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ABSTRACT

H. Holm’s metatheorem states,“Every result in classical homological algebra has a

counterpart in Gorenstein homological algebra”. We support this statement by show-

ing over commutative Noetherian rings of finite Krull dimension, every Gorenstein flat

module has finite Gorenstein projective dimension. This statement is the Gorenstein

counterpart of a famous theorem of Gruson, Jensen, and Raynaud. Using this result

we prove that over such rings, a module M having finite Gorenstein flat dimension is

equivalent to M having finite Gorenstein projective dimension.
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CHAPTER 1

INTRODUCTION

Homological Algebra is at the root of modern techniques in many areas, including

commutative algebra and algebraic geometry. While classical homological algebra can

be viewed as based on projective, injective, and flat modules, Gorenstein homological

algebra is its relative version that uses Gorenstein projective, Gorenstein injective,

and Gorenstein flat modules.

The methods of Gorenstein homological algebra play a part in commutative and

non-commutative algebra, in algebraic geometry, and in triangulated category theory.

It also has applications to mathematical physics and to knot theory.

There is an active program in Gorenstein homological algebra. It is partly mo-

tivated by H. Holm’s metatheorem, that states “Every result in classical homological

algebra has a counterpart in Gorenstein homological algebra”.

We support this statement by proving the Gorenstein counterpart of a famous

result of Gruson, Jensen, and Raynaud. They showed that over commutative Noethe-

rian rings of finite Krull dimension, every flat module has finite projective dimension.

We show that over commutative Noetherian rings of finite Krull dimension, every

Gorenstein flat module has finite Gorenstein projective dimension.

Using this result, we prove the following: Let R be a commutative Noetherian

ring of finite Krull dimension. If M is a module over R, then M having finite Goren-

stein flat dimension is equivalent to M having finite Gorenstein projective dimension.

Previously the result was only known for a more restrictive class of rings, that of

commutative, noetherian rings with dualizing complexes. We note that throughout
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this thesis we adopt and state many well-known definitions and propositions from [3].
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CHAPTER 2

PRELIMINARIES

2.1 Projective, Injective, and Flat Modules

The idea of a module over a ring is a generalization of the notion of a vector space.

When the ring is a field the axioms for a module are precisely the same as those for a

vector space. Since we will mainly consider different types of modules, we recall the

following definition for a module M over a ring R.

Definition 2.1.1

Let R be a ring (not necessarily commutative nor with 1). A left R-module or a

left module over R is a set M together with

1. a binary operation + on M under which M is an abelian group, and

2. an action of R on M (that is, a map R ×M → M) denoted by rm, such

that for all m,n ∈M and for all r, s ∈ R

(a) (r + s)m = rm+ sm,

(b) (rs)m = r(sm), and

(c) r(m+ n) = rm+ rn.

If the ring R has a 1 we impose the additional axiom,

(d) 1m = m.

If (rs)m = r(sm) is replaced by (sr)m = r(sm), then M is said the be a right

R-module, and we denote the image of (r, x) by xr and so (sr)m = r(sm) becomes

(sr)m = (ms)r. For the sake of notation, we will denote a left R-module M by RM
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and similarly denote a right R-module N by NR. If the ring R is commutative and M

is a left R-module, then M is also a right R-module. If R is not commutative, Axiom

2(b) in Definition 2.1.1 will not hold in general. So not every left R-module is also

a right R-module. For the most part we will assume the ring R to be commutative

and with 1, unless otherwise stated.

Definition 2.1.2

If M and N are R-modules, the set of all the R-homomorphisms from M to N

will be denoted by HomR(M,N).

Note that HomR(M,N) is an abelian group under addition. Any R-module

homomorphism is a homomorphism of the additive groups, but not every group ho-

momorphism need be a module homomorphism.

Proposition 2.1.3

If M is an R-module, then the map ϕ : HomR(R,M) → M defined by ϕ(f) =

f(1) is an R-isomorphism.

Proof:

Let f ∈ HomR(R,M). If f(1) = 0,

f(r) = f(r · 1) = r · f(1) = 0, ∀r ∈ R.

If f is not the zero function, the ϕ(f) = f(1) 6= 0.

Now we claim ϕ is a bijectiveR-module homomorphism. For all f, g ∈ HomR(R,M)



5

and all r ∈ R, ϕ is well-defined and

ϕ(f + rg) = (f + rg)(1)

= f(1) + rg(1)

= f(1) + (rg)(1)

= f(1) + r(g(1))

= ϕ(f) + rϕ(g)

So ϕ is an R-module homomorphism. Next suppose that ϕ(f) = ϕ(g) for any

f, g ∈ HomR(R,M). Then

ϕ(f) = ϕ(g) =⇒ f(1) = g(1)

=⇒ f(1)− g(1) = 0

=⇒ (f − g)(1) = 0

=⇒ (f − g)(r) = r(f − g) = 0

Hence f − g is the zero function. Thus f = g, implying that ϕ is injective. Now let

m ∈M . Let f : R→M be defined by f(r) = rm. Then

f ∈ HomR(R,M) and m = f(1).

From the previous proposition, we see that HomR(R,M) ' M . In particu-

lar, HomZ(Z,Z/nZ) ' Z/nZ. We also have that HomZ(Z/nZ,Z/nZ) ' Z/nZ and

HomZ(Z/nZ,Z) = 0.

Definition 2.1.4

A left R-module M is finitely generated if M is generated by a finite set.
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For example, a vector space V over a field K is a finitely generated K-module if

and only if V is finite-dimensional.

For any ring R with 1, the (left) R-module R is finitely generated; it is generated

by 1.

2.2 Categories and Functors

Definition 2.2.1

A category C consists of the following.

