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APPLYING TRANSPORTATION FORECASTING TO THE ATLANTA 

AREA PUBLIC TRANSPORTATION SYSTEM 

By 

AARON L. TAYLOR 

(Under the Direction of Goran Lesaja) 

Abstract 

In this thesis, we examine the implementation of volume delay functions to the Metropolitan 

Atlanta Rapid Transportation Authority (MARTA) system.  Volume delay functions are � 

differentiable functions used to estimate the long-term distribution of user traffic on 

transportation systems.  We will demonstrate the graphical behavior of these functions as well as 

explain the constraints for these functions.   These tasks will be completed by developing a 

simplistic yet unrealistic model, demonstrate how the integral is used to estimate the total sum of 

this model, and then introduce the two functions which will be used in the analysis.  The final 

task of this paper will be to develop and implement functions which have properties which allow 

them to directly relate to the unique behavior of public transportation systems.   The final 

analysis will be the interaction of the functions developed in this paper with the preexisting, 

well-behaved BPR and Davidson functions. 

Index Words:  Volume delay functions, user equilibrium, system optimization, Waldrop 

equilibrium 
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Chapter 1 

Introduction 

1.1 The History of MARTA 

In 1971, a referendum was passed in Atlanta to provide funding for the construction of a 

53-mile subway system, 8 miles of bus way, and an extensive feeder bus system.  

Although this system was originally scheduled for completion by 1980, lack of sufficient 

funds meant that only the first phase was completed, 13.7 miles of rail line.  Because 

future funding was uncertain, a study was done to determine the best incremental funding 

strategy for further construction. 

Several factors, including rapid urban development, increasing costs, scarcity of gasoline, 

and system improvements, had made the analysis done just 6 years earlier outdated.   The 

strategy the analysts had taken was dividing the system into 13 operational segments, and 

then grouping each segment into four test networks.  With their analysis method, planners 

were able to predict the following: 

 

• Total increase in transit system patronage 

• Total patronage on each segment 

• Total capital cost 

• Total increase in operating cost 

• Relative cost-effectiveness 

• Travel time improvements to major activity centers 

• Improvements of transit service to special groups 
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• Impacts on land use and development patterns 

• Environment impacts and energy consumption 

1.2 MARTA Currently 

When Marta was initially formed, the counties of Gwinnet, Cobb, and Clayton decided to 

option out of participating in the project when they were approached about contributing 

to the program.  Although Cobb Community Transit (CCT), Gwinnet County Transit 

(GCT), and Clayton County Transit (C-Tran) serve their communities and have 

connecting routes with MARTA, their systems are limited to traditional bus lines and 

lack direct access to rail lines.  The commute between CCT and GCT to MARTA is 

considered by many users to be timely and undesirable.  Also CCT and GCT have 

limitations within their own systems.  Unlike MARTA, GCT does not operate on 

Sundays or holidays and CCT only serves the lover parts of the county.  The exclusion of 

Cobb and Gwinnet counties from the MARTA system has had severe financial 

consequences to MARTA.  50% of the MARTA revenue comes from a 1% sales tax paid 

by all participating counties*. The lack of initially expected revenue from these counties 

slowed development plans severely.  Although there have been a number of attempts over 

the past few decades to fully integrate these counties into the MARTA, all measures have 

been repeatedly voted down.  Even though the most southern MARTA rail terminal, the 

Airport Station, is located in the most northern part of the county, the Clayton County 

system does not have a full rail line system.  However; C-Tran has been operated by 

MARTA through contract since 2007.  Also, in the July 20th primary of 2010, House Bill 

1446 is being proposed to Clayton County voters, a bill which would approve 1% sales 

                                                           
* This is based on the FY08 Operating Budget Overview 
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tax increase in the county.  The approval of this bill would be the first step to being fully 

integrated into the MARTA system. 

1.3 Project Basics 

In 2007, MARTA compiled a document called Locally Preferred Alternative Report* [13] 

which was written for the purpose of assessing city transportation needs, goals and 

objectives.  There research consisted mostly of formal discussions with various community 

groups and stakeholders.  In this study, three broad goals were set along with general 

methods of reaching these goals: 

Goal 1:  Improve corridor mobility, reliability, and accessibility to employment centers 

Objectives: 

• Relieve increasing highway congestion in the I-20 corridor by attracting auto 

users to transit; 

• Improve travel times and reliability for all travelers in the I-20; 

• Extend high quality public transportation service to employment destinations 

along Fulton Industrial Boulevard (FIB) by minimizing the number of 

transfers between different transit lines and routes; 

• Improve access to major employment centers in the City of Atlanta and to  

the FIB area for residents of Fulton and DeKalb counties, the City of Atlanta 

and others in the region; 

• Increase accessibility for the transit dependent population. 

                                                           
* Chapter Two: Basis for Project Alternative; Locally Preferred Alternative Report 
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        Goal 2:  Preserve and enhance the environment  

  Objectives: 

• Improve air quality by providing transit alternatives that attract auto users, 

thereby reducing vehicle miles of travel and air pollution emissions; 

• Reduce potential impact on residential areas and the natural and built 

environment. 

Goal 3:  Encourage economic development/transit supportive land use 

• Encourage continued concentration of development where transportation 

facilities provide a high level of access, particularly near FIB; 

• Concentrate development around transit stations in concert with zoning and 

related development policies; 

• Create public/private collaboration opportunities in real estate development. 

The focus of this study was determined by what form of system augmentation would best 

meet these objectives.   
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1.4 Transit Technology Options 

During the basic screening process, there were three transit technology options 

considered; bus rapid transit, light rail transit, and heavy rail transit.  In choosing these 

technologies, factors including capital costs, environmental friendliness, carrying 

capacity and compatibility with the existing system were considered.  Below is a rough 

summary of each technology. 

1.4.1 Bus Rapid Transit (BRT) 

The BRT has certain characteristics which distinguish it from the traditional bus service.  

The idea is to combine the service characteristics of rail with the flexibility of buses.  The 

technology is supposed to eliminate on-board fare collection and traffic signal delays in 

order to increase operating speed and reliability.  The BRT system is most efficient in 

exclusive transit ways or dedicated bus lines, but also works well with High Occupancy 

Vehicle Lanes (HOV); a system already implemented inner city portions of I-75 and I-85.  

BRT typically has a capacity of 35-50 persons and operates at an average speed 30-50 

miles per hour. With an operating cost of $10-$40 million per mile, it is the least 

expensive system. 

1.4.2 Light Rail Transit (LRT) 

LRT systems are typically electric railways with smaller volumes than heavy rail.  These 

facilities are usually operated at-grade (surface level), but can also be grade separated in a 

tunnel or elevated.  In comparison to HRT, light rail is more flexible due to its ability to 

easily maneuver through existing communities.  Approximately 170 persons can be 

transported per vehicle with an operating speed between 40-60 mph.  On average, LRT 
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systems cost $20-$40 million per mile to operate.  LRT was eliminated from the West 

Line expansion project after the Basic Screening Analysis due to cost and connectivity to 

with the existing transit system.  However, I will conclude an analysis of this system 

within the report.                                                                                                        

1.4.3 Heavy Rail Transit 

HRT is an electric operated train system which uses exclusive rights-of-way.  The 

capacity ranges from 170-300 persons with train lengths varying from 2 to 10 cars.  It 

can reach speeds up to 70 miles per hour.  Of the three systems being evaluated, it is on 

average the most expensive system, and is implemented only when highly warranted.  

