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MONITORING FOR A SHIFT IN A PROCESS COVARIANCE

MATRIX USING THE GENERALIZED VARIANCE

by

KELLEN M. PARHAM

(Under the Direction of Dr. Charles W. Champ )

ABSTRACT

The commonly recommended charts for monitoring the mean vector are affected by a

shift in the covariance matrix. As in the univariate case, a chart for monitoring for a

change in the covariance matrix should be examined first before examining the chart

used to monitor for a change in the mean vector. One such chart is the one that plots

the generalized sample variance |S| verses the sample number t. We propose to study

charts based on the statistics V =
∣∣(n− 1) Σ−1

0 S
∣∣1/p and U = ln

(∣∣(n− 1) Σ−1
0 S
∣∣1/p),

where n is the sample size and Σ0 is the in-control value of the process covariance

matrix Σ. In particular, we will study the Shewhart V and U charts supplemented

with runs rules. Also, we examine the methods that are useful in studying the run

length properties of the cumulative sum (CUSUM) U charts. Further, we will study

the effect that estimating Σ0 has on the performance of these charts. Guidance will

be given for designing the Shewhart charts with runs rules with illustrative examples.

Key Words: Average run length, Cumulative sum charts, Independent samples,
Integral equations, Markov chain, Multivariate normal distribution, Shewhart
charts.

2009 Mathematics Subject Classification: 62H05, 62H17



MONITORING FOR A SHIFT IN A PROCESS COVARIANCE

MATRIX USING THE GENERALIZED VARIANCE

by

KELLEN M. PARHAM

B.S. in Mathematics

A Thesis Submitted to the Graduate Faculty of Georgia Southern University in

Partial Fulfillment of the Requirement for the Degree

MASTER OF SCIENCE

IN MATHEMATICS

STATESBORO, GEORGIA

2010



c©2010

Kellen M. Parham

All Rights Reserved

iii



MONITORING FOR A SHIFT IN A PROCESS COVARIANCE

MATRIX USING THE GENERALIZED VARIANCE

by

KELLEN M. PARHAM

Major Professor: Dr. Charles W. Champ

Committee: Dr. Broderick O. Oluyede

Dr. Patricia Humphrey

Electronic Version Approved:

May 2010

iv



ACKNOWLEDGMENTS

I would like to thank God for blessing me with the opportunity to pursue a higher

education and also for giving me the strength and courage needed for the completion

of this thesis. This has been a long and more than often tedious journey, but through

Him all things are possible. Further, I would like to thank my committee chair Dr.

Charles W. Champ along with my committee members Dr. Broderick Oluyede and

Dr. Patricia Humphrey for their hard work, patience, motivation, and inspiration.

I would like to thank Heather King and Fengjiao Hu for their technical assistance.

Last but not least, I would like to thank my parents, my extended family, and my

friends for their constant support. With love and appreciation, I am truly grateful

and proud of all that I have accomplished.

v



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 MODEL AND RELATED DISTRIBUTIONAL RESULTS . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Distributional Results . . . . . . . . . . . . . . . . . . . . . 9

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Shewhart ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p) Chart with Runs Rules . . . . . . 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Run Length Distribution . . . . . . . . . . . . . . . . . . . 30

3.3 Steady Run Length Distribution . . . . . . . . . . . . . . . 36

vi



3.4 Parameters Estimated Chart . . . . . . . . . . . . . . . . . 38

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 CUSUM ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p) CHART . . . . . . . . . . . . . . . 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Run Length Distribution . . . . . . . . . . . . . . . . . . . 44

4.3 Estimated Parameters and Steady-State Run Length
Distributions . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 AN EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 General Conclusions . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Areas for Further Research . . . . . . . . . . . . . . . . . . 57

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A First Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



LIST OF TABLES

Table Page

3.1 Runs Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Runs Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Percentage Points u1,n,1−Φ(c), λ=1 . . . . . . . . . . . . . . . . . . 27

3.4 Percentage Points u2,n,1−Φ(c), λ=1 . . . . . . . . . . . . . . . . . . 28

3.5 Percentage Points u3,n,1−Φ(c), λ=1 . . . . . . . . . . . . . . . . . . 29

3.6 Percentage Points u4,n,1−Φ(c), λ=1 . . . . . . . . . . . . . . . . . . 30

3.7 Run Length Parameters, p = 1,n = 6 . . . . . . . . . . . . . . . . 36

5.1 Example Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Phase II Values of U . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Runs Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Run Length Parameters, p = 2,n = 10 . . . . . . . . . . . . . . . . 55

A.1 Percentage Points (continued) u1,n,1−Φ(c), λ=1 . . . . . . . . . . . 61

viii



A.2 Percentage Points (continued) u2,n,1−Φ(c), λ=1 . . . . . . . . . . . 61

A.3 Percentage Points (continued) u3,n,1−Φ(c), λ=1 . . . . . . . . . . . 61

A.4 Percentage Points (continued) u4,n,1−Φ(c), λ=1 . . . . . . . . . . . 62

ix



LIST OF FIGURES

Figure Page

2.1 fW (w) = 1

Γ(n−i
2 )2(n−i)/2e−(ew−(n−i)w)/2

. . . . . . . . . . . . . . . . . 14

2.2 g (y |n, p) versus y . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 g (y |6, 3) versus y . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 f (u |1, 6, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Density Plots of the Distribution of U . . . . . . . . . . . . . . . . 49

5.1 Plot of Ut vs t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

x



CHAPTER 1

INTRODUCTION

Monitoring for a change in the mean of a multivariate quality measurement is an

important problem in various industrial settings. Control charts that have been de-

signed for this purpose are affected by a change in the mean vector of the distribution

of a multivariate quality measurement, but also they are affected by a change in

the covariance structure. Consequently, the practitioner is faced with the problem

of monitoring for a change in the covariance matrix. A variety of charts have been

proposed for this purpose.

One of the most commonly used charts for monitoring for a change in covariance

matrix Σ of a multivariate quality measurement X is a Shewhart chart based on

the sample generalized variance |S|, where S is the sample covariance matrix. One

method for selecting the lower (LCL) and upper (UCL) control limits for this chart

that is commonly recommended (see Montgomery (2001))is

LCL = |Σ0|
(
b1 − 3b

1/2
2

)
and UCL = |Σ0|

(
b1 + 3b

1/2
2

)
,

where Σ0 is the in-control value of Σ. The values b1 and b2 are discussed in the

next chapter. Montgomery and Wadsworth (1972) give a method for determining the

control limits using an asymptotic normal approximation of the distribution of |S|.

These control limits have the general form

LCL = |Σ0|
(
b1 − zτb1/2

2

)
and UCL = |Σ0|

(
b1 + zα−τb

1/2
2

)
,

where 0 ≤ τ ≤ α with τ commonly selected to be α/2.

Alt (1985) proposed a Shewhart type chart based on the statistic

Wt = −pn+ pn ln (n)− n ln
(∣∣(n− 1) Σ−1

0 St
∣∣)+ tr

(
(n− 1) Σ−1

0 St
)
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for monitoring for a change in Σ. The chart signals a potential out-of-control process

if Wt ≤ hL or Wt ≥ hU with hL < hU . He recommended using the asymptotic

upper control limit of χ2
p(p+1)/2,α. We point out here that there exist no proof in the

literature that any Phase II chart is equivalent to a (sequential) test of hypothesis.

The plotted statistic Wt is viewed here only as a chart statistic.

Healy (1987) proposed a multivariate CUSUM chart for detecting a change in

the covariance matrix from Σ0 to cΣ0 for c > 0. The multivariate CUSUM statistic

Ct is for this chart is

Ct = max

{
0, Qt−1 + ln

f (xt,1, . . . ,xt,n |µ0, cΣ0 )

f (xt,1, . . . ,xt,n |µ0,Σ0 )

}
for c > 0, where f (xt,1, . . . ,xt,n |µ,Σ) is the joint density of a random sample

Xt,1, . . . ,Xt,n from a multivariate normal distribution with mean vector µ and co-

variance matrix Σ. Using “rescaling,” one can express Ct as

Ct = max
{

0, Ct−1 +
∑n

j=1
(Xt,j − µ0)T Σ−1

0 (Xt,j, − µ0)− k
}

,

where k = pnc ln (c) / (c− 1) and 0 ≤ Q0 < h. The chart signals at the first sampling

stage in which Qt ≥ h ≥ 0 (h is the control limit). Crosier (1986) introduced a

multivariate CUSUM chart based on the statistics

Ct = max

{
0, Ct−1 +

√∑n

j=1
(Xt,j − µ0)T Σ−1

0 (Xt,j, − µ0)− k
}

with 0 ≤ C0 < h and without the restriction Healy (1987) placed on the chart

parameter k. The chart signals a potential change in Σ from Σ0 if Ct > h ≥ 0 (h is

the control limit). Note that one can obtain Shewhart versions of the charts proposed

by Healy (1987) and Crosier (1986) by selecting the control limits to be zero.

A multivariate exponentially weighted moving average (EWMA) chart based on
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the sequence of generalized sample variances would have the form

E0 = E (Y |Σ0 ) and Et = rYt + (1− r)Et−1

where Y = |S|. The chart signals if Et ≤ hL or Et ≥ hU . Bernard (2001) studied a

multivariate EWMA chart with

Yt =

 ln
(√
|Si|
)
, if p = 2;

ln (|Si|) , if p > 2.

Yeh, Lin, Zhou, and Venkataramani (2003) and Yeh, Huwang, and Wu (2004,2005)

proposed multivariate EWMA charts for monitoring process variability based on the

EWMA sequence of matrices

E0 = X1X
T
1 and Ei = rXiX

T
i + (1− r) Ei−1.

Observing that the expectation of Ei is the matrix of parameters Σ+µµT. Hence the

chart not only depends on a change in the covariance matrix Σ but also a change in the

mean vector. Champ and Jones-Farmer (2005) show that commonly recommended

charts for monitoring the mean vector are affected by shifts in both µ and Σ. This

suggest that only one of these charts is needed.

