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THE STUDY OF BINARY STEERING ALGORITHMS

IN DISCRETE TOMOGRAPHY

by

BRITTANY A. COLE
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ABSTRACT

In this research project we will study the binary steering technique in iterative

methods for image reconstruction in discrete tomography (DT). We will compare

the effectiveness of three common algorithms to solve binary systems. The meth-

ods used are the Algebraic Reconstruction Technique (ART), Cimmino (CIM), and

Diagonally-Relaxed Orthogonal Projections (DROP) algorithms. These reconstruc-

tion algorithms will be transformed into binary reconstruction algorithms through

the binary steering technique. A new binary steering technique was developed to

improve the convergence of the binary steering algorithms. Numerical experiments

were performed to demonstrate these improvements.
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CHAPTER 1

INTRODUCTION

In general, tomography deals with the problem of determining shape and dimen-

sional information of an object from a set of projections. The object corresponds

to a function; and the problem posed is to reconstruct this function from its inte-

grals or sums over subsets of its domain. It is typical in discrete tomography that

only a few projections (line sums) are used. In this case, conventional techniques

fail. The name discrete tomography is due to Larry Shepp, who organized the first

meeting devoted to this topic (DIMACS Mini-Symposium on Discrete Tomography,

September 19, 1994, Rutgers University). Discrete Tomography (DT) deals with the

reconstruction of a function from its projections, when the function has a known fi-

nite range [KH99]. Knowing the discrete range can significantly reduce the number

of projections required for a high-quality reconstruction. The reconstruction methods

used in DT applications are usually based on some formulation as an optimization

problem. According to theoretical and practical results, in some cases just a few views

are sufficient for high-quality reconstruction of objects. This is an important differ-

ence between DT and classical tomographies such as computed tomography (CT),

the standard commercial verisions of X-ray computed tomography [HK03].

Computed Tomography (CT) refers to computational synthesis of an image from

external measurements of a spatially varying function in terms of projections. Line

integrals are the most common measures, which are collectively known as projections.

CT reconstruction algorithms are traditionally developed for real-valued underlying

functions. However, the ranges of the underlying functions may often be discrete in

industry and other applications. Therefore, DT has been developed to reconstruct an

unknown function whose range is a given discrete set and domain that may be discrete



2

or continuous. The general CT reconstruction algorithms are not appropriate in this

case. The known discrete range of the function may allow it to be determined from

less data than what are necessary for general functions. So DT has its own theory

and reconstruction methods. The most popular models in DT are line projections

with a lattice of points and strip projection with a lattice of pixels/cells. The line-

based projection model fits some applications but involves a major approximation

since the X-ray beams of finite widths are simplified as line integrals. The strip-based

projection model formulates projection equations according to the fractional areas of

the intersection of each strip-shaped beam and the rectangular grid of an image to

be reconstructed [ZLYW08].

A special case of discrete tomography deals with the reconstruction of a binary

image from a small number of projections. The problem with reconstructing a bi-

nary image from a small number of projections generally leads to a large number of

solutions. It is desirable to limit the class of possible solutions to only those that

are typical of the class of the images which contains the image being reconstructed

[CM99].

The binary steering process [CM99] is a method designed to change between

consecutive steps of a nonbinary iterative image reconstruction algorithm in order to

gradually steer the iterates towards a binary solution. In other words, it is a steering

scheme by which nonbinary iterative reconstruction algorithms can be steered towards

a binary solution of a binary problem [C01].

Reconstruction algorithms have many applications in image processing, medicine,

three-dimensional statistical data security problems, computer tomography assisted

engineering and design, and electron microscopy [HK03]. The mathematical theory
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of DT is based mostly on discrete mathematics but also uses functional analysis,

combinatorics, geometry, optimization, and algebra [KH99].

This paper will focus on the binary steering scheme on three particular DT

algorithms for the binary image reconstruction. We will introduce three major recon-

struction algorithms and test the accuracy of their approximations and compare the

binary versus nonbinary versions of the algorithms. The sequences used in the binary

steering scheme are also studied. A new way of performing the binary steering scheme

is proposed to improve the image reconstruction. We also compare the effectiveness

of the binary steering in order to make conclusions about the practicality of using

one algorithm over another.



CHAPTER 2

ITERATIVE METHODS

2.1 Non-Binary Iterative Methods

The Non-Binary methods used in this project include the ART, CIM, DROP al-

gorithms. This code has beeen outlined in previous research and is used in image

processing [GTB08]. Real valued data in discrete tomography(DT) are used to com-

pute the images. Each algorithm uses an iterative formula to approximate the image.

Two different phantoms were used in the experimental data. The first phantom is an

example of a simple image called ”dtphan” that can be easily approximated. The sec-

ond phantom is the more complex Shepp-Logan phantom; the Shepp-Logan phantom

was created as a standard for computerized tomography (CT) image reconstruction

simulations of the head. The phantom is also used frequently for magnetic resonance

image (MRI) reconstruction and k-space simulations.

Problem Definition

Let Ax = b be a system of linear equations representing the fully discretized

model of a two-dimensional image reconstruction from a projection problem. The

vector x = (xj)
n
j=1 ∈ Rn, in the n-dimensional Euclidean space, is the image vector

whose j-th component xj has the value of the uniform grayness at the j-th pixel.