The cost of these systems ranges from $50-$120 million per mile 

1.5 Comparing Systems 

In this thesis we are interested in comparing the efficiency of these systems in regards to 

moving a particular number of people from one point to another.  Though this would not 

be the single factor in determining which system would be integrated into the expansion, 

it is an important consideration.  Utilizing a preexisting field of study in logistics and 

management sciences called route assignment. We will derive a method which will allow 

us to calculate the optimal volume distribution between systems. 
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1.6 Objective 

When expanding any systems of roads and highways, the objective of any city planner is 

to  have the most efficient system by building a network which allows people to move 

from points ‘a’ to point ‘b’ in the fastest way possible.  For small to medium size cities, 

this is done by improving existing surface roads and highways through expansions and 

closures.  For larger cities with the populations and funds to support it, government 

subsidized public transportation is an option.  

Due to the potential cost and overall resource investment of public transportation 

systems, several levels of extensive research is done before such plans even reach the 

serious design stage.  One of the first steps taken in most cases is an environmental 

impact study.  This is usually done by an environmental and/or civil engineer and 

consists of a basic assessment of whether a proposed system is physically feasible or not.  

A very basic cost assessment is done at this stage as well. 

For systems analysis of large scale transportation improvements, a transit assignment 

procedure is primarily used.  The objective of this paper is to apply this technique to 

estimating volume delay in systems other than road systems. 
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Chapter 2 

Route Assignment Tools 

2.1 The Wardrop Equilibrium 

In 1952, J.G. Wardrop of the Road Research Laboratory published a paper on two principles 

of road network flow distribution; the user equilibrium principle and the system optimum 

principle [9].  The user equilibrium principle is based on the assumption that all travelers are 

making decisions which minimize their personal travel costs with no concern of the total 

cost to the system.  The system optimum principle is based on the assumption that travelers 

are minimizing the travel cost for the entire system.  Let it be noted that travel time and cost 

are being used interchangeably.   

The two most common methods of network distribution are the En-Route and the 

Equilibrium Assignment method.   The resulting optimal distribution of the En-Route 

Assignment is user equilibrium, while the Equilibrium Assignment finds the system 

equilibrium. The only situation in which the user and optimal flows are equal is in the case 

when no congestion exists.  This artificial environment will be used in our models. Because 

we are assuming a system without points of congestion, at some point in the paper, we will 

have to use the user equilibrium to find the system optimization. 
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2.2 En-Route Assignment 

It is a fair enough assumption to say that at any given time, with a certain number of routes, 

not every driver has the same quality or quantity of information.  For example, let us 

observe two individuals (John and Jacob) that leave from the same place (they are next door 

neighbors) and head to the same destination (they work together as well).  They have both 

lived in the city for the same number of years; both worked at the same job for an equal 

number of years and have comparable vehicles.  It is fair assumption that if both leave at the 

same time, both will arrive at the same time.  There are other factors which could be 

considered which could make this assumption invalid, such as one is a Sunday driver while 

the other is a speed demon, but controlling these factors, their total travel time will be on 

average the same.  Both should have a comparable understanding of traffic patterns and both 

would probably know the quickest way.  These individuals have reached system 

optimization, in terms of the greatest utility in respect to time saved.  System optimization is 

a point of Pareto Equilibrium, a point where no action can benefit one individual without 

hurting another. 

Now suppose that John is a technophile.  He likes to get all the newest technology as soon as 

it comes out.  So, as soon as GPS systems became available for public use, John could not 

snatch it from the shelves fast enough.  Meanwhile, Jacob is a luddite, he does not even have 

a car radio.  Where each of these individuals are at a given time, because of asymmetric 

knowledge, would no longer be so easy to predict.  Even with the assumption that they are 

both rational actors who are trying to take the minimum amount of time to get from one 

point to another, John may take an alternative route to avoid the traffic jam his GPS told him 

about while Jacob would run right into the confusion. 
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Such problems are best handled by the En-Route Assignment model.   In this type of model 

the exogenous inputs to optimize include information strategy (information provided) and 

penetration rate.  It is possible to design an iterative algorithm to determine the optimum 

values of these inputs.  With this technique, the user equilibrium is found for the individual 

with disproportionate knowledge.  Given the available knowledge, no possible choice will 

improve well being.  Being this model lacks perfect information, this point is not necessarily 

the system optimization. 

Although it would be possible to apply this method to the public transportation analysis 

problem, the benefits are outweighed by its drawbacks.  This method adds needless 

complexity in regards to the overall objective.  There is also a large amount of computing 

power required to run the micro simulation.  Users’ choices within the framework of public 

transportation are fairly inelastic, so thinking in terms of the aggregate in the long run is 

more appropriate.   

2.3  Equilibrium Assignment 

There are a number of procedures and techniques which can be used to perform this task of 

equilibrium assignment for the system optimization.  In most cases when this method is 

used, there are two main components: a procedure to determine a new set of time dependent 

path flows given the experienced path travel times on the previous iteration, and a method to 

determine the actual travel times that result from a given set of path flow rates. 

There are two ways in which a system optimal flow can be achieved.  One in which there is 

a centralized control over route decisions and one which there is a penalty, such as  a toll, 

with taking a particular route.  The models we develop later will consist of routes comprised 
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of public transportation systems.  Such systems are centrally controlled.  Also, one could 

think of the difference between vehicle operation and the cost of a ticket. 

2.3.1 Shortest Route Algorithm & System Optimization 

In order to better understand the principals of system optimization and link updating, we will 

examine this very simple system consisting of three nodes and four edges. 

 

 

����� �. �:  ��������� ����� �� �  �!���  "#$�! 

For person 1, the system has the following travel time in minutes, 

Person 1: 

�������� = 5, ��′������� = 8, �)������ = 6, �)′������� = 9 

the shortest path is  �������� → �)������, with a travel time of 11 minutes. 

For person 2, the routes have a different weight, 

Person 2: 

�������� = 9, ��′������� = 8, �)������ = 7, �)′������� = 9 

the shortest path is now ��′������� → �)������, with a travel time of 15 minutes. 

In a system optimal model, a shortest path algorithm, such as Dijkstra’s algorithm is 

implemented and followed.  As the individuals move through the system, each route that is 

  A   B   C 
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used is updated using a route assignment function.  The following individual now finds the 

shortest route of the newly updated system and performs the process with the updated 

system.  The optimized time is the sum of each person travel time.  

2.4 Constructing an Approach 

Before proceeding to the specific analysis of assignment functions, it will help to take a step 

back and restate the problem.  There are three possible expansion choices, each with their 

own advantages and disadvantages.  Whatever system, or combination of systems, is 

eventfully constructed, it will coexist parallel to the present existing system.  Thus, a user 

will find themselves with at least two possible routes and at least two feasible choices.  For 

the purpose of determining the minimized time required, we propose to use a slightly 

modified view of route assignment problem.  The route assignment function uses the 

maximum capacity of a system within a certain frame of time and the time required for an 

individual to move through the system depending on their order.  By its very nature it is 

easier to measure or at least estimate the parameters within these systems in comparison to 

one composed of personal owned vehicles (POV). 

