 1)1+ A;7°) P22 = BB+ 1)(1+ M2 7.

Dig = (14M0) P10 [BIn(14+X ) — 1] — (14X 720 [Bln(1+ M) ) — 1.
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Dis = =Bt (14Xt °) 7P 72In(t;) (B O —1) = B0 (14 M%) 72 n(timr ) (B —1).

Dijg = (14 M%) P[In(1 + Xt;%)]* — (14 At;%) P[In(1 + M)

Dis = At (14X 0) P n(ty) [1=Bln(1+t; ) =Xt (1A %) ™7 Hn(ti—y) [1—Bin(1+t)].

Djs = BAG (LX) P72 (In(t:))*(ABE° = 1) = A (14AE2) 7772 (In(tioa) ) (MBS, 1),

The elements of the matrix can be approximated by:

PinL S DD — (D(6))?
I, = _W _ _Zni A\ ((l))l(e)<>2 )\( )) ’ (420)

=1

PinL <~ DiD'(0) — D(0)Dj(0)

112 :]21 = —W —;nz (Dl<9))2 s (421)
2 k+1 i Mg\ _ i i
st =Sy = LS 02
PInL G~ DiyD'(0) — (Dj(6))?
Iy = _8—; = - an o5 (Di(e))Q a ) (4-23>

i=1
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PnL  Cx DiDU(0) — Dy(0)Di(0)

Iy =Inp = ——525 == ;n 002 : (4.24)
_ Pl DiD'(9) — (Dj(6))?
Iy = —— s = = ;n (D) : (4.25)

Therefore, the approximate 100(1 — v)% two-sided confidence intervals

for A, B, 0 are given by:

A+ Z3\/1571(6), ﬁiZw\/mlH 6+ %\/33

respectively.

yth

5 percentile of a standard normal distribution.

Where Z% is the upper

4.4.3 Parameter Estimate Under Progressive Type-11

Censoring

Progressive type-II censoring has been wildly used in survival analysis and
industrial life testing. A progressive type-II censored sample can be denoted
as t;, 13, where t; is the i*" failure time and r; is the number of surviving units
which are randomly removed at time ¢;. Both type-II censoring and complete
sampling are particular cases of progressive type-II censored sample. Domma
et al.(2011) provided the Fisher information matrix of Dagum distribution
under type I right censored observations. In this section, we present the nor-
mal equations for Dagum distribution under Progressive type-1I censoring.

Recall that Dagum pdf and cdf are given by:



43

fo(t: BN 8) = BAGEH A2 +1)7771 1>0,6,),6 >0,
and
Fp(t; B,0,0) = (1+ X t>0,8,1,6 >0,

respectively.

Under Progressive type-II censoring, the likelihood function is:

L(B, A, 6) o [ [ F(ta)[1 = F(t:)])",
that is:
L(B,)\,6) o ﬁﬁ)\étf‘l(l + MO T — (14 A0) 7]
=1

= BT Hﬂ ! H (14 ;%) A1 ﬁ[l — (L4 Xt;°) 7)™,
=1

=1

The log-likelihood function is:
InL = n(InB+nA+Ind)—(5+1) Zln —(B41) Y In(14Xt0)+) " riln[1—(1+At) ]
i=1 i=1

The normal equations are:

InL . "L (1 4+ M) (1 + A0
dink _ n Zln(l—i—/\t;é)—kzn( M) il 1 A

B B = (A
8lnL n i Z riB(1 4+ X;0) =010
O —~ 1+ At R AR € D ) I A
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and
olnL n M) =B M) TP () In(t)
_ = _ _|_ + 1 Y NS 7 7 )
o~V ); 1+ A0 ; 1— (14 A7)0

The normal equations should be solve numerically.

4.5 Notations

We used the following results in the computations of the results in this chap-

ter.
b 1, _ D(a)l'(b)

Differentiate (4.31) with respect to a, we have:

IM(a)T'(b)T'(a + b) — T(a)T’(b)(a + b)
(T'(a+b))?

['(a)T'(b)

. WW(&) —¥(a+10))

— Bla,b)(¢(a) — ¥(a +1)). (4.27)

1
/t“—l(t—l)b—llntdt —
0

Similarly, differentiate (4.31) with respect to b:

/1 1t — 1)>"Un(1 — t)dt = B(a,b)(v(b) — (a +Db)). (4.28)
Differentiate (4.32) with respect to a:
[ = 0 et = Bla.[(0(a) = vla+ 0 + 0/ (0) = o+ b))

(4.29)

Differentiate (4.33) with respect to b:

[ =0 =) = Bl = vlat b+ )= o)L
(4.30)
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Differentiate (4.32) with respect to b:

[ e ) an1-0)dt = Bla () - (a+)60)-bla+ b))
(4.31)
From (4.34)-(4.36) we obtain:

[ =0 e =m0 =) = Bla D00 =0 + 0 (0) +0 O
(4.32)

4.6 Concluding Remarks

In this chapter, properties of Dagum and Weighted Dagum distributions in-
cluding hazard function, reverse hazard function, moments are presented.
Fisher information matrix (FIM) and estimates of model parameters under
censoring including progressive Type II for the Dagum distribution are pre-

sented.