The vector b = (bi)
m
i=1 ∈ Rm is the measurement vector whose i-th component bi is

the value of the i-th line integral through the unknown image. The m× n projection

matrix A is a 0-1 matrix having its i-th row and j-th column element aij equal to zero

if the i-th ray does not intersect the j-th pixel, and equal to one if it does. [CM99]
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2.1.1 ART Algorithm

The Algebraic Reconstruction Technique (ART) is an iterative algorithm for the

reconstruction of a two-dimensional image from a series of one-dimensional angular

projections which is used in Computed Tomography scanning. In numerical linear

algebra the method is called the Kaczmarz method.

The Kaczmarz method [GBH70], which is based on the work of the Polish mathe-

matician Stefan Kaczmarz, is a method for solving linear systems of equations Ax = b.

It was rediscovered in the field of image reconstruction from projections by Richard

Gordon, Robert Bender, and Gabor Herman in 1970, where it was named the Al-

gebraic Reconstruction Technique (ART). It is applicable to any linear system of

equations, but its computational advantage relative to other methods depends on the

system being sparse. This method has been found efficacious in the area of image

reconstruction from projections. It has been demonstrated to be superior, in some

biomedical imaging applications, to other methods such as the filtered backprojection

method.

The Kaczmarz method or ART [H09], is an iterative algorithm that has many

applications ranging from computed tomography (CT) to signal processing. It can

be obtained also by applying to the hyperplanes, described by the linear system, the

method of successive projections onto convex sets (POCS). Given a real or complex

matrix A and a real or complex vector b, respectively, the method computes an

approximation of the solution of the linear systems of equations using the formula

below.

Given a m× n real matrix A and a real vector b ∈ Rn, where 0 < λ < 2.
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In the following formula ‖∗‖ and 〈∗, ∗〉 are the Euclidean norm and the inner

product in Rn, respectively, m is the number of views, ai is the i-th column of AT

(the transpose of A), λk are the relaxation parameters, M is the maximum number of

iterations, and wk
i are positive iteration dependent weights which must sum up (over

i) to one, for every k ≥ 0 [CM99].

Algebraic Reconstruction Technique- ART Algorithm [CEHN08]

Initialization: x0 ∈ Rn is arbitrary.

Iterative Step: Given xk compute.

for k = 1 to M do

for i = 1 to m do

xk+1
j = xkj + λk

n∑
i=1

bi −
〈
ai, xk

〉
‖ai‖2

aij

end do

2.1.2 CIM Algorithm

The Cimmino method is a modificaton of the ART method. The change is to include

the relaxation parameters with equal weights wk
i = 1

m
for simplicity. Using this system

of weights we are able to take advantage of the sparsity of matrix A. This method is

suitable for parallel computing.

Cimmino-CIM Algorithm [CEHN08]

Initialization: x0 ∈ Rn is arbitrary.

Iterative Step: Given xk compute.

for k = 1 to M do
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for i = 1 to m do

xk+1
j = xkj + λk

n∑
i=1

wk
i

bi −
〈
ai, xk

〉
‖ai‖2

aij

end do

where wk
i = 1

m
.

When the matrix A is sparse, which happens often in real-world applications,

only a small number of the elements are non-zero but using the CIM algorithm the

sum of their contributions is divided by the relatively large m, this slows down the

progress of the algorithm. This created a need for a more effective algorithm, the

DROP algorithm.

2.1.3 DROP Algorithm

This method allows diagonal component-wise relaxation in conjunction with orthog-

onal projections onto the individual hyperplanes of the system, which gives it the

name diagonally relaxed orthogonal projections (DROP). Diagonal relaxation has

been proven useful, by previous mathematicians, in accelerating the initial conver-

gence of simultaneous and block-iterative projection algorithms. However, it was

only available in conjunction with generalized oblique projections in which there is

a special relation between the weighting and the oblique projections. In the context

of this paper DROP is shown to be a modification of the classic ART and Cimmino

methods mentioned above. This method replaces the factor 1
m

in the CIM algorithm

by a factor that depends only on the number of non-zero elements in the set, sj.

Diagonally-Relaxed Orthogonal Projections- DROP Algorithm [CEHN08]
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Initialization: x0 ∈ Rn is arbitrary.

Iterative Step: Given xk compute.

for k = 1 to M do

for i = 1 to m do

xk+1
j = xkj +

λk
sj

n∑
i=1

bi −
〈
ai, xk

〉
‖ai‖2

aij

end do

where sj is denoted by the number of nonzero elements in column j of the matrix. A.

2.2 Binary Steering Technique

The Binary Reconstruction Problem is to find a 0-1 vector x∗ that is an acceptable

approximation to the solution of the system Ax = b. Censor and Matej, [CM99]

proposed a steering scheme by which non-binary iterative reconstruction algorithms

can be steered towards a binary solution of a binary problem. This project piggybacks

off of their scheme with a few modifications and further numeric experimentation.

The binary steering mechanism created by Censor and Matej was implemented

and used in conjunction with three non-binary iterative algorithms ART, CIM, and

DROP.

2.3 Binary Steering Mechanism

The binary steering mechanism has two operations that are used to binarize the

iterative methods [CM99].
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Step 1:

Given a real number x and two real parameters α and β such that 0 ≤ α ≤ β ≤ 1 we

define x̃ by

x̃j =


0, xkj ≤ αk

1, xkj ≥ βk

xj otherwise.