1. A class of objects, denoted Ob(C).

2. For any pair A,B ∈ Ob(C), a set denoted HomC(A,B) with the prop-

erty that HomC(A,B) ∩ HomC(A′, B′) = ∅ whenever (A,B) 6= (A′, B′).

HomC(A,B) is called the set of morphisms from A to B.

3. A composition HomC(B,C)× HomC(A,B)→ HomC(A,C) for all objects

A,B,C ∈ Ob(C), denoted (g, f) 7→ gf (or g ◦ f), satisfying the following

properties:

(i) for each A ∈ Ob(C), there is an identity morphism idA ∈ HomC(A,A)

such that f ◦ idA = idB ◦f = f for all f ∈ HomC(A,B),

(ii) h(gf) = (hg)f for all f ∈ HomC(A,B), g ∈ HomC(B,C), and h ∈

HomC(C,D).

Example of categories include sets, abelian groups, topological spaces, and left R-

modules. Their morphisms are functions, group homomorphisms, continuous maps,
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and R-homomorphisms, respectively, with usual composition. We will denote the

category of all left R-modules and the category of abelian groups R Mod and Ab,

respectively.

An important notion is that of a functor, which is defined in terms of categories.

Definition 2.2.2

If C and D are categories, then we say that we have a functor F : C→ D if we

have

1. a function F : Ob(C)→ Ob(D)

2. functions F : HomC(A,B)→ HomD(F (A), F (B)) such that

(i) if f ∈ HomC(A,B), g ∈ HomC(B,C), then F (gf) = F (g)F (f), and

(ii) F (idA) = idF (A) for each A ∈ Ob(C).

If C is a category and A ∈ Ob(C), then the Hom functor TA : C→ Sets, usually

denoted Hom(A,−), is defined by

TA(B) = Hom(A,B) for all B ∈ Ob(C),

and if f : B → B′ in C, then TA(f) : Hom(A,B)→ Hom(A,B′) is defined by

TA(f) = h 7→ fh.

We call TA(f) = Hom(A, f) the induced map.
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We are mainly interested in the category R Mod. We will consider the Hom

functors

Hom(A,−) : R Mod→ Ab B 7→ Hom(A,B),

which associates an R-homomorphism f : B → B′ with Hom(A, f) : Hom(A,B) →

Hom(A,B′) defined by Hom(A, f)(h) = fh, and

Hom(−,M) : R Mod→ Ab B 7→ Hom(B,M),

which associates an R-homomorphism g : B → B′ with Hom(g,M) : Hom(B′,M)→

Hom(B,M) defined by Hom(g,M)(h) = hg.

Since, in a way, we think of modules as generalized vector spaces, we give the

following example to view functors in this context. Recall that a linear functional on

a vector space V over a field K is a linear transformation T : V → K. The dual space

of V is V ∗ = HomK(V,K). Now V ∗ is a K-module if we define af : V → K by

af : v 7→ a[f(v)]

for any f ∈ V ∗ and any a ∈ K. That is, V ∗ is a vector space over K. The dual space

functor is HomK(−, K).

Besides the Hom functors, another key ingredient in the definition of Gorenstein

projective modules is that of an exact complex. We recall first that a complex of

R-modules is a sequence of R-modules and R-homomorphisms

· · · −→Mi+1
fi+1−−→Mi

fi−→ · · ·

such that fifi+1 = 0 for each integer i. That is, Im fi+1 ⊆ Ker fi.
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Definition 2.2.3

A sequence

· · · −→M2 −→M1
f1−→M0

f0−→M−1
f−1−−→M−2 −→ · · · ,

with each Mi being an R-module and each fi an R-homomorphism, is said to be

exact at Mi if Im fi+1 = Ker fi. The sequence is said to be exact if it is exact at

each Mi. An exact sequence of the the form 0 −→ A
f−→ B

g−→ C −→ 0 is said

to be a short exact sequence.

For example, A sequence 0 −→ A
f−→ B of R-modules is exact if and only if f

in injective, and a sequence B
g−→ C −→ 0 is exact if and only if g is surjective.

A particular case of a short exact sequence is that of a split exact sequence. Since

we work with projective and injective modules, and both classes can be characterized

in terms of split exact sequences, we also recall the following definition.

Definition 2.2.4

The short exact sequence 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 of R-modules is said

to be split exact if Im f is a direct summand of M .

Remark. In the short exact sequence 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0, M ′ ' Im f .

So 0 −→M ′ f−→M
g−→M ′′ −→ 0 is split exact if and only if M 'M ′ ⊕M ′′.

The exact sequence notation is a convenient way to analyze the extent to which

the properties of M ′ and M ′′ determine the properties of M .

Remark. To say M ′ f−→ M
g−→ M ′′ is exact at M is the same as saying that the

sequence 0 −→ Im f −→M −→M
/

Ker g −→ 0 is a short exact sequence.
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For example, let A and C be R-modules. Then we can form their direct sum

B = A⊕ C. Then the sequence

0 −→ A
ι−→ A⊕ C π−→ C −→ 0

where ι(a) = (a, 0) and π(a, c) = c is a split exact sequence.

The following result characterizes short exact sequences that are split exact.

Proposition 2.2.5

Let 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 be an exact sequence of R-modules. Then

the following are equivalent.

1. The sequence is split exact.

2. There exists an R-homomorphism f ′ : M −→M ′ such that f ′ ◦ f = idM ′ .

3. There exists an R-homomorphism g′′ : M ′′ −→M ′ such that g ◦g′′ = idM ′′ .

Proof:

We will only show that (1.) is equivalent to (2.) and note that (1.) and (3.) are equiv-

alent by a similar argument.

(1.) =⇒ (2.)