We begin by looking at our data model, the meaning of statistical process control,

sampling assumptions, and some distributional results. These concepts are discussed

in Chapter 2. In Chapter 3, the Shewhart chart based on a function of the |S|

supplemented with runs rules is discussed. A method is given for selecting the warning

and control limits for these charts. These limits depend on the number of quality

measurements taken on an item. Methods are discussed for determining the run

length distribution both when the process is in-control and when it is out-of-control

as discussed in Chapter 2. In the fourth chapter, we give the details of analytical
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methods that are useful for analyzing a cumulative sum (CUSUM) charts based on a

function of the sample generalized matrix. An example is given in Chapter 5.



CHAPTER 2

MODEL AND RELATED DISTRIBUTIONAL RESULTS

2.1 Introduction

A multivariate quality measurement X = [X1, . . . , Xp]
T is to be taken on an item

from the output of a production process. These variables have been identified by the

practitioner as important quality measurements in the sense that parameters of their

joint distribution describe important quality measures of the process. Control charts

were introduced by Shewhart (1931) as statistical methods for aiding the practitioner

(1) in bringing a process into a state of statistical in-control, (2) defining what is

meant by an in-control process, and (3) monitoring for a change in a process. Charts

used to achieve (1) and (2) are often referred to as retrospective or Phase I charts

and to accomplish (3) as prospective or Phase II charts.

A Phase I or II chart is selected depending on the collection of process parameters

the practitioner has an interest in controlling. It is often the case the practitioner

is mainly interested in controlling the mean vector of the distribution of the quality

vector X. Although this may be the primary interest of the practitioner, it will

be seen as in the univariate case that the changes in the collection of parameters

that describe dispersion in the distribution of X affect the performance of charts for

controlling the mean vector. Consequently, the practitioner must also be interested

in controlling measures of dispersion.

As with most statistical methods, control charts are designed assuming some

model for the vector of quality measurements X and a method as to how information

is to be collected from the process. The model is commonly the multivariate normal

distribution and the sampling method is to sample items periodically from the process
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assuming the quality measurements on these items are independent and identically

distributed random vectors. We will refer to this model as the independent multi-

variate normal model. Under this model, the distribution of the plotted statistic is

determined and a performance analysis of the chart can be determined.

In the next section, we discuss the independent multivariate normal model. This

section is followed by a section giving some distributional results that will be used

to study the performance of various multivariate control charts for monitoring the

process dispersion. In some cases, exact distributions of the plotted statistics can be

determined; in others, approximated distributional methods are discussed. We make

some concluding remarks in the final section.

2.2 Model

It is typical in developing and analyzing control charts to assume that the distribu-

tion of X is a multivariate normal distribution with mean vector µ and covariance

matrix Σ. Further, it is assumed that the Σ is a positive definite matrix. The joint

probability density function of the distribution of X has the form

fX (x) =
1

(2π)p/2 |Σ|1/2
e−

1
2

(x−µ)TΣ−1(x−µ).

Under the assumption that Σ is a positive definite matrix, the eigenvalues

ξ1, . . . , ξp of Σ are positive real numbers. Letting vi be the normalized eigenvector

associated with the eigenvalue ξi, we can write

Σ = VCVT,

where C = Diagonal (ξ1, . . . , ξp) and V = [v1, . . . ,vp]. Note that vT
i vi = 1 and
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vT
i vj = 0 for i 6= j = 1, . . . , p. It is convenient to let P = VC1/2, where C1/2 =

Diagonal
(
ξ

1/2
1 , . . . , ξ

1/2
p

)
.

Three scalar transformations of Σ often found in the literature that provide scalar

measures of dispersion in the distribution of X are

ω1 =
∑p

i=1
ξi, ω2 =

∑p

i=1
ξ2
i , and ω3 =

∏p

i=1
ξ2
i .

The parameter ω2 is found in Mechanics and is a measure of inertia. The ω3 is the

determinant |Σ| of Σ known as the generalized variance. In the case in which p = 1,

we see that

ω1 = σ and ω2 = ω3 = σ2.

For p = 2, we have that

ξ1 =
(σ2

1 + σ2
2)−

√
(σ2

1 − σ2
2)

2
+ 4ρ2σ2

1σ
2
2

2
and

ξ2 =
(σ2

1 + σ2
2) +

√
(σ2

1 − σ2
2)

2
+ 4ρ2σ2

1σ
2
2

2
.

Hence,

ω1 = σ2
1 + σ2

2, ω2 = σ4
1 + 2ρ2σ2

1σ
2
2 + σ4

2, and ω3 = σ2
1σ

2
2

(
1− ρ2

)
.

Again we see that ω3 is the determinant |Σ| of Σ. We also note that if Γ =

Diagonal (σ1, . . . , σp) and Ψ is the corresponding correlation matrix associated with

Σ, then

|Σ| = |Ψ|
(∏p

i=1
σ2
i

)
=
∏p

i=1
ψiσ

2
i ,

where ψ1, . . . , ψp are the eigenvalues of Ψ. The eigenvalues of Ψ are positive real

numbers since Ψ is a positive definite. This follows by observing that for all x 6= 0,

we have that y = Γ−1x 6= 0 and

xTΨx =
(
Γ−1x

)T
(ΓΨΓ)

(
Γ−1x

)
= yTΣy > 0.
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The collection of parameters that characterize the dispersion of a multivariate

quality measurement X of p dimension is the p× p covariance matrix Σ. The typical

reason a practitioner has an interest in a change in Σ is that changes in the covariance

structure affects the commonly recommended charts for monitoring the mean vector

µ. For example, suppose the practitioner is interested in monitoring for a change in

µ and the in-control mean vector µ0 and covariance matrix Σ0 are known. We will

assume that Σ is a positive definite matrix. A plotted statistic often recommended

for monitoring µ is the Hotelling’s T 2 statistic defined by

T 2
k = n

(
Xk − µ0

)T
Σ−1

0

(
Xk − µ0

)
,

where Xk is the vector of means of the kth sample taken in Phase II. We observe that

when µ = µ0 and Σ 6= Σ0 the statistic T 2 can be expressed as

T 2 = (ΛZ)T (ΛZ) = ZT
(
ΛTΛ

)
Z

where

Z =
√
nP−1

(
X− µ0

)
and Λ = P−1

0 P.

The matrix P is the product of the diagonal matrix of the square roots of the eigen-

vectors and corresponding matrix of normalized eigenvectors of Σ.

For any non-zero vector x, we have that

0 < xTΣx = (Px)T (Px) ,

since Σ is assumed to be a positive definite matrix. Thus, the vector Px is a non-zero

vector. Next observe that

xT
(
ΛTΛ

)
x = (Px)T Σ−1

0 (Px) =
(

(Px)T Σ0 (Px)
)−1

> 0,
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since Σ0 is a positive definite matrix. Hence, the matrix ΛTΛ is positive definite. It

then follows that the eigenvalues of ΛTΛ are positive real numbers and we can write

ΛTΛ = WDWT =
(
WD1/2

)(
WD1/2

)
T,

where D is the diagonal matrix of eigenvalues and W the corresponding matrix whose

columns are the normalized eigenvalues of ΛTΛ. Using these results, we can express

T 2 as

T 2 =
(
W1/2WTZ

)T (
D1/2WTZ

)
=
(
D1/2Y

)T (
D1/2Y

)
=
∑p

i=1
ς2
i Y

2
i ,

where ς1, . . . , ςp are the eigenvalues of ΛTΛ and Y1, . . . , Yp are independent and iden-

tically distributed as standard normal random variables. If Σ = Σ0 (process is

in-control), then ς1 = . . . = ςp = 1 and

T 2 =
∑p

i=1
Y 2
i ∼ χ2

p,

where χ2
p,0 is a random variable having a chi square distribution with p degrees of

freedom. If Σ 6= Σ0 (process is out-of-control), then not ςj’s are equal and T 2 is a

linear combination of independent chi square random variables each with 1 degree

of freedom. Hence, the distribution of T 2 depends on the change in the covariance

structure through the eigenvalues of ΛTΛ.

2.3 Distributional Results

In this thesis, we are interested in the distribution of various functions of the gener-

alized sample variance |S|. Under the assumption of random sampling and the data

following a multivariate normal distribution, it is shown in Anderson (2003) that

|S| ∼ |Σ|
(n− 1)p

∏p

i=1
χ2
n−i
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with χ2
n−1,0, . . . , χ

2
n−p,0 independent chi square random variables. It easily follows that

∣∣(n− 1) Σ−1S
∣∣ ∼∏p

i=1
χ2
n−i. (2.1)

We are interested in plotting functions of the statistics

V =
∣∣(n− 1) Σ−1

0 S
∣∣ and U = ln

(∣∣(n− 1) Σ−1
0 S
∣∣1/p) .

Observing that we can express V as

V =
∣∣Σ−1

0 Σ
∣∣ ∣∣(n− 1) Σ−1S

∣∣ ,
then it follows from (2.1) that

V ∼
∣∣Σ−1

0 Σ
∣∣∏p

i=1
χ2
n−i. (2.2)

Using results from the previous section, we can write the parameter
∣∣Σ−1

0 Σ
∣∣ a variety

of ways. These include the following.

(1)
∣∣Σ−1

0 Σ
∣∣ = |Σ| / |Σ0| =

∏p

i=1

ξi
ξ0,i

and

(2)
∣∣Σ−1

0 Σ
∣∣ =

∏p

i=1

ψi
ψ0,i

σ2
i

σ2
0,i

=
∏p

i=1

ψi
ψ0,i

λ2
i .

In what follows, it will be convenient to let λ2 =
∣∣Σ−1

0 Σ
∣∣ and we then have

V ∼ λ2
∏p

i=1
χ2
n−i. (2.3)

Next, we observe that we can write

U = ln
(
λ2/p

)
+ ln

(∣∣(n− 1) Σ−1S
∣∣1/p)

∼ ln
(
λ2/p

)
+ ln

((∏p

i=1
χ2
n−i

)1/p
)

.

It was shown in Anderson (2003) that
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∣∣(n− 1) Σ−1S
∣∣1/p ∼

 χ2
n−1, for p = 1; and

χ2
2n−4/2, for p = 2.

It follows then that for these two cases that

V ∼

 λ2χ2
n−1, for p = 1; and

λ2
(
χ2

2n−4/2
)2

, for p = 2;

and

U ∼

 ln (λ2) + ln
(
χ2
n−1

)
, for p = 1; and

ln (λ) + ln
(
χ2

2n−4/2
)

, for p = 2.