(2.1)

We binarize each iterate xk before putting it into the nonbinary iterative algo-

rithm, after the iteration has been performed, a conflict might arise between xk and

the output yk of the nonbinary iterative algorithm [CM99]. Step 2 will define what

it means to have a conflict between xk and yk.

Step 2:

Given two real numbers x and y and two real parameters αk and βk such that 0 ≤

αk < t and t < βk ≤ 1, where t is given by a threshold and a fixed ε, 0 < ε < 0.1, we

define zk by

zkj =


t− ε, xkj ≤ αk and ykj ≥ t

t+ ε, xkj ≥ βk and ykj ≤ t

y otherwise.

(2.2)

The steering mechanism consists of adding the Binarizer and the Conflict settler

to any nonbinary algorithm [CM99].
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Figure 2.1: Binary steering of the nonbinary algorithm is accomplished by operations

of binarization and conflict settlement

Each iteration of the overall process begins with a (parital) binarization of the

current iterate xk to form x̃k [CM99] (see figure). As the iterations proceed the values

αk keep increasing and the values of βk keep decreasing so that more components fit

into the desired binary 0-1 nature of the vector. The corrector d̃k is calculated from

x̃k by any nonbinary iterative algorithm, not the original xk, but it is applied by the

correction applicator to xk. If the resulting yk = xk + d̃k has a component that is

greater than or equal to the current threshold value t, while its previous value xk was

below αk, then we say there is a conflict and resolve the conflict by allowing xk to be

only as much as t− ε. Thus our final approximate solution contains only 0’s and 1’s.

xk+1
j =

 0, xj ≤ 0.5

1, xj > 0.5
(2.3)

The binary steering process takes the initial xk and implements Step 1 to binarize

each iterate xk. Then takes a new real value yk and compares both xk and yk in Step

2. The second step corrects any conflict between xk and yk and delivers a completely

binary solution resulting in zk which we will call our xk+1.



CHAPTER 3

EXPERIMENTAL STUDY

3.1 The sequence {αk}

The original binary steering scheme is a linear sequence such that {αk} and {βk}

both approach 0.5. Where {αk} approaches from 0 and increases to 0.5 and {βk}

approaches from 1 and decreases to 0.5, until every
{
xk
}

has been put into sequential

binarization.

However, we have contemplated other binary steering schemes in order to test

the ”speed” of the sequence. The goal was to see if changing the linear sequence to

a quadratic, exponential, or square root sequence will decrease the time, number of

iterations, and/or error; thus improving the binary steering scheme.

The following tables outline the results of the numerical experiments, where k is

defined as each iteration number and M is the given maximum number of iterations

in the sequence.

3.1.1 Term Definition

The time measures the number of seconds it takes the computer to run the given

program. The number of iterations measures the amount of iterations it takes to

reach the error tolerance of 0.1 or the given iteration maximum, whichever is the

least. The error is measured as ‖b− Ax̃‖2 where b is the desired solution and x̃ is

the approximation. Finally, the number difference measures the amount of blocks in

the approximation image that are different from the original image.
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αk βk Time Num. of Its. Error Number Difference

k
2M

1− αk 3.4 27 0 0

k2

2M2 1− αk 4.3 34 0 0

1.5
k
M − 1 1− αk 3 24 0 0

.5
√

k
M

1− αk 3.3 26 0 0

Table 3.1: Binary Steering ART

The results in Table 3.1 shows that the exponential sequence for {αk} and {βk}

demonstrates at least approximately a 7 percent improvement in the time and number

of iterations.

αk βk Time Num. of Its. Error Number Difference

k
2M

1− αk 123.6 1000 54.9 144

k2

2M2 1− αk 123.6 1000 50.9 127

1.5
k
M − 1 1− αk 123.6 1000 53.9 140

.5
√

k
M

1− αk 123.3 1000 473.6 1404

Table 3.2: Binary Steering CIM

However, the results in Table 3.2 shows that the quadratic sequence for {αk} and

{βk} demonstrates at least approximately a 6 percent improvement in the error and

9 percent in the number difference.
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αk βk Time Num. of Its. Error Number Difference

k
2M

1− αk 6 55 0 0

k2

2M2 1− αk 5.3 48 0 0

1.5
k
M − 1 1− αk 6 55 0 0

.5
√

k
M

1− αk 4.9 44 0 0

Table 3.3: Binary Steering DROP

The results in Table 3.3 shows that the square root sequence for {αk} and {βk}

demonstrates at least approximately a 8 percent improvement in the time and number

of iterations.
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3.2 Comparison of Binary Steering vs. (Original) NonBinary Steering

Algorithms

3.2.1 Numerical Experiment 1

Figure 3.1: Phantom 1 (dtphan): First Column: Original Image, Second Column:

Binary ART, Binary CIM, Binary DROP, Third Column:NonBinary ART, NonBinary

CIM, NonBinary DROP

In this experiment we used the ”dtphan” phantom, 64× 64, which represents a

simple image that can easily show the effectiveness of each algorithm. The dimension

of the system A is 2650 × 4096, λk = 1 for simplicity, the maximum number of

iterations is set at M = 1000, and t = 1
2
. Also the error is calculated as the relative

error =
‖xk−x0‖

2

‖x0‖2
. The first image represents the original image and each subsequent
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image are approximations made by the individual algorithms. As demonstrated in

Figure 3.1 the ART and DROP algorithms appear to be the best approximations

to the image using both the binary and nonbinary versions of each algorithm. The

following graphs will show the exact results of the approximations.
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Figure 3.2: Binary ART vs. Non Binary ART

Figure 3.2 is a graph of the error in the binary ART algorithm versus the error

in the nonbinary ART algorithm for the ”dtphan” phantom. The error in the bi-

nary algorithm begins very large and rapidly decreases as the number of iterations

increases, and dips below the error of the nonbinary algorithm. However, the error

of the nonbinary algorithm remains mostly constant thus requiring less iterations to

reach a feasible error tolerance. The maximum number of iterations for this method

is M = 50.