CHAPTER 5
ESTIMATION OF PARAMETERS IN THE WEIGHTED
GENERALIZED BETA DISTRIBUTION OF THE SECOND
KIND

5.1 Estimation of parameters

The WGB2 with weight function w(y) = 4", can be written as:

gw(y;a,b,p,q) = B~ <p - g q— g) (%) K%)a} " [1 + <%)a} _(W).

If we set F(y) =1 = (1+ (1)), then f(y) = $(4)*~'[1+ ()] 2 and

o) = 5 (4 2o = 2) p PG - P G

a

Clearly, this distribution belongs to the beta — F' class of distributions

with

Fly)=1— {1 + (%)}1 = ba?fya. (5.2)

Let 6 = (a,b,p, q)* be column vectors of parameters associated with the

income distribution. The income distribution is given by:

F(yi) R L
/ trra 1 — )T, (5.3)
a

F(yi-1)

kok
P(0) =B~ (p+ ~.q - 5)

where P; denotes the estimated proportion of the population in the i** interval
of the r income groups defined by the interval I; = [y;_1, y;]. The multinomial

likelihood function for the data is given by:

RO
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where n;,7 = 1,...r denotes the observed frequency in the ** group and

N =37 n;. We maximize:
L(6) =) ninP(9),
i=1

where P(0) = [ | h(t)dt, and h(t) = B~ (p+%, g — Eyprrat(1—p)i-a-L,

Sepanski and Lingji (2007) points out that obtain P; by computing the
cdf of a beta random at F(y;—;) and F(y;) can reduces the complexity of
programming required to calculate the integrations.

The first derivative with respect to 6 = (a,b,p,q)" are:

dL(0) <~ n; dP(09)
W‘Eﬂ(@)’ df (5:4)

The partial derivative equations of P;(6) with respect to a,b,p,q are given

by (Iny; — Inb) b yiy (Iny;—1 — Inb)
= h(F(y; ’ — M(F(yi- l
da ( (y )) (b“ + y;z>2 ( (y 1>> (ba + yf_1)2

F(y:) 1-—
+/ kh(t) {\If (p + E) — ‘ll(q — E) + ln—q dt, (5.5)
2
F(yi-1) @ a “ t

or(0) _pa—1 h(F'(y:))y; _ h(F(yi-1))yiy
= e | (>0
33(9)_ F(y:) E
) - /F(yil)h(t){—\ll(ij a) —|—‘If(p—|—q)+lnt] i (5.7)
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and

IP;(0)
dq

:/Fm)h(t){_@(q_g) +U(p+q)+In(l—1t)|dt, (5.8)

F(yi—1
where ¥(z) = L [I'(z)]. Using the equations (5.5)-(5.8) in equation (5.4) we
can obtain the gradient functions of L(f) with respect to parameters a, b, p, q.

The partial derivative equation (5.5) exists when & > 0. If £ = 0, the

partial derivative equation of P; with respect to a is given by:

OP(0) _ po [PE(y:)) (y)" (In(ys) = tn (b))  h(EF(yi-1))(gi-1) (Inyi-1) = In(b)) (5.9)
da (b + y)? (0% +yi )2 '

5.2 Applications

In this section we obtain parameter estimates based on our previous dis-
cussions and results. WGB2 was fitted to U.S. family nominal income for
2001-2009'. The groups consist of families whose income are in the corre-
sponding income interval I; = [y;_1,¥;), the n;/N are the observed relative

frequencies (N = > n;).

IThe data were taken from the Census Population Report
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Table 5.1: U.S. family nominal income for 2001-2009

Vi1, Yi) observed relative frequencies n;/N

(thousand) || 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009

[0,15) 13 | 134|129 | 126 | 13 | 13.3 | 13.2 | 129 | 124

[15,25 119 | 12 | 11.3 | 11.2 | 11.5 | 11.6 | 11.6 | 114 | 114

)
[25,35) 11.1 | 11 | 105 | 11.1 | 10.8 | 11 10.9 | 10.6 | 10.5
)

(35,50 14.1 | 14.1 14 | 14.1 | 142 | 141 14 | 14.5 | 14.8

[50,75) 181 | 176 | 18 | 182 | 181 | 181 | 17.7 | 18 | 179

[75,100) 115 | 11.9 | 12 | 11.6 | 12.1 | 12 | 12.2 | 125 | 12.6

[100,150) 11.9 | 11.9 | 12.7 | 12,5 | 12 | 11.9 | 12.3 | 12.3 | 12.2

[150,200) 4.4 4.3 4.7 | 4.7 | 4.3 4.4 4.4 4.2 4.3

[200,00) || 3.8 | 3.7 | 4 4 4 | 36 | 37 | 37 | 39

The common way to obtain estimators is to maximize the multinomial
likelihood function. Since the likelihood function is nonlinear and compli-
cated, we use MATLAB to search for the maximum value of multinomial
likelihood function.? The results of this estimation for 2001, 2005, and 2009

are reported in Tables 5.2 - 5.4.