Unfortunately, convenient expressions do not exist for describing the distributions of

V and U for p ≥ 3. In the next section, we will discuss two approximation methods

given in the literature for the distribution of the generalized sample covariance matrix.

It is not typical for the in-control parameters µ0 and Σ0 to be given. When they

are not, we will assume the practitioner will have available m independent random

samples Xi,1, . . . ,Xi,n, i = 1, . . . ,m, each of size n from an in-control process to

estimate µ0 and Σ0. These data typically come from a Phase I analysis of the process.

The most commonly used estimators for these parameters are

µ̂0 = X =
1

m

∑m

i=1
Xi and Σ̂0 = S =

1

m

∑m

i=1
Si,

where

Xi =
1

n

∑n

j=1
Xi,j and Si =

1

n− 1

∑n

j=1

(
Xi,j −Xi

) (
Xi,j −Xi

)T
.

Under our model, we have that

X ∼ Np

(
µ0,

1

mn
Σ0

)
and S ∼ Wishart (Σ0,m (n− 1)) .
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It follows from results given in Anderson (2003) that

∣∣S∣∣ ∼ |Σ0|
mp (n− 1)p

∏p

i=1
χ2
m(n−1)−(i−1),

where χ2
m(n−1), . . . , χ

2
m(n−1)−(p−1) are independent chi square random variables with

degrees of freedom m (n− 1) , . . . ,m (n− 1) − (p− 1), respectively. It then follows

that

V0 =
∣∣m (n− 1) Σ−1

0 S
∣∣ ∼∏p

i=1
χ2
m(n−1)−(i−1) and

U0 = ln
(∣∣m (n− 1) Σ−1

0 S
∣∣1/p) ∼ ln

((∏p

i=1
χ2
m(n−1)−(i−1)

)1/p
)

.

Further from the results given in Anderson (2003), we have

V0 ∼

 λ2χ2
m(n−1), for p = 1; and

λ2χ2
2m(n−1)−2/ (2n (n− 1)) , for p = 2;

and

U0 ∼

 ln (λ2) + ln
(
χ2
n−1

)
, for p = 1; and

ln (λ) + ln
(
χ2

2n−4/ (2n− 2)
)

, for p = 2.

Often control limits for various charts are expressed in terms of the in-control

mean and standard deviation of the plotted statistic. Since we have that

V =
∣∣(n− 1) Σ−1

0 S
∣∣ ∼ λ2

∏p

i=1
χ2
n−i,

then

µV = λ2
∏p

i=1
E
(
χ2
n−i
)

= λ2
∏p

i=1
(n− i) and

µV 2 = λ4
∏p

i=1
E
[(
χ2
n−i
)2
]

= λ4
∏p

i=1
(n− i) (n− i+ 2) .
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It follows that

σ2
V = λ4

(∏p

i=1
(n− i)

)(∏p

i=1
(n− i+ 2)−

∏p

i=1
(n− i)

)
and

σV = λ2

√(∏p

i=1
(n− i)

)(∏p

i=1
(n− i+ 2)−

∏p

i=1
(n− i)

)
.

We observe that when the process is in-control the statistic U can be expressed

as

U = ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p) = ln

(∣∣Σ−1
0 Σ

∣∣1/p ∣∣(n− 1) Σ−1S
∣∣1/p)

=
1

p
ln
(
λ2
)

+
1

p
ln
(∏p

i=1
χ2
n−i

)
=

1

p

∑p

i=1
ln
(
χ2
n−i
)

.

Hence, the E (U) and E (U2) can be expressed as

E (U) =
1

p

∑p

i=1
E
(
ln
(
χ2
n−i
))

and

E
(
U2
)

=
1

p2

∑p

i=1
V
(
ln2
(
χ2
n−i
))

.

It is not difficult to show that the probability density function describing the

distribution of W = ln
(
χ2
n−i
)

is

fW (w) = ewfχ2
n−i

(ew) =
1

Γ
(
n−i

2

)
2(n−i)/2 e

−(ew−(n−i)w)/2.

A graph of these densities for n = 6 and p = 3 are given in Figure 2.1 for i = 1, 2, 3.
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Figure 2.1: fW (w) = 1

Γ(n−i
2 )2(n−i)/2e−(ew−(n−i)w)/2

The distribution of Y is skewed in the negative direction with the heaviest tails

corresponding with smaller degrees of freedom. We have that

E
[
ln
(
χ2

6−1

)]
=

∫ ∞
−∞

y
1

Γ
(

6−1
2

)
2(6−1)/2

e−(ey−(6−1)y)/2dy = 1.396303821;

E
[
ln
(
χ2

6−2

)]
=

∫ ∞
−∞

y
1

Γ
(

6−2
2

)
2(6−2)/2

e−(ey−(6−2)y)/2dy = 1.115931516; and

E
[
ln
(
χ2

6−3

)]
=

∫ ∞
−∞

y
1

Γ
(

6−3
2

)
2(6−3)/2

e−(ey−(6−3)y)/2dy = 0.7296371545.

These values were obtained numerically. Hence, the mean of the distribution of U for

an in-control process is

µU = E (U) =
1

p

∑p

i=1
E
(
ln
(
χ2
n−i
))

=
1

3
(1.396303821 + 1.115931516 + 0.7296371545)

= 1.080624164.
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Further, we have that

E
[
ln2
(
χ2

6−1

)]
=

∫ ∞
−∞

y2 1

Γ
(

6−1
2

)
2(6−1)/2

e−(ey−(6−1)y)/2dy

= 2.440022117;

E
[
ln2
(
χ2

6−2

)]
=

∫ ∞
−∞

y2 1

Γ
(

6−2
2

)
2(6−2)/2

e−(ey−(6−2)y)/2dy

= 1.890237214; and

E
[
ln2
(
χ2

6−3

)]
=

∫ ∞
−∞

y2 1

Γ
(

6−3
2

)
2(6−3)/2

e−(ey−(6−3)y)/2dy

= 1.467172578.

The variances are

V
[
ln
(
χ2

6−1

)]
= 2.440022117− (1.396303821)2

= 0.49036;

V
[
ln
(
χ2

6−2

)]
= 1.890237214− (1.115931516)2

= 0.64493

; and

V
[
ln
(
χ2

6−3

)]
= 1.467172578− (0.7296371545)2

= 0.9348.

Hence,

σ2
U = V (U) =

1

32
(0.49036 + 0.64493 + 0.9348)

= 0.23001

and

σU =
√

0.23001 = 0.47959.
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In Phase II (monitoring phase), the practitioner is interested in monitoring the

process for a change from in-control to out-of-control. Available to the practitioner

for this purpose will be samples taken periodically from the process. We assume

the sample data in this phase are independent random samples with the tth sample

denoted by {Xt,1, . . . ,Xt,n} for t = 1, 2, 3, . . .. One statistic that is commonly recom-

mended for monitoring for a change in the covariance matrix is the sample generalize

variance |S|. It shown in Anderson that

|S| ∼ |Σ|
(n− 1)p

∏p

i=1
χ2
n−i or∣∣(n− 1) Σ−1S

∣∣ ∼∏p

i=1
χ2
n−i,

where χ2
n−1, . . . , χ

2
n−p are independent chi square random variables with degrees of

freedom n− 1, . . . , n− p, respectively. Under our model assumptions, we have that

µ|S| = b1 |Σ0| and σ|S| =
√
b2 |Σ0| ,

where

b1 = b1,m,n,p =
∏p

i=1

m (n− 1)− (i− 1)

m (n− 1)
and

b2 = b2,m,n,p

=

(∏p

i=1

m (n− 1)− (i− 1)

m (n− 1)

)
×
(∏p

i=1

(m (n− 1)− (i− 1) + 2)

m (n− 1)
−
∏p

i=1

(m (n− 1)− (i− 1))

m (n− 1)

)
.

Further, we have that

µ|S| = b1,1,n,p |Σ| and σ|S| =
√
b2,1,n,p |Σ| .

It is now easy to see that
∣∣S∣∣ /b1,m,n,p is an unbiased estimator of |Σ0| and |S| /b1,1,n,p

is an unbiased estimator of |Σ|.
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It is our interest to study charts based on the plotted statistic

U = ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p) .

We can see that

U = ln
(∣∣Σ−1

0 Σ
∣∣1/p)+ ln

(∣∣(n− 1) Σ−1S
∣∣1/p)

∼ ln
(∣∣Σ−1

0 Σ
∣∣1/p)+ ln

((∏p

i=1
χ2
n−i

)1/p
)

.

It is given in Anderson (2003) that

∣∣(n− 1) Σ−1S
∣∣ ∼

 χ2
n−1, for p = 1;(

χ2
2n−4/2

)2
, for p = 2.

Using these results, one can show that

ln
(∣∣(n− 1) Σ−1S

∣∣1/p) ∼
 ln

(
χ2
n−1

)
, for p = 1;

ln
(
χ2

2n−4/2
)

, for p = 2.

For p ≥ 3, a simple expression does not exist to describe the distribution of |(n− 1) Σ−1S|.

We must then turn to approximations methods. Two methods found in the literature

for approximating the distribution of (a function of ) |S| are found in Hoel (1937)

and Steyn (1978). We begin by discussing the method given in Steyn (1978).

The method given in Steyn (1978) provides an approximation to the distribution

of the statistic

Y =
p

2

∣∣(n− 1) Σ−1S
∣∣1/p

using the function

h (y |n, p) =

(
1 +

(p− 1) (p− 2)

4

)
g

(
y

∣∣∣∣1, p (n− p)
2

)
− (p− 1) (p− 2)

4
g

(
y

∣∣∣∣1, p (n− p)− 2

2

)
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where g (y |θ, κ) is the density function of a gamma distribution with location pa-

rameter θ and scale parameter κ. The support for the probability density function

is {
y

∣∣∣∣y ≥ (p− 1) (p− 2) (p (n− p) /2− 1)

4 + (p− 1) (p− 2)

}
.

The function h (y |n, p) can be expressed as

h (y |n, p) =

(
1 +

(p− 1) (p− 2)

4

)
1

Γ
(
p(n−p)

2

)yp(n−p)/2−1e−y

− (p− 1) (p− 2)

4

1

Γ
(
p(n−p)−2

2

)y(p(n−p)−2)/2−1e−y.