17

Figure 3.3: Binary CIM vs. Non Binary CIM

Figure 3.3 represents the error of the binary CIM algorithm versus the nonbinary

CIM algorithm for the ”dtphan” phantom. The error of the two are relatively the same

for the maximum number of iterations which was set at 1000. These two methods

converged the slowest in comparison with the ART and DROP methods, thus taking

the largest number of iterations to converge. This requires a very large number of

iterations to be error free. The error begins large for both and steadily decreases until

it levels off and converges slowly.
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Figure 3.4: Binary DROP vs. Non Binary DROP

Figure 3.4 shows the graph of the error of the binary DROP algorithm versus the

nonbinary DROP algorithm for the ”dtphan” phantom. Both methods begin with

a large error and quickly converge to minimal error. However, the binary algorithm

converges completely to an error of 0.0 and uses less iterations than the nonbinary

algorithm. The maximum number of iterations for this method is M = 50.

The binary DROP algorithm is the best algorithm for the approximation of the

”dtphan” phantom. It is the most accurate and requires the least number of iterations

to achieve that accuracy.
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3.2.2 Numerical Experiment 2

The Shepp-Logan 64 × 64 phantom is often used in 2-D and 3-D reconstruction

literature to present the quality of reconstruction algorithms. It is a well known

phantom used in the biomedical imaging area and often used in MATLAB programs.

This phantom is much more intricate than the previous image, therefore resulting in

less sharp approximations. The dimension of the system A is 2650× 4096, λk = 1 for

simplicity, the maximum number of iterations is set at M = 1000, and t = 1
2
. Also

the error is calculated as the relative error =
‖xk−x0‖

2

‖x0‖2
.
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Figure 3.5: Phantom 2 (Shepp-Logan): First Column: Original Image, Second Col-

umn: Binary ART, Binary CIM, Binary DROP, Third Column: NonBinary ART,

NonBinary CIM, NonBinary DROP

The above figure represents the original image as well as the approximation

images that result from implementing the six approximation algorithms. As demon-

strated in Figure 3.5, the DROP algorithm appears to be the best approximation to

the image using both the binary and nonbinary versions of each algorithm.
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Figure 3.6: Binary ART vs. Non Binary ART

Figure 3.6 is a graph of the error in the binary ART algorithm versus the error

in the nonbinary ART algorithm for the Shepp-Logan phantom. The error in the

binary algorithm begins very large and rapidly decreases as the number of iterations

increases, and dips below the error of the nonbinary algorithm all the way to an error

of 0.0. However, the error of the nonbinary algorithm remains mostly constant thus

requiring less iterations to reach a feasible error tolerance. The maximum number of

iterations for this method is M = 70.
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Figure 3.7: Binary CIM vs. Non Binary CIM

Figure 3.7 represents the error of the binary CIM algorithm versus the nonbinary

CIM algorithm for the Shepp-Logan phantom. The error of the two are relatively

the same for the maximum number of iterations which was set at 1000. These two

methods converged the slowest in comparison with the ART and DROP methods,

thus taking the largest number of iterations to converge. This requires a very large

number of iterations to be error free. The error begins large for both and steadily

decreases until it levels off and converges slowly. However, the binary algorithm

converges more steap to a smaller error.
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Figure 3.8: Binary DROP vs. Non Binary DROP

Figure 3.8 shows the graph of the error of the binary DROP algorithm versus the

nonbinary DROP algorithm for the Shepp-Logan phantom. Both methods begin with

a large error and quickly converge to minimal error. However, the binary algorithm

converges completely to an error of 0.0 and uses less iterations than the nonbinary

algorithm. The maximum number of iterations for this method is M = 70.

The binary DROP algorithm is the best algorithm for the approximation of the

Shepp-Logan phantom. It is the most accurate and requires the least number of

iterations to achieve that accuracy.
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3.3 The Effects of the parameter λk

The following figures and graphics show the results of changing λ in the algorithms.

It has been proven that λ ∈ (0, 2) converges for these particular reconstruction al-

gorithms. We investigated further to see the impact of the value of λ has on the

algorithms both before and after using the binary steering scheme.

The objective is to find the ”best value” of λ. We define ”best value” as minimiz-

ing the error and number of iterations. From the numerical experiments conducted we

can generally conclude that as λ approaches 2 both the error and number of iterations

decrease. The dtphan phantom was used in these experiments. In this experiment

we used the ”dtphan” 64 phantom. Note: throughout this section λk is used as a

constant denoted by λ, for simplicity.
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3.3.1 Numerical Experiment 3

Figure 3.9: Binary Steering ART

The maximum number of iterations for this method is M = 20.
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Figure 3.10: Non Binary Steering ART

The maximum number of iterations for this method is M = 20.

The value of λ in the ART method, both binary and nonbinary, does not greatly

affect the error or the number of iterations needed for the algorithms to converge.