There are other factors which must be considered that are associated with traditional route 

assignment.  The shortest path (temporally speaking) is not the only factor which will 

determine a most desired route.  We must now take into account other cost, such as fuel 

expenditures and long term vehicle care.  We will even try to account for the basic and raw 

displeasure individuals may feel towards driving POV’s.   
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2.5 The Basics 

The first step of route assignment is finding a way to calculate the time required for a given 

number of individuals to move through a particular path.  One basic assumption is that as 

more people travel through a given path, the time required for each successive person 

increases. 

Let us start with the observations of individuals traveling through a particular path 

connecting points A and B.  
.�/�� �. �:  .��0�� .�!�# ��� 12�������� 

 

 

 

 

 

 

From this artificial example, it is easy to see the increase in time is linear, and it is rather 

simple to construct a function expressing the relationship between order and travel times.  

Later in this paper, we will cover why a linear function does not fit the requirements for a 

good time delay function. 

Using point-slope form, 

Numerical Order Length of Trip in 

Minutes 

1 12 

2 15 

3 18 

4 21 

5 24 
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3456 − 589 = 4:6 − :89 ⇒ 342 − 19 = 412 − 159 

3 = 3 ⇒ ?8459 = 35 + 9 = :A 

 where 5 is the order of the individual and :A is the time it takes the 5 order individual to 

travel through the path, it is possible to estimate travel time for any number of individuals. 

The total travel time is, 

B = C :D
E

DF8 = 90                                                            42.19 

With en-route assignment, instead of summing the total time to get the estimate, this value is 

approximated by integrating the travel time function. 

B ≈ I ?8459J5 =K
L I 435 + 99J5 =E

L 82.5                                42.29       
This is clearly a very rough approximation. 

To make this a true route assignment problem, there has to be an alternative route available 

which begins and ends at the same points.  With this new route, the idea is to place some of 

drivers on this second route for the purpose of reducing the total time.  The second route is 

observed to have the following travel times. 
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.�/�� �. �:  .��0�� .�!�# ���12�������′  
Numerical Order Length of Trip in 

Minutes 

1 10 

2 14 

3 18 

4 22 

5 26 

 

One again the increase in time is linear, and function ?645 ′9 = 45 ′ + 6 is derived. 

The total travel time for this alternative path would be 90 minutes.  

                                         B ′ = C :D ′
E

DF8 = 90                                                              42.39 

The approximation using the integral is, 

B ≈ I ?6459J5 =K
L I 445 + 69J5 =E

L 80                                42.49       
Although the travel times for each of the routes are the same, we can decrease this travel 

time by allowing some individuals to take route  �������� and others to take route  ��������′, 
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.�/�� �. N:  O�!/�P�� .��0�� .�!�# ��� 12 �������� �P� 12�������′ 
Numerical Order Route Total Travel Time 

1 ��������′ 10 

2 �������� 22 

3 ��������′ 36 

4 �������� 51 

5 ��������′ 69 

 

Thus, by distributing the flow of traffic between the two routes, the total time was decreased 

from 90 to 69 minutes, more than a fifth. 

If this were a much more complicated system, one with hundreds of nodes and edges, it 

would be unreasonable to go through each edge, compare, and update.   Instead, we can 

minimize the assignment time functions.  In our simple case we have, 

min B = I 435 + 99J5 + I 445 ′ + 69J5 ′,K′
L

K
L                                     42.49 

T. :.  U + U ′ = 5. 

After completing the integral, the problem becomes a two variable, nonlinear minimization 

with a linear equality constraint. 

V4U, U ′9 = 32 U6 + 9U + 24U ′96 + 6U ′,                                        42.59 

T. :.  U + U ′ = 5, 
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This function can be maximized by using the constraint to eliminate one of the variables, 

VWU, 45 − U9X = 32 U6 + 9U + 45 − U96 + 645 − U9 

              JVJU = 5U − 7                                                                           42.69 

J6VJU6 = 5                                                                                     42.79 

The extreme point of this function can be found by calculating the root of the derivative (2.6).  

The second derivative (2.7), being positive across the range, shows the function is strictly 

convex.  Because the function is strictly convex, the extreme point is a global minimum.  Finding 

the root of the first derivative, we get the following results, 

58 = 177 ≈ 2.4286                                                                         42.89 

56 = 5 − 177 ≈ 2.5714                                                                42.99 

The interpretation of (2.8) and (2.9) literally tells us the system time is minimized when 2.4286 

people are assigned to the first route and 2.5714 are assigned to the second route.  These results 

are rounded; we get the result of assigning 2 people to the first route and 3 to the second, the 

same result we got by inspection on pages 17 and 18.   

The estimated total time is V42,39 = 51, compared to an actual time of 69.  Much of this error is 

associated with being a rough approximation of the sum. 
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2.5.1 Defining the Functional Constraints 

A general form representing two nodes connected by � edges is, 

min Y = C I ?D45D9J5D
KZ

L
[

DF8  

T. :. C UD = \,[
DF8  

where  \ is the total number of travelers. 

This description for the objective function is adequate for a system of any number of nodes or 

edges, but the constraint only defines a system consisting of two nodes with any number of 

edges.  Therefore, the final step for defining a system of any number of bounded nodes and 

edges is to improve upon the constraint definition. 

In order to build the idea of the constraint function, we must start with a system consisting of 

more than two nodes. For the constraint of this system, the first assumption is that no one enters 

or leaves this system.  So, after all iterations of movement have taken place, the total number of 

individuals at every node will not change. 

We start with two points, ] and ^.  In between these points are all possible edges and nodes which 

connect these points.  This set is referred to as _D`. 

                                    

 

���� �. �:   �!������� ���$� − a��� ����� 

_D` 
i j 
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Between nodes ] and ^,  there is a finite number of edges which connect them.  Of these finite 

edges, we will designate an unspecified path as between] and ^, b ∈ _]^.  In the process of 

moving between these nodes, UDd̀  represents the number of individuals which move from nodes ] 
and ^ on a path b. 
With this notation, we can set up the first equality constraint.  Let \D`  be the total number of 

people that move from points ] to ^.  Then we have, 

C UDd̀d∈eZf
= \D`, 

UDd̀ ≥ 0 ,  ∀bi_D` 

The final step to defining the constraints is to isolate individual edges as they relate to a 

particular path.  If an edge � is used in a path b, we set jDk̀d=1;  otherwise it is 0. 

Taking all the conditions into account, a general form of route assignment problem consisting of 

� edges is, 

min Y = C I ?D45D9J5D
KZ

L
[

DF8 , 

5k = C C C jDk̀d
d`D UDd̀ , ∀� ∈ �,                                                          42.109 

C UDd̀d∈eZf
= \D`, 

5k ≥ 0, UD,d̀ ≥ 0, ∀bi_D`. 
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2.6 Link Performance Functions 

In most traffic assignment methods, the effect of road capacity on travel times is specified by 

means of a volume-delay function which is used to express the travel time and/or cost on a road 

link as a function of the traffic volume.  The functions are the product of the free flow time, :l, 

multiplied by delay function ?4∗9 where the argument is some form of the ratio of 5 and n , n 

being a measure of the capacity of the road, i.e., 

:459 = :L ∗ ? oApq. 

There are three properties desired for a well-behaved function.  [11] 

1. ?4U9 is strictly increasing.  This is necessary to have a unique solution. 

