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ABSTRACT

As an aid to the practitioners, various Phase II quality control charts have been devel-

oped to monitor for a change in the parameters of the distribution of a quality mea-

surement. In this project, the family of generalized cumulative sum type charts was

studied. An equivalent chart version that requires fewer parameters was given. Some

useful integral equations were derived for determining the run length distribution of the

lower and upper one-sided charts. The Markov chain methods were also given. The pa-

rameters unknown version was presented and the performance analysis was studied for

the chart for monitoring for a change in the mean of a normal distribution. The design

and analysis of a chart when the quality measurement follows a gamma distribution was

given, which includes the design and analysis of a chart for monitoring for a change in

the standard deviation of a normal distribution.
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CHAPTER 1

INTRODUCTION

In the early 1920’s, Walter A. Shewhart (see Shewhart (1925,1931)) introduced the

quality control chart as an aid for practitioners in their efforts to produce quality goods.

The control chart is a time plot of one or more summary statistics plotted against the

time variable, sample number. Control charts are used in two phases of the production

process. In the first phase (Phase I), the practitioner is interested in answering the

question “whether is the data collected from an in control process?” Also, in Phase I,

the chart is used as an aid in estimating what is meant - by the process being in control.

Phase I is also known as the retrospective phase. Control charts used in this phase are

known as Phase I or retrospective control charts. Most Phase I charts are similar to the

ones proposed by Walter A. Shewhart. It is very important to note that the practitioner

does not solely use the Phase I chart to help in answering the posed question.

In the second phase (Phase II or the prospective phase), a control chart is used

to aid practitioners in comparing the data to what is meant by the process being in

control to answer the question “has the process changed from a in control process to an

out-of-control process?”. Charts used in this phase are known as Phase II or prospective

control charts. A variety of Phase II charts and their modifications are discussed in the

literature. The Shewhart charts (with run rules), the run sum chart, the cumulative

sum (CUSUM) chart, and the exponentially moving average (EWMA) chart including

their various modifications are the most common charts discussed in the literature.

In the univariate case, the quality of the process is described in terms of one or more

parameters θ1, . . . , θq of the distribution of a quality measurement X to be taken on an

item that is to be output by the process. When X is a continuous measurement, the
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quality of the process can often be characterized by the mean µ and standard deviation σ

of the distribution of X. A simple model of the process being in control is when θ1, . . . , θq

are equal, respectively, to the fixed but unknown values θ1,0, . . . , θq,0. Some assumptions

are then made about the distribution of X as with most statistical methods. When X

is a continuous measurement, the normal distribution is usually entertained as the data

model. Further, charts in Phase I are typically developed under the assumption that

the X measurements are stochastically independent.

A typical Phase I Shewhart chart is based on the X measurements (univariate case)

with m samples {Xi,1, . . . , Xi,n} each of size n taken from the output of the process,

i = 1, . . . ,m. The samples are collected periodically (over time) from the output of

the process. Assume the quality measurement X is a continuous random variable. At

sampling stage (time) i, a statistic

Yi = y (Xi,1, . . . , Xi,n)

is determined and plotted versus i for i = 1, . . . ,m. Assume that E (Yi) = θj. Thus,

the points (i, Yi) should locate randomly about the horizontal line that passes through

the point (0, θj). Since θj,0 is not known, then one can only judge from a Phase I chart

if the process is stable, that is, if the plotted points appear to be plotting randomly

about “some” horizontal lines. If the process is in control, then we have that θj = θj,0.

Assuming that the process is in control, one then estimates the mean and standard

deviation of the plotted statistic Yi and adds the horizontal lines that pass through the

points (
0, θ̂j − kLσ̂Y

)
,
(

0, θ̂j

)
, and

(
0, θ̂j + kU σ̂Y

)
,

where σ̂Y is the estimate of the standard deviation of the distribution of Y and the

variables kL and kU are chart parameters to be selected by the practitioner. The first,
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second, and third horizontal lines are known, respectively, as the lower control limit

(LCL), the center line (CL), and the upper control limit (UCL) of the chart. These lines

are provided as aids to the practitioner in attempting to objectively answer the question

“were these quality measurements on the output of an in-control process?” Methods for

designing Phase I Shewhart control charts were given in Montgomery (2008). Selecting

probability limits were discussed in Newton and Champ (1997). Champ and Chou

(2003) examined the use of individual limits and compared these charts to those based

on standard limits.

In Phase II, one assumes that the process is in a state of statistical in control. It is

of interest in this phase to monitor the process for any change from being in control to

an out-of-control state. Once again samples are collected periodically from the output of

the process and the quality measurement (Xt,1, . . . , Xt,nt) is to be taken on each item in

the sample. We use the time variable t in this phase with t = m+1,m+2,m+3, . . .. At

time t one or more chart statistics are computed and plotted against the time variable t.

The plotted points define the chart. It is the practitioner’s task to select time between

the (t− 1)th and the tth samples, the sample size nt at time t, and to use the present as

well as the previous sample data to define the chart. Each chart consists of a collection

of chart parameters at time t. Chart parameters are selected by the practitioner. These

parameters include the sample size and the time between samples. If past data is used to

select the chart to be used at the next sampling stage, the chart is known as an adaptive

control chart. Adaptive control charts were discussed by Champ (1986). He suggested

using more stringent runs rules for detecting a shift in the process if there are evidence

the process may be out-of-control and less stringent runs rules otherwise. Since then,

adaptive versions of most of the popular control charts found in the literature have been

proposed.
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A family of Phase II control charting procedures proposed by Champ, Woodall,

Moshen (1991) include as subfamilies the Shewhart, CUSUM, and EWMA charts. This

family is known as the family of generalized cumulative sum type control charts. Our

interest is to study the use of these charts for monitoring for a change in the mean of

a quality measurement X that has a normal distribution. Also, we examine the use

of these charts when the quality measurement/statistic has a gamma distribution. We

extend this family of charting procedures to include parameters estimated versions.

The run length T of a Phase II chart is defined as the first time t in which the

chart signals. The most typically used measures of a Phase II chart’s performance are

parameters of the run length distribution. These parameters include the mean, standard

deviation, and percentiles of the run length distribution. The mean is often referred to

as the average run length (ARL). Often the performances of two or more charts are

compared by their ARLs. Consequently, charts are often designed to have some desired

values of the ARL when the process is both in- and for some out-of-control scenario(s).

It is common to design charts so that the in-control ARL is some specified value and

the out-of-control ARL for a particular out-of-control scenario is a minimum.

There are three methods that are typically used to evaluate the run length distribu-

tion – simulation, the Markov chain approximation and integral equations. Simulation

is a good method when one is interested in an estimated parameter as the average run

length of the run length distribution. Methods for selecting chart parameters that op-

timize the performance of the chart under some given criteria require more accurate

approximations than the estimate provided via simulation. The Markov chain method

for approximating the run length distribution of a chart was introduced by Brook and

Evans (1972). A chart is observed to be a continuous state, discrete time Markov pro-
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cess which is approximated by a Markov chain. Exact results obtained from the Markov

chain become the approximations to the run length distribution and its various param-

eters. The third method makes use of the fact that the run length distribution and

its various parameters can be expressed as exact solutions to integral equations. These

solutions are then approximated. It was shown by Champ and Rigdon (1991) that some

well known integral equations which are useful in evaluating the run length properties

of a chart have approximate solutions that are the exact results obtained by using a

Markov chain to approximate the chart.

The family of generalized cumulative sum type control charts is discussed in the next

chapter. This includes methods for deriving the run length distribution of the chart. In

Chapter 3, a performance analysis is given for the chart used to monitor for a change in

the mean of a normal distribution. The design and analysis of a chart when the quality

measurement follows a gamma distribution is given in Chapter 4. This chapter includes

the design and analysis of a chart for monitoring for a change in the standard deviation

of a normal distribution. Some concluding remarks are given in the last chapter along

with some areas for further study.



CHAPTER 2

GENERALIZED CUSUM TYPE CONTROL CHARTS

2.1 Introduction

A common practice when monitoring for the mean or standard deviation of a continuous

quality measurement is to monitor for increases as well as decreases in these parame-

ters. As an aid to the practitioner, various Phase II quality control charts have been

developed for this purpose. Champ, Woodall, and Mohsen (1991) showed that three of

the most commonly recommended charts, the Shewhart, CUSUM, and EWMA charts,

are members of a family of cumulative sum (CUSUM) type control charting procedures.

Also, included in this family are one-sided versions of the EWMA chart. Members of

this family are used for monitoring for a decrease in a parameter, or increase, or both.

Two-sided charts are the combination of two one-sided charts.

A chart that can be used to monitor for the decrease change in the statistic YL,t

plots the points (t, Lt) for t = 1, 2, 3, . . ., where

Lt = min {b0, b1Lt−1 + b2YL,t + b3}

with L0 = b4 and b2 > 0 for some value of t. The chart signals if Lt ≤ b5. The chart may

also be designed to signal if YL,t ≤ b6(Shewhart limit). The values b0, b1, b2, b3, b4, b5,

and b6 are known as the chart parameters. This chart is referred to as the lower one-sided

generalized cumulative sum type chart. The upper one-sided generalized cumulative sum

type chart plots the points (t, Ut) for t = 1, 2, 3, . . ., where

Ut = max {a0, a1Ut−1 + a2YU,t + a3}

with U0 = a4 and a2 > 0. The chart signals if Ut ≥ a5 or YU,t ≥ a6(Shewhart limit). The

chart parameters are a0, a1, a2, a3, a4, a5, and a6. The chart that results from plotting
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the points (t, Lt) and (t, Ut) on the same graph is a two-sided generalized cumulative

sum type chart.

In this chapter, several special cases of the family of generalized cumulative sum type

control charts are given. In section 3, an equivalent version of the chart is presented that

requires fewer chart parameters for the practitioner to select. The two methods, Markov

chain and integral equations, are discussed for evaluating the run length distribution of

a generalized control chart in Section 4 and 5. It is shown that the integral equation

approach is equivalent to the Markov chain approach.

2.2 Special Cases

Walter A. Shewhart is credited with the introduction of the quality control chart. A

Shewhart chart is designed to signal at time t if

Yt ≤ E0 (Y )− k
√
V0 (Y ) or Yt ≥ E0 (Y ) + k

√
V0 (Y ),

with k > 0, where E0 (Y ) and V0 (Y ) are the in-control mean and variance of the statistic

Yt. The two-sided generalized cumulative sum type chart with YL,t = YU,t = Yt is defined

by

L0 = 0, Lt = min {E0 (Y ) , (0)Lt−1 + Yt + 0} = min {E0 (Y ) , Yt} ,

U0 = 0, and Ut = max {E0 (Y ) , (0)Ut−1 + Yt + 0} = max {E0 (Y ) , Yt} .

We see that Lt = Yt or Ut = Yt at time t. Letting

b5 = E0 (Y )− k
√
V0 (Y ) and a5 = E0 (Y ) + k

√
V0 (Y ),

the chart would signal if

Lt ≤ b5 or Ut ≥ a5.
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This is, of course, the same rule that causes the Shewhart chart based on the statistic

Yt to signal.

The cumulative sum (CUSUM) chart was introduced by Page (1956). This chart

signals a potential out-of-control process if

Lt ≤ −h or Ut ≥ h,

where

L0 = 0, Lt = min {0, Lt−1 + Yt + k} ,

U0 = 0, and Ut = max {0, Ut−1 + Yt − k} .

This is a generalized control chart with

YL,t = YU,t = Yt, b0 = a0 = 0, b1 = b2 = a1 = a2 = 1,

b3 = −a3 = k, b4 = a4 = 0, and b5 = −a5 = −h.

Clearly, the CUSUM chart is a member of the family of generalized CUSUM type charts.

Roberts (1971) introduced a family of control charting procedures which he referred

to as the geometric moving average charts. These charts are now referred to as expo-

nentially weighted moving average (EWMA) charts. An EWMA chart can be viewed as

a special case of the generalized control chart by setting

YL,t = YU,t =
X t − µ0

σ0/
√
n

, b0 =∞, a0 = −∞, b1 = a1 = 1− r,

b2 = a2 = r, b3 = a3 = 0, b4 = a4 = 0, and b5 = −a5 = −h,

where 0 < r ≤ 1 and h > 0.

Shu, Jiang, and Wu (2007) examined a Phase II EWMA chart for monitoring for a
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change in the mean that plots the points (t, Lt) and (t, Ut), where

L0 = µ0 −
σ0√
2π

, Lt = (1− r)Lt−1 + rX−t , and

U0 = µ0 +
σ0√
2π

, Ut = (1− r)Ut−1 + rX+
t ,

where 0 < r ≤ 1,

X−t = min {µ0, Xt} , and X+
t = max {µ0, Xt} .

The chart signals at time t if Lt ≤ LCL or Ut ≥ UCL, where

LCL = µ0 −

 1√
2π

+ k

√
r
[
1− (1− r)2t

]
2− r

√
1

2
− 1

2π

σ0 and

UCL = µ0 +

 1√
2π

+ k

√
r
[
1− (1− r)2t

]
2− r

√
1

2
− 1

2π

σ0.

They also discussed using the lower (LCL) and upper (UCL) control limits

LCL = µ0 −

(
1√
2π

+ k

√
r

2− r

√
1

2
− 1

2π

)
σ0 and

UCL = µ0 +

(
1√
2π

+ k

√
r

2− r

√
1

2
− 1

2π

)
σ0.

One can see that these charts are members of the family of generalized control charts

with

YL,t = X−t , YU,t = X+
t ,

b0 =∞, a0 = −∞, b1 = b2 = a1 = a2 = 1, b3 = −a3 = k,

b4 = µ0 −
σ0√
2π

, a4 = µ0 +
σ0√
2π

, b5 = LCL, and a5 = UCL.

2.3 Equivalent Forms

It will be interesting to examine an equivalent form of a generalized control chart. The

following is a definition of equivalence of two forms of a chart.
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Definition: Two charts are said to be equivalent if and only if at time t either both

charts signal or both charts do not signal for all possible sets of data.

Assume b2 > 0 and define

L∗t =
Lt − b0
b2

.