Suppose the sequence 0 −→ M ′ f−→ M
g−→ M ′′ −→ 0 is split exact. Then

M = Im f ⊕G for some R-module G. Consider the sequence

0 −→ Im f
ι−→ Im f ⊕G −→M ′′ −→ 0

with ι(x) = (x, 0). Then there exists an R-homomorphism f ′ : M → Im f defined by
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f ′(x, y) = x. So for any x ∈ Im f ,

(f ′ ◦ ι)(x) = f ′(ι(x)) = f ′((x, 0)) = x.

Hence f ′ ◦ ι = idIm f . Since Im f 'M ′, f ′ ◦ f = idM ′ as desired.

(2.) =⇒ (1.)

Suppose there exists an R-homomorphism f ′ : M −→ M ′ such that f ′ ◦ f = idM ′

and define a map ϕ : M → M ′ ⊕M ′′ by ϕ(m) = (f ′(m), g(m)). Note that ϕ is an

R-homomorphism. Now suppose ϕ(m) = (0, 0) for any m ∈M . Then f ′(m) = 0 and

g(m) = 0. By having exactness at M ,

g(m) = 0 =⇒ m = f(m′)

for some m′ ∈ M ′. Thus 0 = f ′(m) = f ′(f(m′)) = m′ by assumption. Hence

m = f(m′) = f(0) = 0. Therefore Kerϕ = {0} implying that ϕ is injective.

To show that ϕ is surjective, let (m′,m′′) ∈M ′⊕M ′′. Since g is surjective, m′′ = g(m)

for some m ∈M . So,

m′′ = g(m) = g(m+ f(x))

for any x ∈M ′. To have ϕ(m+ f(x)) = (m′,m′′), we need x ∈M ′ such that

m′ = f ′(m+ f(x))

= f ′(m) + f ′(f(x))

= f ′(m) + x
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So choose x = m′ − f ′(m). Then,

ϕ(m+ f(x)) = (f ′(m+ f(x)), g(m+ f(x)))

= (f ′(m) + f ′(f(x)), g(m) + g(f(x)))

= (f ′(m) + x, g(m) + 0)

= (m′,m′′)

Thus ϕ is bijective, and hence Imϕ = M ′ ⊕M ′′, making the sequnce 0 −→ M ′ f−→

M
g−→M ′′ −→ 0 split exact.

We now look at what happens to an exact sequence after the Hom functor is

applied to a sequence of R-modules.

Proposition 2.2.6

The following statements hold.

1. If 0 −→ N ′
f−→ N

g−→ N ′′ is an exact sequence of R-modules, then for any

module A the sequence

0 −→ HomR(A,N ′)
Hom(A,f)−−−−−→ HomR(A,N)

Hom(A,g)−−−−−→ HomR(A,N ′′)

is exact.

2. If M ′ f−→ M
g−→ M ′′ −→ 0 is an exact sequence of R-modules, then for

any module A the sequence

0 −→ HomR(M ′′, A)
Hom(g,A)−−−−−→ HomR(M,A)

Hom(f,A)−−−−−→ HomR(M ′, A)

is also exact.
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Proof:

We only show the proof for (1.); a similar argument follows to show (2.) to be true.

Let h ∈ HomR(A,N ′) such that Hom(A, f)(h) = 0. Then fh = 0, and since f is

injective, h = 0. That is, Ker(Hom(A, f)) = {0}. Hence Hom(A, f) is injective.

Now let σ ∈ HomR(A,N ′). Since gf = 0,

(Hom(A, g) ◦ Hom(A, f))(σ) = gfσ = 0.

Hence Im(Hom(A, f)) ⊂ Ker(Hom(A, g)).

Let τ ∈ Ker(Hom(A, g)). Then Hom(A, g)(τ) = gτ = 0. So, Im τ ⊂ Ker g =

Im f . Note that f : N ′ → Im f is a bijective map. So there is a function f−1 : Im f →

N ′. Thus let σ : A→ N ′ be defined by σ = f−1τ . Then

Hom(A, f)(σ) = fσ = τ.

That is, τ ∈ Im(Hom(A, f)). Therefore Im(Hom(A, f)) = Ker(Hom(A, g)), which

implies exactness at HomR(A,N).

Notice that ifM ′ f−→M
g−→M ′′ −→ 0 is an exact sequence then HomR(A,M ′′) −→

HomR(A,M) −→ HomR(A,M ′) −→ 0 is not necessarily exact. For example, con-

sider the exact sequence 0 −→ Z ·n−→ Z π−→ Z
/
nZ −→ 0, with n ∈ Z, n ≥ 2 and π

being the canonical surjection. Applying the functor HomZ (Z/nZ,−) to this exact

sequence, we obtain the sequence 0 −→ 0 −→ 0 −→ Z
/
nZ −→ 0, which is not exact

at Z
/
nZ.
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2.3 Projective, Injective, and Flat Modules

We now introduce the class of projective modules. As already noted, together with

the injective and flat modules, projective modules are fundamental in classical homo-

logical algebra.

Definition 2.3.1

An R-module P is said to be projective if given an exact sequence A
π−→ B −→ 0

of R-modules and an R-homomorphism f : P → B, then there exists an R-

homomorphism µ : P → A such that f = π ◦ µ.

P

BA 0

f
µ

π

This definition is equivalent to saying that P is a projective module if given any

exact sequence A −→ B −→ 0, then the sequence Hom(P,A) −→ Hom(P,B) −→ 0

is also exact.

For the category of modules there is another description of projective modules

involving free modules.

Definition 2.3.2

An R-module F is said to be free if it is a direct sum of copies of R.
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The connection between free modules and projective modules is given in the fol-

lowing theorem.

Proposition 2.3.3

The following are equivalent for an R-module P .

1. P is projective.

2. Hom(P,−) is right exact.

3. Every exact sequence 0 −→ A −→ B −→ P −→ 0 is split exact.

4. P is a direct summand of a free R-module.

Proof:

See the proof of Theorem 2.1.2 on page 40 of [3].