2. ? ′4U9 exist and is strictly increasing.  This ensures convexity.  Although this is not 

necessary, it is very desirable. 

3. ?′409 > 0.  This guarantees uniqueness of link volumes and distributes volumes on 

competing uncongested paths proportional to their capacity. 

4. ?′409 < t, where t is a positive constant.  The steepness of the congestion curve is 

limited. 

2.7 Frank-Wolfe Algorithm 

The Frank-Wolfe method (FW) is one of the most widely used algorithms for solving 

routing problems because of simplicity and low memory requirements.  Because the rate of 

convergence for FW decreases as the algorithm approaches the optimal point, it is often used 

with some modifications.  Two of these methods are developed by Saida, Rachid [10], and 

Fukushima. [3] 
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Summary of Standard Frank-Wolfe Method 

Frank-Wolfe is used for minimizing nonlinear functions of a set of linear constraints.  At 

iteration b, FW approximates ? by linearizing at the current iteration Ud.  With Ud, we have 

the linear function ?d4u9 ≅ ?4Ud9 + ∇?4Ud94u − Ud9. 
First step:  The direction is found by solving linear program: 

LP(k)xmin ?d4u9u ∈ y, z 
Where y is a feasible set. 

Let ud be the optimal solution of LP(k).  The direction of FW is defined by: 

Jd = ud − Ud.  In the traffic application, LP(b) decomposes into a set of shortest path 

problems. 

Second step:  The objective function is minimized along the line segment passing by the 

point Ud and the direction Jd.  The step-size �d is then used to find the update, Ud{8 = Ud +
�dJd. 

α} = arg 3]�L~k~8?4Ub+�Jd). 

The stopping criteria is ‖∇?4Ud9‖ < ℇ for some ℇ > 0. 

The Franke-Wolfe method is one of the most widely used algorithms for solving routing 

problems; its popularity is attributed to its simplicity and modest memory requirements.  

Because FW converges slowly, it is more favorable to use it with modifications.   Two 
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popular modifications include the Saida-Rachid and Fukushima methods.  Without these 

modifications, the Franke-Wolfe method may zigzag as it approaches the convergence point. 
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Chapter 3 

The Simplified Routing Problem 

3.1 Introducing a Problem 

Imagine a scenario in which there is an apartment complex housing five hundred individuals 

who all live in the same apartment complex and all work in the same factory.  Now, assume 

all these individuals have to be at work between 8:00 and 9:00 a.m.  To make matters even 

more difficult for these employees, imagine there are only two methods which can be used 

to make the commute.  Because there is only a single road connecting these points, they can 

either decide to drive to work or use a company subsidized bus system which uses an 

exclusive and dedicated lane.  The question which follows is how many people will decide 

to drive and how many people will decide to take the bus system. 

In the perfect world of nonbiased, non prejudiced rational actors, we can expect equilibrium 

to be reached in the “long run”.  By “long run” we mean an unspecified time in which every 

commuter takes the means of travel which minimizes the time of their commute.  Once this 

equilibrium is reached, we can assume there is no exchange between different systems. 

In order to solve the optimum volume distribution of passengers, we will review the BPR as 

well as the Davidson functions 
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3.2 Volume Delay Functions 

3.2.1  BPR Volume Delay Function 

The BPR volume delay function was developed by civil engineers at the Bureau of Public 

Roads (later renamed the Federal Highway Administration) in 1962.  It was developed from 

empirical analysis with the previously mentioned conditions in mind.  It is the most 

commonly used function in traffic assignment and intersection delay problems. 

It is defined as follows: 

                                         :���� = :�L x1 + � oA�p�q�� ,                                                                 43.19 

0 ≤ 5� ≤ nk*. 

For this function, :�L is the time it takes for the first vehicle to move through the edge;  � and 

� are adjustable parameters which are determined by the type of road represented by the 

edge.  For interstates �i40, .39, for highways �i[.3,.6), and for surface roads  �iW.6, .99.  

Parameter � is an adjustable parameter usually set at 4.   

It is easy to show by the first and second derivative tests that this function is both increasing 

and convex. 

JJ5� :���� = ��:�L � 1n��� 5���8 > 0                                              43.29 

J6J5�6 :���� = �4�6 − �9:�L � 1n��� 5���6 > 0, � > 1                           43.39 

                                                           
*
 With many models using the BPR volume delay function, although it is not required, to keep the function within 

well behaved parameters, the volume never exceeds capacity. 
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 ����� N. �:  ��������� �����#�P$�$��P �� 2�� ��P�$��P  
10 �1 + .15 o5nq�� .  n = 1500, 2000, ��J 3000. 

3.2.2  Davidson Volume Delay Function 

The Davidson function was first proposed by K.B. Davidson in 1966.  It is similar to the 

BPR function in the sense that it has similar calibration parameters and uses traffic volume 

as a sole input.  Unlike the BPR function, travel time in the Davidson function is asymptotic 

to flow capacity.   

:�� = :�L x1 + � � 5�n� − 5���, 
0 ≤ 5� < n� 

c=1500 

c=3000 

c=2000 
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The Davidson function is shown to be increasing and convex across the domain as well 

                          JJU� :�� = �:�L 5�4n� − 5�96 > 0,                                                     43.49 

                   J6JU�6 :�� = �:�L 25�4n� − 5�9� > 0,                                                     43.59 

 

 

����� N. �:  ��������� �����#�P$�$��P �� ��0��#�P ��P�$��P  
In the figure 3.2 we graph the Davidson function, 

10 �1 + � o A�LLL�Aq�  � = .1, .3, ��J .6. 

 

 

�=.6 

�=.1 

�=.3 
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3.2.3  Graphical Comparison of Functions 

The Davidson and BPR functions have different properties which we can use to reflect the 

different aspects of the system being modeled.   

 

����� N. N:  O�!����P $�� 2�� �P� ��0��#�P ��P�$��P# 

In the Figure 3.3 we graph the BPR and Davidson functions for comparison purposes. 

3.3 Solving a Simple Example 

In this model the two alternatives are represented by two directed edges with identical 

departure and destination points.  The edges will be designated as ����������� and ����������� designating 

the privately owned vehicle route and the bus route respectively. 

Within an hour, 500 people will be distributed between the two paths.  With the information 

given, we can form a simple graphical model below. 

BPR 

Davidson 
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The simple distribution constraint is given by, 

5������������ + 5������������ = 500. 

For this model, this is the only constraint which will be considered.  Hidden in this 

distribution constraint is a not so obvious interpretation of the population decision 

making.  Essentially, it is being assumed all employees may be willing to either drive or 

take the bus.  The alternative to this, and inarguably more reasonable assumption, is that 

some individuals will always drive or always take the bus unless presented with extreme 

incentives or disincentives.  

Both route assignment methods being analyzed in this report, the BPR method as well as 

the Davidson method, require an estimate of free flow travel time , :D, and capacity of the 

link, nD. 
To find capacity, we will assume there are ten complete bus trips with a capacity of 32 

individuals.  So for the bus line, given the unit of time is an hour, the capacity 320 

individuals in an hour.  We can assume there is a capacity of 400 POVs in an hour. 

Hence, 

n� = 320, 
n� = 400. 

  B   A 
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Then it takes the first bus 24 minutes to move through the link and the car 15 minutes.  