As an example, consider the case in which n = 6 and p = 3. It follows that

y ≥ (3− 1) (3− 2) (3 (6− 3) /2− 1)

4 + (3− 1) (3− 2)
= 1.16.

The graph of g (y |n, p) is shown is Figure 2.2 for y ≥ 1.16.

Figure 2.2: g (y |n, p) versus y

It interesting to observe the graph of the function g (y |6, 3) versus y over the

positive reals (see Figure 2.3). Since the generalized sample variance is a positive
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real number with probability 1 under the independent, multivariate normal model,

the probability density function describing its distribution should be greater than or

equal to zero over the positive reals. This is not the case for the function g (y |n, p)

over the positive reals.

Figure 2.3: g (y |6, 3) versus y

What is important in our work is that

G (y |n, p) =

∫ y

0

g (t |n, p) dt

provides a good approximation to the cumulative distribution function FY (y) de-

scribing the distribution of Y . More specifically, we are interested in approximating

the distribution of U for p ≥ 3.

Observing that

U = ln

(
2λ2/p

p
Y

)
.

The cumulative distribution function of U can be expressed in terms of the cumulative

distribution function of Y as

FU (u |λ, p, n) = P

(
Y ≤ peu

2λ2/p

)
= FY

(
peu

2λ2/p

)
.
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Hence, the probability densities are related by

fU (u |λ, p, n) =
peu

2λ2/p
fY

(
peu

2λ2/p

)
.

We also note that the 100γ percentile (0 < γ < 1) of the distributions of U and Y

are related by

up,n,1−γ = ln

(
2λ2/p

p
yp,n,1−γ

)
.

For p > 2, the approximation f (u |λ, p, n) to the probability density function

fU (u |λ, p, n) of U based on Steyn (1978) approximation method is

f (u |λ, p, n) =

(
1 + (p−1)(p−2)

4

)
e−(pex/λ2/p−p(n−p)x)/2

Γ
(
p(n−p)

2

)
(2λ2/p/p)

p(n−p)/2

−
(p−1)(p−2)

4
e−(pex/λ2/p−(p(n−p)−2)x)/2

Γ
(
p(n−p)−2

2

)
(2λ2/p/p)

(p(n−p)−2)/2

with support {
u

∣∣∣∣u ≥ ln

(
2λ2/p (p− 1) (p− 2) (p (n− p) /2− 1)

p (4 + (p− 1) (p− 2))

)}
.

For the case in which n = 6, p = 1, and λ = 1.2, a graph of the function

f (u |1, 6, 3) is given in Figure 2.4 for

u ≥ ln

(
2 (1.2)2/3 (3− 1) (3− 2) (3 (6− 3) /2− 1)

3 (4 + (3− 1) (3− 2))

)
or

u ≥ −0.1297667238.
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Figure 2.4: f (u |1, 6, 3)

We are also interested in approximations for the distributions of V0 and U0. The

approximation for the distribution of U0 will be given here. It is easy to see using

Steyn (1978) that the approximation to the probability density function, fU0 (u |p, n),

describing the distribution of U0 is

f (u |p, n) =

(
1 + (p−1)(p−2)

4

)
e−(pex/λ2/p−p(m(n−1)+1−p)x)/2

Γ
(
p(m(n−1)+1−p)

2

)
(2/p)p(m(n−1)+1−p)/2

−
(p−1)(p−2)

4
e−(pex/λ2/p−(p(m(n−1)+1−p)−2)x)/2

Γ
(
p(m(n−1)+1−p)−2

2

)
(2/p)(p(m(n−1)+1−p)−2)/2

with support{
u

∣∣∣∣u ≥ ln

(
2 (p− 1) (p− 2) (p (m (n− 1) + 1− p) /2− 1)

p (4 + (p− 1) (p− 2))

)}
.

The approximation given in Hoel (1938) is for the random variable Z = |S|1/p.

The statistics U is related to Z by

U = ln
(∣∣(n− 1) Σ−1

0

∣∣1/p Z)
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We have that

FU (u |λ, p, n) = FZ

(
|Σ0|1/p eu

n− 1
||Σ| , n, p

)
.

It then follows that

fU (u |λ, p, n) =
|Σ0|1/p eu

n− 1
fZ

(
|Σ0|1/p eu

n− 1
||Σ| , n, p

)
.

2.4 Conclusion

The design of a statistical method typically depends on a model for the distribution

of the data. The performance of a statistical methods depends on the distribution of

the data. Studying the performance of a method usually requires one to also model

the distribution of the measurement(s) of interest. Even the so called distribution

free methods usually requires a parametric model for the data under the alternative

hypothesis. Control charting procedures are statistical methods. Most are designed

under the assumption the distribution of the quality measurement(s) is a (multivari-

ate) normal distribution.

In this thesis, we are interested in processes in which the quality measurement

is a multivariate measurement on the output of the process. We assume that the

multivariate quality measurement X has a p-variate normal distribution with mean

vector µ and positive definite covariance matrix Σ. Further, we assume that the

vectors of quality measurements taken on a sample of items from the output of the

process constitute a random sample (independent and identically distributed) as well

as that our samples are independent. We refer to this model as the independent

multivariate normal model.

The process being in a state of in- or out-of-control is modeled in terms of the
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two groups of parameters, µ and Σ. The simplest model is to assume there are value

µ0 and Σ0 such that if µ = µ0 and Σ = Σ0 the process is in a state of statistical

in-control as discussed in Shewhart (1931). Our interest is examining the use of

control charts in detecting a change in Σ from Σ0 by studying changes in the ratio

λ2 = |Σ| / |Σ0| where the process is in-control if λ2 = 1 .



CHAPTER 3

SHEWHART ln
(∣∣(N − 1) Σ−1

0 S
∣∣1/P) CHART WITH RUNS RULES

3.1 Introduction

Champ and Woodall (1987) studied the performance of the Shewhart X chart when

supplemented with runs rules. The runs rules considered by them each had the

general form of causing the chart to signal if j out of the last i plotted statistics fall

in the standardized interval (a, b) with a < b. The actual interval associated with the

interval (a, b) has the form

(µU,0 + aσU,0, µU,0 + bσU,0) ,

where µU,0 and σU,0 are the in-control mean and standard deviation, respectively, of

the plotted statistics U . They used the notation T (j, i, a, b) as a compact way to

state a runs rule. In this article, we describe a runs rule as a rule that causes a chart

to signal if j out of the last i plotted statistics fall in the interval (up,n,1−a, up,n,1−b)

for 0 < a < b < 1. We will represent this runs rule by

T (j, i, up,n,1−a, up,n,1−b) ,

where up,n,1−γ is the 100γth percentile (0 < γ < 1) of the distribution of U .

Lowry, Champ, and Woodall (1995) examined the selection of runs rules for the

R and S charts so the charts had the same in-control performance as the X chart

supplemented with similar runs rules. Their method can be used to select runs rules

to supplement the Shewhart type chart based on the plotted statistics U . The runs

rules we will consider are the same eight considered by Lowry, Champ, and Woodall

(1995). These are listed in Table 3.1.1 using the notation T (j, i, a, b) of Champ and

Woodall (1987).
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Table 3.1: Runs Rules

1. T(1, 1,−∞,−3)

2. T(2, 3,−3,−2)

3. T(4, 5,−3,−1)

4. T(8, 8,−3, 0)

5. T(8, 8, 0, 3)

6. T(4, 5, 1, 3)

7. T(2, 3, 2, 3)

8. T(1, 1, 3,∞)

Rules 1 and 8 define the basic Shewhart chart with the values −3 and 3 referred

to as control limits. For the real number a or b that is not a control limit, these values

are referred to as warning limits (or lines) (see Page (1954)). For the U chart, these

rules have the form T (j, i, up,n,1−a, up,n,1−b). Their descriptions are given in Table 3.2

Table 3.2: Runs Rules

1. T
(
1, 1, 0, up,n,1−Φ(−3)

)
2. T

(
2, 3, up,n,1−Φ(−3), up,n,1−Φ(−2)

)
3. T

(
4, 5, up,n,1−Φ(−3), up,n,1−Φ(−1)

)
4. T

(
8, 8, up,n,1−Φ(−3), up,n,1−Φ(0)

)
5. T

(
8, 8, up,n,1−Φ(0), up,n,1−Φ(3)

)
6. T

(
4, 5, up,n,1−Φ(1), up,n,1−Φ(3)

)
7. T

(
2, 3, up,n,1−Φ(2), up,n,1−Φ(3)

)
8. T

(
1, 1, up,n,1−Φ(3),∞

)
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We now need only to determine the values of up,n,1−c for c = −3,−2,−1, 0, 1, 2, 3

and given values of p and n.

In the previous section, the distribution of U for given values of p and n is

discussed. For p = 1, 2, the distribution is known exactly under the independent

normal model. For p > 2, relatively simple expression for the distribution of U is not

known. Hence, we considered two approximation methods, one by Hoel (1937) and the

other by Steyn (1978). It was found that the method of Steyn (1978) approximation

method gave the best approximations. These values are given in Tables 5-6 for selected

values of p and n.

As stated in the previous section for p = 1, we have that

U = ln

(
(n− 1)S2

σ2
0

)
∼ ln

(
λ2
)

+ ln
(
χ2
n−1

)
where λ2 = σ2/σ2

0. Hence, the 100γth percentile u1,n,1−γ of the distribution of U can

be expressed in terms of the 100γth percentile χ2
n−1,1−γ of a chi square distribution

with n− 1 degrees of freedom as

u1,n,1−γ = ln
(
λ2
)

+ ln
(
χ2
n−1,1−γ

)
.