Proposition 2.3.4

Every free R-module is projective.

Proof:

Immediate from the proof of Proposition 2.3.3

For example R and Rn are projective R-modules because they can be written

as a direct sum of copies of R. However not every projective module is free. For

example, Z regarded as a module over R = Z⊕Z is projective (as a direct summand

of R), but it is too “small” to be a free R-module.
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By [3], Proposition 1.2.2, for any R-module M there exists a surjective R-

homomorphism P0 −→M with P0 a free module.

Using this we can construct for each RM an exact sequence

· · · −→ P1 −→ P0 −→M −→ 0

with each Pi projective. Such a sequence is called a projective resolution of M .

Using projective resolutions, one can find the Ext modules. Let · · · −→ P1 −→

P0 −→ M −→ 0 be a projective resolution of an R-module M . Consider the deleted

projective resolution

· · · −→ P2
f2−→ P1

f1−→ P0 −→ 0.

By applying the functor Hom(−, A) to this deleted resolution, we obtain the following

complex:

0 −→ HomR(P0, A)
α1−→ HomR(P1, A)

α2−→ HomR(P2, A)
α3−→ · · · .

We note that this complex is not, in general, an exact one. The module ExtiR(M,A)

is by definition the ith homology module of this complex; that is,

ExtiR(M,A) = Kerαi+1

/
Imαi

for any R-module A. Note that Ext0R(M,A) = Kerα1 ' HomR(M,A) (by Proposition

2.2.6). That is, ExtiR(M,A) is a measure of how close this complex is to being exact.
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Theorem 2.3.5

Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be a short exact sequence of R-modules.

Then there is a long exact sequence of abelian groups

0 −→ Hom(M ′′, A) −→ Hom(M,A) −→ Hom(M ′, A)

−→ Ext1(M ′′, A) −→ Ext1(M,A) −→ Ext1(M ′, A)

−→ Ext2(M ′′, A) −→ Ext2(M,A) −→ Ext2(M ′, A)

−→ Ext3(M ′′, A) −→ · · ·

for any R-module A.

Proof:

See the proof of Theorem 8 on page 784 of [2].

Proposition 2.3.6

If P is a projective module, then ExtiR(P,A) = 0 for all R-modules A and for all

i ≥ 1.

Proof:

In general a projective resolution is infinite in length but if P is projective , then P

has a simple projective resoultion:

0 −→ P
idP−−→ P −→ 0

Then the deleted projective resolution would just be 0 −→ P −→ 0.

The converse is also true (by [3], Proposition 8.4.3). So we have the following

characterization of projective modules.
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Proposition 2.3.7

An R-module P is projective if and only if ExtiR(P,A) = 0 for all R-modules A

and for all i ≥ 1.

The dual notion of a projective module is the injective module.

Definition 2.3.8

An R-module E is said to be injective if given R-modules A ⊂ B and a homo-

morphism f : A → E, then there exits a homomorphism g : B → E such that

g
∣∣
A

= f .

A

E

0 B

f
g

Remark. By [3], Theorem 3.1.14, every R-module can be embedded in an injective

module. Consequently every R-module N has an exact sequence 0 −→ N −→ E0 −→

E1 −→ · · · with each Ei injective. This sequence is called an injective resolution of

N .

Over Principal Ideal Domains, there is another description of injective modules.

The following Theorem gives a necessary and sufficient condition for when an R-

module is injective. Since the result uses Baer’s Criterion, we first recall the following

theorem.
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Theorem 2.3.9 (Baer’s Criterion)

An R-module E is injective if and only if for all ideals I of R, every homomor-

phism f : I → E can be extended to R.

Proof:

See the proof of Theorem 3.1.3 on page 69 of [3].

Definition 2.3.10

A left R-module M is said to be divisible if rM = M for all nonzero r ∈ R.

Proposition 2.3.11

Let R be a Principal Ideal Domain. Then an R-module M is injective if and

only if it is divisible.

Proof:

(=⇒)

Let m ∈ M and r ∈ R be a nonzero divisor. Define a map f : 〈r〉 → M by

f(sr) = sm. Extend the map f to g : R→M such that

m = f(r) = g(r) = rg(1).

Thus M is divisible.

(⇐=)

Let I be an ideal of R and f : I → M be an R-homomorphism. Extend f to R for

I 6= 0. But R is a Principal Ideal Domain, and so I = 〈s〉 for some s ∈ R − {0}. If

M is divisible, then there exists m ∈ M such that f(s) = sm. Define g : R→ M by

g(r) = rm. Then g
∣∣
I

= f for if r′ ∈ R then

g(r′s) = r′sm = r′f(s) = f(r′s).
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As an example, Q is a divisible Z-module. Thus by the previous Theorem, Q

is an injective Z-module. On the other hand since Z is not divisible, Z is not an

injective Z-module.

There is another important class of modules — flat modules. These are defined

not in terms of Hom as projective and injective modules are, but defined using the

tensor product.

Definition 2.3.12

Let M be a right R-module, N a right R-module, and G an abelian group. Then

a map σ : M ×N → G is said to be bilinear if it is biadditive, that is,

σ(x+ x′, y) = σ(x, y) + σ(x′, y),

σ(x, y + y′) = σ(x, y) + σ(x, y′),

σ(xr, y) = σ(x, ry)

for all x, x′ ∈M, y, y′ ∈ N, r ∈ R.

Definition 2.3.13

The map σ : M × N → G is said to be a universal balanced map if for every

abelian group G′ and bilinear map σ′ : M ×N → G′, there exists a unique map

h : G→ G′ such that σ′ = hσ.

Definition 2.3.14

A tensor product of a right R-module M and left R-module N is an abelian group

T together with a universal balanced map σ : M ×N → T
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If σ : M ×N → T and σ′ : M ×N → T ′ are both universal balanced maps, then

the following diagram commutes.