However, for the values of λ ≥ 1 show the best results. These results are represented

in Figures 3.9 and 3.10.
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Figure 3.11: Binary Steering CIM

The maximum number of iterations for this method is M = 800.
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Figure 3.12: Non Binary Steering CIM

The maximum number of iterations for this method is M = 800.

The value of λ in the CIM method, both binary and nonbinary, greatly affects

the error or the number of iterations needed for the algorithms to converge. However,

for the values of λ ≥ 1.6 show the best results. These results are represented in

Figures 3.11 and 3.12.
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Figure 3.13: Binary Steering DROP

The maximum number of iterations for this method is M = 50.
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Figure 3.14: Non Binary Steering DROP

The maximum number of iterations for this method is M = 50.

The value of λ in the DROP method, both binary and nonbinary, does not greatly

affect the error or the number of iterations needed for the algorithms to converge.

However, for the values of λ ≥ 1 show the best results. These results are represented

in Figures 3.13 and 3.14.
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3.3.2 Numerical Experiment 4

The following figures and graphics show the results of changing λ in the algorithms.

It has been proven that λ ∈ (0, 2) converges for these particular reconstruction al-

gorithms. We investigated further to see the impact of the value of λ has on the

algorithms both before and after using the binary steering scheme.

The objective is to find the ”best value” of λ. We define ”best value” as minimiz-

ing the error and number of iterations. From the numerical experiments conducted we

can generally conclude that as λ approaches 2 both the error and number of iterations

decrease. The Shepp-Logan 64× 64 phantom was used in these experiments.

Figure 3.15: Binary Steering ART

The maximum number of iterations for this method is M = 20.
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Figure 3.16: Non Binary Steering ART

The maximum number of iterations for this method is M = 50.

The value of λ in the ART method, both binary and nonbinary, does not greatly

affect the error or the number of iterations needed for the algorithms to converge.

However, for the values of λ ≥ 1 show the best results. These results are represented

in Figures 3.15 and 3.16.
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Figure 3.17: Binary Steering CIM

The maximum number of iterations for this method is M = 1000.
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Figure 3.18: Non Binary Steering CIM

The maximum number of iterations for this method is M = 1000.

The value of λ in the CIM method, both binary and nonbinary, greatly affects

the error or the number of iterations needed for the algorithms to converge. However,

for the values of λ ≥ 1.6 show the best results. These results are represented in

Figures 3.17 and 3.18.
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Figure 3.19: Binary Steering DROP

The maximum number of iterations for this method is M = 50.
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Figure 3.20: Non Binary Steering DROP

The maximum number of iterations for this method is M = 100.

The value of λ in the DROP method, both binary and nonbinary, does not greatly

affect the error or the number of iterations needed for the algorithms to converge.

However, for the values of λ ≥ 1 show the best results. These results are represented

in Figures 3.19 and 3.20.



CHAPTER 4

NEW BINARY STEERING SCHEME

4.1 The Scheme

We constructed a new binary steering scheme by adding two parameters in Step 1

of the binary steering scheme described in Chapter 2. The following is our revised

binary steering Step 1.

(Revised) Step 1:

Given a real number x and four real parameters αk , βk, γk, and δk such that 0 ≤

αk ≤ γk ≤ δk ≤ βk ≤ 1 we define x̃j by

x̃j =



0, xkj ≤ αk

γk, γk ≤ xkj ≤ 1
2

δk,
1
2
< xkj ≤ δk

1, xkj ≥ βk

xj, otherwise.

(4.1)

Step 2 follows as previously stated. The results of these changes is the speed of

convergence of the binary steering step. The γk and δk parameters act as additional

binarizing steps in order to better rsolve conflicts between the original xk and yk.

4.2 Results of Numerical Testing

We apply line projections with a lattice of points. This special case of discrete to-

mography deals with the reconstruction of a binary image from a small number of

projections. It is desirable to limit the number of projections so that we will not
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end up with a large number of solutions and to only use the class of images which

contains the image being reconstructed. In each of the following cases we have limited

the number of projection directions to seven, eight , and twelve respectively.

The following charts demonstrate the difference between using the original binary

steering scheme and the revised scheme we have constructed.

Tables 4.1 and 4.2 are the results of using the ”dtphan” phantom. The seven

projection directions used in Table 4.1 are D1 = [0 1; 1 0; 1 1; 1 -1; 1 2; 2 -1; 1 -2].

The eight projection directions used in Table 4.2 are D2 = [0 1; 1 0; 1 1; 1 -1; 1 2; 2

-1; 1 -2; 2 1].

Method Time Num. of Its. Error Number Difference

ART 26.5 200 14.7 49

ART with {γk} and {δk} 26.5 200 10.7 20

CIM 26.4 200 138.9 393

CIM with {γk} and {δk} 26.5 200 82.0 261

DROP 15.8 138 0 0

DROP with {γk} and {δk} 12.9 113 0 0

Table 4.1: M = 200, D1 = [0 1; 1 0; 1 1; 1 -1; 1 2; 2 -1; 1 -2]
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Method Time Num. of Its. Error Number Difference

ART 4.3 26 0 0

ART with {γk} and {δk} 4.1 25 0 0

CIM 32.2 200 150.4 402

CIM with {γk} and {δk} 32.5 200 105.3 263

DROP 12.7 91 0 0

DROP with {γk} and {δk} 9.6 69 0 0

Table 4.2: M = 200, D2 = [0 1; 1 0; 1 1; 1 -1; 1 2; 2 -1; 1 -2; 2 1]