It follows that

L∗0 =
b4 − b0
b2

= b∗4 and

L∗t =
min {b0, b1Lt−1 + b2YL,t + b3} − b0

b2

= min

{
b0 − b0
b2

,
b1Lt−1 + b2YL,t + b3 − b0

b2

}
= min

{
0, b1

Lt−1 − b0
b2

+ YL,t +
b3 + (b1 − 1) b0

b2

}
= min

{
b∗0, b

∗
1L
∗
t−1 + YL,t + b∗3

}
,

where

b∗0 = 0, b∗1 = b1, b
∗
2 = 1, and b∗3 =

b3 + (b1 − 1) b0
b2

.

The chart based on the sequence {L∗t} signals if

L∗t ≤ b∗5 =
b5 − b0
b2

.

This chart is equivalent to the chart based on the sequence {Lt}. It is easy to see that

at time t for the same data either both charts signal or both charts do not signal.

Similarly, we can write for a2 > 0

U∗t = max
{

0, a∗1U
∗
t−1 + YU,t + a∗3

}
,

with U∗0 = a4−a0
a2

, where

a∗0 =
a0 − a0
a2

= 0, a∗1 = a1, a
∗
2 = 1, a∗3 =

a3 + (a1 − 1) a0
a2

, and a∗4 =
a4 − a0
a2

,
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and the chart signals if

U∗t ≥ a∗5 =
a5 − a0
a2

.

The charts based on the sequences {Ut} and {U∗t } are equivalent.

Theorem(Champ and Wang): A one-sided generalized control chart with six chart

parameters is equivalent to a one-sided generalized control chart with four chart param-

eters.

Proof: The results follow from the previous discussion. Note that the addition of the

Shewhart limit only adds one more chart parameter in both cases.

It may be reasonable to have a relationship between the ai’s and the bi’s. An

example of such a relationship is

b0 = −a0, b1 = a1, b2 = a2, b3 = −a3, b4 = −a4, and b5 = −a5

which is equivalent to the one used in Aparisi, Lluch, and Luna (2008). We see that

b∗1 = b1 = a1 = a∗1, b
∗
2 = 1 = a∗2, b

∗
3 = −a∗3, b∗4 = −a∗4, and b∗5 = −a∗5.

Thus,

b∗0 = −a∗0, b∗1 = a∗1, b
∗
2 = a∗2, b

∗
3 = −a∗3, b∗4 = −a∗4, and b∗5 = −a∗5.

Hence, for this example there are only four chart parameters that need to be determined

by the practitioner.

2.4 Analysis Using Integral Equations

Champ, Woodall, and Moshen (1991) gave some integral equations useful in analyzing

generalized cumulative sum type charts. Champ, Rigdon, and Scharnagl (2001) gave
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a more general study of integral equations that are useful in analyzing quality control

charts. We examine a more general setting integral equations that can be used to analyze

a generalized cumulative sum type charts.

First, we look at the run length distribution of the lower one-sided generalized

cumulative sum type chart with plotted statistic defined by

L0 = l and Lt = min {0, b1Lt−1 + YL,t + b3}

with b5 < l ≤ 0 that signals if Lt ≤ b5 or YL,t ≤ b6. Assume that the chart parameters do

not depend on t. The probability mass function describing the conditional distribution

of the run length TL given L0 = l of an lower one-sided generalized chart is represented

by

prL (t |l ) = P (TL = t |L0 = l ) .

For the case in which t = 1, we have

prL (1 |l ) = P (L1 ≤ b5 or YL,1 ≤ b6 |L0 = l )

= P (YL,1 ≤ b5 − b1l − b3or YL,1 ≤ b6)

= P (YL,1 ≤ max{b5 − b1l − b3, b6})

= FYL (βL (l)− b1l − b3) ,

where βL (l) = max {b5, b1l + b6 + b3}. Note that if the Shewhart limit is not included,

then βL (l) = b5. When t > 1 and the support of the distribution of YL is the reals, we

see that the event {TL = t} can be expressed as

{TL = t} = {TL = t, L1 = 0, YL,1 > b6} ∪ {TL = t, b5 < L1 < 0, YL,1 > b6} .

Thus, the probability mass function for t > 1 can be written as

prL (t |l ) = P (TL = t, L1 = 0, YL,1 > b6 |L0 = l )

+P (TL = t, b5 < L1 < 0, YL,1 > b6 |L0 = l ) .
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It then follows that

prL (t |l ) = P (TL − 1 = t− 1 |L0 = l, L1 = 0, YL,1 > b6 )

×P (L1 = 0, YL,1 > b6 |L0 = l )

+P (TL − 1 = t− 1 |L0 = l, b5 < L1 < 0, YL,1 > b6 )

×P (b5 < L1 < 0, YL,1 > b6 |L0 = l ) .

Conditioned on the chart not signaling at time t = 1, the random variable TL − 1 is

the remaining run length and its distribution given the value of L1 is the same as the

distribution of TL given the value of L0. Thus,

P (TL − 1 = t− 1 |L0 = l, L1 = 0) = prL (t− 1 |0) and

P (TL − 1 = t− 1 |L0 = l, L1 = l1 ) = prL (t− 1 |l1 ) .

Observe that

{L1 = 0, YL,1 > b6} = {b1l + YL,1 + b3 ≥ 0, b1l + YL,1 + b3 > b1l + b6 + b3}

= {L1 = 0} ,

since regardless of whether the value of b1l+ b6 + b3 is negative, zero, or positive for the

event to occur, the value of b1l + YL,1 + b3 is nonnegative. We now can write

prL (t |l ) = P (TL − 1 = t− 1 |L0 = l, L1 = 0)P (L1 = 0 |L0 = l )

+P (TL − 1 = t− 1 |L0 = l, b5 < L1 < 0, L1 > b1l + b6 + b3 )

×P (b5 < L1 < 0, L1 > b1l + b6 + b3 |L0 = l )

= P (TL − 1 = t− 1 |L0 = l, L1 = 0)P (L1 = 0 |L0 = l )

+

∫ 0

max{b5,b1l+b6+b3}
P (TL − 1 = t− 1 |L0 = l, L1 = l1 ) fL1|L0 (l1 |l ) dl1

= prL (t− 1 |0) fL1|L0 (0 |l ) +

∫ 0

βL(l)

prL (t− 1 |l1 ) fL1|L0 (l1 |l ) dl1.
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Next, consider the conditional probability mass function describing the distribution of

L1 given L0 = l.

fL1|L0 (l1 |l ) = P (L1 = l1 |L0 = l ) = P (min {0, b1l + YL,1 + b3} = l1)

=


0, if l1 > 0

P (b1l + YL,1 + b3 ≥ 0) , if l1 = 0

P (b1l + YL,1 + b3 = l1) , if l1 < 0.

=


0, if l1 > 0

1− FYL (−b1l − b3) , if l1 = 0

fYL (l1 − b1l − b3) , if l1 < 0.

= [1− FYL (−b1l − b3)] I{0} (l1) + fYL (l1 − b1l − b3) I(−∞,0) (l1) .

Note that the argument l1 − b1l − b3 must be in the support of the distribution of YL.

Thus, for the case in which the support of the distribution of YL is the reals, we

can express the probability mass function of the run length distribution conditioned on

L0 = l with b5 < l < 0 as

prL (1 |l ) = FYL (βL (l)− b1l − b3) and

prL (t |l ) = prL (t− 1 |0) [1− FYL (−b1l − b3)]

+

∫ 0

βL(l)

prL (t− 1 |l1 ) fYL (l1 − b1l − b3) dl1.

For the case in which the support of the distribution of YL is the positive reals, we have

prL (1 |l ) = FYL (βL (l)− b1l − b3) and

prL (t |l ) = prL (t− 1 |0) [1− FYL (−b1l − b3)]

+

∫ αL(l)

βL(l)

prL (t− 1 |l1 ) fYL (l1 − b1l − b3) dl1,

where αL (l) = min {0, b1l + b3}.



15

Two parameters of the run length distribution that are the most commonly reported

are the mean (referred to as the average run length (ARL)) and the standard deviation

(SDRL). These parameters are functions of the starting value L0 = l for lower one-sided

chart and U0 = u for upper one-sided chart. It is convenient to let the ML (l) represent

the ARL of the lower one-sided chart, then

ML (l) =
∞∑
t=1

tprL (t |l ) .

We can write ML (l) as

ML (l) = prL (1 |l ) +
∞∑
t=2

tprL (t |l )

= prL (1 |l ) +
∞∑
t=1

(1 + t) prL (1 + t |l )

= prL (1 |l ) +
∞∑
t=1

prL (1 + t |l ) +
∞∑
t=1

tprL (1 + t |l )

= 1 +
∞∑
t=1

tprL (1 + t |l ) .

Using previous results, we see that

prL (1 + t |l ) = prL (t |0) [1− FYL (−b1l − b3)]

+

∫ αL

βL(l)

prL (t |l1 ) fYL (l1 − b1l − b3) dl1,

where αL = 0 or αL = αL (l) depending on if the support of the distribution of YL is the

reals or the positive reals. Hence, we have that ML (l) is the solution to the following
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integral equation

ML (l) = 1 +
∞∑
t=1

tprL (t |0) [1− FYL (−b1l − b3)]

+
∞∑
t=1

t

∫ αL

βL(l)

prL (t |l1 ) fYL (l1 − b1l − b3) dl1

= 1 +ML (0) [1− FYL (−b1l − b3)]

+

∫ αL

βL(l)

∞∑
t=1

tprL (t |l1 ) fYL (l1 − b1l − b3) dl1

= 1 +ML (0) [1− FYL (−b1l − b3)]

+

∫ αL

βL(l)

ML (l1) fYL (l1 − b1l − b3) dl1.

To determine SDRL, we first find

M2
L (l) = E(T 2

L |L0 = l ) =
∞∑
t=1

t2prL (t |l ) ,

which can be written as

M2
L (l) = prL (1 |l ) +

∞∑
t=2

t2prL (t |l )

= prL (1 |l ) +
∞∑
t=1

(t+ 1)2 prL (t+ 1 |l )

= prL (1 |l ) +
∞∑
t=1

(
1 + 2t+ t2

)
prL (t+ 1 |l )

= 1 + 2
∞∑
t=1

tprL (t+ 1 |l ) +
∞∑
t=1

t2prL (t+ 1 |l )

= 2ML (l)− 1 +
∞∑
t=1

t2prL (t+ 1 |l ) .
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As we continue, we see that

M2
L (l) = 2ML (l)− 1 +

∞∑
t=1

t2prL (t |0) [1− FYL (−b1l − b3)]

+
∞∑
t=1

t2
∫ αL

βL(l)

prL (t |l1 ) fYL (l1 − b1l − b3) dl1

= 2ML (l)− 1 +M2
L (0) [1− FYL (−b1l − b3)]

+

∫ αL

βL(l)

∞∑
t=1

t2prL (t |l1 ) fYL (l1 − b1l − b3) dl1

= 2ML (l)− 1 +M2
L (0) [1− FYL (−b1l − b3)]

+

∫ αL

βL(l)

M2
L (l1) fYL (l1 − b1l − b3) dl1.

We now can find the SDRL using the familiar formula√
M2

L (l)− (ML (l))2.

There are similar integral equations that describe the distribution of the run length

TU of a upper one-sided generalized cumulative sum type chart with plotted statistics

defined by

U0 = u and Ut = max {0, a1Ut−1 + YU,t + a3}

with 0 ≤ u < a5 that signals if Ut ≥ a5 or YU,t ≥ a6. We represent the probability mass

function describing the conditional distribution of TU given U0 = u by

prU (t |u) = P (TU = t |U0 = u) .

We see that for t = 1,

prU (1 |u) = P (U1 ≥ a5 or YU,1 ≥ a6 |U0 = u)

= P (YU,1 ≥ a5 − a1u− a3 or YU,1 ≥ a6)

= 1− FYU (min {a5 − a1u− a3,a6})

= 1− FYU (βU (u)− a1u− a3,) ,
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where βU (u) = min {a5, a1u+ a6 + a3}. If the Shewhart limit is not used, then βU (u) =

a5. If t > 1, then 0 ≤ U1 < a5 and YU,1 < a6. Thus, we can express the event {TU = t}

as

{TU = t} = {TU = t, U1 = 0, YU,1 < a6} ∪ {TU = t, 0 < U1 < a5, YU,1 < a6} .

It follows for t > 1 we have that

prU (t |u) = P (TU = t, U1 = 0, YU,1 < a6 |U0 = u)

+P (TU = t, 0 < U1 < a5, YU,1 < a6 |U0 = u)

= P (TU − 1 = t− 1 |U0 = u, U1 = 0, YU,1 < a6 )

×P (U1 = 0, YU,1 < a6 |U0 = u)

+P (TU − 1 = t− 1 |U0 = u, 0 < U1 < a5, YU,1 < a6 )

×P (0 < U1 < a5, YU,1 < a6 |U0 = u) .

The random variable TU − 1 is the remaining run length and its distribution given the

value of U1 is the same as the distribution of TU given the value of U0. Thus,

P (TU − 1 = t− 1 |U0 = u, U1 = 0) = prU (t− 1 |0) and

P (TU − 1 = t− 1 |U0 = u, U1 = u1 ) = prU (t− 1 |u1 ) .

Also observe that

{U1 = 0, YU,1 < a6} = {a1u+ YU,1 + a3 ≤ 0, U1 < a1u+ a6 + a3} = {U1 = 0} .

If U1 = 0, then we have that a1u + YU,1 + a3 ≤ 0. Thus, regardless of the value of
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a1u+ a6 + a3, the statistic U1 would be set to zero. We now can write

prU (t |u) = P (TU − 1 = t− 1 |U0 = u, U1 = 0)P (U1 = 0 |U0 = u)

+P (TU − 1 = t− 1 |U0 = u, 0 < U1 < a5, U1 < a1u+ a6 + a3 )

×P (0 < U1 < a5, U1 < a1u+ a6 + a3 |U0 = u)

= prU (t− 1 |0) fU1|U0 (0 |u) +

∫ βU (u)

0

prU (t− 1 |u1 ) fU1|U0 (u1 |u) du1,

where βU (u) = min {a5, a1u+ a6 + a3}. The conditional probability mass function of

U1 given U0 = u can be written as follows:

fU1|U0 (u1 |u) = P (U1 = u1 |U0 = u) = P (max {0, a1u+ YU,1 + a3} = u1)

=


0, if u1 < 0

P (a1u+ YU,1 + a3 ≤ 0) , if u1 = 0

P (a1u+ YU,1 + a3 = u1) , if u1 > 0 .