T ′

T

T

M ×N σ′

σ

σ

h

f

Notice that fh = idT and hf = idT ′ , which implies h is an isomorphism. Thus

tensor products are unique up to isomorphism. The tensor product of MR and RN is

denoted by M⊗RN , and it is known that the tensor product exists. (See for example

[3], Theorem 1.2.19, for a construction of the tensor product.)

Definition 2.3.15

An R-module F is said to be flat if given any exact sequence 0 −→ A −→ B of

right R-modules, the sequence 0 −→ A⊗R F −→ B ⊗R F is exact.

Proposition 2.3.16

Every projective module is flat.

Proof:

Suppose that P is a projective module. Then P is a direct summand of a free module

F , say F = P ⊕ P ′. If the map ψ : M ′ → M of R-modules M ′ and M is injective
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then 1⊗ ψ : F ⊗RM ′ → F ⊗RM is also injective. Hence

1⊗ ψ : (P ⊗RM ′)⊕ (P ′ ⊗RM ′)→ (P ⊗RM)⊕ (P ′ ⊗RM)

is injective. Thus 1⊗ ψ : (P ⊗RM ′)→ (P ⊗RM) is injective.

The Z-module Q is a flat Z-module. To see this is in fact true, suppose ψ : L→

M is an injective map of Z-modules. Then (1/d) ⊗ l ∈ Q ⊗Z L for some nonzero

integer d and some l ∈ L. If (1/d)⊗ l ∈ Ker(1⊗ψ) then (1/d)⊗ψ(l) is 0 in Q⊗ZM .

This means cψ(l) = 0 in M for some nonzero integer c. Hence ψ(cl) = 0. By the

injectivity of ψ, we have cl = 0 in L. This implies

(1/d)⊗ l = (1/cd)⊗ (cl) = 0

in L. Thus 1⊗ ψ is injective.

As an example, Z is flat because it is a projective Z-module. The arbitrary

direct sum of flat modules is flat. In particular, Q⊕Z is flat. This module is neither

projective nor injective because Q is not projective and Z is not injective.

An exact sequence · · · −→ F1 −→ F0 −→ M −→ 0 with each Fi flat is called a

flat resolution of M .

Remark. Since every R-module M has a projective resolution and every projective

module is flat (by Proposition 2.3.16), it follows that every module has a flat resolu-

tion.

Using flat resolutions, one can define the Tor modules:

Let · · · −→ F1 −→ F0 −→ M −→ 0 be a flat resolution of a left R-module M and
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D be a right R-module. Then by applying the functor D ⊗ − to the deleted flat

resolution, we obtain the complex

· · · −→ D ⊗ F2
β2−→ D ⊗ F1

β1−→ D ⊗ F0 −→ 0.

The group TorRi (D,M) is called the ith homology group and is computed by

TorRi (D,M) = Ker βi
/

Im βi+1

for all i ≥ 1, and TorR0 (D,M) = (D ⊗ F0)
/

Im β1 .

The homological dimensions — projective, injective, and flat — are defined in

terms of resolutions (projective, injective, and flat, respectively).

Definition 2.3.17

The minimal length of a finite projective resolution 0 −→ Pn −→ Pn−1 −→

· · · −→ P1 −→ P0 −→ M −→ 0 of an R-module M is called the projective di-

mension of M , denoted pdRM . If M does not admit a finite projective resolution

then the projective dimension is infinite.

The injective dimension and flat dimension of an R-module are defined similarly

using injective and flat resolutions, respectively. They are denoted as inj dimM and

flat dimM , respectively.

2.4 Noetherian Rings

Since our main result concerns Noetherian rings, we recall some basic facts about this

class of rings.
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Definition 2.4.1

1. An R-module M is said to be Noetherian if every ascending chain of sub-

modules of M terminates.

2. A ring R is said to be Noetherian if it is Noetherian as a left module over

itself.

When R is considered as a left module over itself, its R-submodules are precisely

its ideals. Thus every Principal Ideal Domain is Noetherian.

Our main result concerns commutative Noetherian rings of finite Krull dimen-

sion. For this reason we also recall the following definition.

Definition 2.4.2

A prime ideal P of a ring R is an ideal such that P 6= R and if ab ∈ P , then

either a ∈ P or b ∈ P for all a, b ∈ R.

Definition 2.4.3

The Krull dimension of R, denoted dimR, is the supremum of the number of

strict inclusions in a chain of prime ideals.

A field has Krull dimension 0, and a Principal Ideal Domain that is not a field

has Krull dimension 1. For example, Z and k[x], where k is a field, both have Krull

dimension 1 because they are both Principal Ideal Domains.

Now we introduce a theorem by Gruson, Jensen, and Raynaud. We will use this

theorem as the foundation for our main result, which is the Gorenstein counterpart

of this famous theorem.
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Theorem 2.4.4 ([7], Gruson-Jensen-Raynaud)

Over commutative, Noetherian rings of finite Krull dimension every flat module

has finite projective dimension.

2.5 Gorenstein Rings

The property of being Gorenstein imposes nice properties on modules over such rings.

Definition 2.5.1

A ring R is said to be an Iwanaga-Gorenstein ring (or just a Gorenstein ring)

if R is both left and right Noetherian and if R has finite self-injective dimension

both as a left and as a right R-module.

It is known (see [3], Proposition 9.1.8 for instance) that if the ring R is both left

and right Noetherian and if R has finite injective dimension both as a left R-module

and as a right R-module then the two injective dimensions coincide (inj dim RR =

inj dimRR). Of course if R is a commutative ring then inj dimRR = inj dimRR to

begin with and Definition 2.5.1 above simply requires this dimension to be finite.