Because time is being measured in hours, we have the following values for :L. 

:��������� = 15 � 160� = .25 

:��������� = 24 � 160� = .4 

The BPR volume delay function with parameters �=.6 and �=4 is given below. 

:����U��������� = .4 o1 + .6 A��
�6L�q + .25 o1 + .6 A��

�LL�q. 

The optimum value is found by solving the following optimization problem. 

3]� B = I . 4 �1 + .6 5��320�� J5� + I . 25 �1 + .6 5k�400�� 
L J5k

K
L                             43.69 

T. :.  U + u = 500,  
0 ≤ U, 0 ≤ u, 

which leads to the following problem, 

min B =  .4U + .048 UE320� + .25u + .03 uE400� ,                                       43.79 

T. :. U + u = 500, 

0 ≤ U, 0 ≤ u. 

It was established in equations (2.12) and (2.13) that the BPR function is convex over the 

domain.  From this, we know there is a minimizer.  Because volume delay functions are 
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nonlinear yet still have linear constraints, the Frank-Wolfe algorithm is a viable option for 

solving the optimization problem.  However, because the specific problem (3.7) is relatively 

simple, the solution can be obtained by solving for the Karush-Kuhn-Tucker (KKT) 

conditions.  

We start by writing the Lagrangian function for (3.7) and the K-K-T conditions, 

ℒ4U, u, ¢9 = .4U + .048 UE320� + .25u + .03 uE400� + ¢4U + u − 5009,                         43.89 

 £ℒ£U = .4 + .24 U�320� +  ¢ = 0,                                                              43.99 

£ℒ£u = .25 + .15 u�400� +  ¢ = 0,                                                           43.109 

 £ℒ£¢ = U + u − 500 = 0.                                                                        43.119 

From (3.9) and (3.10) we derive the following equality at minimization: 

. 4 + .24 U�320� = .25 + .15 u�400�                                                      43.129 

Using the condition (3.11), the result is u = 500 − U.  Substituting this into equation (3.12), 

we have 

. 4 + .24 U�320� − �. 25 + .15 4500 − U9�400� � = 0.                                     43.139 

Using a subroutine for finding the solutions an equation in MATLAB, we find the following 

result 
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U = 98.5674, 
implying that 

u = 500 − U = 401.4326. 
The model predicts that the system will reach equilibrium when 99 individuals use buses 

and 401 people drive.  With each bus with a capacity of 32 individuals, 4 buses will be used.  

However, this means three would be full and fourth would only have three passengers.  

From this model, planners would probably choose a suboptimal system. 

In the next section we generalize the example and use the Lagrangian method to find the 

solution. 

3.3.1 Developing the General Optimization Technique 

The alternative way of obtaining the solution is described below.  First, we present the 

graphs of the two BPR functions we used in the example. 
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����� N. ¤:  �¥¦ �P� 2�# .��0�� .�!�# 

It is clear from the graph that the volume delay for the bus users is greater than that of the 

POVs.   

The following graph shows the interaction of passengers between the two systems where 

?�4∗9 is the function for buses and ?�4∗9 is the function for POVs. 

 

 

 

 

Bus 

POV 
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����� N. §:  �¥¦ �P� 2�# .��0�� .�!�#4������� ¨P$��#��$��P9 

By inspection, it appears the graphs of the functions intersect at the point of optimization, 

U = 99.  We will start with a generalized form of the problem (3.6), 

min B =  I ?845�9J5� + I ?645�9J5� ,                                43.149 
L

K
L  

T. :.  U + u = \,  
0 ≤ U, 0 ≤ u. 

where \ is the number of passengers moving through 5� and 5�.   

Taking the integral gives the following result, 

?�4U9 ?�4500 − U9 
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min B =  V84U9 + V64u9,                                                         43.159   
T. :.  U + u = \,  

0 ≤ U, 0 ≤ u 

The next steps will be to develop a Lagrange function and set up the K-K-T conditions 

required to find the optimal values. 

ℒ4U, u, ¢9 = V84U9 + V64u9 + ¢4U + u − \9,                                          43.169 

£ℒ£U = ?84U9 +  ¢ = 0,                                                    43.179 

£ℒ£u = ?64u9 +  ¢ = 0,                                                    43.189 

£ℒ£¢ = U + u − \ = 0,                                                   43.199 

Note that the results of (3.17) and (3.18) follow from the Fundamental Theorem of Calculus.  

From (3.17) and (3.18) we get that the following equality holds at the point of minimization  

?84U9 = ?64u9.                                                              43.209 

Based on (3.19), we get the following identity 

u = \ − U.                                                              43.219 

Substituting this into (3.20), the equality holds if  

?84U9 = ?64\ − U9.                                                          43.229 
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By using this property, the optimal point can be found without the use of an iterative 

optimization method.  In this simple case it is enough to solve eq. (3.22).  Thus taking the 

integral is not necessary. 

3.4  Applying Volume Delay Function to Public Transit 

Having established a strong foundation of the volume delay function, we are almost ready to 

apply it to the assessment of the three public transportation systems proposed for the West 

Line expansion.  However, there is a critical yet easily rectifiable error with the use of a pre-

existing volume delay functions to the analysis of this system.   

The implicit assumption of the route assignment function is that the volume and feed of 

traffic is continuous.  A characteristic of all three proposed systems is that the systems have 

both continuous and discrete periods of traffic flow.  As more people board each system, the 

longer the delay. This is the component that changes.  The fixed is the actual travel time 

from one stop (node) to the next.  The construction an implementation of this function will 

be done in the next chapter.  We will modify the volume delay function by incorporating 

boarding time. 

 

 

. 
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Chapter 4 

Application to MARTA 

In this chapter we will develop several volume delay functions which will be applied to specific 

public transportation networks.  Using a model which approximates the West Line expansions, 

we will use these functions as well as the BPR and Davidson functions to compare the possible 

expansion.  The Figure 4.1 represents the part of MARTA under construction. 

 

 

����� ©. �:  ����� �� ª�#$ «�P� ¬��P#��P 

Routes 12�������, 2O�������, and O������� correspond to Interstate 20.  Routes 2�������� and �¬������� represent a four lane 

section of Martin Luther King Jr. Blvd., with ¬������� representing the portion where MLK Jr. Blvd. 

reduces to two lanes.  Each node, with the exceptions of A and B, represents a potential location 

for a mass transit station.  Nodes A and B represent West Lake and Hamilton E. Holmes train 

stations respectively.  Although 12������� is a currently existing route, we will still perform analysis on 

it. 

As mentioned in section 1.4, we will be analyzing three public transportation systems; bus rapid 

transit (BRT), light rail transit (LRT), and heavy rail transit (HRT). 

Because MARTA does not have definitive plans of how the West Line will be expanded, this 

model is based on the suggestions made by planners of where stations can be placed as well as 

existing stations.  Our objective is to demonstrate how an analysis can be done, not to get an 

AB  

C  F  

DE  G
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analysis with the most detailed or accurate information.  The focus is more on the process than 

the results. 