=


0, if u1 < 0

FYU (−a1u− a3) , if u1 = 0

fYU (u1 − a1u− a3) , if u1 > 0 .

= FYU (−a1u− a3) I{0} (u1) + fYU (u1 − a1u− a3) I(0,∞) (u1) .

Thus, if the support of the distribution of YU is the reals, we have

prU (1 |u) = 1− FYU (βU (u)− a1u− a3) and

prU (t |u) = prU (t− 1 |0)FYU (−a1u− a3)

+

∫ βU (u)

0

prU (t− 1 |u1 ) fYU (u1 − a1u− a3) du1.
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If the support of the distribution of YU is the positive reals, then we have

prU (1 |u) = 1− FYU (βU (u)− a1u− a3) and

prU (t |u) = prU (t− 1 |0)FYU (−a1u− a3)

+

∫ βU (u)

αU (u)

prU (t− 1 |u1 ) fYU (u1 − a1u− a3) du1,

where αU (u) = max {0, a1u+ a3}.

The average run length MU (u) of the upper one-sided control chart with U0 = u is

represented by

MU (u) =
∞∑
t=1

tprU (t |u)

= prU (1 |u) +
∞∑
t=1

(1 + t) prU (1 + t |u)

= prU (1 |u) +
∞∑
t=1

prU (1 + t |u) +
∞∑
t=1

tprU (1 + t |u)

= 1 +
∞∑
t=1

tprU (1 + t |u) .

Using our previous result, MU (u) is then given as the solution to the following integral

equation

MU (u) = 1 +
∞∑
t=1

tprU (t |0)FYU (−a1u− a3)

+
∞∑
t=1

t

∫ βU (u)

αU

prU (t |u1 ) fYU (u1 − a1u− a3) du1

= 1 +MU (0)FYU (−a1u− a3)

+

∫ βU (u)

αU

∞∑
t=1

tprU (t |u1 ) fYU (u1 − a1u− a3) du1

= 1 +MU (0)FYU (−a1u− a3)

+

∫ βU (u)

αU

MU (u1) fYU (u1 − a1u− a3) du1.
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where αU = 0 or αU = αU (u) depending on if the support of the distribution of YU is

the reals or the positive reals.

Further, the expected value M2
U (u) of the square of the run length T 2

U given U0 = u

is the solution to the following integral equation

M2
U (u) =

∞∑
t=1

t2prU (t |u)

= prU (1 |u) +
∞∑
t=1

(1 + t)2 prU (1 + t |u)

= prU (1 |u) +
∞∑
t=1

(
1 + 2t+ t2

)
prU (1 + t |u)

= 1 + 2
∞∑
t=1

tprU (1 + t |u) +
∞∑
t=1

t2prU (1 + t |u)

= 2MU (u)− 1 +
∞∑
t=1

t2prU (1 + t |u) .

Using previous results, it follows that

M2
U (u) = 2MU (u)− 1 +

∞∑
t=1

t2prU (t |0)FYU (−a1u− a3)

+
∞∑
t=1

t2
∫ βU (u)

αU

prU (t |u1 ) fYU (u1 − a1u− a3) du1

= 2MU (u)− 1 +M2
U (0)FYU (−a1u− a3)

+

∫ βU (u)

αU

∞∑
t=1

t2prU (t |u1 ) fYU (u1 − a1u− a3) du1

= 2MU (u)− 1 +M2
U (0)FYU (−a1u− a3)

+

∫ βU (u)

αU

M2
U (u1) fYU (u1 − a1u− a3) du1.

We then can find the SDRL of the upper one-sided chart using√
M2

U (u)− (MU (u))2.

Exact solutions for the aforementioned integral equations do not exist. On the other
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hand, very good approximations can be obtained using numerical methods. If the limits

of the integral do not depend on u, the integral equation is a Fredholm equation of the

second kind. Using a quadrature method to approximate the integral leads to a system

of equations whose solution is the desired parameter of the run length distribution. For

those equations in which the one or both of the limits of the integral is a function of u, the

equations are Volterra equations of the second kind. In this case, the collocation method

gives a good approximation of the desired parameter of the run length distribution. The

collocation method approximates the desired parameter with a polynomial which is

determined exactly by the selected values of u.

2.5 Markov Chain Approximation

When the quality measurement X is a continuous random variable, then the generalized

cumulative sum type chart is a continuous state discrete time Markov process. Brook and

Evans (1972) presented a method for evaluating the run length distribution of a one-sided

CUSUM chart using a Markov chain approximation when the quality measurement is

continuous. The run length distribution of the Markov chain is used as an approximation

to the run length distribution of the chart. This method has been demonstrated to work

quite well in approximating the run length distribution of various other quality control

charts. In this section, we will develop Markov chain approximations to both the one-

and two-sided generalized control charts. The Shewhart limit discussion is not included

in this section. Champ and Rigdon (1992) showed that for the one-sided CUSUM chart

the Markov chain and integral equation methods are equivalent in approximating the

solution of the integral equations. An integral equation method for two-sided generalized

cumulative sum type charts has not been developed. On the other hand, a Markov chain
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approach has been developed for the two-sided CUSUM chart by Woodall (1984). In

this section, we will develop the Markov chain method for both one- and two-sided

generalized control charts when the support of the Y is the reals.

First we discuss the lower one-sided chart. We select two sets of numbers νL,0, νL,1, . . . , νL,ηL

and ξL,0, ξL,1, . . . , ξL,ηL that have the following constraints:

ξL,0 = 0 > νL,0 > ξL,1 > νL,1 > . . . > νL,ηL−1 > ξL,ηL > νL,ηL = b5

with ηL a positive integer. We label the values ξL,0, ξL,1, . . . , ξL,ηL as the ηL + 1 non-

absorbing states of the Markov chain L∗t which will be used to approximate the chart

statistic Lt as follows,

L∗t =

 ξL,0, if Lt > vL,0

ξL,i, if Lt ∈ (vL,i, vL,i−1] for i = 1, 2, · · · , ηL
.

If Lt ≤ νL,ηL , we label the state to be ξL,ηL+1 which is an absorbing state because the

chart signals and the sampling stops at this time point.

The method presented in Brook and Evans (1972) for approximating the CUSUM

chart as a Markov chain selects these number as

ξL,k = k

(
b5

ηL + 1
2

)
and νL,k =

(
k +

1

2

)(
b5

ηL + 1
2

)
for k = 0, 1, . . . , ηL. Another possibility for selecting these values is to choose ξL,k’s as

ξL,0 = 0 and ξL,k = b5 +
−b5

2
(xk + 1) ,

where x1, . . . , xηL are the Legendre quadrature points for k = 1, . . . , ηL. We then take

the values of the νL,k’s to be

νL,k =
ξL,k + ξL,k+1

2
and νL,ηL = b5
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for k = 0, . . . , ηL − 1.

A third method is useful when the support of the distribution of YL is the positive

real numbers. The ξL,k’s and the vL,k’s are selected to satisfy

ξL,0 = 0 > νL,0 > ξL,1 > νL,1 > . . . > νL,ηL,1−1 > ξL,ηL,1 > νL,ηL,1 = −b3/b1

> ξL,ηL,1+1 > νL,ηL,1+1 > . . . > νL,ηL,1+ηL,2−1 > ξL,ηL,1+ηL,2 > νL,ηL,1+ηL,2 = b5,

where ηL,1 and ηL,2 are positive integers with ηL,1+ηL,2 = ηL. Applying a method similar

to Brook and Evans (1972) method, we select

ξL,k = k

(
−b3/b1
ηL,1 + 1

2

)
and νL,k =

(
k +

1

2

)(
−b3/b1
ηL,1 + 1

2

)
,

for k = 0, 1, . . . , ηL,1; and

ξL,k = −b3
b1

+ k

(
b5 + b3/b1
ηL,2 + 1

2

)
and νL,k = −b3

b1
+

(
k +

1

2

)(
b5 + b3/b1
ηL,2 + 1

2

)
,

for k = 0, 1, . . . , ηL,2.

The nonabsorbing states ξL,i are numbered i (i = 0, 1, . . . , ηL), and the absorbing

state ξL,ηL+1 is numbered ηL + 1. Then the approximate conditional probability of

transitioning from the nonabsorbing state k to the nonabsorbing state j is

(PL)k,0 = P
(
L∗t+1 = ξL,0 |L∗t = ξL,k

)
= P (b1Lt + YL,t + b3 > νL,0 |L∗t = ξL,k )

≈ P (b1ξL,k + YL,t + b3 > νL,0)

= 1− FYL,t (νL,0 − b1ξL,k − b3) , and

(PL)k,j = P
(
L∗t+1 = ξL,j |L∗t = ξL,k

)
= P (vL,j < b1Lt + YL,t + b3 ≤ vL,j−1 |L∗t = ξL,k )

≈ P (vL,j < b1ξL,k + YL,t + b3 ≤ vL,j−1)

= FYL,t (νL,j−1 − b1ξL,k − b3)− FYL,t (νL,j − b1ξL,k − b3)
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for j = 1, . . . , ηL. The approximate probability of transitioning from a nonabsorbing

state to the absorbing state is

(PL)k,ηL+1 = P
(
L∗t+1 = ξL,ηL+1 |L∗t = ξL,k

)
= P (b1Lt + YL,t + b3 ≤ νL,ηL |L∗t = ξL,k )

≈ P (b1ξL,k + YL,t + b3 ≤ νL,ηL)

= FYL,t (νL,ηL − b1ξL,k − b3) .

The probability of transitioning from the absorbing state to a nonabsorbing state, and

from the absorbing state to the absorbing state are given, respectively, by

(PL)ηL+1,j = 0, and

(PL)ηL+1,ηL+1 = 1.

For the (ηL + 2)× (ηL + 2) matrix PL whose (k, j)th component is the conditional

probability (PL)k,j to be a transition matrix, it must be the case that for all k =

0, 1, . . . , ηL + 1
ηL+1∑
j=0

(PL)k,j = 1.
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Clearly, this holds for k = ηL + 1. For the case in which k = 0, 1, . . . , ηL, we see that

ηL+1∑
j=0

(PL)k,j = (PL)k,0 +

ηL∑
j=1

(PL)k,j + (PL)k,ηL+1

= 1− FYL,t (νL,0 − b1ξL,k − b3)

+

ηL∑
j=1

[
FYL,t (νL,j−1 − b1ξL,k − b3)− FYL,t (νL,j − b1ξL,k − b3)

]
+FYL,t (νL,ηL − b1ξL,k − b3)

=

∫ ∞
νL,0−b1ξL,k−b3

fYL,t (y) dy +

ηL∑
j=1

∫ νL,j−1−b1ξL,k−b3

νL,j−b1ξL,k−b3
fYL,t (y) dy

+

∫ νL,ηL−b1ξL,k−b3

−∞
fYL,t (y) dy

=

∫ ∞
−∞

fYL,t (y) dy = 1.

Hence, the matrix PL is a transition matrix. Let QL be the (ηL + 1)× (ηL + 1) matrix

obtained from the transition probability matrix PL by deleting the final row and column,

it is then not difficult to see that all the information in PL is contained in the sub-matrix

QL.

The number of transitions TL,k of the chain that begins in one of the nonabsorbing

states k until it first enters the absorbing state is a random variable known as the run

length. By Brook and Evans (1972), the conditional probability mass functions of TL,k

(k = 0, 1, · · · , ηL) are determined as

P (TL,0 = t |L0 = ξL,0 )

P (TL,1 = t |L0 = ξL,1 )

...

P (TL,ηL = t |L0 = ξL,ηL )


= Qt−1

L (I−QL) 1

for t = 1, 2, 3, . . ., where I is the (η + 1)× (η + 1) identity matrix and 1 is a vector that

has each of its (η+ 1) elements equal to unity. The kth component of Qt−1
L (I−QL) 1 is
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then the conditional probability mass function of the run length TL,k. The conditional

expectations of these ηL + 1 random variables are determined by

E (TL,0 |L0 = ξL,0 )

E (TL,1 |L0 = ξL,1 )

...

E (TL,ηL |L0 = ξL,ηL )


=
∞∑
t=1

tQt−1
L (I−QL) 1 = (I−QL)−1 1.

Further, we see that

E
(
T 2
L,0 |L0 = ξL,0

)
E
(
T 2
L,1 |L0 = ξL,1

)
...

E
(
T 2
L,ηL
|L0 = ξL,ηL

)


=

∞∑
t=1

t2Qt−1
L (I−QL) 1,

=
∞∑
t=1

t2Qt−1
L 1 +

∞∑
t=1

t2Qt
L1

= (I−QL)−2 1 + QL (I−QL)−2 1

= (I + QL) (I−QL)−2 1.

Hence, one can find the standard deviations of the run length distributions using the

well known formula √
E
(
T 2
L,k |L0 = ξL,k

)
− [E (TL,k |L0 = ξL,k )]2

for k = 0, 1, 2, . . . , ηL.

For the upper one-sided chart, the values νU,0, νU,1, . . . , νU,ηU and ξU,0, ξU,1, . . . , ξU,ηU

are selected with the following constraints:

ξU,0 = 0 < νU,0 < ξU,1 < νU,1 < . . . < νU,ηU−1 < ξU,ηU < νU,ηU = a5
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with ηU a positive integer. The values ξU,0, ξU,1, . . . , ξU,ηL are the ηU + 1 nonabsorbing

states of the Markov chain U∗t that is used to approximate of the chart statistic Ut,

U∗t =

 ξU,0, if Ut < vU,0

ξU,i, if Ut ∈ [vU,i−1, vU,i), (i = 1, 2, · · · , ηL)
.

If Ut ≥ νU,ηu , the state is set to be ξU,ηU+1 which is an absorbing state.