Proposition 2.5.2 ([3], Proposition 9.1.2 )

If R is left (right) Noetherian and the left (right) self-injective dimension of

R is n < ∞, then inj dimF ≤ n for every flat left (right) R-module. And if

flat dimM <∞ for a left (right) R-module M , then proj dimM ≤ n.
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CHAPTER 3

GORENSTEIN PROJECTIVE AND GORENSTEIN FLAT MODULES

3.1 Gorenstein Projective Modules

In 1966 Auslander defined the notion of the G-dimension of a finitely generated

module over a commutative Noetherian local ring. In 1969 Auslander and Bridger

extended the definition to two-sided Noetherian rings. Calling the modules of G-

dimension zero Gorenstein projective modules, in 1995 Enochs and Jenda defined the

Gorenstein projective modules (whether finitely generated or not) and Gorenstein in-

jective modules over arbitrary rings. These concepts are generalizations of projective

and injective. Avramov, Buchweitz, Martsinkovsky, and Reiten proved that if the ring

R is both right and left Noetherian and G is a finite Gorenstein projective module,

then Enochs’ and Jenda’s definition agrees with that of Auslander and Bridger.

We start by recalling the definition of Gorenstein projective modules.

Definition 3.1.1

A module M is said to be Gorenstein projective if there is a Hom(−,Proj) exact

exact sequence

· · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · ·

of projective modules such that M = Ker(P 0 → P 1).

Examples:

1. Every projective module is Gorenstein projective.

2. The converse however is not true: there exist Gorenstein projective modules
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that are not projective. For example, over the ring Z
/

4Z the module Z
/

2Z is

Gorenstein projective but it is not projective.

Remark. The complex above is a complete projective resolution of M . We note that

if M is Gorenstein projective, then Exti(M,P ) = 0 for all i ≥ 1 and all projective

R-modules P and so by induction Exti(M,L) = 0 for all i ≥ 1 and all R-modules L

of finite projective dimension. In particular, every left projective resolution of M is

Hom(−,Proj) exact.

Proposition 3.1.2 ([3], Proposition 10.2.3 )

The projective dimension of a Gorenstein projective module is either zero or

infinite.

Theorem 3.1.3

The following are equivalent for an R-module M .

1. M is Gorenstein projective.

2. There is an exact and Hom(−,Proj) exact sequence

0 −→M −→ P 0 −→ P 1 −→ · · ·

with each P i projective, and Exti(M,P ) = 0 of all i ≥ 1 and for any

projective module P .

Proof:

(1.) =⇒ (2.)

By definition, there is an exact sequence · · · −→ P1 −→ P0
f0−→ P 0 −→ P 1 −→

P 2 −→ · · · of projective R-modules with M = Im f0. In particular, this means that
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M has an exact sequence 0 −→ M −→ P 0 −→ P 1 −→ P 2 −→ · · · with each P i

projective. The sequence · · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ P 2 −→ · · · is also

Hom(−,Proj) exact. So for any projective module P , we have an exact sequence

· · · −→ Hom(P 1, P ) −→ Hom(P 0, P )
α−→ Hom(P0, P )

β−→ Hom(P1, P ) −→ · · · .

Thus Imα = Ker β. But P1 −→ P0 −→ M −→ 0 is exact, and Hom(−,Proj) is left

exact. So by Proposition 2.2.6 the sequence 0 −→ Hom(M,P ) −→ Hom(P0, P )
β−→

Hom(P1, P ) is exact. This means that Ker β ' Hom(M,P ). Thus

· · · −→ Hom(P 1, P ) −→ Hom(P 0, P ) −→ Hom(M,P ) −→ 0

is exact for every projective module P .

(2.) =⇒ (1.)

Let · · · −→ P1 −→ P0 −→ M −→ 0 be any projective resolution of M . Then

· · · −→ P1 −→ P0 −→ P 0 −→ P 1 −→ · · · is an exact sequence of projective modules.

Let K0 = Ker(P0 → M). The exact sequence 0 −→ K0 −→ P0 −→ M −→ 0

gives that for every module P , we have a long exact sequence

0 −→ Hom(M,P ) −→ Hom(P0, P ) −→ Hom(K0, P )

−→ Ext1(M,P ) −→ Ext1(P0, P ) −→ Ext1(K0, P )

−→ Ext2(M,P ) −→ Ext2(P0, P ) −→ Ext2(K0, P )

−→ Ext3(M,P ) −→ · · ·

Since P0 is a projective module, Exti(P0, P ) = 0 for any i ≥ 1 and for any module P .

If P is a projective module, then by hypothesis, we also have that Exti(M,P ) = 0

for all i ≥ 1. The exact sequence given above gives that Exti(K0, P ) = 0 for all i ≥ 1

and for any projective module P .
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Similarly, Exti(Kj, P ) = 0 for any i ≥ 1 and any projective module P , where

Kj = Ker(Pj → Pj−1).

In particular, for each j there is an exact sequence 0 −→ Kj −→ Pj −→ Kj−1 −→

0, and this gives a long exact sequence

0 −→ Hom(Kj−1, P ) −→ Hom(Pj, P ) −→ Hom(Kj, P ) −→ Ext1(Kj−1, P ) = 0

provided that P is projective. So each sequence 0 −→ Hom(Kj−1, P ) −→ Hom(Pj, P ) −→

Hom(Kj, P ) −→ 0 is exact. Pasting them together, we obtain an exact sequence

0 −→ Hom(M,P ) −→ Hom(P0, P ) −→ Hom(P1, P ) −→ · · · .

By hypothesis, we also have the exact sequence

· · · −→ Hom(P 1, P ) −→ Hom(P 0, P ) −→ Hom(M,P ) −→ 0.