4.1  Deriving the Public Transportation Function 

The objective of this function is to approximate the time it takes for a train or bus to move a 

certain number of people from one point to another.  Our first observation is that a certain time is 

required for boarding a bus or train dependent of number of occupants.  We will assume the time 

delay for boarding has some similar patterns as traffic time delay.  We assume that as more 

people enter the system, the rate of boarding increases.  Considering the two functions that have 

already been mentioned in this report, the BPR has the closest desired result.  We do not want a 

function that approaches the rate of capacity asymptotically, such as the Davidson function.  In 

fact, even though the rate of volume delay is not perfectly linear, we believe it is a fair enough 

assumption that it takes individuals about the same average time to board.   

There are four values required to construct functions to represent the volume delay times for the 

three public transportation systems. 

Capacity 

The capacities are taken from the research of the MARTA West Line project.[13]  This is the 

total number of people which can fit on each system.  The BRT, LRT, and HRT capacities are 

32, 170, and 300 respectively. 

Boarding Times 

For each system, the time it takes for the first person to board each system is assumed to be .1 

minutes (6 seconds).  The total boarding time represents the time it takes for people to fill each 
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system to capacity.  The boarding times are estimated based on the capacity of each system and 

the number of entrances.  The BRT, LRT, and HRT boarding times are minutes are 3, 5, and 6 

respectively. 

Delay Times 

The delay times are the total times required for a single unit in each system (i.e. a single bus) to 

move through the edges.  The delay time is calculated by measuring the distance between 

stations and estimating travel speeds.  The assumed average speeds for the BRT, LRT, and HRT 

systems are dependent on location of the system and the distance between edges.  For example, 

the route represented by edge �®������� has a length of 1.2 miles.  Going an average speed of 60 mph, 

it takes the BRT 1.2 minutes to move through the edge. 

The parameters used to construct the public transportation volume delay functions (PTF) are 

listed in the table below. 
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.�/�� ©. �: ��/��� .��P#���$�$��P ����!�$��# 

 BRT LRT HRT 

Capacity 324n��	9 1704n¯�	9 3004n°�	9 

Int. Boarding Time  .1 .1 .1 

Total Boarding Time 3 5 6 

Delay Time ���������� 1.5 1.2 1.1 

Delay Time ��)������� .6 .5 .4 

Delay Time ��®�������� 1.2 1.2 .8 

Delay Time �)V������� 2.4 1.8 1.4 

Delay Time �®±������� 1.8 1.5 1.3 

Delay Time �±²������� 1.2 1 .85 

 

4.1.1 Calculating the Delay Component 

In the first component of the PTF we will calculate the volume delay associated with 

passengers boarding an individual unit of the system.  The function being used will be based 

on the BPR volume delay function. 

Two things which should be noted is that the β parameter is set at 1 and the � parameter 

does not have the restriction of 0 < � < 1 like in the BPR and Davidson functions.  In order 

to distinguish the  � used for the PTF from that used in BPR and Davidson functions, we use 

the notation ��	
. 
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For each of the systems in the model, Figure 4.2 contains the parameters :L, n, and \�4n9.  

Using these values, we can calculate ��	
 for each of the systems.  This will be illustrated 

for the BRT. 

We start with the following function: 

\�459 = :L ³1 + ��	
 o5nq´. 
This is the form of the volume delay function we will use for passengers boarding an 

individual unit in the system.  It should be noted that the relationship between passengers 

and time is assumed to be linear.  Substituting the parameters for the BRT taken from Figure 

4.2, we get the following result 

. 1 ³1 + ��	
 o�6�6q´ = 3 ⇒ ��	
 = 29. 

Now we can perform the same calculations for the LRT and HRT.  The results are listed in 

Table 4.2. 

.�/�� ©. �:  µ¶·¸¹·¶º»¼ ½�.� ¾¶·¹»¿ 

ROUTE BRT LRT HRT 

½�.� 29 49 59 

 

Now that we have the ��	
  parameter for each of the three systems, we can form the 

volume delay functions for a single unit within each system. 
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            z
\��	459 = .1 �1 + 29 o A�6q�
\̄ �	459 = .1 �1 + 49 o A8ÀLq�
\°�	459 = .1 �1 + 29 o A�6q� ÁÂ

ÂÂ
ÂÃ  :]3Ä :Å ÆÅ�ÇJ 5 È�TTÄ�ÉÄÇT                    (4.1) 

With an adequate method of calculating loading time for each system, we can now focus on 

the time it takes for an individual unit to move between stations.  There are a few 

characteristics which make this time much easier to estimate.  We can assume there is only 

an individual unit moving through a route at a time.  Each route is short enough that multiple 

units would either result in increased delays or accidents.  Also, travel times for BRT and 

rail systems are easy to predict; with a well managed transportation network the time of 

departure and arrival can be accurately predicted. 

For any given number of people using a particular system, it can be expected that a full 

number of units will not be needed to move all individuals from one station to next.  For 

example, to move 46 individuals from station A to station B using BRT will require two 

buses.  However, only one bus will be completely full, the second bus will have 14 

passengers.  Using the parameters from Figure 4.2, we know the first bus will take 3 minutes 

to fill to capacity and 1.5 minutes to move between A and B, or a total time of 4.5 minutes.  

Although the travel time (delay time) will be 1.5 minutes for the second bus too, the loading 

time will not be the same.  Assuming the second bus is not completely full, we can calculate 

the total number on this bus as following 

ÊË3ÆÄÇ Å? ÈÄÅÈÌÄ Å� TÄnÅ�J ÆËT = 5 − n oÍ5nÎq 

Applying this to the example of 46 bus customers, we get the following result 
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46 − 32 oÍ�Ï�6Îq = 46 − 324Ð1.4375Ñ9 = 14. 

Implementing this into the volume delay function, we get the following result for the total  

boarding and travel time 

 

                         

      :����������	459 = .1 Ò1 + 29 ³A��6oÍ ÓÔÕÎq´�6 Ö + 1.5                                                          44.29                                            

T. :. 32 >  5 > 0, 5 ∈ ℤ , 
If there are � buses that move through the route ��������, this function shows the delay for the 

�ØÙ bus.  The total travel time for the previous � − 1 buses (that are full) will be the sum of  

boarding times(\�) and the travel times(\�) for each of the units   

W\� + \�X oÍ A�6Îq. 

Note that  Í A�6Î is the number of full units.  For example, with BRT on edge AB������ we have 

from Table 4.1,  \� + \� = 3 + 1.5 = 4.5.  Thus, to get the volume delay for both full and 

partially filled units for BRT on route ��������, we get 

:����������	459 = W4.5X oÍ A�6Îq + .1 Ò1 + 29 ³A��6oÍ ÓÔÕÎq´�6 Ö + 1.5, 

T. :.  5 > 0, 5 ∈ ℤ , 

Calculates the number of people 

who do not fill an entire bus 
 Travel time 
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where the first term is the time for the full units and the second one is for partially full units.  

The functions are listed in the table below.   