Brook and Evans (1972) used the values

ξU,k = k

(
a5

ηU + 1
2

)
and νU,k =

(
k +

1

2

)(
a5

ηU + 1
2

)
when approximating the upper one-sided CUSUM chart as a Markov chain for k =

0, 1, . . . , ηU . Another method for the selection of these values is to choose ξL,k’s as

ξU,0 = 0 and ξU,k = a5 +
−a5

2
(xk + 1) ,

where x1, . . . , xηU are the Legendre quadrature points for k = 1, . . . , ηU . The values of

the νU,k’s are then taken to be

νU,k =
ξU,k + ξU,k+1

2
and νU,ηU = a5

for k = 0, . . . , ηU − 1.

As with the lower one-sided chart, a third method is useful when the support of the

distribution of YU is the positive reals. The ξU,k’s and the vU,k’s are selected as

ξU,0 = 0 < νU,0 < ξU,1 < νU,1 < . . . < νU,ηU,1−1 < ξU,ηU,1 < νU,ηU,1 = −a3/a1

< ξU,ηU,1+1 < νU,ηU,1+1 < . . . < νU,ηU,1+ηU,2−1 < ξU,ηU,1+ηU,2 < νU,ηU,1+ηU,2 = a5,

where ηU,1 and ηU,2 are positive integers with ηU,1 + ηU,2 = ηU . Then we select

ξU,k = k

(
−a3/a1
ηU,1 + 1

2

)
and νU,k =

(
k +

1

2

)(
−a3/a1
ηU,1 + 1

2

)
,
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for k = 0, 1, . . . , ηU,1; and

ξU,k = −a3
a1

+ k

(
a5 + a3/a1
ηU,2 + 1

2

)
and νL,k = −a3

a1
+

(
k +

1

2

)(
a5 + a3/a1
ηU,2 + 1

2

)
,

for k = 0, 1, . . . , ηU,2.

Similar to the approximation to the lower one-sided chart, the nonabsorbing states

are numbered 0, 1, . . . , ηU , and the absorbing state is numbered ηU +1. The approximate

conditional transitioning probability from the nonabsorbing state k to the nonabsorbing

state j is given by

(PU)k,0 = P
(
U∗t+1 = ξU,0 |U∗t = ξU,k

)
= P (a1Ut + YU,t + a3 < vU,0 |U∗t = ξU,k )

≈ P (a1ξU,k + YU,t + a3 < νU,0)

= FYU,t (νU,0 − a1ξU,k − a3) , and

(PU)k,j = P
(
U∗t+1 = ξU,j |U∗t = ξU,k

)
= P (vU,j−1 ≤ a1Ut + YU,t + a3 < vU,j |U∗t = ξU,k )

≈ P (νU,j−1 ≤ a1ξU,k + YU,t + a3 < νU,j)

= FYU,t (νU,j − a1ξU,k − a3)− FYU,t (νU,j−1 − a1ξU,k − a3)

for j = 1, . . . , ηU . The probability of transitioning from a nonabsorbing state to the

absorbing state is

(PU)k,ηU+1 = P
(
U∗t+1 = ξU,ηU+1 |U∗t = ξU,k

)
= P (a1Ut + YU,t + a3 ≥ νU,ηu |U∗t = ξU,k )

≈ P (a1ξU,k + YU,t + a3 ≥ νU,ηu)

= 1− FYU,t (νU,ηU − a1ξU,k − a3) ,
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And the probability of transitioning from the absorbing state to absorbing state, and

from the absorbing state to the absorbing state are given, respectively, by

(PU)ηU+1,j = 0 ; and

(PU)ηU+1,ηU+1 = 1.

The (ηU + 2) × (ηU + 2) matrix PU whose (k, j)th component is the conditional

probability (PU)k,j is a transition matrix. Clearly, for k = ηU + 1, we have

ηU+1∑
j=0

(PU)k,j = 1;

and for k = 0, 1, . . . , ηU , we have

ηL+1∑
j=0

(PU)k,j = (PU)k,0 +

ηU∑
j=1

(PU)k,j + (PU)k,ηL+1

= FYU,t (νU,0 − a1ξU,k − a3)

+

ηU∑
j=1

[
FYU,t (νU,j − a1ξU,k − a3)− FYU,t (νU,j−1 − a1ξU,k − a3)

]
+1− FYU,t (νU,ηU − a1ξU,k − a3)

=

∫ −∞
νU,0−a1ξU,k−a3

fYU,t (y) dy +

ηU∑
j=1

∫ νU,j−1−a1ξU,k−a3

νU,j−a1ξU,k−a3
fYU,t (y) dy

+

∫ νU,ηU−a1ξU,k−a3

∞
fYU,t (y) dy

=

∫ −∞
∞

fYU,t (y) dy = 1.

All the information contained in PU can be obtained from the (ηU + 1)×(ηU + 1) matrix

QU by excluding the last row and last column of PU . The conditional probability mass

function of the run length TU,k when the chain begins in one of the nonabsorbing states
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k is then determined as

P (TU,0 = t |U0 = ξU,0 )

P (TU,1 = t |U0 = ξU,1 )

...

P (TU,ηU = t |U0 = ξU,ηU )


= Qt−1

U (I−QU) 1,

for t = 1, 2, 3, . . ., where the kth component is the conditional probability mass function

of the run length TU,k. The conditional expectations of these ηU + 1 random variables

are given by

E (TU,0 |U0 = ξU,0 )

E (TU,1 |U0 = ξU,1 )

...

E (TU,ηU |U0 = ξU,ηU )


=
∞∑
t=1

tQt−1
U (I−QU) 1 = (I−QU)−1 1.

And we have

E
(
T 2
U,0 |L0 = ξU,0

)
E
(
T 2
U,1 |L0 = ξU,1

)
...

E
(
T 2
U,ηU
|L0 = ξU,ηU

)


=
∞∑
t=1

t2Qt−1
U (I−QU) 1 = (I + QU) (I−QU)−2 1.

Then the standard deviations of the run length distributions can be obtained by the

formula √
E
(
T 2
U,k |U0 = ξU,k

)
− [E (TU,k |U0 = ξU,k )]2

for k = 0, 1, 2, . . . , ηU .

The Markov chain approximation of a two-sided generalized cumulative sum type

chart builds on the methods used to construct the Markov chain approximations of

the one-sided charts. A nonabsorbing state of the two-sided chart is expressed as the
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order pair (ξL,iL , ξU,iU ) of nonabsorbing states of the lower and upper one-sided charts,

respectively, for iL = 0, 1, . . . , ηL and iU = 0, 1, . . . , ηU . If either ξL,iL or ξU,iU is the

absorbing state, i.e. iL = ηL + 1 or iU = ηU + 1, the order pair (ξL,iL , ξU,iU ) is an

absorbing state of the two-sided chart. There are (ηL + 2) × (ηU + 2) states of a two-

sided chart and the transition matrix is the [(ηL + 2)× (ηU + 2)]2 matrix P with (i, j)th

component Pi,j being determined by

Pi,j = P [(ξL,iL , ξU,iU )→ (ξL,jL , ξU,jU )]

with i = iL (ηU + 1) + iU and j = jL (ηU + 1) + jU , where iL, jL = 0, 1, . . . , ηL, ηL + 1 and

iU , jU = 0, 1, . . . , ηU , ηU + 1.

Since all the information we acquire from transition matrix P can be obtained

by working with Q which is the sub-matrix of P by excluding the rows and columns

that respond to the absorbing states, we here only consider the transition probabilities

among nonabsorbing states. To determine these probabilities, some special cases must

be considered when jL = 0 and/or jU = 0. We first consider the case in which both

jL = 0 and jU = 0. In this case, we are interested in the probability

Pi,0 = P [(ξL,iL , ξU,iU )→ (ξL,0, ξU,0)] .

It follows that

Pi,0 = P
(
L∗t+1 = ξL,0, U

∗
t+1 = ξU,0 |L∗t = ξL,iL , U

∗
t = ξU,iU

)
≈ P (b1ξL,iL + YL,t + b3 > vL,0, a1ξU,iU + YU,t + a3 < vU,0)

= P (YL,t > νL,0 − b1ξL,iL − b3, YU,t < νU,0 − a1ξU,iU − a3) .
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Next, we examine the case in which jL = 0 and jU 6= 0. That is,

Pi,jU = P [(ξL,iL , ξU,iU )→ (ξL,0, ξU,jU )]

= P
(
L∗t+1 = ξL,0, U

∗
t+1 = ξU,jU |L∗t = ξL,iL , U

∗
t = ξU,iU

)
≈ P (b1ξL,iL + YL,t + b3 > νL,0, νU,jU−1 ≤ a1ξU,iU + YU,t + a3 < νU,jU )

= P

 YL,t > νL,0 − b1ξL,iL − b3

νU,jU−1 − a1ξU,iU − a3 ≤ YU,t < νU,jU − a1ξU,iU − a3

 .

Our third case is concerned with jL 6= 0 and jU = 0, in which j = jL (ηU + 1) and the

transition probability is

Pi,jL(ηU+1) = P [(ξL,iL , ξU,iU )→ (ξL,jL , ξU,0)]

= P
(
L∗t+1 = ξL,jL , U

∗
t+1 = ξU,0 |L∗t = ξL,iL , U

∗
t = ξU,iU

)
≈ P (νL,jL < b1ξL,iL + YL,t + b3 ≤ νL,jL−1, a1ξU,iU + YU,t + a3 < νU,0)

= P

 νL,jL − b1ξL,iL − b3 < YL,t ≤ νL,jL−1 − b1ξL,iL − b3

YU,t ≤ νU,0 − a1ξU,iU − a3

 .

If both jL 6= 0 and jU 6= 0, the transition probability is then given by

Pi,j = P [(ξL,iL , ξU,iU )→ (ξL,jL , ξU,jU )]

= P (vL,jL < Lt+1 ≤ vL,jL−1, νU,jU−1 ≤ Ut+1 < νU,jU |L∗t = ξL,iL , U
∗
t = ξU,iU )

≈ P (νL,jL < b1ξL,iL + YL,t + b3 ≤ νL,jL−1, νU,jU−1 ≤ a1ξU,iU + YU,t + a3 < νU,jU )

= P

 νL,jL − b1ξL,iL − b3 < YL,t ≤ νL,jL−1 − b1ξL,iL − b3,

νU,jU−1 − a1ξU,iU − a3 ≤ YU,t < νU,jU − a1ξU,iU − a3

 .

Let

c0 = νL,0 − b1ξL,iL − b3, d0 = νU,0 − a1ξU,iU − a3,

cL = νL,jL − b1ξL,iL − b3, dL = νL,jL−1 − b1ξL,iL − b3,

cU = νU,jU−1 − a1ξU,iU − a3, dU = νU,jU − a1ξU,iU − a3,
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then when YL,t = YU,t = Yt, the transition probabilities among the nonabsorbing states

will be expressed as

Pi,j =



P (c0 ≤ Yt ≤ d0) , if jL = 0 and jU = 0;

P (max {c0, cU} < Yt < dU) , if jL = 0 and jU 6= 0;

P (dL ≤ Yt < min {cL, d0}) , if jL 6= 0 and jU = 0;

P (max {c0, cU} < Yt < min {cL, d0}) , if jL 6= 0 and jU 6= 0;

where i = iL (ηU + 1) + iU and j = jL (ηU + 1) + jU with iL, jL ∈ {0, 1, . . . , ηL} and

iU , jU ∈ {0, 1, . . . , ηU}.

The run length when the chain starts in one of the nonabsorbing states (ξL,i, ξU,j)

(i = 0, 1, . . . , ηL and j ∈ 0, 1, . . . , ηU) is Ti(ηU+1)+j of which the conditional probability

mass functions are determined as

P (T0 = t |(L0, U0) = (ξL,0, ξU,0))

P (T1 = t |(L0, U0) = (ξL,0, ξU,1))

...

P (Tη = t |(L0, U0) = (ξL,ηL , ξU,ηU ))


= Qt−1 (I−Q) 1,

for t = 1, 2, 3, . . ., where the kth component is the conditional probability mass function

of the run length Tk and η = (ηL + 1) (ηU + 1)− 1. The conditional expectations of Tk

are determined by

E (T0 |(L0, U0) = (ξL,0, ξU,0))

E (T1 |(L0, U0) = (ξL,0, ξU,1))

...

E (Tη |(L0, U0) = (ξL,ηL+1, ξU,ηU+1))


=
∞∑
t=1

tQt−1 (I−Q) 1 = (I−Q)−1 1.
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And the conditional expectations of T 2
k are computed as

E (T 2
0 |(L0, U0) = (ξL,0, ξU,0))

E (T 2
1 |(L0, U0) = (ξL,0, ξU,1))

...

E
(
T 2
η |(L0, U0) = (ξL,ηL+1, ξU,ηU+1)

)


=
∞∑
t=1

t2Qt−1 (I−Q) 1 = (I + Q) (I−Q)−2 1.

Similarly, the standard deviations of the run length distributions are then given by√
E (T 2

k |(L0, U0) = (ξL,i, ξU,j))− [E (Tk |(L0, U0) = (ξL,i, ξU,j))]2,

where k = i (ηU + 1) + j for i = 0, 1, . . . , ηL and j = 0, 1, . . . , ηU .

2.6 Conclusion

It was show that the generalized family of cumulative sum type charts introduced by

Champ, Woodall, and Mohsen (1991) requires two less parameters to be specified by the

practitioner. The run length performance of these charts can be studied using simulation,

integral equations and a Markov chain approximation. We have given integral equations

useful in determining the run length distribution of the lower and upper one-sided charts.

The Markov chain methods for the one- and two-sided charts were given.



CHAPTER 3

MONITORING FOR A CHANGE IN THE PROCESS MEAN

3.1 Introduction

One of the most common uses of control charting procedures is to monitor for the mean

of a continuous quality measurement X on the output of a production process. In this

setting, the parameter µ is often referred to as the process mean. We make the assump-

tion that X has a normal distribution with mean µ and standard deviation σ. This is

a common assumption in control chart development when the quality measurement is a

continuous random variable. The process is assumed to be statistically in a state of in

control if µ = µ0 and σ = σ0 for fixed constants µ0 and σ0. The data available to the

practitioner to make a decision about the quality of the process comes in the form of (1)

the X measurements {Xi,1, . . . , Xi,n} on m samples each of size n from the output of the

process of a Phase I study for i = 1, . . . ,m and (2) the X measurements {Xt,1, . . . , Xt,n}

taken from fixed periods on the output of the process in Phase II for t = 1, 2, 3, . . .. We

assume these measurements are independent. It is our interest to study the use of a

generalized cumulative sum type chart for monitoring for a change in the process mean

µ from its in-control value µ0.