The new binary steering scheme including the γk and δk sequences have shown

improvement in all three algorithms for the ”dtphan” phantom. The greatest im-

provement is in the binary CIM algorithms where both the error and the number

difference has decreased. In the binary DROP algorithms the number of iterations

have decreased in both cases. Lastly, the binary ART algorithm using seven different

directions decreased the error and number difference, but the binary ART algorithm

using eight different projection directions basically had no change.
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Table 4.3 are the results from using the Shepp-Logan phantom. The twelve

projection directions used in Table 4.3 are D3 = [0 1; 1 0; 1 1; 1 -1; 1 3; 3 -1; 1 -3; 3

1; 2 3; 3 -2; 2 -3; 3 2].

Method Time Num. of Its. Error Number Difference

ART 9.0 19 0 0

ART with {γk} and {δk} 14.3 30 0 0

CIM 469.6 1000 42.0 103

CIM with {γk} and {δk} 468.8 1000 39.6 90

DROP 26.6 64 0 0

DROP with {γk} and {δk} 24.2 58 0 0

Table 4.3: M = 200 for ART and DROP, M = 1000 for CIM, D3 = [0 1; 1 0; 1 1; 1

-1; 1 3; 3 -1; 1 -3; 3 1; 2 3; 3 -2; 2 -3; 3 2]

The new binary steering scheme including the γk and δk sequences have shown

improvement in the binary CIM and DROP algorithms for the Shepp-Logan phantom.

However, the new scheme actually made the binary ART algorithm worse in this case.

The greatest improvement is in the binary CIM algorithms where both the error and

the number difference has decreased. In the binary DROP algorithms the number of

iterations have decreased.

In the original binary steering method the components of xk, are adjusted to a

binary integer less than αk and greater than βk. In our new binary steering scheme,

in addition to the method mentioned in Chapter 2, all of the components of xk, which

are located in the interval (γk, δk), are adjusted to either γk or δk. This speeds up the

binarization of the algorithm.



CHAPTER 5

CONCLUSION

5.1 Summary

In conclusion, tomography deals with the problem of determining shape and dimen-

sional information of an object from a set of projections. The object corresponds to

a function; and the problem posed is to reconstruct this function from its integrals

or sums over subsets of its domain. It is typical in discrete tomography that only a

few projections (line sums) are used. In this case, conventional techniques fail. The

reconstruction methods used in DT applications are usually based on some formula-

tion as an optimization problem. According to theoretical and practical results, in

some cases just a few views are sufficient for high-quality reconstruction of objects.

Reconstruction algorithms have many applications in image processing, medicine,

three-dimensional statistical data security problems, computer tomography assisted

engineering and design, and electron microscopy. The mathematical theory of DT

is based mostly on discrete mathematics but also uses functional analysis, combina-

torics, geometry, optimization, and algebra.

The binary steering process [CM99] is a method designed to change between

consecutive steps of a nonbinary iterative image reconstruction algorithm in order

to gradually steer the iterates towards a binary solution. In other words, it is a

steering scheme by which nonbinary iterative reconstruction algorithms can be steered

towards a binary solution of a binary problem. This paper focused on the binary

steering scheme on three particular nonbinary discrete tomography (DT) algorithms

to recontruct the problem into a binary problem.
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Three major reconstruction algorithms were introduced and manipulated in order

to test the accuracy of their approximations and to compare and contrast the binary

versus nonbinary versions of the algorithms. Also to compare the effectiveness of the

different algorithms in order to make conclusions about the practicality of using one

algorithm over another.

Our numerical results uncovered an improved binary steering scheme in most

cases as well as a deeper understanding of the λk weight on our algorithms. We were

also able to test different sequences for our αk and βk.

5.2 Future Study

Future work in this field will include further exploration of the new binary steering

scheme using the sequences {γk} and {δk}. As well as proving that there is one

particular λ that is optimal for all the reconstruction algorithms and proving that

this value has the ”best” convergence. We would also like to explore the impact the

number of projection directions has on our binary steering algorithms.



CHAPTER 6

APPENDIX

6.1 Main Program

% This program reconstructs an image by CS based interior tomography

% algorithm

clear;

%load dtphan2.mat;

%D = [0 1; 1 0; 1 1; 1 -1; 1 2; 2 -1; 1 -2; 2 1];

load shepplogan64.mat

D = [0 1; 1 0; 1 1; 1 -1; 1 3; 3 -1; 1 -3; 3 1; 2 3; 3 -2; 2 -3; 3 2];

[m,n] = size(f);

% set up a system whose exact solution is reshape(F’,m*n,1)

[A, b] = setup(f, D);

exactx = reshape(f’, m*n,1);

%err3 = norm(b-A*exactx)

% solve the system by calling a function you developed

M = 200;

lambda = 1;

tic;

[x1, numit1, err1] = bisteer_ART(A, b, M);

time1 = toc;

tic;

[x2, numit2, err2] = NONbisteer_ART(A, b, M);

time2 = toc;
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tic;

[x3, numit3, err3] = bisteer_CIM(A, b, M);

time3 = toc;

tic;

[x4, numit4, err4] = NONbisteer_CIM(A, b, M, lambda);

time4 = toc;

tic;