.�/�� ©. N  Calculated PTF 

ROUTE BRT LRT HRT 

�������� 

W4.5X oÍ 532Îq
+ .1 Ü1 + 29 ³5 − 32 oÍ 532Îq´32 Ý
+ 1.5 

W6.2X oÍ 5170Îq
+ .1 Ü1 + 49 ³5 − 170 oÍ 5170Îq´170 Ý
+ 1.2 

W7.1X oÍ 5300Îq
+ .1 Ü1 + 59 ³5 − 300 oÍ 5300Îq´300 Ý
+ 1.1 

�)������ 

W3.6X oÍ 532Îq
+ .1 Ü1 + 29 ³5 − 32 oÍ 532Îq´32 Ý
+ .6 

W5.5X oÍ 5170Îq
+ .1 Ü1 + 49 ³5 − 170 oÍ 5170Îq´170 Ý
+ .5 

W6.4X oÍ 5300Îq
+ .1 Ü1 + 59 ³5 − 300 oÍ 5300Îq´300 Ý
+ .4 

�®������� 

W4.2X oÍ 532Îq
+ .1 Ü1 + 29 ³5 − 32 oÍ 532Îq´32 Ý
+ 1.2 

W6.2X oÍ 5170Îq
+ .1 Ü1 + 49 ³5 − 170 oÍ 5170Îq´170 Ý
+ 1.2 

W6.8X oÍ 5300Îq
+ .1 Ü1 + 59 ³5 − 300 oÍ 5300Îq´300 Ý
+ .8 

)V������ 

W5.4X oÍ 532Îq
+ .1 Ü1 + 29 ³5 − 32 oÍ 532Îq´32 Ý
+ 2.4 

W6.8X oÍ 5170Îq
+ .1 Ü1 + 49 ³5 − 170 oÍ 5170Îq´170 Ý
+ 1.8 

W7.4X oÍ 5300Îq
+ .1 Ü1 + 59 ³5 − 300 oÍ 5300Îq´300 Ý
+ 1.4 

®±������ 

W4.8X oÍ 532Îq
+ .1 Ü1 + 29 ³5 − 32 oÍ 532Îq´32 Ý
+ 1.8 

W6.5X oÍ 5170Îq
+ .1 Ü1 + 49 ³5 − 170 oÍ 5170Îq´170 Ý
+ 1.5 

W7.3X oÍ 5300Îq
+ .1 Ü1 + 59 ³5 − 300 oÍ 5300Îq´300 Ý
+ 1.3 

±²������ 

W4.2X oÍ 532Îq
+ .1 Ü1 + 29 ³5 − 32 oÍU532Îq´32 Ý
+ 1.2 

W6X oÍ 5170Îq
+ .1 Ü1 + 49 ³5 − 170 oÍ U5170Îq´170 Ý
+ 1 

W6.85X oÍ 5300Îq
+ .1 Ü1 + 59 ³5 − 300 oÍ 5300Îq´300 Ý
+ .85 
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The next task will be to define the parameters used for the BPR and Davidson function. 

4.2  Deriving the BPR & Davidson Functions 

Once again, looking at the BPR and Davidson functions we have 

:���459 = :L x1 + � oApq��  

 :�459 = :L ³1 + � o Ap�Aq´ 

There are four parameters needed for formulation  of both of these functions.   

The $Þ parameter 

The :L parameter is the time it takes for a POV to move through the respective route.  The 

values used to calculate this time are in the table below. The time is expressed as minutes. 
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.�/�� ©. ©: ���� ¨P���!�$��P 

ROUTE POV Travel Speeds 

(mph) 

Speeds at Capacity 

(mph) 

Route Distances 

�������� 65 45 1.2 

�)������ 65 45 .325 

�®������� 35 20 .7 

)V������ 65 45 1.84 

®±������ 35 20 1.17 

±²������ 45 30 .75 

 

The speeds at capacity are the speeds of a POV when a road has reached the point of 

capacity.  We interpret capacity to be the threshold for when someone can still drive at legal 

speed.  For example, routes ��������, �)������, and )V������ correspond to areas on Interstate 20 where the 

minimum driving speed is 45mph.  These speeds will become relevant when calculating the 

� parameter for the volume delay function.   

The ½,  �, and ß parameters 

In previous examples used in this paper, we estimated the capacity values to be used in the 

volume delay functions.  This value will now be determined via a look-up table that relates 

these variables to the type of link and the area type surrounding the link.  The values we use 

in this paper come from a table used in the Urban Transportation Planning Software 

distributed by the Urban Mass Transportation in the 1970s and 1980s. 
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We will deviate from the somewhat vague method of defining the � parameter used earlier 

in this paper.  Instead, we will use the formula, 

� = 4àL/àp9 − 1, 
where àL is the free traveling speed and àp is the speed at capacity. 

Instead of using 4 for the � parameter, we will use values taken from a FHA paper.  All four 

parameters for each route are listed in the table below. 

.�/�� ©. ¤: 2�� �P� ��0��#�P ��P�$��P ����!�$��# 

ROUTE � n � :L 

�������� .44 2000 9.8 1.1 

�)������ .44 2000 9.8 .3 

�®������� .75 870 2.1 1.2 

)V������ .44 2000 9.8 1.7 

®±������ .75 870 2.1 2 

±²������ .5 1000 2.1 1.0 

 

4.2.1 Calculating the Hidden Cost of Driving 

The rational driver will take into account not only the time required to drive when deciding 

to either drive or take public transportation, but the cost of operation.  There are several 

methods of calculating costs.   

 



55 

 

.�/�� ©. §: ¥����$��P O�#$# 

Factor Cost per Mile 

Insurance/registration $.094 

Depreciation $.286 

Fuel/oil $.059 

Maitenance/tires $.059 

Total $.498 

  
This will be included into the volume delay function by interpreting it as a constant time and 

interpreting the time as monetary value with the assumption of a $20/hour wage. 

For example, in order calculate the cost in terms of time for a POV operator on route ��������, we 

first find the cost in terms of dollars.  This is done by multiplying route length by cost per 

miles, 

âÈÄÇ�:]�É )ÅT:T =  t]ÌÄT × � )ÅT:t]ÌÄT� = 1.2 × $. 498 = $. 6, 
To calculate cost in minutes, we calculate the time required to earn the amount of the 

operating costs (with a $20/hour wage), 

)ÅT: ]� :ÄÇ3T Å? :]3Ä = âÈÄÇ�:]�É )ÅT:Tå�ÉÄ = $. 6$20/ℎÅËÇ = .03 ℎÅËÇT, 
which in terms of minutes is 1.8 minutes.  The cost for each route is listed in Table 4.7 

below. 
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.�/�� ©. ç: O�#$ �P ��P�$�# 

Route Miles Cost Cost in minutes 

�������� 1.2 .6 1.8 

�)������ .325 .16 .48 

�®������� .7 .35 1.05 

)V������ 1.84 .9 2.7 

®±������ 1.17 .58 1.74 

±²������ .75 .37 1.11 

 

The final parameter to be added to the BPR and Davidson functions is what we will refer to 

as a “preference” component.  The purpose of this parameter is to reflect the inflexibility of 

certain passengers regarding their decision to drive.  For whatever reason, there will always 

be people who make the decision to drive and would continue to drive unless face with 

either extreme disincentives (i.e. gas prices that exceed $4.00/gallon or unimaginable 

commute times) or unreasonable incentives (i.e. they are paid not to drive).  Since these 

people will always be people on the road, they instantly increase travel time.  Quite 

arbitrarily, we have chosen 5 to be the parameter value for all BPR and Davidson functions.  

Though we did not include this parameter in the public transportation functions, it is a very 

reasonable assumption to make that there would also be a similar group who will always 

take public transportation for their own reason (i.e. they cannot afford to own or operate a 

car).   