In the next section, we will discuss our estimates for the in-control values µ0 and

σ0. The generalized cumulative sum type X chart with estimated parameters will be

introduced. An outline is given in Section 3 for using integral equations to evaluate the

run length distribution of the one-sided generalized cumulative sum type X charts. In

Section 4, a run length performance analysis of a two-sided generalized cumulative sum

type X chart is given using a Markov chain approximation. Some conclusions are given
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in the final section.

3.2 Parameters Estimated Version

The in-control parameters are typically not known and must be estimated. During Phase

I in which the practitioner brings the process into a state of statistical in-control, we

assume there will be available from this phase m independent random samples each of

size n when the process is believed to be in a state of statistical in control. We represent

these data as Xi,1, . . . , Xi,n for i = 1, . . . ,m. From these data, we will estimate µ0 and

σ2
0 respectively with the statistics

X =
1

mn

m∑
i=1

n∑
j=1

Xi,j and V =
1

m (n− 1)

m∑
i=1

n∑
j=1

(
Xi,j −X i

)2
,

where X i is the mean of the ith sample. It is not difficult to show under the independent

normal model that

X ∼ N

(
µ0,

σ2
0

mn

)
and

m (n− 1)V

σ2
0

∼ χ2
m(n−1)

are independent. Also, we have that E
(
X
)

= µ0 and E
(
V
)

= σ2
0.

A parameters estimated version of the lower and upper one-sided generalized cu-

mulative sum type X control chart defines Lt and Ut by

L0 = b4, Lt = max {0, b1Lt−1 + Yt + b3}

U0 = a4, and Ut = max {0, a1Ut−1 + Yt + a3} ,

where

Yt =
X t −X
V

1/2
/
√
n

.

The two-sided chart signals if Lt ≤ b5, or Yt ≤ b6, or Ut ≥ a5, or Yt ≥ a6.
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We note that V
1/2

is a biased estimator of σ0 and could be replaced with the

unbiased estimator V
1/2
/c, where c is an unbiasing constant that depends only on m

and n. This is not necessary because the chart can be designed so that the unbiased

constant c is absorbed into the chart parameters. Note that

X t −X
V

1/2
/
√
n

=
1

V
1/2
/σ0

(
σ

σ0

X t − µ
σ/
√
n

+
√
n
µ− µ0

σ0
− X − µ0

σ0/
√
mn

/
√
m

)
.

Letting

Z0 =
X − µ0

σ0/
√
mn

and W0 =
V

1/2

σ0
,

we can write

X t −X
V

1/2
/
√
n

= W−1
0

(
λZt +

√
nδ − Z0/

√
m
)

.

Under the independent normal model, we have that

Z0 ∼ N (0, 1) and m (n− 1)W 2
0 ∼ χ2

m(n−1)

are independent. The values of Lt and Ut can now be expressed as

L0 = b4, Lt = max
{

0, b1Lt−1 +W−1
0

(
λZt +

√
nδ − Z0/

√
m
)

+ b3
}

U0 = a4, and Ut = max
{

0, a1Ut−1 +W−1
0

(
λZt +

√
nδ − Z0/

√
m
)

+ a3
}

,

which give us a clearer picture of how these statistics behave stochastically. Note that

by setting Z0 = 0 and W0 = 1, we obtain the statistics used as the in-control process

parameters µ0 and σ0 are known.

In what follows, the joint distribution of Z0 and W0 will be needed. From our

previous results, we find that

FW0 (w0) = P (W0 ≤ w0) = P
(
m (n− 1)W 2

0 ≤ m (n− 1)w2
0

)
= P

(
χ2
m(n−1) ≤ m (n− 1)w2

0

)
= Fχ2

m(n−1)

(
m (n− 1)w2

0

)
.
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Hence the probability density function describing the distribution of W0 is given by

fW0 (w0) = 2m (n− 1)w0fχ2
m(n−1)

(
m (n− 1)w2

0

)
.

Since Z0 ∼ N (0, 1) and W0 are independent, the joint probability density function

describing their joint distribution is

fZ0,W0 (z0, w0) = fZ0 (z0) fW0 (w0) = 2νw0φ (z0) fχ2
m(n−1)

(
νw2

0

)
=

2√
2πΓ

(
ν
2

) (
2
ν

)ν e−z20/2wν−10 e−(w2
0/ν)/2,

where ν = m (n− 1) and φ (z0) = fZ0 (z0) is the probability density function of a

standard normal distribution.

3.3 Integral Equations Approach

Assume for both the lower and upper one-sided charts, the Y statistics are the same. In

particular, we have

YL,t = YU,t = Yt = W−1
0

(
λZt +

√
nδ − Z0/

√
m
)

.

Using the results from the previous chapter, the probability mass functions of the run

lengths of lower and upper one-sided charts given Z0 = z0 and W0 = w0 are

prL (1 |l, z0, w0 ) = GL,z0,w0 (b5, l) ,

prL (t |l, z0, w0 ) = prL (t− 1 |0, z0, w0 ) [1−GL,z0,w0 (0, l)]

+

∫ 0

b5

prL (t− 1 |l1, z0, w0 ) gL,z0,w0 (l1, l) ;

and

prU (1 |u, z0, w0 ) = 1−GU,z0,w0 (a5, u) ,

prU (t |u, z0, w0 ) = prU (t− 1 |0, z0, w0 )GU,z0,w0 (0, u)

+

∫ a5

0

prU (t− 1 |u1, z0, w0 ) gU,z0,w0 (u1, u) du1;
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where

GL,z0,w0 (y, l) = Φ

(
w0 (y − b1l − b3)−

√
nδ + z0/

√
m

λ

)
,

gL,z0,w0 (l1, l) = φ

(
w0 (l1 − b1l − b3)−

√
nδ + z0/

√
m

λ

)
;

and

GU,z0,w0 (y, u) = Φ

(
w0 (y − a1u− a3)−

√
nδ + z0/

√
m

λ

)
,

gU,z0,w0 (u1, u) = φ

(
w0 (u1 − a1u− a3)−

√
nδ + z0/

√
m

λ

)
.

Note we do not consider the Shewhart limit here. The unconditional probability mass

functions are obtained as

prL (t |l ) =

∫ ∞
0

∫ ∞
−∞

prL (t |l, z0, w0 ) fZ0,W0 (z0, w0) dz0dw0 and

prU (t |u) =

∫ ∞
0

∫ ∞
−∞

prU (t |u, z0, w0 ) fZ0,W0 (z0, w0) dz0dw0

for t = 1, 2, 3, . . ..

Woodall (1983) gave an argument that can be used to show that for large value of

t the “tail” of the probability mass function prU (t |u) (prL (t |l )) can be approximated

by a geometric distribution. That is,

prU (t∗ + t |u) ≈ θtUprU (t∗ |u) (prL (t∗ + t |l ) ≈ θtLprL (t∗ |l ) ).

He recommended approximating θU by

θ̂U =
prU (t∗ |u)

prU (t∗ − 1 |u)
and θ̃U =

∑t∗

t=1 prU (t |u)∑t∗

t=1 prU (t− 1 |u)
,(

θ̂L =
prL (t∗ |l )

prL (t∗ − 1 |l )
and θ̃L =

∑t∗

t=1 prL (t |l )∑t∗

t=1 prL (t− 1 |l )

)
.

When the values of θ̂U and θ̃U (θ̂L and θ̃L) are “close,” Woodall recommended using θ̃U

(θ̃L) to approximate θU (θL).
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The ARL for the upper one-sided charts conditioned on U0 = u, Z0 = z0, and

W0 = w0 is determined by

MU (u, z0, w0) =
∞∑
t=1

tP (TU = t |U0 = u, Z0 = z0,W0 = w0 ) =
∞∑
t=1

tprU (t |u, z0, w0 ) .

As with the previous discussion, we have

MU (u, z0, w0) = 1 +
∞∑
t=1

tP (TU = 1 + t |U0 = u, Z0 = z0,W0 = w0 )

= 1 +
∞∑
t=1

tP (TU − 1 = t, U1 = 0 |U0 = u, Z0 = z0,W0 = w0 )

+
∞∑
t=1

tP (TU − 1 = t, 0 < U1 < a5 |U0 = u, Z0 = z0,W0 = w0 )

= 1 +
∞∑
t=1

tP (TU − 1 = t |U0 = u, U1 = 0, Z0 = z0,W0 = w0 )

× P (U1 = 0 |U0 = u)

+
∞∑
t=1

tP (TU − 1 = t |U0 = u, 0 < U1 < a5, Z0 = z0,W0 = w0 )

× P (0 < U1 < a5 |U0 = u)

= 1 +MU (0, z0, w0)FU1|U0 (0 |u) +
∞∑
t=1

t

∫ a5

0

prU (t |u1, z0, w0 ) fU1|U0 (u1 |u) du1

= 1 +MU (0, z0, w0)FU1|U0 (0 |u) +

∫ a5

0

MU (u1, z0, w0) fU1|U0 (u1 |u) du1.

In summary, the conditional ARL, MU (u, z0, w0), of the upper one-sided generalized

control chart given U0 = u, Z0 = z0, and W0 = w0 is the solution to the integral

equation

MU (u, z0, w0) = 1 +MU (0, z0, w0)FYt (−a1u− a3) +

∫ a5

0

MU (u1, z0, w0) fYt (u1 − a1u− a3)

= 1 +MU (0, z0, w0)GU,z0,w0 (0, u) +

∫ a5

0

MU (u1, z0, w0) gU,z0,w0 (u1, u) du1.
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Similarly, we can derive that the conditional ARL, ML (l, z0, w0), of the lower one-sided

generalized control chart given L0 = l, Z0 = z0, and W0 = w0 is the solution to the

integral equation

ML (l, z0, w0) = 1 +ML (0, z0, w0)
[
1− FL1|L0 (0 |l )

]
+

∫ 0

b5

ML (l1, z0, w0) fL1|L0 (l1 |l ) dl1

= 1 +ML (0, z0, w0) [1−GL,z0,w0 (0, l)] +

∫ 0

b5

ML (l1, z0, w0) gL,z0,w0 (l1, l) dl1.

Since the exact solution for the aforementioned integral equations does not exist,

we will use the numerical quadrature to obtain approximations. For the upper one-sided

chart, let (ξU,j, ωU,j) (j = 1, . . . , ηU) be the ordered pairs of the exact nodes and weights

of a numerical quadrature method. This leads to the following system of equations,

prU (1 |ξU,i, z0, w0 ) = 1−GU,z0,w0 (a5, ξU,i) and

prU (t |ξU,i, z0, w0 ) ≈ prU (t− 1 |ξU,0, z0, w0 )GU,z0,w0 (ξU,0, ξU,i)

+

ηU∑
j=1

prU (t− 1 |ξU,j, , z0, w0 ) gU,z0,w0 (ξU,j, ξU,i)ωU,j

for t > 1 and ξU,0 = 0, where i = 0, 1, . . . , ηU .

Letting

PU,t =



prU (t |ξU,0, z0, w0 )

prU (t |ξU,1, z0, w0 )

...

prU (t |ξU,ηU , z0, w0 )


and

QU,z0,w0 =



GU,z0,w0 (ξU,0, ξU,0) gU,z0,w0 (ξU,1, ξU,0)ωU,1 . . . gU,z0,w0 (ξU,ηU , ξU,0)ωU,ηU

GU,z0,w0 (ξU,0, ξU,1) gU,z0,w0 (ξU,1, ξU,1)ωU,1 . . . gU,z0,w0 (ξU,ηU , ξU,1)ωU,ηU
...

...
. . .

...

GU,z0,w0 (ξU,0, ξU,ηU ) gU,z0,w0 (ξU,1, ξU,ηU )ωU,1 . . . gU,z0,w0 (ξU,ηU , ξU,ηU )ωU,ηU


.
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Then we note that

(
I−QU,z0,w0

)
1=



1−GU,z0,w0 (ξU,0, ξU,0)−
∑ηU

i=1 gU,z0,w0 (ξU,i, ξU,0)ωU,i

1−GU,z0,w0 (ξU,0, ξU,1)−
∑ηU

i=1 gU,z0,w0 (ξU,i, ξU,1)ωU,i
...

1−GU,z0,w0 (ξU,0, ξU,ηU )−
∑ηU

i=1 gU,z0,w0 (ξU,i, ξU,ηU )ωU,i


.

Thus the system of equations can be written in vector notations as

PU,1 =
(
I−QU,z0,w0

)
1 and PU,t = QU,z0,w0PU,t−1

for t > 1, where 1 is an (ηU + 1)× 1 vector of ones.

Making the transformation y = u1/a5, we have that u1 = a5y and du1 = a5dy. If

follows that

prU (t |u, z0, w0 ) = prU (t− 1 |0, z0, w0 )GU,z0,w0 (0, u)

+

∫ 1

−1
prU (t− 1 |a5y, z0, w0 ) gU,z0,w0 (a5y, u) a5dy

= prU (t− 1 |0, z0, w0 )GU,z0,w0 (0, u)

+

∫ 1

−1
prU (t− 1 |a5y, z0, w0 ) gU,z0,w0 (a5y, u) a5dy.