[x5, numit5, err5] = bisteer_DROP(A, b, M);

time5 = toc;

tic;

[x6, numit6, err6] = NONbisteer_DROP(A, b, M);

time6 = toc;

G = G’;

G1 = reshape(x1,n,m); G1 = G1’;

G2 = reshape(x2,n,m); G2 = G2’;

G3 = reshape(x3,n,m); G3 = G3’;

G4 = reshape(x4,n,m); G4 = G4’;

G5 = reshape(x5,n,m); G5 = G5’;

G6 = reshape(x6,n,m); G6 = G6’;

% output the image G and compare it with the original phantom F

figure(1);

subplot(3,3,4); imshow(f);

subplot(3,3,2); imshow(G1);

subplot(3,3,3); imshow(G2);

subplot(3,3,5); imshow(G3);
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subplot(3,3,6); imshow(G4);

subplot(3,3,8); imshow(G5);

subplot(3,3,9); imshow(G6);

disp(’-------------------------------------------------------’)

disp(’ Binary Steering ART’);

disp(’-------------------------------------------------------’)

disp(’Time Iterations Error Number Difference’)

numit1;

err_realsol1 = norm(A*x1-b);

num_diff1 = sum(sum(abs(f-G1)));

fprintf(’%4.1f %6d %11.1f %11d\n\n’, time1, numit1, err_realsol1, num_diff1);

disp(’-------------------------------------------------------’)

disp(’ NONBinary Steering ART’);

disp(’-------------------------------------------------------’)

disp(’Time Iterations Error Number Difference’)

numit2;

err_realsol2 = norm(A*x2-b);

num_diff2 = sum(sum(abs(f-G2)));

fprintf(’%4.1f %6d %11.1f %11d\n\n’, time2, numit2, err_realsol2, num_diff2);

disp(’-------------------------------------------------------’)

disp(’ Binary Steering CIM’);

disp(’-------------------------------------------------------’)

disp(’Time Iterations Error Number Difference’)

numit3;

err_realsol3 = norm(A*x1-b);
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num_diff3 = sum(sum(abs(f-G3)));

fprintf(’%4.1f %6d %11.1f %11d\n\n’, time3, numit3, err_realsol3, num_diff3);

disp(’-------------------------------------------------------’)

disp(’ NONBinary Steering CIM’);

disp(’-------------------------------------------------------’)

disp(’Time Iterations Error Number Difference’)

numit4;

err_realsol4 = norm(A*x1-b);

num_diff4 = sum(sum(abs(f-G4)));

fprintf(’%4.1f %6d %11.1f %11d\n\n’, time4, numit4, err_realsol4, num_diff4);

disp(’-------------------------------------------------------’)

disp(’ Binary Steering DROP’);

disp(’-------------------------------------------------------’)

disp(’Time Iterations Error Number Difference’)

numit5;

err_realsol5 = norm(A*x1-b);

num_diff5 = sum(sum(abs(f-G5)));

fprintf(’%4.1f %6d %11.1f %11d\n\n’, time5, numit5, err_realsol5, num_diff5);

disp(’-------------------------------------------------------’)

disp(’ NONBinary Steering DROP’);

disp(’-------------------------------------------------------’)

disp(’Time Iterations Error Number Difference’)

numit6;

err_realsol6 = norm(A*x1-b);

num_diff6 = sum(sum(abs(f-G6)));
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fprintf(’%4.1f %6d %11.1f %11d\n\n’, time6, numit6, err_realsol6, num_diff6);

t1 = 1 : numit1; err1a = err1(1:numit1);

t2 = 1 : numit2; err2a = err2(1:numit2);

t3 = 1 : numit3; err3a = err3(1:numit3);

t4 = 1 : numit4; err4a = err4(1:numit4);

t5 = 1 : numit5; err5a = err5(1:numit5);

t6 = 1 : numit6; err6a = err6(1:numit6);

figure(2);

plot(t1, err1a,’r’,t2, err2a, ’b’);

legend(’Binary ART error’,’Non Binary ART error’)

title(’Number of Iterations vs. Error (ART)’)

xlabel(’Number of Iterations’);

ylabel(’Error’);

figure(3);

plot(t3, err3a, ’r’, t4, err4a, ’b’);

legend(’Binary CIM error’, ’Non Binary CIM error’);

title(’Number of Iterations vs. Error (CIM)’);

xlabel(’Number of Iterations’);

ylabel(’Error’);

figure(4);

plot(t5, err5a, ’r’, t6, err6a, ’b’);

legend(’Binary DROP error’,’Non Binary DROP error’);

title(’Number of Iterations vs. Error (DROP)’);

xlabel(’Number of Iterations’);

ylabel(’Error’);



48

6.2 Code for Numerical Experiments 3 and 4

% This program reconstructs an image by CS based interior tomography

% algorithm

clear;

load dtphan2.mat;

D = [0 1; 1 0; 1 1; 1 -1; 1 2; 2 -1; 1 -2; 2 1];

%load shepplogan64.mat

%D = [0 1; 1 0; 1 1; 1 -1; 1 3; 3 -1; 1 -3; 3 1; 2 3; 3 -2; 2 -3; 3 2];

[m,n] = size(f);

% set up a system whose exact solution is reshape(F’,m*n,1)

[A, b] = setup(f, D); tic;

normb= norm(b);

exactx = reshape(f’, m*n,1);

% solve the system by calling a function you developed

M = 50;

lambda =0.2;