The final BPR functions is 
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:L Ò1 + � o5nq�Ö + Å + È 

and the final Davidson function is 

:L ³1 + � o 5n − 5q´ + Å + È. 
The specific BPR and Davidson functions for each route are listed I Table 4.8. 

.�/�� ©. è:  2�� �P� ��0��#�P ��P�$��P# ��� ¬��� ���$� 

Route BPR Davidson 

�������� 1.1 x1 + .44 o A6LLLqé.ê�+1.8+5 1.1 ³1 + .44 o A6LLL�Aq´+1.8+5 

�)������ . 3 x1 + .44 o A6LLLqé.ê�+.48+5 . 3 ³1 + .44 o A6LLL�Aq´+.48+5 

�®������� 1.2 x1 + .75 o AêÀLq6.8�+1.05+5 1.2 ³1 + .75 o AêÀL�Aq´+1.05+5 

)V������ 1.7 x1 + .44 o A6LLLqé.ê�+2.7+5 1.7 ³1 + .44 o A6LLL�Aq´+2.7+5 

®±������ 2 x1 + .75 o AêÀLq6.8�+1.74+5 2 ³1 + .75 o AêÀL�Aq´+1.74+5 

±²������ 1 x1 + .5 o A8LLLq6.8�+1.11+5 1 ³1 + .5 o A8LLL�Aq´1.11+5 

 

4.3 Finding Free Flow Travel Times 

Using a search subroutine in MATLAB, we are able to calculate the optimum route 

assignments in a similar fashion as in section 3.3.1.  We have results for both the BPR and 

Davidson volume delay functions.  The constraint used for each route was the route’s 
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capacity.  For example, route �������� has a capacity 2,000, so the system was optimized for 

having a total of 2,000 individuals moving through it. 

4.3.1 Solving for a Volume Delay Function which is not Continuously Differentiable 

In section 3.3.1, we proved a method of finding the equilibrium distribution using K-K-T 

conditions.  One of the requirements for the use of the K-K-T conditions is a continuously 

differentiable function.  The function 

$�.�409 = W.� + .2X oÍ0�Îq + $Þ Ò� + ½�.� 0��oÍ0�Îq� Ö + .�, 

 

is not differentiable with the values of 5 which are divisible by n. 

In order to show equilibrium is reached at the point where the two functions intersect 

graphically, as in figure 3.6, another method must be used.   

The first step will be to show that the two functions only intersect at one point.  The 

Davidson and BPR functions have already been shown to be strictly increasing with 

equations (2.12) and (2.14).  The result, 

                          JJU� $�.� = ��	
 1n > 0,     
where the derivative is defined, is enough to show the function is non decreasing.  Any 

points of intersection are unique.  

Because we are assuming the function has no points of congestion, we can assume the user 

equilibrium and system optimization are equal.   
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Though the concepts were developed independently, the Wardrop concept of user 

equilibrium is the same concept as the Nash equilibrium.  We can treat the route assignment 

as a game where players are choosing the strategy which gives them the shortest time. 

4.3.2   Finding the Nash Equilibrium 

In game theory, we let N={1,…,n} denote the set of players, with a strategy for player I 

being represented by an element TDi à, where à is the set of all strategies and VD4T9 is a set 

of  all possible strategies for player ] in response to T. 

A Nash Equilibrium is a strategy profile T∗i à such that for all ] i Ê and all TiVD4T9, 

ËD4T∗9 ≥ ËD4T9. 

This is a very technical way of saying that no user’s unilateral choice will improve their 

level of success.  The Nash Equilibrium is not necessarily the same as the system 

optimization. 

There is only one case when that the PTF and volume delay functions intersect, represented 

by points z.  This point is a Nash equilibrium.  Point y is not an intersection point, but gives 

a optimum volume distribution. 
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����� ©. �:  ��������� ��!�P#$��$��P �� a�#� ¬ë����/���! 

4.4 Optimization Results 

Below are tables showing the results of using the MATLAB “fzero” subroutine to find the 

system optimum points for the BPR, Davidson functions, and the PTFs. 
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Volume Delay 
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.�/�� ©. ì:  ¥�$�!�! ���$� 1##�P!�P$ ¦����# ��� $�� 2�� ��P�$��P 

 

.�/�� ©. �Þ:  ¥�$�!�! ���$� 1##�P!�P$ ¦����# ��� $�� ��0��#�P ��P�$��P 

 

The first number of each cell is the assignment of people to POVs, while the second number is 

the assignment of people to the respective public transportation system. 

ROUTE BPR:BRT BPR:LRT BPR:HRT 

�������� 1936:64 1769:251 1660:340 

�)������ 1951:49 1830:170 1730:270 

�®������� 810:60 690:180 570:300 

)V������ 1945:55 1797:203 1668:332 

®±������ 806:64 659:211 540:330 

V²������ 944:56 816:184 830:270 

ROUTE DAVIDSON:BRT DAVIDSON:LRT DAVIDSON:HRT 

�������� 1882:118 1685:315 1574:426 

�)������ 1923:77 1800:200 1700:300 

�®������� 770:100 1758:242 1654:346 

)V������ 1879:121 1673:327 1545:455 

®±������ 752:118 576:294 476:394 

V²������ 909:91 787:213 700:300 
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Chapter 5 

Conclusion 

5.1 Interpreting the Results 

Looking at the results, it becomes clear that the BPR function over assigns as compared to 

the Davidson Function.  This is a result of the universal greater rate of increase of the 

Davidson function to the BPR function, as shown in figure 3.3.  Because the Davidson 

function increases at a faster rate, it reaches an equilibrium point before the BPR, resulting 

in a lower volume assignment.  By calculating the results of both functions, it gives us a 

wider, yet still consistent, estimation of the system.  It is consistent regarding the order in 

which the technologies are capable of handling a quantity of passengers (BRT, LRT, and 

then HRT). 

A strict interpretation of the results gives varying results between systems and routes.  For 

example,   The BPR function for route �������� tells us the system will reach equilibrium when 

64 individuals decide to use the BRT system, while the Davidson predicts equilibrium at 

118 individuals.  This means the system is optimized when 2 units (with a capacity of 32) 

are used under the BPR, but at 4 with the Davidson function. 

Instead of reading the results in this manner, it is better to understand them as a high/ low 

comparison between systems.  For example, for the same route under the BPR 251 

individuals are assigned to LRT and 315 with Davidson.  Because LRT has a capacity of 

170, either estimate would tell us to implement one unit for the LRT.  However, if a planner 

knows that in order to optimize the system they will need at least two units and at most four, 

it creates one more dimension to assessing a system. This data would help a planner judge 
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not only whether or not an objective is obtainable, but if the system required to achieve the 

objective is within budget.   

5.2 Examining for Multiple Routes 

 Compared to most route assignment problems, the number of possible paths is very limited.  

It is reasonable to assume that given a system consisting of POVs and a single system, there 

will be two routes users would choose, either strictly POV or strictly public transportation.  

However, if we wanted to maximize a system using multiple systems or even alternating 

between POVs and public transportation, the public transportation functions developed in 

this paper are not effective.  The time required to change between systems is not being taken 

into account.  These functions are reasonable in the examination of single routes or a model 

consisting only of paths made up only of public transportation systems in which a large 

number of people are exiting and entering every unit at each stop.  In a model in which most 

of the people are moving through multiple stops on a single unit, our public transportation 

delay functions will overestimate the total boarding time. 
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