For the lower one-sided chart, the associated system of equations is

prL (1 |ξL,i, z0, w0 ) = GL,z0,w0 (b5, ξL,i) and

prL (t |ξL,i, z0, w0 ) ≈ prL (t− 1 |ξL,0, z0, w0 ) [1−GL,z0,w0 (ξL,0, ξL,i)]

+

ηL∑
j=1

prL (t− 1 |ξL,j, z0, w0 ) gL,z0,w0 (ξL,j, ξL,i)ωL.j,

which can be expressed as

PL,1 ≈ QL,z0,w01 and PL,t ≈ QL,z0,w0PL,t−1
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for t > 1, where 1 is an (ηL + 1)× 1 vector of ones, and

PL,t =



prL (t |ξL,0, z0, w0 )

prL (t |ξL,1, z0, w0 )

...

prL (t |ξL,ηL , z0, w0 )


,

and

QL,z0,w0 =



GL,z0,w0 (ξL,0, ξL,0) gL,z0,w0 (ξL,1, ξL,0)ωL,1 . . . gL,z0,w0 (ξL,ηL , ξL,0)ωL,ηL

GL,z0,w0 (ξL,0, ξL,1) gL,z0,w0 (ξL,1, ξL,1)ωL,1 . . . gL,z0,w0 (ξL,ηL , ξL,1)ωL,ηL
...

...
. . .

...

GL,z0,w0 (ξL,0, ξL,ηL) gL,z0,w0 (ξL,1, ξL,ηL)ωL,1 . . . gL,z0,w0 (ξL,ηL , ξL,ηL)ωL,ηL


.

3.4 Markov Chain Approach

For the two-sided charts, If YL,t = YU,t = Yt = W−1
0 (λZt +

√
nδ − Z0/

√
m), then as in

the previous discussions, the conditional transition probabilities among the nonabsorbing

states given Z0 = z0 and W0 = w0 will be expressed as follows.

Pi,j|Z0,W0 =



P
(
c0 ≤ W−1

0 (λZt +
√
nδ − Z0/

√
m) ≤ d0 |Z0,W0

)
,

if jL = 0 and jU = 0;

P
(
max {c0, cU} < W−1

0 (λZt +
√
nδ − Z0/

√
m) < dU |Z0,W0

)
,

if jL = 0 and jU 6= 0;

P
(
dL ≤ W−1

0 (λZt +
√
nδ − Z0/

√
m) < min {cL, d0} |Z0,W0

)
,

if jL 6= 0 and jU = 0;

P
(
max {c0, cU} < W−1

0 (λZt +
√
nδ − Z0/

√
m) < min {cL, d0} |Z0,W0

)
,

if jL 6= 0 and jU 6= 0;
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which can be written as

Pi,j|Z0,W0 =



P
(
w0c0−

√
nδ+z0/

√
m

λ
≤ Zt ≤ w0d0−

√
nδ+z0/

√
m

λ

)
,

if jL = 0 and jU = 0;

P
(
w0 max{c0,cU}−

√
nδ+z0/

√
m

λ
< Zt <

w0dU−
√
nδ+z0/

√
m

λ

)
,

if jL = 0 and jU 6= 0;

P
(
w0dL−

√
nδ+z0/

√
m

λ
≤ Zt <

w0 min{cL,d0}−
√
nδ+z0/

√
m

λ

)
,

if jL 6= 0 and jU = 0;

P
(
w0 max{c0,cU}−

√
nδ+z0/

√
m

λ
< Zt <

w0 min{cL,d0}−
√
nδ+z0/

√
m

λ

)
,

if jL 6= 0 and jU 6= 0;

.

Since Zt has standard normal distribution, then

Pi,j|Z0,W0 =



Φ
(
w0d0−

√
nδ+z0/

√
m

λ

)
− Φ

(
w0c0−

√
nδ+z0/

√
m

λ

)
,

if jL = 0 and jU = 0;

Φ
(
w0dU−

√
nδ+z0/

√
m

λ

)
− Φ

(
w0 max{c0,cU}−

√
nδ+z0/

√
m

λ

)
,

if jL = 0 and jU 6= 0;

Φ
(
w0 min{cL,d0}−

√
nδ+z0/

√
m

λ

)
− Φ

(
w0dL−

√
nδ+z0/

√
m

λ

)
,

if jL 6= 0 and jU = 0;

Φ
(
w0 min{cL,d0}−

√
nδ+z0/

√
m

λ

)
− Φ

(
w0 max{c0,cU}−

√
nδ+z0/

√
m

λ

)
,

if jL 6= 0 and jU 6= 0;

where

c0 = νL,0 − b1ξL,iL − b3, d0 = νU,0 − a1ξU,iU − a3,

cL = νL,jL − b1ξL,iL − b3, dL = νL,jL−1 − b1ξL,iL − b3,

cU = νU,jU−1 − a1ξU,iU − a3, dU = νU,jU − a1ξU,iU − a3,

and i = iL (ηU + 1) + iU , j = jL (ηU + 1) + jU with iL, jL ∈ {0, 1, . . . , ηL} , iU , jU ∈

{0, 1, . . . , ηU} .
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For the [(ηL + 2)× (ηU + 2)]2 transition matrix Pz0,w0 whose (i, j)th component is

the conditional probability Pi,j|z0,w0 , all the information contained in Pz0,w0 can be ob-

tained in the sub-matrix Qz0,w0 by excluding the rows and columns relevant to absorbing

states.

Random variable Tk|z0,w0 is the conditional average run length of the two sided-

chart that starts at one of the nonabsorbing state k. For convenience, we define the

(ηL + 1) (ηU + 1)× 1 vectors T and t by

T =



T0|z0,w0

T1|z0,w0

...

Tη|z0,w0


and t =



t

t

...

t


= t1,

where 1 is an (ηL + 1) (ηU + 1) × 1 vector of ones. The conditional probability mass

function of T has the form

P (T = t |Z0 = z0,W0 = w0 ) = Qt−1
z0,w0

(I−Qz0,w0) 1,

for t = 1, 2, 3, . . .. The unconditional transition matrix is

Q =

∫ ∞
0

∫ ∞
−∞

Qz0,w0fZ0,W0 (z0, w0) dz0dw0.

Thus, the unconditional probability mass function of T is given by

P (T = t) = Qt−1 (I−Q) 1,
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The conditional expectations of these ηL + 1 random variables is determined by

E (TL |Z0 = z0,W0 = w0 ) =



E (TL,0 |Z0 = z0,W0 = w0 )

E (TL,1 |Z0 = z0,W0 = w0 )

...

E (TL,ηL |Z0 = z0,W0 = w0 )


=

∞∑
t=1

tQt−1
z0,w0

(I−Qz0,w0) 1

= (I−Qz0,w0) 1.

The unconditional expectations are given by

E (T) = (I−Q) 1.

3.5 Unconditional Run Length Distribution

The condition probability mass function given Z0 = z0 and W0 = w0 describing the

distribution of the run length TL is expressed as

prL (t |l, δ, λ,m, n, z0, w0 ) = P (TL = t |L0 = l, δ, λ,m, n, Z0 = z0,W0 = w0 ) .

Its unconditional probability mass function is determined by

prL (t |l, δ, λ,m, n) =

∫ ∞
0

∫ ∞
−∞

prL (t |l, δ, λ,m, n, z0, w0 ) fZ0,W0 (z0, w0 |m,n) dz0dw0.

Similarly, the conditional and the unconditional probability mass functions describing

the distribution of the run length TU of the upper one-sided generalized control chart

are expressed, respectively, by

prU (t |u, δ, λ,m, n, z0, w0 ) = P (TU = t |U0 = u, δ, λ,m, n, Z0 = z0,W0 = w0 ) and
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prU (t |u, δ, λ,m, n) =

∫ ∞
0

∫ ∞
−∞

prU (t |u, δ, λ,m, n, z0, w0 ) fZ0,W0 (z0, w0 |m,n) dz0dw0.

The run length T of a two-sided generalized control chart is defined as

T = min {TL, TU} .

The conditional and unconditional probability mass functions describing the distribution

of T are, respectively,

pr (t |l, u, δ, λ,m, n, z0, w0 ) = P (T = t |L0 = l, U0 = u, δ, λ,m, n, Z0 = z0,W0 = w0 ) and

pr (t |l, u, δ, λ,m, n) =

∫ ∞
0

∫ ∞
−∞

pr (t |l, u, δ, λ,m, n, z0, w0 ) fZ0,W0 (z0, w0 |m,n) dz0dw0.

Woodall (1983) gives a method for obtaining a geometric distribution approximation

to the run length distribution for “large” values of t. The large values of t and the

geometric parameters for the conditional probability mass functions will depend on the

values of z0 and w0. They also depend on the values of l, u, δ, λ, m, and n; but these

values are considered to be fixed in our discussion. For the lower one-sided, upper one-

sided, and two-sided charts, we will represent the pair consisting of the large value of

t and the estimated geometric parameter by
(
t∗L,z0,w0

, θ̂L,z0,w0

)
,
(
t∗U,z0,w0

, θ̂U,z0,w0

)
, and(

t∗z0,w0
, θ̂z0,w0

)
, respectively. According to Woodall (1983), the upper tail probabilities

can be approximated by

prL (t∗L + t |l, δ, λ,m, n, z0, w0 ) ≈ θ̂tL,z0,w0
prL

(
t∗L,z0,w0

|l, δ, λ,m, n, z0, w0

)
,

prU (t∗U + t |u, δ, λ,m, n, z0, w0 ) ≈ θ̂tU,z0,w0
prU

(
t∗U,z0,w0

|u, δ, λ,m, n, z0, w0

)
, and

pr (t∗ + t |l, u, δ, λ,m, n, z0, w0 ) ≈ θ̂tz0,w0
pr
(
t∗z0,w0

|l, u, δ, λ,m, n, z0, w0

)
.

This method yields probability mass functions that are approximation to the probability

mass functions of the run length distributions of the lower one-side, upper one-sided,
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and two-sided generalized control charts. For each chart, the average of these prob-

ability mass functions over the weighted values of Z0 and W0 give the unconditional

probability mass function of the distribution of the run length. Woodall (1983) method

can again be used to approximate the tail probabilities of the unconditional probability

mass functions. This results in the following approximations.

prL (t |l, δ, λ,m, n) ≈ θ̂tLprL (t∗L |l, δ, λ,m, n, z0, w0 ) ;

prU (t |u, δ, λ,m, n) ≈ θ̂tUprU (t∗U |u, δ, λ,m, n, z0, w0 ) ; and

pr (t |l, u, δ, λ,m, n) ≈ θ̂tpr (t∗ |l, u, δ, λ,m, n, z0, w0 ) .

In the Appendix, we give a program that implements this method. Simulation is used

to examine the accuracy of the programs.

3.6 Conclusion

In this chapter we discussed the generalized cumulative sum type X control charts for

monitoring for the mean of a continuous quality measurement X which has a normal

distribution with mean µ and standard deviation σ. First estimates for the in-control

values µ0 and σ0 were given. Then the integral equation method was outlined for evalu-

ating the run length performance of the one-sided generalized cumulative type X charts

followed by the Markov chain approach for approximating the average run length of a

two-sided generalized cumulative sum type X chart. The unconditional run length dis-

tribution was discussed as a method for measuring the performance of the chart when

parameters are estimated.



CHAPTER 4

MONITORING A SCALE PARAMETER

4.1 Introduction

A gamma distribution can be defined by its probability density function given by

fκ,θ (y) =
1

Γ (κ) θκ
yκ−1e−y/θI(0,∞) (y) ,

where κ > 0 and θ > 0 are referred to as the shape and scale parameters, respectively. As

can be seen, the support of the distribution of X is the positive reals. The exponential

(κ = 1), the Erlang (κ a positive integer), and the Chi Square (κ = ν/2 and θ = 2)

distributions are special cases of the gamma distribution.

The exponential distribution appears as a model of the quality characteristic X

when modelling the occurrence rate of rare events with a homogeneous Poisson process.

This model results in the time X between events having an exponential distribution.

Further, the X values are independent. When modelling the lifetime X of an item with

an exponential distribution, a sample of n items are placed on test. Because of time

constraints in making a decision about the process, only the minimum lifetime X1:n is to

be observed. One can show that the distribution of X1:n is an exponential distribution

with parameter θ/n. The Erlang distribution is the distribution of the sum of κ (a

positive integer) independent random variables each having an exponential distribution

with parameter θ. In the previous example, if all the lifetimes X1, . . . , Xn are observed

then their sum X1 + . . . + Xn has an Erlang distribution with shape parameter n and

scale parameter nθ.

It is often of interest to monitor for a change in the variance σ2 of a continuous

quality characteristic. Since the sample variance S2 is an unbiased estimator of σ2,
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a statistic on which one could based the chart is S2
t /σ

2
0 if the in-control value σ2

0 of

the variance is known or the statistic S2
t /σ̂

2
0 where σ̂2

0 is an estimator for the unknown

parameter σ2
0. Under the independent normal model, the distribution of the statistic

S2
t

σ2
0

∼ GAMMA

(
n− 1

2
,
2σ2

σ2
0

)
and

S2
t

σ̂2
0

∣∣∣∣ σ̂2
0

σ2
0

= w0 ∼ GAMMA

(
n− 1

2
,
2σ2/σ2

0

w0

)
.

Our interest is to monitor for a change in a scale parameter. Two examples that

appear in the literature are (1) when monitoring for a change in shape parameter of an

Erlang distribution with positive integer scale parameter that is known and (2) when

monitoring for a change in the variance of a normal distribution. These examples are

special cases of a general setting in which the basic statistic Yt on which the chart is

based can be expressed in the form

Yt =
Wt

W0

,

where Wt and Wt given W0 = w0 have gamma distributions. The variability described by

the distribution of W0 is determined by the variability found in the data to be obtained

from a Phase I study. The variability described by the distribution of Wt is determined

by the variability found in the data to be obtained at time t from Phase II. The data

to be obtained from the Phase I study is assumed to be from an in-control process. We

note here that the parameters known case is equivalent to setting w0 equal to 1.

Because the parameters for the charts we will study for monitoring for a change in

the scale parameter are slightly different than for a change in the mean, we redefine the

generalized cumulative sum type charts. The lower one-sided chart is defined as the plot

the statistic Lt versus the sampling stage number t with

L0 = b4 and Lt = min {0, b1Lt−1 + Yt + b3} ,
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where b5 < b4 ≤ 0, b1 > 0, and b3 < 0. The chart signals at time t if Lt ≤ b5 < 0 or

Yt ≤ b6, with b6 > 0. The upper one-sided generalized control chart plots the statistic

Ut versus t with

U0 = a4 and Ut = max {0, a1Ut−1 + Yt + a3} ,

where 0 ≤ a4 < a5, a1 > 0, and a3 > 0. The chart signals at time t if Ut ≥ a5 > 0

or Yt ≥ a6 > 0. For convenience, we express the conditional probability mass functions

describing the distributions of the run lengths TL and TU of the lower and upper one-

sided chart given Y0 = y0, respectively, by

prL (t |l, y0 ) = P (TL = t |L0 = l, Y0 = y0 ) and

prU (t |u, y0 ) = P (TU = t |U0 = u, Y0 = y0 ) ,

where l = b4 and u = a4.