2By setting different initial values and use fminsearchbnd’ to search for the maximum

loglikelihood values
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Table 5.2: Estimated parameters of WGB2 for income distribution (2001)

k=0 k=1 k=2 k=3 k=4
a 1.403 1.405 0.669 0.4487 0.3376
b 16.66 16.488  11408.457 5463.111  15213.5
p 0.999 0.288 0.000001  0.001681  0.037333
q 3.963 4.629 470.178 154.668 187.036

sse*10000 1.208234 1.208159  2.509558  8.463283 13.220825

Table 5.3: Estimated parameters of WGB2 for income distribution (2005)

k=0 k=1 k=2 k=3 k=4
a 1.423 1.383 0.646 0.432 0.339
b 15.502 16.621  12800.159 6595.86  4379.966
p 0.961  0.271989 0.000003  0.004804  0.00976
q 3.582 4.648 446.0185  156.662 127.893

sse*10000 0.520372 0.518495 2.109663  8.049098 13.146924
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Table 5.4: Estimated parameters of WGB2 for income distribution (2009)

k=0 k=1 k=2 k=3 k=4
a 1.090 1.092 0.654 0.440 0.341
b 26.596 26.695  2324.550 3550.805 3964.261
p 1.413 0.493  0.000005 0.001079  0.002585
q 7.209 8.148 157.039  125.837  124.988

sse*10000 0.471333 0.467639 1.078739 6.085883 10.444168

Based on the sse value we can conclude that: the length-biased WGB2
(k=1) provides a better fit than GB2 (k=0) and other WGB2 (k=2,3,4). If we
plug the estimated parameters in the partial derivative equations in Section
4, we can obtain the values of these partial derivative equations in Table 5.5
- 5.7. From the tables below we find that these equations are close to zero or
very small, this means that the estimated parameters that we obtained are

effective.



Table 5.5: Values of partial derivative equations of WGB2 (2009)

k=0 k=1 k=2 k=3 k=4

OLO) 0255 -0.0029 0.0397 -0.1732 -0.1347

9LO - 0.0017 -0.0001 0 0 0

OLO) 00105 -0.0048 -0.0791 -0.1077 -0.0625

8LO)  0.007  -0.0005 0 0.0004 0

Table 5.6: Values of partial derivative equations of WGB2 for (2005)

k=0 k=1 k=2 k=3 k=4

OLO)  _0.0069 -0.0341 0.0028 -0.0922 0.0033

9LO) _().0021 -0.0017 O 0 0

OLO) (0118 0.0422 -0.1075 -0.097 -0.0638

9LO)  _0.0007 -0.0058 0.0002  0.001 -0.0001
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Table 5.7: Values of partial derivative equations of WGB2 (2001)

k=0 k=1 k=2 k=3 k=4

9LO) 10283 -0.0502 -0.2614 -0.6607 3.2358

9LO)  _0.0031 -0.0123 0 0 0

OLO) (00173 -0.1533 -0.1243 -0.1381 -0.0055

8L _0.0009 0.0327 0.0003 0.0011 -0.0028

Since we already have some results on WGB2 in Section 3, and we also
found out that the length-biased WGB2 provides best fit to income distri-
bution, we can apply the estimated parameters from length-biased WGB2
model to obtain the estimates of mean, variance, coefficient of variation,
skewness and kurtosis, bottom sensitive index, top-sensitive index, MLD in-

dex and Theil index. The results are presented in Table 5.8.
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Table 5.8: Estimated statistics for income distribution (k=1 in WGB2)

Year Est.mean  Est.Var Est.CV Est.CS Est.CK

2001 6.759468 38.091976 0.913070 -4.242920 24.013806
2005 6.719345 39.169450 0.931423 -4.114463 25.864490
2009 6.629841 37.111483 0.918864 -4.195311 16.203708

Year Est.I(-1) Est.I(2) Est.MLE Est.Theil

2001 1.150014 0.416849 0.396929 1.758663
2005 1.252677 0433774  0.410256  1.789568
2009 1.033116  0.422155 0.402408 3.567591

5.3 Concluding Remarks

In Chapter 5, the weighted generalized beta distribution of the second kind
(WGB2) was fitted to U.S. family income data (2001-2009). The maximum
likelihood estimation (MLE) is used for estimating the parameters of the
income distribution model. The results showed that the length-biased WGB2
provides the best relative fit to income data. Based on previously obtained
descriptive measures for WGB2, we estimate the mean, variance, coefficient
of variation, coefficient of skewness, coefficient of kurtosis, bottom-sensitive

index, top-sensitive index, MLD index and Theil index for the income data.
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