Table 3.3 list the percentiles of the distribution of U for p = 1 rounded to five decimal

places and values of n = 2 (1) 6 associated with the eight runs rules given in Table

3.2. The values in Table 3.3 were calculated using the Scientific WorkPlace functions

ChiSquareInv (t; ν) and NormalDist (x;µ, σ) with

ln
(
χ2
n−1,1−Φ(c)

)
= ln (ChiSquareInv (NormalDist (c; 0, 1) ;n− 1))
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Table 3.3: Percentage Points u1,n,1−Φ(c), λ=1

c n=2 n=3 n=4 n=5 n=6

-3 -12.76387 -5.91390 -3.51628 -2.24655 -1.43569

-2 -7.11451 -3.07855 -1.59900 -0.77590 -0.22741

-1 -3.21714 -1.06274 -0.18165 0.34810 0.72076

0 -0.78760 0.32663 0.86119 1.21096 1.47051

1 0.68662 1.30347 1.64601 1.88693 2.07398

2 1.64625 2.02371 2.25710 2.43057 2.57016

3 2.32952 2.58139 2.74923 2.87923 2.98676

For the case in which p = 2, it is shown in Anderson (2003) that

U = ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/2) ∼ ln

((
λ2
)1/2
)

+ ln
(
χ2

2n−4/2
)

,

where λ2 =
∣∣Σ−1

0 Σ
∣∣. It follows that

u2,n,1−γ = ln
((
λ2
)1/2
)

+ ln
(
χ2

2n−4,1−γ/2
)

,

with

ln
(
χ2

2n−4,1−Φ(c)/2
)

= ln (ChiSquareInv (NormalDist (c; 0, 1) ; 2 (n)− 4) /2) .

Table 3.4 list the percentiles of the distribution of U for p = 2 rounded to five decimal

places and values of n = 3 (1) 7 associated with the eight runs rules given in Table

3.2.
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Table 3.4: Percentage Points u2,n,1−Φ(c), λ=1

c n=3 n=4 n=5 n=6 n=7

-3 -6.60705 -2.93970 -1.55269 -0.76510 -0.23337

-2 -3.77170 -1.46905 -0.51703 0.05635 0.45924

-1 -1.75589 -0.34505 0.31283 0.73509 1.04391

0 -0.36651 0.51781 0.98360 1.30075 1.54135

1 0.61032 1.19378 1.53425 1.77803 1.96889

2 1.33057 1.73743 1.99449 2.18624 2.34040

3 1.88824 2.18608 2.38597 2.54007 2.66671

u2,n,1−Φ(c) = ln (ChiSquareInv (NormalDist (c; 0, 1) ; 2 (n)− 4) /2)

As discussed in the previous section, exact expressions for the distribution of U

when p > 2 are not available. Two approximations found in the literature due to

Hoel (1937) and Steyn (1978), the one by Steyn (1978) appears to provide the best

approximation to the distribution of U . For n > p > 2, the cumulative distribution

function FU (u) of U can be expressed approximately using approximation method of

Steyn (1978) as

FU (u |p, n) ≈
(

1 +
(p− 1) (p− 2)

4

)
FY

(
peu/2

∣∣∣∣p (n− p)
2

, 1

)
− (p− 1) (p− 2)

4
FY

(
peu/2

∣∣∣∣p (n− p)− 2

2
, 1

)
,

where FY (y |κ, θ ) is the cumulative distribution function of a gamma distribution

with parameters κ and θ. The approximation to the 100γth percentile up,n,1−γ of the

distribution of U is the value of u that satisfies the equation

FU (u |p, n) = γ.
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Table 3.5 list the percentiles of the distribution of U for p = 3 rounded to five decimal

places and values of n = 4 (1) 8 associated with the eight runs rules given in Table

3.2.

Table 3.5: Percentage Points u3,n,1−Φ(c), λ=1

c n=4 n=5 n=6 n=7 n=8

-3 -0.93513 -0.29194 0.09805 0.38900 0.63059

-2 -0.86779 -0.16668 0.28756 0.63240 0.90903

-1 -0.52935 0.23108 0.69070 1.01893 1.27319

0 0.07404 0.73782 1.13051 1.41109 1.62971

1 0.69704 1.21899 1.53923 1.77336 1.95881

2 1.24135 1.64532 1.90546 2.10080 2.25831

3 1.70175 2.01833 2.23156 2.39572 2.53034

Table 3.6 list the percentiles of the distribution of U for p = 4 rounded to five

decimal places and values of n = 5 (1) 9 associated with the eight runs rules given in

Table 3.2.
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Table 3.6: Percentage Points u4,n,1−Φ(c), λ=1

c n=5 n=6 n=7 n=8 n=9

-3 -0.20982 0.38193 0.74085 1.00136 1.20677

-2 -0.18398 0.41436 0.78117 1.05052 1.26544

-1 -0.03118 0.57998 0.95732 1.23979 1.45324

0 0.32209 0.89464 1.24673 1.50377 1.70692

1 0.76691 1.25469 1.56105 1.78753 1.96813

2 1.20191 1.60271 1.86332 2.05972 2.21838

3 1.59447 1.92248 2.14360 2.31362 2.45284

More extensive tables are given in Appendix.

3.2 Run Length Distribution

Champ and Woodall (1987) developed a Markov chain representation of a Shewhart

chart supplemented with runs rules that is useful in determining the run length dis-

tribution. Their method can be applied to the Shewhart ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p) chart

supplemented with runs rules. The Markov chain representation of a control chart

has one absorbing state. In this case, the transition matrix P with q non-absorbing

states and one absorbing state has the form

P(q+1)×(q+1) =

 Qq×q (Iq×q −Qq×q) 1q×1

(0q×1)
T

1

 ,
where Iq×q is the identity matrix, 1q×1 is a vector of ones. The last row and column

of P are associated with the absorbing state.
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The transition matrix is determined from a transition by regions matrix H. The

regions for a given chart depend on the set of runs rules defining the chart. As an

example, consider the Shewhart ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p) chart supplemented with rules

1, 2, 7, and 8. The regions of this chart are

R1 =
(
0, up,n,1−Φ(−3)

]
R2 =

(
up,n,1−Φ(−3), up,n,1−Φ(−2)

]
R3 =

(
up,n,1−Φ(−2), up,n,1−Φ(2)

]
R4 =

[
up,n,1−Φ(2), up,n,1−Φ(3)

)
R5 =

[
up,n,1−Φ(3),∞

)
The matrix H is a (q + 1)× 8 matrix with row i corresponding to state i and column

j corresponding to the jth region. The (i, j)th component hi,j of H is the state to

which the Markov chain transitions if the t + 1 plotted statistic falls in region Rj

given the present state of the chart is i. It follows that the (i, hi,j)th component of P

is

P
(

ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p) ∈ Rj

)
if hi,j is the number of a non-absorbing state. The matrix H as determined by Champ



32

and Woodall (1987) is

H =



8 2 1 4 8

8 8 3 5 8

8 8 1 4 8

8 7 6 8 8

8 8 6 8 8

8 2 1 8 8

8 8 3 8 8

8 8 8 8 8



.

We see that if the Markov chain is in state 4 it can only transition to the non-absorbing

states 6 and 7 with respective transition probabilities

p4,6 = p3 = P
(
up,n,1−Φ(−2) < U < up,n,1−Φ(2)

)
= FU

(
up,n,1−Φ(2) |λ, p, n

)
− FU

(
up,n,1−Φ(−2) |λ, p, n

)
and

p4,7 = p2 = P
(
up,n,1−Φ(−3) < U < up,n,1−Φ(−2)

)
= FU

(
up,n,1−Φ(−2) |λ, p, n

)
− FU

(
up,n,1−Φ(−3) |λ, p, n

)
,

with p4,1 = p4,2 = p4,3 = p4,4 = p4,5 = 0 and p4,8 = 1− p4,6 − p4,7. Note that

p4 = P
(
up,n,1−Φ(2) < U < up,n,1−Φ(3)

)
= FU

(
up,n,1−Φ(3) |λ, p, n

)
− FU

(
up,n,1−Φ(2) |λ, p, n

)
.
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For our example, the matrix Q can be expressed as

Q =



p3 p2 0 p4 0 0 0

0 0 p3 0 p4 0 0

p3 0 0 p4 0 0 0

0 0 0 0 0 p3 p2

0 0 0 0 0 p3 0

p3 p2 0 0 0 0 0

0 0 p3 0 0 0 0



.

If the process is in-control then

p2 = Φ (−2)− Φ (−3) , p3 = Φ (2)− Φ (−2) , and p4 = Φ (3)− Φ (2) .

These values are

p2 = NormalDist (−2; 0, 1)− NormalDist (−3; 0, 1) = 0.02140023392

p3 = NormalDist (2; 0, 1)− NormalDist (−2; 0, 1) = 0.9544997361

p4 = NormalDist (3; 0, 1)− NormalDist (2; 0, 1) = 0.02140023392

The function NormalDist (x;µ, σ) is the cumulative distribution function evaluated

at the value x for a normal distribution with mean µ and standard deviation σ.

The run length Ti, given that the chart begins in non-absorbing state i, is the

number of the sample in which the chart first signals, i = 1, . . . , q. It is shown in

Brook and Evans (1972) that the joint probability mass function describing the run

length distribution is determined by

[P (T1 = 1) , . . . , P (Tq = 1)]T = (I−Q) 1 and

[P (T1 = t) , . . . , P (Tq = t)]T = Qt−1 (I−Q) 1,



34

for t = 2, 3, 4, . . .. It follows that the joint cumulative distribution function of the

distribution of the vector of run lengths is given by

[P (T1 ≤ t) , . . . , P (Tq ≤ t)]T =
(
I−Qt

)
1.

The vector of expected run lengths and expected squared run lengths can be deter-

mined as follows.

[E (T1) , . . . , E (Tq)]
T = (I−Q)−1 1 and[

E
(
T 2

1

)
, . . . , E

(
T 2
q

)]T
= (I−Q)−1 [I + 2 (I−Q)−1 Q

]
1.

For the case in which n = 6, and the chart begins in state 1, the ARL, SDRL,

and various percentiles are presented in Table 4.1. When the process is in-control,

the vector of ARL’s are

E (T1)

E (T2)

E (T3)

E (T4)

E (T5)

E (T6)

E (T7)



= (I−Q)−1



1

1

1

1

1

1

1



=



225.4384069

216.2945284

220.8096534

216.2945284

211.762 7559

220.8096534

211.7627559


Another method for obtaining the tail probabilities of the run length distribution

is to use a method presented in Woodall (1983). For large values of t = t∗, the tail

probabilities are approximated by

P (Ti = t∗ + t) ≈ ζtiP (Ti = t∗) ,
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for i = 1, . . . , q. The rule for selecting an approximate value of ζi is based on consid-

ering the value of t∗ to be large if

P (Ti = t∗)

P (Ti = t∗ − 1)
and

1−
∑t∗

t=1 P (Ti = t)

1−
∑t∗−1

t=1 P (Ti = t)

are “close.” The value of ζi is then approximated with the value

ζ̂i =
P (Ti = t∗)

P (Ti = t∗ − 1)
.