In the next section, integral equations are given that are useful in determining the

run length performance of the one-sided charts. The Markov chain method is used to

analyze the performance of the two-sided charts and this method is presented in Section

3. In Section 4, we apply our results to two examples of monitoring for a change in the

shape parameter of an Erlang distribution and the variance of a normally distributed

quality measurement.

4.2 Performance Analysis Using Integral Equations

In this section, we will derive integral equations whose exact solutions are the conditional

probability mass functions prL (t |l, w0 ) and prU (t |u,w0 ). We begin with the function
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prL (t |l, w0 ). For the case in which t = 1 we have

prL (1 |l, w0 ) = P

(
b1l +

W1

W0

+ b3 ≤ b5 or
W1

W0

≤ b6 |W0 = w0

)
= P (W1 ≤ W0 max {b5 − b1l − b3, b6} |W0 = w0 )

= FW1|W0 (w0 max {b5 − b1l − b3, b6} |w0 ) .

Next, we consider the case when t > 1. prL (t |l, w0 ) can be written as

prL (t |l, w0 ) = P

(
TL = t, L1 = 0,

W1

W0

> b6 |L0 = l,W0 = w0

)
+P

(
TL = t, b5 < L1 < 0,

W1

W0

> b6 |L0 = l,W0 = w0

)
= P (TL − 1 = t− 1 |L0 = l, L1 = 0,W0 = w0, L1 > b1l + b6 + b3 )

×P (L1 = 0, L1 > b1l + b6 + b3 |L0 = l,W0 = w0 )

+P (TL − 1 = t− 1 |L0 = l, b5 < L1 < 0,W0 = w0, L1 > b1l + b6 + b3 )

×P (b5 < L1 < 0, L1 > b1l + b6 + b3 |L0 = l,W0 = w0 ) .

Since the remaining run length TL − 1 given L1 = l1 and W0 = w0 has the same

distribution as TL given L0 = l1 and W0 = w0, we have that

P (TL − 1 = t− 1 |L0 = l, L1 = l1,W0 = w0 ) = prL (t− 1 |l1, y0 ) .

And

P (L1 = 0, L1 > b1l + b6 + b3 |L0 = l,W0 = w0 )

= P

(
b1l +

W1

W0

+ b3 ≥ 0,
W1

W0

> b6 |W0 = w0

)
= P (W1 ≥ W0 max {−b1l − b3, b6} |W0 = w0 )

= FW1|W0 (w0 max {−b1l − b3, b6} |w0 ) ,

where FW1|W0 (w1 |w0 ) = 1− FW1|W0 (w1 |w0 ). Thus,

prL (t |l, w0 ) = prL (t− 1 |0, w0 )FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+

∫ 0

max{b5,b1l+b6+b3}
prL (t− 1 |l1, w0 ) fL1|L0,W0 (l1 |l, w0 ) dl1.
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Note that setting b6 = 0 is equivalent to the chart having no Shewhart limit.

Observe that

FL1|L0,w0 (l1 |l, w0 ) = P (L1 ≤ l1 |L0 = l,W0 = w0 )

= P

(
b1l +

W1

W0

+ b3 ≤ l1 |W0 = w0

)
= P (W1 ≤ W0 (l1 − b1l − b3) |W0 = w0 )

= FW1|W0 (w0 (l1 − b1l − b3) |w0 ) ,

so the probability density function is

fL1|L0,W0 (l1 |l, w0 ) = w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) .

Hence,

prL (t |l, w0 ) = prL (t− 1 |0, w0 )FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+

∫ 0

max{b5,b1l+b6+b3}
prL (t− 1 |l1, w0 )w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) dl1.

Recall that b5 < l ≤ 0. It then follows that

prL (t |l, w0 ) = prL (t− 1 |0, w0 )FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+

∫ 0

max{b5,b1l+b6+b3}
prL (t− 1 |l1, w0 )w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) dl1.

=



prL (t− 1 |0, w0 )FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+
∫ 0

b5
prL (t− 1 |l1, y0 ) prL (t− 1 |l1, w0 )

×w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) dl1,

b5 < l ≤ (b5 − b6 − b3) /b1;

prL (t− 1 |0, w0 )FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+
∫ 0

b1l+b6+b3
prL (t− 1 |l1, w0 )

×w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) dl1,

(b5 − b6 − b3) /b1 < l ≤ 0.
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As previously mentioned, the ARL of a chart is a commonly used measure for the

performance of the chart. An integral equation useful in determining this parameter can

be derived as follows. Since the ARL for the lower chart depends on the variables l and

w0, we will represent the ARL by ML (l |w0 ). It follows that

ML (l |w0 ) =
∞∑
t=1

tprL (t |l, w0 ) = prL (1 |l, w0 ) +
∞∑
t=2

tprL (t |l, w0 )

= prL (1 |l, w0 ) +
∞∑
t=1

(1 + t) prL (1 + t |l, w0 )

=
∞∑
t=1

prL (t |l, w0 ) +
∞∑
t=1

tprL (1 + t |l, w0 )

= 1 +
∞∑
t=1

tprL (t |0, w0 )FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+

∫ 0

max{b5,b1l+b6+b3}

∞∑
t=1

tprL (t |l1, w0 )

×w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) dl1.

Hence, the function ML (l |w0 ) is the exact solution to the integral equation

ML (l |w0 ) = 1 +ML (0 |w0 )FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+

∫ 0

max{b5,b1l+b6+b3}
ML (l1 |w0 )w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) dl1.

The standard deviation of the run length (SDRL) distribution is sometimes re-

ported when a performance analysis of the chart is given. To highlight that this param-

eter is a function of the variables l and w0, we will represent the SDRL by SDRL (l |w0 ).

This parameter is determined by

SDRL (l |w0 ) =
√
ML,2 (l |w0 )−M2

L (l |w0 ),
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where ML,2 (l |w0 ) = E (T 2
L |L0 = l,W0 = w0 ). Observe that

ML,2 (l |w0 ) =
∞∑
t=1

t2prL (t |l, w0 ) = prL (1 |l, w0 ) +
∞∑
t=1

(1 + t)2 prL (1 + t |l, w0 )

= 1 + 2
∞∑
t=1

tprL (1 + t |l, w0 ) +
∞∑
t=1

t2prL (1 + t |l, w0 )

= 1 + 2ML (0 |w0 )FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+2

∫ 0

max{b5,b1l+b6+b3}
ML (l1 |w0 )w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) dl1

+ML,2 (0 |w0 )FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+

∫ 0

max{b5,b1l+b6+b3}
ML,2 (l1 |w0 )w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) dl1.

Hence, the function ML,2 (l |w0 ) is the exact solution to the integral equation

ML,2 (l |w0 ) = 2ML (l |w0 )− 1

+ML,2 (0 |w0 )FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+

∫ 0

max{b5,b1l+b6+b3}
ML,2 (l1 |w0 )w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) dl1.

Similar results can be obtained for the upper one-sided chart. For the case in which

t = 1, we see that

prU (1 |u, y0 ) = P

(
a1u+

W1

W0

+ a3 ≥ a5 or
W1

W0

≥ a6 |W0 = w0

)
= P (W1 ≥ W0 min {a5 − a1u− a3, a6} |W0 = w0 )

= 1− FW1|W0 (w0 min {a5 − a1u− a3, a6} |w0 ) .

For the case in which t > 1, we derive the following sequence of integral equation of
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which the function prU (t |u,w0 ) is the exact solution. We have

prU (t |u,w0 ) = P

(
TU = t, U1 = 0,

W1

W0

< a6 |U0 = u,W0 = w0

)
+P

(
TU = t, 0 < U1 < a5,

W1

W0

< a6 |U0 = u,W0 = w0

)
= P

(
TU = t

∣∣∣∣U0 = u, U1 = 0,
W1

W0

< a6,W0 = w0

)
×P

(
U1 = 0,

W1

W0

< a6 |U0 = u,W0 = w0

)
+P

(
TU = t, 0 < U1 < a5,

W1

W0

< a6 |U0 = u,W0 = w0

)
×P

(
0 < U1 < a5,

W1

W0

< a6 |U0 = u,W0 = w0

)
.

Observe that

prU (t− 1 |0, w0 ) = P

(
TU = t

∣∣∣∣U0 = u, U1 = 0,
W1

W0

< a6,W0 = w0

)
;

FW1|W0 (w0cU |w0 ) = P

(
U1 = 0,

W1

W0

< a6 |U0 = u,W0 = w0

)
;

prU (t− 1 |u1, w0 ) = P

(
TU = t, U1 = u1,

W1

W0

< a6 |U0 = u,W0 = w0

)
,

where cU = min {a5 − a1u− a3, a6}. Thus, we can write

prU (t |u,w0 ) = prU (t− 1 |0, w0 )FW1|W0 (w0cU |w0 )

+

∫ min{a5−a1u−a3,a6}

0

prU (t− 1 |u1, w0 ) fU1|U0,W0 (u1 |u,w0 ) du1.

Next, we observe that

FU1|U0,W0 (u1 |u,w0 ) = P (U1 ≤ u1 |U0 = u,W0 = w0 )

= P

(
a1u+

W1

W0

+ a3 ≤ u1 |W0 = w0

)
×FW1|W0 (w0 (u1 − a1u− a3) |w0 ) .

Hence,

fU1|U0,W0 (u1 |u,w0 ) = w0fW1|W0 (w0 (u1 − a1u− a3) |w0 ) .
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We now see that the function prU (t |u,w0 ) for t > 1 is the exact solution to the sequence

of integral equations

prU (t |u,w0 ) = prU (t− 1 |0, w0 )FW1|W0 (w0cU |w0 )

+

∫ min{a5,a1u+a6+a3}

max{0,a1u+a3}
prU (t− 1 |u1, w0 )

×w0fW1|W0 (w0 (u1 − a1u− a3) |w0 ) du1.

As with the lower one-sided chart, the ARL MU (u |w0 ) and SDRL of the upper

one-sided chart are functions of the variables u and w0. We represent the ARL and the

expected value of the square of the run length by MU (u |w0 ) and M2
U (u |w0 ), respec-

tively. The function MU (u |w0 ) is the exact solution to the following derived integral

equation.

MU (u |w0 ) =
∞∑
t=1

tprU (t |u,w0 ) = 1 +
∞∑
t=1

tprU (1 + t |u,w0 )

= 1 +
∞∑
t=1

tprU (t |0, w0 )FW1|W0 (w0cU |w0 )

+

∫ min{a5,a1u+a6+a3}

max{0,a1u+a3}

∞∑
t=1

tprU (t |u1, w0 )

×w0fW1|W0 (w0 (u1 − a1u− a3) |w0 ) du1

= 1 +MU (0 |w0 )FW1|W0 (w0cU |w0 )

+

∫ min{a5,a1u+a6+a3}

max{0,a1u+a3}
MU (u1 |w0 )w0fW1|W0 (w0 (u1 − a1u− a3) |w0 ) du1.
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The function M2
U (u |w0 ) is the exact solution to the following integral equation.

M2
U (u |w0 ) =

∞∑
t=1

t2prU (t |u,w0 ) = 1 +
∞∑
t=1

(
2t+ t2

)
prU (1 + t |u,w0 )

= 1 + 2MU (0 |w0 )FW1|W0 (w0cU |w0 ) +MU,2 (0 |w0 )FW1|W0 (w0cU |w0 )

+2

∫ min{a5,a1u+a6+a3}

max{0,a1u+a3}
MU (u1 |w0 )w0fW1|W0 (w0 (u1 − a1u− a3) |w0 ) du1

+

∫ min{a5,a1u+a6+a3}

max{0,a1u+a3}
MU,2 (u1 |w0 )w0fW1|W0 (w0 (u1 − a1u− a3) |w0 ) du1

= 2MU (u |w0 )− 1 +M2
U (0 |w0 )FW1|W0 (w0cU |w0 )

+

∫ min{a5,a1u+a6+a3}

max{0,a1u+a3}
M2

U (u1 |w0 )w0fW1|W0 (w0 (u1 − a1u− a3) |w0 ) du1.

One method that can be used to approximate the run length distributions for the

lower and upper one-sided charts is the collocation method. This methods uses a polyno-

mial to approximate the function of interest. For example, the probability mass function

of the lower and upper one-sided chart can be approximated by

prL (t |l, w0 ) ≈ dL,t,w0,0 +

ηL∑
i=1

dL,t,w0,il
i and

prU (t |u,w0 ) ≈ dU,t,w0,0

ηU∑
i=1

dU,t,w0,iu
i.

Note that the coefficients of these polynomials are functions of the variables t and w0.

It would follow for the lower one-sided chart for each t > 1, the coefficients of the

approximating polynomial satisfy the equation

dL,t,w0,0 +

ηL∑
i=1

dL,t,w0,il
i = dL,t,w0,0FW1|W0 (w0 max {−b1l − b3, b6} |w0 )

+

∫ 0

max{b5,b1l+b6+b3}

(
dL,t,w0,0 +

ηL∑
j=1

dL,t,w0,jl
j
1

)
×w0fW1|W0 (w0 (l1 − b1l − b3) |w0 ) dl1

for any value of b5 < l ≤ 0 given W0 = w0. For the lower one-sided chart for each t > 1,
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the coefficients of the approximating polynomial satisfy the equation

dU,t,w0,0

ηU∑
i=1

dU,t,w0,iu
i = dU,t,w0,0FW1|W0 (w0 min {−a1u− a3, a6} |w0 )

+

∫ min{a5,a1u+a6+a3}

max{0,a1u+a3}

(
dU,t,w0,0 +

ηU∑
j=1

dU,t,w0,ju
j
1

)
×w0fW1|W0 (w0 (u1 − a1u− a3) |w0 ) du1.

for any value of 0 ≤ u < a5 given W0 = w0.