Splicing them together, we obtain the exact sequence

· · · −→ Hom(P 1, P ) −→ Hom(P 0, P ) −→ Hom(P0, P ) −→ Hom(P1, P ) −→ · · · .

Thus, M is Gorenstein projective.

Proposition 3.1.4 ([3], Theorem 10.2.8 )

Let R be a Noetherian ring and 0 −→ M ′ −→ M −→ M ′′ −→ 0 be an

exact sequence of finitely generated right R-modules. If M ′, M ′′ are Gorenstein

projective, then so is M . If M , M ′′ are Gorenstein projective, then so is M ′. If

M , M ′ are Gorenstein projective, then M ′′ is Gorenstein projective if and only

if Ext1(M ′′, P ) = 0 for all finitely generated projective R-modules P .
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Definition 3.1.5

The minimal length of a finite exact sequence of an R-module M

0 −→ Gn −→ Gn−1 −→ · · · −→ G1 −→ G0 −→M −→ 0

with each Gj being Gorenstein projective is called the Gorenstein projective di-

mension of M , denoted GpdRM .

Proposition 3.1.6 ([6], Theorem 2.24 )

If M has GpdRM = n <∞, then for any projective resolution of M

0 −→ G −→ Pn−1 −→ · · · −→ P0 −→M −→ 0

G is Gorenstein projective.

Proposition 3.1.7 ([6], Proposition 2.7 )

Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be a short exact sequence. If two of the

modules M ′, M , or M ′′ have finite Gorenstein projective dimension, then so does

the third.

3.2 Gorenstein Flat Modules

The Gorenstein flat modules were introduced by Enochs, Jenda, and Torrecillas in

[4] as a generalization of flat modules.

Definition 3.2.1

A module M is said to be Gorenstein flat if there exists an Inj ⊗− exact exact

sequence

· · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · ·
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of flat modules such that M = Ker(F 0 → F 1).

It follows from the previous definition that for an injectiveR-module E, Tori(E,M) =

0 for all i ≥ 1.

Proposition 3.2.2 ([3], Proposition 10.3.2 )

Let R be a Noetherian ring. Then every finitely generated Gorenstein projective

R-module is Gorenstein flat.

Proposition 3.2.3 ([3], Lemma 10.3.5 )

Let R be right Noetherian, M be an R-module, and 0 −→ M −→ F 0 −→

F 1 −→ · · · be a right F lat-resolution. Then Tori(A,M) = 0 for all i ≥ 1 and all

right R-modules A of finite injective dimension if and only if the sequence

· · · −→ A⊗ F1 −→ A⊗ F0 −→ A⊗ F 0 −→ A⊗ F 1 −→ · · ·

is exact, where · · · −→ F1 −→ F0 −→M −→ 0 is any flat resolution of M .

Proposition 3.2.4 ([3], Theorem 10.3.14 )

Suppose R is Noetherian and 0 −→ M ′ −→ M −→ M ′′ −→ 0 is an exact

sequence of R-modules. If M ′ and M ′′ are Gorenstein flat, then so is M . If M

and M ′′ are Gorenstein flat, then so is M ′. If M ′ and M are Gorenstein flat,

then M ′′ is Gorenstein flat if and only if 0 −→ E ⊗M ′ −→ E ⊗M is exact for

any injective module E.

Definition 3.2.5

The minimal length of a finite exact sequence of an R-module M

0 −→ Gn −→ Gn−1 −→ · · · −→ G1 −→ G0 −→M −→ 0

with each Gj being Gorenstein flat is called the Gorenstein flat dimension of M ,

denoted GfdRM .
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CHAPTER 4

MAIN RESULT

Let R be a commutative Noetherian ring of finite Krull dimension. It is known by

Theorem 2.4.4 (Gruson-Jensen-Raynaud in [7]) that over such rings, every flat module

has finite projective dimension.

Garcia-Rozas proved the corresponding result for complexes: Over a commuta-

tive Noetherian ring of finite Krull dimension, every flat complex F has finite projec-

tive dimension.

More precisely, if d is the Krull dimension of the ring, then for any flat R-module

F and any exact sequence

0 −→ K −→ Pd−1 −→ · · · −→ P1 −→ P0 −→ F −→ 0

with each Pi projective, then K is a projective module (so the projective dimension

of any flat R-module is at most d).

We prove the Gorenstein counterpart of this result. Since our proof uses some

notions of homological algebra in the category of complexes, we start by recalling

some necessary definitions. They are from [5].

We recall that a complex of R-modules is a sequence of R-modules and R-

homomorphisms

C = · · · −→Mi+1
fi+1−−→Mi

fi−→ · · ·

such that fifi+1 = 0 for each integer i.

Given a complex C, we denote by Zj(C) its jth cycle; that is, Zj(C) = Ker(fj).
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If h : C ′ → C and g : C → C ′′ are maps of complexes now, we say that the sequence

C ′
h−→ C

g−→ C ′′

is exact if for each n the sequence of modules

C ′n
hn−→ Cn

gn−→ C ′′n

is exact.

The projective (injective, flat) complexes are defined in a similar manner with

the projective (injective, flat) modules. For example a complex P is projective if

for every exact sequence of complexes A −→ B −→ 0, the sequence (obtained by

applying the functor Hom(P,−)) Hom(P,A) −→ Hom(P,B) −→ 0 is still exact.

It is known (see [5] for instance) that a complex P is projective if and only if

the complex is exact and Zn(P ) is a projective module for each integer n. There is a

similar result for flat complexes: a complex F is flat if and only if it is exact and for

each integer n, the module Zn(F ) is flat.

Theorem 4.0.1

Let R be a commutative Noetherian ring of finite Krull dimension. Then every

Gorenstein flat R-module has finite Gorenstein projective dimension.