This method gives the following approximation the expected value of the run length

Ti by

E (Ti) ≈
∑t∗

t=1
tP (Ti = t) +ζ̂iP (Ti = t∗)

 t∗

1− ζ̂i
+

1(
1− ζ̂i

)2

 .

Other parameters such as the standard deviation and various percentage points of

the run length distribution can be approximated by this method. We have used this

method the evaluating the run length distribution of the Shewhart chart with runs

rules based on the statistic U . Champ and Woodall (1992) give a program that may

be altered for this purpose. We have alternated an expanded version of this program

that determines various percentage points of the run length distribution as well as

the average (ARL) and standard deviation of the run length (SDRL) for various

shifts in the parameter λ =
∣∣Σ−1

0 Σ
∣∣1/p. Table 3.7 gives the ARL, SDRL, and various

percentage points of the run length distributions for selected value of λ. Recalling

that the process is in-control if λ = 1, we see from Table 3.7 the in-control ARL is

225.43, the in-control SDRL is 224.37, and the 50th percentile of the in-control run

length distribution is 157.
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Table 3.7: Run Length Parameters, p = 1,n = 6

Percentiles

λ ARL SDRL 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.5 7.63 6.32 1 2 2 3 6 10 16 20 30

0.6 18.70 17.35 1 2 3 6 13 25 41 53 81

0.7 46.00 44.66 2 4 6 14 32 63 104 135 207

0.8 106.99 105.71 2 7 12 32 75 148 245 318 487

0.9 217.03 215.86 3 12 24 63 151 300 498 648 995

1.0 225.43 224.37 3 13 25 66 157 312 518 673 1034

1.1 87.47 86.40 2 6 10 26 61 121 200 260 399

1.2 32.55 31.50 1 3 4 10 23 45 74 95 146

1.3 15.35 14.35 1 2 3 5 11 21 34 44 67

1.4 8.83 7.88 1 1 2 3 6 12 19 25 37

1.5 5.85 4.95 1 1 1 2 4 8 12 16 24

3.3 Steady Run Length Distribution

A method was suggested by Crosier (1986) for determining a cyclic steady-state run

length distribution. As shown in Champ (1992), this is done be replacing the transi-

tion matrix

P∗ =

 Q (I−Q) 1

0T 1


with the matrix

P∗ =

 Q (I−Q) 1

eT
1 0

 ,
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where eT
1 is a (q − 1) × 1 vector in which the first component is 1 and the other

components are 0. The matrix P∗ is an erogodic transition matrix. A method is given

in Lucas and Saccucci (1990) for calculating the (q − 1)× 1 steady-state probability

vector πss. Champ (1992) shows that πss using Lucas and Saccucci (1990) method

can be calculated as

πss =
(
G−QT

)−1
e1,

where

G =

 2 1T

0 I

 .

Using the example in the previous section, we have that the cyclic steady-state average

run length is ARLss is

ARLss = πT
ss (I−Q)−1 1

=
((

G−QT
)−1

e1

)T

(I−Q)−1 1

= 223.8844836,

with

πss =



0.9156777542

0.02001326795

0.01951 146 035

0.02001326795

0.0004282886157

0.01951146035

0.0004282886157



.

Champ (1992) list this value as 224.88. This appears to be a typo. In general, we

can determine the probability mass function, the cumulative distribution function,
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E (Tss), and E (T 2
ss) by

P (Tss = t) = πT
ssQ

t−1 (I−Q) 1, P (Tss ≤ t) = πT
ss

(
I−Qt

)
1,

E (Tss) = πT
ss (I−Q)−1 1, and

E
(
T 2
ss

)
= πT

ss (I−Q)−1 [I + 2 (I−Q)−1 Q
]
1.

3.4 Parameters Estimated Chart

In the case when Σ0 is unknown and must be estimated, we define the statistics V ∗

and U∗ by

V ∗ =
∣∣∣(n− 1) Σ̂−1

0 S
∣∣∣1/p =

∣∣∣(n− 1) S
−1

S
∣∣∣1/p and

U∗ = ln

(∣∣∣(n− 1) S
−1

S
∣∣∣1/p) .

We observe that V ∗ and U∗ can be expressed as

V ∗ = m (n− 1)
(∣∣m (n− 1) Σ−1

0 S
∣∣1/p)−1 ∣∣(n− 1) Σ−1

0 S
∣∣1/p

= m (n− 1)V −1
0 V and

U∗ = ln
(
m (n− 1)V −1

0 V
)

= ln (m (n− 1))− U0 + U ,

where

V0 =
∣∣m (n− 1) Σ−1

0 S
∣∣1/p and U0 = ln

(∣∣m (n− 1) Σ−1
0 S
∣∣1/p) .

The conditional distribution of U∗ given U0 has cumulative distribution and

probability density functions given respectively as

FU∗|U0 (u |u0 ) = FU (u+ u0 − ln (m (n− 1))) and

fU∗|U0 (u |u0 ) = fU (u+ u0 − ln (m (n− 1))) .
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For the cases in which p = 1 and p = 2, we have

FU∗|U0 (u |u0 ) =

 Fχ2
n−1

(
eu+u0

m(n−1)λ2/p

)
, if p = 1;

Fχ2
2n−4

(
2eu+u0

m(n−1)λ2/p

)
, if p = 2;

and

fU∗|U0 (u |u0 ) =


eu+u0

m(n−1)λ2/pfχ2
n−1

(
eu+u0

m(n−1)λ2/p

)
, if p = 1;

2eu+u0

m(n−1)λ2/pfχ2
2n−4

(
2eu+u0

m(n−1)λ2/p

)
, if p = 2.

Recalling that Steyn (1978) defined

Y =
p

2

∣∣(n− 1) Σ−1S
∣∣1/p

and gave a method for approximating the distribution of Y for p ≥ 3. Observing that

U = ln

(
2λ2/p

p
Y

)
,

it follows that

FU (u) = FY

(
peu

2λ2/p

)
.

Thus, we can write

FU∗|U0 (u |u0 ) = FY

(
peu+u0

2m (n− 1)λ2/p

)
and

fU∗|U0 (u |u0 ) =
peu+u0

2m (n− 1)λ2/p
fY

(
peu+u0

2m (n− 1)λ2/p

)
.

Approximations for FU∗|U0 (u |u0 ) and fU∗|U0 (u |u0 ) are obtained by replacing FY (y)

and fY (y) with the approximation given in Steyn (1978).

To determine the parameters estimated version of the chart, one first looks at

the conditional run length distribution given U0. We represent the joint probability

mass function conditioned on U0 = u0 by

[P (T1 = t |U0 = u0 ) , . . . , P (Tq = t |U0 = u0 )]T .
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For the region Rj, we denote the conditional probability that U∗ ∈ Rj given U0 = u0

by p∗j . That is,

p∗j = P (U∗ ∈ Rj |U0 = u0 ) .

Further, we represent the transition matrix conditioned on U0 = u0 of the Markov

chain representation of the chart by P∗. The matrix obtained by removing the row

and column P∗ associated with the absorbing state is represented by Q∗. It then

follows that

p∗1 = [P (T1 = 1 |U0 = u0 ) , . . . , P (Tq = 1 |U0 = u0 )]T

= (I−Q∗) 1 and

p∗t = [P (T1 = t |U0 = u0 ) , . . . , P (Tq = t |U0 = u0 )]T

= (Q∗)t−1 (I−Q∗) 1,

for t = 2, 3, 4, . . .. In our example, we have

p∗4,6 = p∗3 = P
(
up,n,1−Φ(−2) < U∗ < up,n,1−Φ(2) |U0 = u0

)
= P

(
up,n,1−Φ(−2) + u0 − ln (m (n− 1)) < U < up,n,1−Φ(2) + u0 − ln (m (n− 1))

)
= FU

(
up,n,1−Φ(2) + u0 − ln (m (n− 1))

)
− FU

(
up,n,1−Φ(−2) + u0 − ln (m (n− 1))

)
and

p∗4,7 = p∗2

= P
(
up,n,1−Φ(−3) + u0 − ln (m (n− 1)) < U < up,n,1−Φ(−2) + u0 − ln (m (n− 1))

)
= FU

(
up,n,1−Φ(−2) + u0 − ln (m (n− 1))

)
− FU

(
up,n,1−Φ(−3) + u0 − ln (m (n− 1))

)
.

To obtain the unconditional run length distribution of the chart, the conditional run
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length distributions are averaged over the values of u0. This can be expressed by

p1 = [P (T1 = 1) , . . . , P (Tq = 1)]T

=

∫ ∞
−∞

(I−Q∗) 1fU0 (u0) du0 and

pt = [P (T1 = t) , . . . , P (Tq = t)]T

=

∫ ∞
−∞

(Q∗)t−1 (I−Q∗) 1fU0 (u0) du0.

In particular, the vector of average run lengths are determined by

µT = [E (T1) , . . . , E (Tq)]
T

=

∫ ∞
−∞

[E (T1 |U0 = u0 ) , . . . , E (Tq |U0 = u0 )]T fU0 (u0) du0

=

∫ ∞
−∞

(I−Q∗)−1 1fU0 (u0) du0

It follows that the cyclic steady-state run length distribution with estimated param-

eters can be obtained in a similar way. In particular, we have

P (Tss = t) =

∫ ∞
−∞

(π∗ss)
T (Q∗)t−1 (I−Q∗) 1fU0 (u0) du0,

where

π∗ss =
(
G− (Q∗)T

)−1

e1.

3.5 Conclusion

A method is given for selecting the warning and control limits for Shewhart

ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p) chart supplemented with runs rules.Passing these limits through

the exponential function gives the warning and control limits for the Shewhart∣∣(n− 1) Σ−1
0 S
∣∣1/p and raising the results to the p power and multiplying by |Σ0| / (n− 1)p

gives the limits for the Shewhart |S| supplemented with runs rules. The Markov chain



42

approach of Champ and Woodall (1987) is used to analyze the run length proper-

ties of the chart. A discussion about how to obtain the run length properties with

estimated parameters was given.