4.3 Markov Chain Approach

In this section, we will apply the Markov Chain approximate method discussed in Chap-

ter 2 to analyze the performance of the two-sided charts that are used to monitor for

the scale parameter of gamma distribution. That is,

YL,t = YU,t = Yt =
Wt

W0

.

As previous discussion, the conditional transition probabilities among the nonab-

sorbing states given W0 = w0 are expressed as

Pi,j|W0 =



P
(
c0 ≤ Wt

W0
≤ d0 |W0 = w0

)
, if jL = 0 and jU = 0;

P
(

max {c0, cU} < Wt

W0
< dU0 |W0 = w0

)
, if jL = 0 and jU 6= 0;

P
(
dL ≤ Wt

W0
< min {cL, d0}0 |W0 = w0

)
, if jL 6= 0 and jU = 0;

P
(

max {c0, cU} < Wt

W0
< min {cL, d0}0 |W0 = w0

)
, if jL 6= 0 and jU 6= 0;
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It follows that

Pi,j|W0 =



P (w0c0 ≤ Wt ≤ w0d0) , if jL = 0 and jU = 0;

P (w0 max {c0, cU} < Wt < w0dU) , if jL = 0 and jU 6= 0;

P (w0dL ≤ Wt < w0 min {cL, d0}) , if jL 6= 0 and jU = 0;

P (w0 max {c0, cU} < Wt < w0 min {cL, d0}) , if jL 6= 0 and jU 6= 0;

=



FWt (w0d0)− FWt (w0c0) , if jL = 0 and jU = 0;

FWt (w0dU)− FWt (w0 max {c0, cU}) , if jL = 0 and jU 6= 0;

FWt (w0 min {cL, d0})− FWt (w0dL) , if jL 6= 0 and jU = 0;

FWt (w0 min {cL, d0})− FWt (w0 max {c0, cU}) , if jL 6= 0 and jU 6= 0;

where

c0 = νL,0 − b1ξL,iL − b3, d0 = νU,0 − a1ξU,iU − a3,

cL = νL,jL − b1ξL,iL − b3, dL = νL,jL−1 − b1ξL,iL − b3,

cU = νU,jU−1 − a1ξU,iU − a3, dU = νU,jU − a1ξU,iU − a3,

and i = iL (ηU + 1) + iU , j = jL (ηU + 1) + jU with iL, jL ∈ {0, 1, . . . , ηL} , iU , jU ∈

{0, 1, . . . , ηU} .

For the [(ηL + 2)× (ηU + 2)]2 transition matrix PW0 whose (i, j)th component is the

conditional probability Pi,j|W0 , all the information contained in PW0 can be obtained in

the sub-matrix QW0 by excluding the rows and columns contained absorbing states. Let

random variable Tk|W0 be the conditional ARL of the two sided-chart that starts at one

of the nonabsorbing state k. For convenience, we define the (ηL + 1) (ηU + 1)×1 vectors
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T and t by

T =



T0|W0

T1|W0

...

Tη|W0


and t =



t

t

...

t


= t1,

where 1 is an (ηL + 1) (ηU + 1)×1 vector of ones. Then the conditional probability mass

function of T has the form

P (T = t |W0 = w0 ) = Qt−1
W0

(I−QW0) 1,

for t = 1, 2, 3, . . .. The unconditional transition matrix is given by

Q =

∫ ∞
0

∫ ∞
−∞

QW0fW0 (w0) dw0.

Thus, the unconditional probability mass function of T is given by

P (T = t) = Qt−1 (I−Q) 1,

The conditional expectations of these ηL + 1 random variables is determined by

E (TL |W0 = w0 ) =



E (TL,0 |W0 = w0 )

E (TL,1 |W0 = w0 )

...

E (TL,ηL |W0 = w0 )


=

∞∑
t=1

tQt−1
W0

(I−QW0) 1 = (I−QW0) 1.

The unconditional expectations are given by

E (T) = (I−Q) 1.
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4.4 Gamma Distributed Data

In this section, we will assume that the quality measurement X has a gamma distribu-

tion. The gamma distribution can be defined by its density function

fX (x) =
1

Γ (θ) θκ
xκ−1e−x/θI(0,∞) (x) ,

where θ > 0 and κ > 0. The parameters θ and κ are known as the scale and shape

parameters, respectively. We will assume that the process is in a state of statistical in

control if θ = θ0 and κ = κ0 for fixed constants θ0 and κ0. Typically, these in-control

process parameters are unknown and must be estimated. In this case, we assume that we

will have from a Phase I study m samples each of size n of items from the output of the

process believed to come from an in-control process. Further, assume that the mn quality

measurements Xi,1, . . . , Xi,n for i = 1, . . . ,m are independent and identically distributed

with common distribution a gamma distribution with scale and shape parameters θ0 and

κ0, respectively. From these data, we will obtain the estimates θ̂0 and κ̂0 of θ0 and κ0,

respectively. These estimates are then used to define the meaning of the process being

in a state of statistical in control.

Three methods that are commonly used for estimating process parameters are the

methods of least squares, maximum likelihood, and moments. Since

E (X) = κ0θ0 and E
(
X2
)

= κ0 (κ0 + 1) θ20,

the method of moment estimates θ̂0 and κ̂0 for θ0 and κ0 are the solutions to the system

of equations

κ̂0θ̂0 =
1

mn

m∑
i=1

n∑
j=1

Xij and κ̂0 (κ̂0 + 1) θ̂20 =
1

mn

m∑
i=1

n∑
j=1

X2
ij.
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The solutions θ̂0 and κ̂0 can be expressed by

θ̂0 =

1
mn

∑m
i=1

∑n
j=1X

2
ij −

(
1
mn

∑m
i=1

∑n
j=1Xij

)2
1
mn

∑m
i=1

∑n
j=1Xij

and

κ̂0 =

(
1
mn

∑m
i=1

∑n
j=1Xij

)2
1
mn

∑m
i=1

∑n
j=1X

2
ij −

(
1
mn

∑m
i=1

∑n
j=1Xij

)2 .

In the special case of κ0 being a positive integer (Erlang distribution) and κ0 known,

then the method of moments gives

θ̂0 =
1

mnκ0

m∑
i=1

n∑
j=1

Xij.

It is not difficult to show that in this case that θ̂0 has a gamma distribution with scale

parameter θ0/ (mnκ0) and shape parameter mnκ0. Further, we see that

W0 =
mnκ0θ̂0
θ0

∼ GAMMA

(
1

mn
,mn

)
.

In the Phase II, information about the quality of the process comes in the form of

the quality measurements Xt,1, . . . , Xt,n on n items from the process output produced

at time t. We take as our estimators for θ and κ the statistics

θ̂t =

1
n

∑n
j=1X

2
t,j −

(
1
n

∑n
j=1Xt,j

)2
1
n

∑n
j=1Xtj

and

κ̂t =

(
1
n

∑n
j=1Xt,j

)2
1
n

∑n
j=1X

2
t,j −

(
1
n

∑n
j=1Xt,j

)2 .

For the case in which κ0 is a known positive integer that is not affected when the

process changes from an in-control state to an out-of-control state, then we have that

our estimate θ̂t for θ at time t is

θ̂t =
1

n

n∑
j=1

X2
t,j.
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Defining the random variable Wt = θ̂t, then we can write

θ̂t

θ̂0
= λ

nκ0

(
θ̂t/θ

)
W0

,

where λ = θ/θ0. It is not difficult to show that the conditional distribution of Wt

given W0 = w0 is a gamma distribution with scale parameter λ/n and shape parameter

n. Hence, the results in Sections 2 and 3 of this chapter can be applied to one- and

two-sided generalized cumulative sum type charts based on the statistic

4.5 Monitoring for a Change in the Process Variance

Here we return to the case in which the quality measurement X has a normal distribution

with mean µ and variance σ2. The mean is a special type of parameter known as a

location parameter. The variance is a scale parameter. We assume that when the process

is in-control, the process parameters µ and σ2 have the values µ0 and σ2
0, respectively.

Our interest in this section is to examine the use of the generalized family of cumulative

sum type charts for monitoring the process variance for a change from σ2
0 to σ2. The

function of the lower one-sided chart is to monitor for a decrease (process improvement)

in the variance and the upper one-sided chart to monitor for an increase in the variance.

Typically, the values µ0 and σ2
0 will not be known and will need to be estimated

from data measured on the output of the process when it is believed to be in-control.

These data can be obtained from a Phase I study. We assume the practitioner will have

available m sets {Xi,1, . . . , Xi,n} for n > 1 and i = 1, . . . ,m of measurements that can

be taken as independent random samples. The statistic

σ̂2
0 =

1

m (n− 1)

m∑
i=1

n∑
j=1

(
Xi,j −X i

)2
=

1

m

m∑
i=1

S2
i
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is an unbiased estimator of σ2
0, where X i and S2

i are the mean and variance of the ith

sample. In the monitoring phase (Phase II), we assume that periodically the practitioner

will have available a sequence {Xt,1, . . . , Xt,n} of measurements for n > 1 and t =

1, 2, 3, . . . on the output of the process to make a decision about the quality of the process.

We assume that these samples are independent random samples and independent of the

measurements from Phase I. We define the statistic Yt to be used to define our chart

statistics by

Yt =
σ̂2
t

σ̂2
0

,

where σ̂2
t = S2

t is variance of the sample collected at time t defined by

S2
t =

1

n− 1

n∑
j=1

(
Xt,j −X t

)2
.

We can write Yt as Wt/W0, where

W0 =
m (n− 1) σ̂2

0

σ2
0

and Wt = mλ2
(n− 1) σ̂2

t

σ2
,

where λ2 = σ2/σ2
0. It can be shown that

W0 ∼ GAMMA

(
2,
m (n− 1)

2

)
and

Wt

W0

|W0 = w0 ∼ GAMMA

(
2λ2

w0/m
,
n− 1

2

)
.

Thus, our previous results can directly be used to analyze the run length performance

of the charts based on the statistic Yt = σ̂2
t /σ̂

2
0.

4.6 Conclusion

Our interest in this chapter was the use of the generalized cumulative sum type control

charting procedures to monitor for a change in the scale parameter. Useful integral
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equations were derived for determine the run length performance of the one-sided charts.

The Markov chain method was presented as a way to analyze the performance of the

two-sided charts. For both the integral equations and Markov chain approach, it was

only required that the statistic Yt = Wt/W0 is defined such that the distributions of Wt

and Wt given W0 = w0 are both gamma distributions. Two special cases discussed were

in monitoring for a change in scale parameter of an Erlang distribution with positive

integer shape parameter that is known and monitoring for a change in the variance of a

normal distribution.



CHAPTER 5

CONCLUSION

5.1 General Conclusions

Control charts are used in two phases of production process. In Phase I, the chart is

used to estimate what is meant by the process being in control. In Phase II, a control

chart is used to compare the data to detect whether the process changes from a in

control process to an out-of-control process. As an aid to the practitioner, various Phase

II quality control charts have been developed for monitoring for increases as well as

decreases of the mean or standard deviation of a continuous quality measurement.

The generalized family of cumulative sum type control charts proposed by Champ,

Woodall, Moshen (1991) include several most commonly used charts, such as Shewhart,

CUSUM, and EWMA charts. Equivalent forms of the generalized control chart was

presented that require fewer chart parameters to be specified by the practitioner. The run

length performance of the generalized control charts were studied integral equations and

a Markov chain approximation. We have given integral equations useful in determining

the run length distribution of the lower and upper one-sided charts. The Markov chain

methods for the one- and two-sided charts are given. We discussed the use of generalized

cumulative sum type control charts in monitoring for a change in the mean of a normal

distribution in which a performance analysis is given. We also designed and analyzed a

chart for monitoring the scale parameter when the quality measurement follows a gamma

distribution which includes the design and analysis of a chart for monitoring for a change

in the variance of a normal distribution. As special cases, we discussed monitoring for a

change in scale parameter of an Erlang distribution with positive integer shape parameter



69

that is known and monitoring for a change in the variance of a normal distribution.

5.2 Areas for Further Research

We’ll continue to work on this topic as we still have plenty to do.There are many in-

teresting areas in the analysis of the family of generalized cumulative sum type control

charts for further research. In our following work, we are intereted in designing efficient

programs for determining the run length properties of a chart. Also, we have interest in

examing the performance of those control charts that take YU,t and YL,t as the following

statistics:

YU,t = max
{
µ0, Xt

}
, YL,t = min

{
µ0, Xt

}
YU,t = max

{
σ2
0, S

2
t

}
, YL,t = min

{
σ2
0, S

2
t

}
.

Adaptive control charts were discussed by Champ (1986). He suggested using more

stringent runs rules for detecting a shift in the process if there were evidence the process

may be out-of-control and less stringent runs rules otherwise. Since then, adaptive

versions of most of the popular control charts found in the literature have been proposed.

It would be useful to develop adaptive versions of the cumulative sum type control charts.

As we discussed, the performance of the generalized cumulative sum type control

charts depends on six parameters. For the equivalent versions, there are four parameters

need to be selected by the practitioners. The selection of these parameters can be

posed as an optimization problem. Aparisi, Lluch and de Luna (2008) showed how the

optimum values of this chart found by employing Genetic Algorithm. We are intereted in

developing better methods to solve the optimzation problem to improve the performance

of our charts.
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In many production processes, the quality measurement of interest is the lifetime

X of the product. In the literature, one can find a variety of lifetime distributions that

could be used to model the distribution of X. For example, the Weibull distribution is

the commonly studied. However, in the production process, one must be able to obtain

information about the quality of the process in a relatively short period of time. One

way to obtain information about the lifetime of the product can be done in some cases

using accelerated life testing along with censored sampling. It is our interest to develop

a design procedure for generalized cumulative sum type control charts when the quality

measurement is a lifetime variable.

Moreover, it is would be very interesting to use generalized cumulative sum type

control charts in medical surveillance and industrial surveillance. Many methods have

been developed for industrial statistical process control. Woodall (2006) showed that

there are many applications of control charts in health-care monitoring and in public-

health surveilance and there can be a connection between the two areas.
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