[x, numit1, err1] = Bisteer_DROP(A, b, M, lambda);

%[x, numit1, err1] = NONBisteer_DROP(A, b, M, lambda);

%[x, numit1, err1] = Bisteer_CIM(A, b, M, lambda);

%[x, numit1, err1] = NONBisteer_CIM(A, b, M, lambda);

%[x, numit1, err1] = Bisteer_ART(A, b, M, lambda);

%[x, numit1, err1] = NONBisteer_ART(A, b, M, lambda);

lambda =0.4;

[x, numit2, err2] = Bisteer_DROP(A, b, M, lambda);

%[x, numit2, err2] = NONBisteer_DROP(A, b, M, lambda);
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%[x, numit2, err2] = Bisteer_CIM(A, b, M, lambda);

%[x, numit2, err2] = NONBisteer_CIM(A, b, M, lambda);

%[x, numit2, err2] = Bisteer_ART(A, b, M, lambda);

%[x, numit2, err2] = NONBisteer_ART(A, b, M, lambda);

lambda =1.0;

[x, numit3, err3] = Bisteer_DROP(A, b, M, lambda);

%[x, numit3, err3] = NONBisteer_DROP(A, b, M, lambda);

%[x, numit3, err3] = Bisteer_CIM(A, b, M, lambda);

%[x, numit3, err3] = NONBisteer_CIM(A, b, M, lambda);

%[x, numit3, err3] = Bisteer_ART(A, b, M, lambda);

%[x, numit3, err3] = NONBisteer_ART(A, b, M, lambda);

lambda =1.6;

[x, numit4, err4] = Bisteer_DROP(A, b, M, lambda);

%[x, numit4, err4] = NONBisteer_DROP(A, b, M, lambda);

%[x, numit4, err4] = Bisteer_CIM(A, b, M, lambda);

%[x, numit4, err4] = NONBisteer_CIM(A, b, M, lambda);

%[x, numit4, err4] = Bisteer_ART(A, b, M, lambda);

%[x, numit4, err4] = NONBisteer_ART(A, b, M, lambda);

lambda =1.8;

[x, numit5, err5] = Bisteer_DROP(A, b, M, lambda);

%[x, numit5, err5] = NONBisteer_DROP(A, b, M, lambda);

%[x, numit5, err5] = Bisteer_CIM(A, b, M, lambda);

%[x, numit5, err5] = NONBisteer_CIM(A, b, M, lambda);

%[x, numit5, err5] = Bisteer_ART(A, b, M, lambda);

%[x, numit5, err5] = NONBisteer_ART(A, b, M, lambda);
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err1=err1/normb; err1 =[1; err1];

err2=err2/normb; err2 =[1; err2];

err3=err3/normb; err3 =[1; err3];

err4=err4/normb; err4 =[1; err4];

err5=err5/normb; err5 =[1; err5];

numit_f= min(numit1, numit2);

numit_s= min(numit_f, numit3);

numit_t= min(numit_s, numit4);

numit_l= min(numit_t, numit5);

cycle= 0: numit_l;

plot(cycle, err1(1:numit_l+1),’r’, cycle, err2(1:numit_l+1),’b’,

cycle, err3(1:numit_l+1),’g’, cycle, err4(1:numit_l+1),’k’, cycle,

err5(1:numit_l+1),’y’);

legend(’\lambda=0.2’,’\lambda=0.4’,’\lambda=1.0’,’\lambda=1.6’,’\lambda=1.8’);

title(’The Effect of \lambda (Binary Steering DROP)’);

xlabel(’Number of Iterations’);

ylabel(’Relative Error’);

6.3 Code for New Binary Steering Scheme

% M-file bisteer_ART.m

% defined bisteer_ART function

%This function demonstrates the ART algorithm using the new binary steering method.

function [xx, numit1, err1] = bisteer_ART(A, b, M, lambda)

[m,n]=size(A);
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eps = 0.1;

eps2 = 0.01;

x = zeros(n,1);

xt = zeros(n,1);

y = zeros(n,1);

z = zeros(n,1);

lambda = 1;

numit = M;

for j = 1 : M

alpha = j/(2*M); beta = 1- alpha; gamma = 1/2 -alpha; delta = 1/2 + alpha;

for k = 1:n

if x(k) <= alpha

xt(k) = 0;

elseif x(k) >=gamma && x(k) <=1/2

xt(k) = gamma;

elseif x(k) > 1/2 && x(k) <= delta

xt(k) = delta;

elseif x(k) >= beta

xt(k) = 1;

else

xt(k) = x(k);

end

end

xtemp = x;

for i = 1: m
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coef(i) =( b(i) - A(i,:)*xt)/norm(A(i,:),2)^2;

xtemp = xtemp + lambda*coef(i)*A(i,:)’;

end

y = xtemp;

for k=1:n

if x(k) <= alpha && y(k) <= alpha

z(k)= 0;

elseif x(k) >= beta && y(k) >= beta

z(k) = 1;

elseif x(k) <= alpha && y(k) >= 0.5

z(k)= 0.5 - eps;

elseif x(k) >= beta && y(k) <= 0.5

z(k)= 0.5 + eps;

else

z(k) = y(k);

end

end

x = z;

xx = zeros(n, 1);

xx(find(x>=0.5)) = 1;

err1 = norm(b - A*xx);

if err1 < eps2

numit = j;

break;

end
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