CHAPTER 4

CUSUM ln
(∣∣(N − 1) Σ−1

0 S
∣∣1/P) CHART

4.1 Introduction

Page (1986) first introduced the CUSUM chart for monitoring the mean of a quality

measurement X. He studied this chart under the assumption the in-control mean and

standard deviation of the distribution of X are known and that X follows a normal

distribution. The CUSUM chart makes use of the information in the present sample

but may use information in previous samples to make a decision about the state of

the process. One version of the CUSUM chart plots on the same chart the statistic

C−t and C+
t verses the sampling number t. The stochastic sequences

{
C−t
}

and
{
C+
t

}
are defined by

C−t = min
{

0, C−t−1 + Ut + k−
}

and C+
t = max

{
0, C+

t−1 + Ut − k+
}

,

with C−0 = 0, C+
0 = 0, and

Ut = ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p) .

The chart signals a potential out-of-control process if C−t ≤ h− ≤ 0 or C+
t ≥ h+ ≥ 0.

We will design the chart such that the statistic C−t detects a change from Σ0 to Σ

with
∣∣Σ−1

0 Σ
∣∣ < 1 and C+

i to detect for a change with
∣∣Σ−1

0 Σ
∣∣ > 1. Lucas (1985)

recommended setting h− < C−0 < 0 and/or 0 < C+
0 < h+. This gives the chart a

“head-start” in detecting a process that is initially out-of-control. The parameters of

this chart include the initial values of C−0 and C+
0 , the values k− and k+, the values

h− and h+, and the sample size n. Often the chart parameters are selected such that

k− = −k+ and h− = −h+. In this chapter, we outline a method for studying the run

length properties of the CUSUM chart based on the statistic U .
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4.2 Run Length Distribution

Most who study the run length properties of a quality control chart either use sim-

ulation, a Markov chain approach, or integral equations. Champ and Rigdon (1991)

illustrated how the Markov chain approach for analyzing the run length properties

of a CUSUM chart is equivalent to the integral equation approach. Both methods

are approximation methods. A Markov chain can first be used to approximate the

chart and then the run length properties are determined exactly for the approxima-

tion. Champ, Rigdon, and Scharnagl (2001) give several integral equations whose

exact solutions are parameters of the run length distribution of the CUSUM chart of

Page. Since exact expressions for the solutions to these integral equations cannot be

obtained in a useful form, approximate solutions are obtained. Equating the approx-

imation methods used to obtain the Markov chain and approximate the solutions to

the integral equations equates the methods.

The distribution of the run length T of the upper one-sided CUSUM chart can

be obtained iteratively from a sequence of integral equations. Define pr+ (t|u+) by

pr+
(
t|u+

)
= P

(
T = t|C+

0 = u+
)

,

where T is the run length of the chart. From the results found in Champ, Rigdon,

and Scharnagl (2001), we have that the function pr+ (t|u+) is the exact solution to

the sequence of equations
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pr+
(
1|u+

)
= 1− FU

(
h+ − u+ + k+

)
and

pr+
(
t|u+

)
= pr+ (t− 1|0)FU

(
k+ − u+

)
+

∫ h+

0

pr+ (t− 1|u) fU
(
u− u+ + k+

)
du

for t > 1.

A convenient closed form express for the function pr+ (t|u+) does not exist, but it

can be accurately approximated using Gaussian quadrature. To prepare the integral

in the previous equation to be approximated numerically, we need to make the change

of variable

u =
h+

2
(v + 1)

with du = (h+/2) dv. It follows that

pr+
(
t|u+

)
= pr+ (t− 1|0)FU

(
k+ − u+

)
+

∫ 1

−1

h+

2
pr+

(
t− 1|h

+

2
(v + 1)

)
fU

(
h+

2
(v + 1)− u+ + k+

)
dv.

Using v1, . . . , vη as the zeros and ω1, . . . , ωη the corresponding weights of the Legen-

dre polynomials (see Abramowitz and Stegun (1972)), then we can approximate the

integral with the sum∑η

j=1

h+

2
pr+

(
t− 1|h

+

2
(vj + 1)

)
fU

(
h+

2
(vj + 1)− u+ + k+

)
ωj.

Substituting uj for (h+/2) (vj + 1), we can write the sum as∑η

j=1

h+

2
pr+ (t− 1|uj) fU

(
uj − u+ + k+

)
ωj.

It now follows that the function pr+ (t|u+) approximately satisfies the equation

pr+
(
t|u+

)
= pr+ (t− 1|0)FU

(
k+ − u+

)
+
h+

2

∑η

j=1
pr+ (t− 1|uj) fU

(
uj − u+ + k+

)
ωj.
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Selecting u+ to be the values u0, u1, . . . , uη with u0 = 0, we have the system of

equations

pr+ (t|u0) = pr+ (t− 1|u0)FU
(
k+ − u0

)
+
h+

2

∑η

j=1
pr+ (t− 1|uj) fU

(
uj − u0 + k+

)
ωj

pr+ (t|u1) = pr+ (t− 1|u0)FU
(
k+ − u1

)
+
h+

2

∑η

j=1
pr+ (t− 1|uj) fU

(
uj − u1 + k+

)
ωj

...

pr+ (t|ui) = pr+ (t− 1|0)FU
(
k+ − ui

)
+
h+

2

∑η

j=1
pr+ (t− 1|uj) fU

(
uj − ui + k+

)
ωj

...

pr+ (t|uη) = pr+ (t− 1|0)FU
(
k+ − uη

)
+
h+

2

∑η

j=1
pr+ (t− 1|uj) fU

(
uj − uη + k+

)
ωj.

It is easy to see that this system of equations can be expressed in the form of

pt = Qpt−1,

where the ith component of pt is pr+ (t|ui), the ith component of pt−1 is pr+ (t− 1|ui),

and the (i, j)th element of Q is FU (k+ − ui) , for i = 0, 1, . . . , η, j = 0;

h+

2
fU (uj − ui + k+)ωj for i = 0, 1, . . . , η, j = 1, . . . , η.
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with

p1 =



1− FU (h+ − u0 + k+)

1− FU (h+ − u1 + k+)

...

1− FU (h+ − ui + k+)

...

1− FU (h+ − uη + k+)


.

Note that

FU
(
k+ − ui

)
+
∑η

j=1
fU
(
uj − ui + k+

)
ωj +

(
1− FU

(
h+ − ui + k+

))
≈ FU

(
k+ − ui

)
+

∫ h+

0

fU
(
u− ui + k+

)
du+

(
1− FU

(
h+ − ui + k+

))
= FU

(
k+ − ui

)
+

∫ h+−ui+k
+

−ui+k+

fU (t) dt+
(
1− FU

(
h+ − ui + k+

))
= FU

(
k+ − ui

)
+ FU

(
h+ − ui + k+

)
− FU

(
k+ − ui

)
+ 1− FU

(
h+ − ui + k+

)
= FU

(
h+ − ui + k+

)
+ 1− FU

(
h+ − ui + k+

)
= 1.

The average run length (ARL) of the chart is a function of the starting value

C+
0 = u+. For convenience, we let

M
(
u+
)

= E
(
T
∣∣C+

0 = u+
)

.

The integral equation that is useful in determining M (u+) is

M
(
u+
)

= 1 +M (0)FU
(
k+ − u+

)
+

∫ h+

0

M (z)FU
(
z − u+ + k+

)
dz,

where C+
0 = u+. The functionM (u+) can be approximated at the values u0, u1, . . . , uη

as the solutions to the system of equations

M = 1 + QM,
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where

M = [M (u0) ,M (u1) , . . . ,M (uη−1)]T .

It is not difficult to see that the solution of this system of equation can be expressed

as

M = (I−Q)−1 1.

For a Markov chain representation of the chart, we define

P =

 Q (I−Q) 1

0T 1


with non-absorbing states u0, u1, . . . , uη. If the method proposed by Brook and Evans

(1972) is used, then the non-absorbing states are the values

ui =
2h+

2η − 1
i

for i = 0, 1, . . . , η − 1 and transition probabilities

P (ui → uj) =


FU

(
h+

2η−1
− ui + k+

)
, for i = 0, 1, . . . , η, j = 0;

FU

(
h+(2j+1)

2η−1
− ui + k+

)
−FU

(
h+(2j−1)

2η−1
− ui + k+

)
,

for i = 0, 1, . . . , η, j = 1, . . . , η.

For the case in which p = 2, recall that

U = ln
(∣∣(n− 1) Σ−1

0 St
∣∣1/p) = ln

(
λχ2

2n−4/2
)

.

Thus, we have

FU (u) = Fχ2
2n−4

(
2eu

λ

)
and fU (u) =

2eu

λ
fχ2

2n−4

(
2eu

λ

)
.

Hence, the (i, j)th element of Q is
Fχ2

2n−4

(
2eu0−ui+k+

λ

)
, for i = 0, 1, . . . , η, j = 0;

2euj−ui+k+

λ
fχ2

2n−4

(
2euj−ui+k+

λ

)
ωj for i = 0, 1, . . . , η, j = 1, . . . , η.
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For the case in which n = 10, the density describing the distribution of U is given by

fU (u) =
1

Γ (n− 2)λn−2
e−(eu/λ−(n−2)u).

A plot of the density of describing the distribution of U is given in Figure 4.1.

Figure 4.1: Density Plots of the Distribution of U

The value of λ for the “left-most” curve is 0.5; for the curve in the middle it is 1.0;

and for the “right-most” curve its value is 1.5. Further we observe that the probability

density function of the distribution of U is “mound-shaped” and only slightly skewed

in the negative direction. The support of the distribution of U is the reals. While the

CUSUM chart was designed assuming the sequence of statistics being “CUSUMed”

has a normal distribution, we see that the statistic U has an approximate normal

distribution both when the process is in- and out-of-control. This suggest that the

CUSUM chart is well suited for monitoring for a change in expected value of U .
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4.3 Estimated Parameters and Steady-State Run Length Distributions

The estimated parameters and steady-state run length distributions can be approx-

imated by viewing the matrix Q as part of the transition matrix of a Markov chain

representation of the chart after removing the row and column of the transition matrix

association with the absorbing state. The results developed in the previous chapter

can then be used to determine the unconditional and cyclic steady-state run length

distributions. Similarly, the results in the previous chapter can be used in the esti-

mated parameters case.