Proof:

Let M be a Gorenstein flat module. Then there is an exact and Inj ⊗ − exact

sequence of flat modules

F = · · · −→ F1
f1−→ F0

f0−→ F−1 −→ · · ·

such that M = Ker f0.

Let 0 −→ K0 −→ P0 −→ F −→ 0 be an exact sequence of complexes such that P0 is
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projective. Then K0 is also an exact complex. And for each j ∈ Z we have an exact

sequence of modules

0 −→ Zj(K0) −→ Zj(P0) −→ Zj(F ) −→ 0

where Zj denotes the jth cycle of F (i.e. the module Ker fj) and similarly Zj(K0)

and Zj(P0) stand for the jth cycle of K0 and P0, respectively.

Since Zj(P0) is projective and Zj(F ) is Gorenstein flat, and the ring is Noethe-

rian, Zj(K0) is Gorenstein flat for each j. Thus K0 is also an exact and Inj ⊗ −

exact complex of flat modules.

We continue this way. Let d = dimR (the Krull dimension). After d steps we

have an exact sequence

0 −→ K −→ Pd−1 −→ Pd−2 −→ · · · −→ P1 −→ P0 −→ F −→ 0

with each Pj being a projective complex and with K an exact and Inj ⊗ − exact

complex of flat modules.

This means that for each j there is an exact sequence

0 −→ Kj −→ Pd−1,j −→ · · · −→ P0,j −→ Fj −→ 0.

Using Gruson, Jensen, and Raynaud’s result and [7], we have pdR Fj ≤ d. Hence Kj

must be projective for each j. But then K is an exact complex of projective modules

that is Inj ⊗ − exact. It is known that such a complex is totally acyclic (i.e. all

cycles Zj(K) are Gorenstein projective modules).

Since 0 −→ K −→ Pd−1 −→ Pd−2 −→ · · · −→ P1 −→ P0 −→ F −→ 0 is

an exact sequence of exact complexes, for each j ∈ Z we have an exact sequence of
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modules

0 −→ Zj(K) −→ Zj(Pd−1) −→ · · · −→ Zj(P1) −→ Zj(P0) −→ Zj(F ) −→ 0

with each Zj(Pl) projective and with Zj(K) Gorenstein projective. This means that

each Zj(F ) has finite Gorenstein projective dimension less than or equal to d.

In particular, GpdRM ≤ d.

We use Theorem 4.0.1 to prove that the following result holds in a more general

setting.

Theorem 4.0.2 ([1], Theorem 1 )

If R is a commutative Noetherian ring with a dualizing complex, then the

following are equivalent for an R-module M .

1. M has finite Gorenstein projective dimension, GpdRM <∞;

2. M has finite Gorenstein flat dimension, GfdRM <∞.

In our main result, we drop the dualizing complex condition on the ring in favor

of having finite Krull dimension. As one can see, the definition of a dualizing complex

is very technical.

Definition 4.0.3

Let S and R be rings. If S is left Noetherian and R is right Noetherian, we refer

to the ordered pair 〈S,R〉 as a Noetherian pair of rings. A dualizing complex

for a Noetherian pair of rings 〈S,R〉 is a complex SDR of bimodules meeting the
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requirements:

1. The homology of D is bounded and degreewise finitely generated over S

and over Ropp.

2. There exists a quasi-isomorphism of complexes of bimodules, SPR
'−→ SDR,

where SPR is right-bounded and consists of modules projective over both

S and Ropp.

3. There exists a quasi-isomorphism of complexes of bimodules, SDR
'−→ SIR,

where SIR is bounded and consists of modules injective over both S and

Ropp.

4. The homothety morphisms χ̀
〈S,R〉
D : SSS −→ R HomRopp(SDR, SDR) and

χ́
〈S,R〉
D : RRR −→ R HomS(SDR, SDR)

are bijective in homology.

We extend Christensen, Fraukild, and Holm’s result to commutative Noetherian

rings of finite Krull dimension.

Our proof uses Theorem 4.0.1, together with the following fact:

Proposition 4.0.4 ([6], Proposition 3.4 )

If R is a commutative Noetherian ring of finite Krull dimension then every

Gorenstein projective R-module is also Gorenstein flat.

We can now prove the following theorem.

Theorem 4.0.5 (Main Theorem)

Let R be a commutative noetherian ring of finite Krull dimension. The following

are equivalent for a module M over R.
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1. M has finite Gorenstein projective dimension;

2. M has finite Gorenstein flat dimension.

Proof:

(1.) =⇒ (2.)

Since GpdRM <∞, there is an exact sequence

0 −→ Gl −→ Gl−1 −→ · · · −→ G1 −→ G0 −→M −→ 0

with Gj being Gorenstein projective for all j ∈ {0, 1, . . . , l}. Since every Gorenstein

projective module is Gorenstein flat, it follows that M has finite Gorenstein flat di-

mension.

(2.) =⇒ (1.)

There exists an exact sequence

0 −→ Fk
fk−→ Fk−1

fk−1−−→ · · · f2−→ F1
f1−→ F0

f0−→M −→ 0

with each Fj Gorenstein flat.

Let Vk = Im fk+1. We have an exact sequence

0 −→ Fk −→ Fk−1
fk−1−−→ Vk−2 −→ 0

with both Fk and Fk−1 of finite Gorenstein projective dimension. It follows that Vk−2

also has finite Gorenstein projective dimension.

Then we have an exact sequence

0 −→ Vk−2 −→ Fk−2
fk−2−−→ Vk−3 −→ 0
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with GpdR Vk−2 <∞ and GpdR Fk−2 <∞. It follows that GpdR Vk−3 <∞.

Continuing, we obtain that GpdV0 < ∞ with V0 = Im f1. Then the exact

sequence

0 −→ V0 −→ F0
f0−→M −→ 0

with GpdR V0 <∞ and GpdR F0 <∞ gives GpdRM <∞.
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