4.4 Conclusion

A well known property of the CUSUM chart is that it will detect a “small” to “mod-

erate” shift in the process parameter(s) than a comparable Shewhart chart with runs

rules. In this chapter, we have outlined how one can obtain the fixed state and cyclic

steady-state run length properties both when parameters are known and estimated

of the CUSUM chart based on the statistic ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p).



CHAPTER 5

AN EXAMPLE

Montgomery (2003) gives an example in which tensile (X1) and diameter (X2) of a

textile fiber are the quality measurements of interest. At each sampling stage, random

samples of size n = 10 are taken from the output of the process. The practitioner

has available m = 20 samples each of size n = 10 for the process when the process

was believed to be in-control. The summary statistics for these samples are given in

Table 5.1 for completeness.

The estimates for the in-control mean vector and covariance matrix using these

data are

x =

 x1

x2

 =

 115.59

1.06

 and S =

 1.23 0.79

0.79 0.83

 .
Let us assume that x and S are “very good” estimates of µ0 and Σ0. Since

Montgomery (2003) does not give any Phase II data for this process, we will simulate

some Phase II data to illustrate the design of a Shewhart U chart supplemented with

runs rules.

For illustrations purposes, we assume the process is in-control at sampling stages

1 through 5 and out-of-control in 6 through 10. The process changes from in-control

to out-of-control by a sustained shift in the covariance matrix from the in-control

value Σ0 = S to the out-of-control value

Σ =

 (1.2)2 (1.23) (1.2) (0.79)

(1.2) (0.79) 0.83

 .

That is, standard deviation σ0,1 =
√

1.23 of the distribution of X1 made a sustained

shift at sampling stage 6 to the value σ1 = (1.2)
√

1.23. Under these assumptions
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Table 5.1: Example Data

Sample i x̄1 x̄2 s2
1 s2

2 s12 |S| u

1 115.25 1.04 1.25 0.87 0.80 0.45 2.26

2 115.91 1.06 1.26 0.85 0.81 0.41 2.22

3 115.05 1.09 1.30 0.90 0.82 0.50 2.31

4 116.21 1.05 1.02 0.85 0.81 0.21 1.88

5 115.90 1.07 1.16 0.73 0.80 0.21 1.87

6 115.55 1.06 1.01 0.80 0.76 0.23 1.93

7 114.98 1.05 1.25 0.78 0.75 0.41 2.22

8 115.25 1.10 1.40 0.83 0.80 0.52 2.33

9 116.15 1.09 1.19 0.87 0.83 0.35 2.13

10 115.92 1.05 1.17 0.86 0.95 0.10 1.53

11 115.75 0.99 1.45 0.79 0.78 0.54 2.35

12 114.90 1.06 1.24 0.82 0.81 0.36 2.15

13 116.01 1.05 1.26 0.55 0.72 0.17 1.79

14 115.83 1.07 1.17 0.76 0.75 0.33 2.10

15 115.29 1.11 1.23 0.89 0.82 0.42 2.23

16 115.63 1.04 1.24 0.91 0.83 0.19 2.25

17 115.47 1.03 1.20 0.95 0.70 0.65 2.44

18 115.58 1.05 1.18 0.83 0.79 0.36 2.14

19 115.72 1.06 1.31 0.89 0.76 0.59 2.39

20 115.40 1.04 1.29 0.85 0.68 0.63 2.43

∗u = ln

(∣∣∣(n− 1) S
−1

S
∣∣∣1/2)
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based on sample sizes of n = 10, ten values of the statistic U were generated. These

are given in Table 5.2.

Table 5.2: Phase II Values of U

t 1 2 3 4 5 6 7 8 9 10

Ut 2.43 1.58 1.55 1.65 1.89 1.87 2.52 2.03 2.37 2.87

We consider a Phase II Shewhart U chart with the supplementary runs rules

given in Table 5.3.

Table 5.3: Runs Rules

1. T(1, 1,−∞, 0.72644)

2. T(2, 3, 0.72644, 1.22102)

3. T(2, 3, 2.68034, 2.95354)

4. T(1, 1, 2.95354,∞)

A plot of the data given in Table 5.2 and the warning lines and control limits

given in Table 5.3 is given in Figure 5.1.
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Figure 5.1: Plot of Ut vs t

Under the modelling assumptions, an analysis of the run length distribution is

given in Table 5.4. The values in the table were obtain using a modified version of

the FORTRAN program given in Champ and Woodall (1992).
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Table 5.4: Run Length Parameters, p = 2,n = 10

Percentiles

λ ARL SDRL 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.5 6.13 4.92 1 1 2 3 5 8 13 16 24

0.6 14.15 12.89 1 2 3 5 10 19 31 40 61

0.7 34.76 33.48 1 3 5 11 24 48 78 102 155

0.8 85.18 83.93 2 6 10 25 59 118 194 253 387

0.9 185.39 184.24 3 11 21 54 129 257 425 553 849

1.0 225.44 224.38 3 13 25 66 157 312 518 673 1034

1.1 117.16 116.07 2 7 13 34 82 162 268 349 535

1.2 51.10 49.99 1 4 6 15 36 70 116 151 231

1.3 25.37 24.28 1 2 4 8 18 35 57 74 113

1.4 14.58 13.52 1 2 3 5 10 20 32 42 63

1.5 9.43 8.41 1 1 2 3 7 13 20 26 40



CHAPTER 6

CONCLUSION

6.1 General Conclusions

The performance of commonly recommended control charts for monitoring the mean

vector of the distribution of a multivariate quality measurement is not only affected

by changes in the mean vector but also changes in the covariance matrix. This

establishes the need for the practitioner to maintain a chart for monitoring for a

change in the covariance matrix. One such chart that is commonly used for this

purpose is the generalized variance chart. This chart is not affected by changes in

the mean vector and as we have shown is quite useful in detecting certain types of

shifts in the covariance matrix. One of the difficulties in studying this chart is that

the distribution of the sample generalized variance is not known. We examined an

approximation method by Steyn (1978) and found it to be useful in studying the run

length performance of the chart.

Supplementary runs rules can be added to a Shewhart chart to enhance its per-

formance. We have given a method for selecting runs rules for the generalized variance

chart. This method selects the warning and action lines (control limits) so that the

in-control ARL is the same as that of the Shewhart X supplemented with the same

runs rules. This requires selecting percentage points of the plotted statistic, in our

case, the statistics V =
∣∣(n− 1) Σ−1

0 S
∣∣1/p and U = ln

(∣∣(n− 1) Σ−1
0 S
∣∣1/p). The run

length properties of the chart were studied using a Markov chain approach. We

further discussed methods for designing these charts with estimated parameters.

The CUSUM chart is commonly recommended in the literature for monitoring

for small to moderate shifts in the mean of a quality measurement. We examined
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its use for monitoring for a change in the distribution of U . An outline was given

for studying the run length performance of the CUSUM U chart using the integral

equation approach. It was shown that this method is equivalent to a Markov chain

approach. This easily allows one to study the steady-state run length distribution

properties. Further, we outlined how one would study the run length properties of

the chart with estimated parameters. Our work was concluded with an example.

6.2 Areas for Further Research

This research has suggested a number of potential further research. (1) It would

be useful for practitioners to have available a computer program that analyzes the

fixed and steady-state run length properties of the Shewhart chart with run rules

when parameters are to be estimated. (2) A similar program would be useful for the

CUSUM chart. (3) Determining the run length properties of the CUSUM chart based

on the statistic
∣∣(n− 1) Σ−1

0 S
∣∣1/p, the statistic

∣∣(n− 1) Σ−1
0 S
∣∣, or the statistic |S| is far

more difficult than the CUSUM chart based on the statistic ln
(∣∣(n− 1) Σ−1

0 S
∣∣1/p).

The integral equations whose solutions are various run length parameters are not

of the Fredholm type and are a bit more difficult to solve. Developing software to

implement solutions to these equations would provide useful analyses of the run length

properties of the chart for practitioner who may wish to use these charts. (4) Other

charts appear in the literature that have been designed to monitor for a change in

the process covariance matrix. It would be interesting to develop analytical methods

to study the fixed and steady-state run length properties both when parameters are

known and estimated for these charts and report a comparison of their run length

performance.
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Appendix A
FIRST APPENDIX

Table A.1: Percentage Points (continued) u1,n,1−Φ(c), λ=1

c n=7 n=8 n=9 n=10
-3 -0.85954 -0.42128 -0.07195 0.21610
-2 0.17611 0.49187 0.74950 0.96611
-1 1.00598 1.23601 1.42823 1.59303
0 1.67675 1.84779 1.99390 2.12140
1 2.22740 2.35773 2.47118 2.57171
2 2.68763 2.78940 2.87939 2.96017
3 3.07912 3.16040 3.23322 3.29929

Table A.2: Percentage Points (continued) u2,n,1−Φ(c), λ=1

c n=8 n=9 n=10 n=11 n=12
-3 0.16123 0.47187 0.72644 0.94117 1.12630
-2 0.76697 1.01458 1.22102 1.39761 1.55165
-1 1.28649 1.48581 1.65472 1.80114 1.93026
0 1.73522 1.89757 2.03722 2.15975 2.26890
1 2.12614 2.26006 2.37679 2.48032 2.57339
2 2.46984 2.58170 2.68034 2.76867 2.84871
3 2.77477 2.86931 2.95354 3.029594 3.09901

Table A.3: Percentage Points (continued) u3,n,1−Φ(c), λ=1

c n=7 n=8 n=9 n=10
-3 0.38900 0.63059 0.84289 1.03339
-2 0.63240 0.90903 1.13809 1.33237
-1 1.01893 1.27319 1.48014 1.65434
0 1.41109 1.62971 1.80891 1.96077
1 1.77336 1.95881 2.11273 2.24448
2 2.10080 2.25831 2.39078 2.50533
3 2.39572 2.53034 2.64497 2.74506
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Table A.4: Percentage Points (continued) u4,n,1−Φ(c), λ=1

c n=7 n=8 n=9 n=10
-3 0.74085 1.00136 1.20677 1.37685
-2 0.78117 1.05052 1.26544 1.44534
-1 0.95732 1.23398 1.45324 1.63508
0 1.24673 1.50377 1.70692 1.87512
1 1.56105 1.78753 1.96813 2.11870
2 1.86332 2.05972 2.21838 2.35194
3 2.14360 2.31362 2.45284 2.57123
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