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ABSTRACT

The weighted inverse Weibull distribution and the beta-inverse Weibull distri-

bution are considered. Theoretical properties of the inverse Weibull model, weighted

inverse Weibull distribution including the hazard function, reverse hazard function,

moments, moment generating function, coefficient of variation, coefficient of skew-

ness, coefficient of kurtosis, Fisher information and Shanon entropy are studied. The

estimation for the parameters of the length-biased inverse Weibull distribution via

maximum likelihood estimation and method of moment estimation techniques are

presented, as well as a test for the detection of length-biasedness in the inverse Weibull

model. Furthermore, the beta-inverse Weibull distribution which is a weighted distri-

bution is presented, including the cumulative distribution function (cdf), probability

density function (pdf), density plots, moments, and the moment generating function.

Also, some useful transformations that lead to the generation of observations from

the beta-inverse Weibull distribution are derived.
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CHAPTER 1

INTRODUCTION

1.1 Background of Weighted Distribution

The use and application of weighted distributions in research related to reliability,

bio-medicine, ecology and several other areas are of tremendous practical impor-

tance in mathematics, probability and statistics. These distributions arise naturally

as a result of observations generated from a stochastic process and recorded with

some weight function. Several authors have presented important results on length-

biased distributions and on weighted distributions in general. Rao [23] unified the

concept of weighted distributions. Bhattacharyya and Roussas [1] studied and com-

pared nonparametric unweighted and length-biased density estimates of fibers. Vardi

[26] derived the nonparametric maximum likelihood estimate (NPMLE) of a lifetime

distribution in the presence of length bias and established convergence to a pinned

Gaussian process with a simple covariance function under mild conditions. For addi-

tional and important results on weighted distributions see Patil and Rao [20], Patil

and Ord [21], Gupta and Keating [12], Oluyede [19] among others.

Traditional environmetric theory and practice have been occupied largely with

randomization and replication, however, in environmental and ecological work, obser-

vations also fall in the non experimental, non replicated, and nonrandom categories.

The problems of model specification and data interpretation then acquire special im-

portance and great concern. The theory of weighted distributions provides a unifying

approach for these problems. Weighted distributions take into account the method of

ascertainment by adjusting the probabilities of actual occurrence of events to arrive

at a specification of the probabilities of those events as observed and recorded. Failure
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to make such adjustments can lead to incorrect conclusions.

The concept of weighted distributions can be traced to the study of the effect of

methods of ascertainment upon estimation of frequencies by Fisher [10]. In extending

the basic ideas of Fisher, Rao [23] saw the need for a unifying concept and identified

various sampling situations that can be modeled by what he called weighted distri-

butions. Within the context of cell kinetics and the early detection of disease, Zelen

and Feinleib [27] introduced weighted distributions to represent what he broadly per-

ceived as length-biased sampling. In a series of papers with his colleages, Patil and

Ord [21] pursued weighted distributions for the purpose of encountered data analysis,

equilibrium population analysis subject to harvesting and predation, meta-analysis

incorporating publication bias and heterogeneity, modeling clustering and extraneous

variation, to mention just a few areas.

To introduce the concept of a weighted distribution, suppose X is a non-negative

random variable (rv) with its natural probability density function (pdf) f(x; θ), where

the natural parameter is θ ∈ Ω (Ω is the parameter space). Suppose a realization x

of X under f(x; θ) enters the investigator’s record with probability proportional to

w(x, β), so that the recording (weight) function w(x, β) is a non-negative function

with the parameter β representing the recording (sighting) mechanism. Clearly, the

recorded x is not an observation on X, but on the rv Xw, say, having a pdf

fw(x; θ, β) =
w(x, β)f(x; θ)

ω
, (1.1)

where ω is the normalizing factor obtained to make the total probability equal to

unity by choosing ω = E[w(X, β)] <∞. The rv Xw is called the weighted version of

X, and its distribution is related to that of X and is called the weighted distribution

with weight function w. Note that the weight function w(x, β) need not lie between
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zero and one, and actually may exceed unity, as, for example, when w(x, β) = x, in

which case X∗ = Xw is called the size-biased version of X. The distribution of X∗ is

called the size-biased distribution with pdf

f ∗(x; θ) =
xf(x; θ)

µ
, (1.2)

where µ = E[X] < ∞. The pdf f ∗ is called the length-biased or size-biased version

of f , and the corresponding observational mechanism is called length-biased or size-

biased sampling. Weighted distributions have seen much use as a tool in the selection

of appropriate models for observed data drawn without a proper frame. In many

situations the model given above is appropriate, and the statistical problems that arise

are the determination of a suitable weight function, w(x, β), and drawing inferences

on θ. Appropriate statistical modeling helps accomplish unbiased inference in spite of

the biased data and, at times, even provides a more informative and economic setup.

See Rao [22], [23] for a comprehensive review and additional details on weighted

distributions.

1.2 Outline of Results

This paper is organized as follows: In chapter 2, some basic utility notions, the Weibull

model, the inverse Weibull model, weighted Weibull distribution and weighted in-

verse Weibull distribution are introduced. This chapter also includes some properties

(such as reverse hazard function, mean, variance, coefficient of variation, coefficient

of skewness, coefficient of kurtosis, and application of Glaser’s [11] results) of those

distributions. Chapter 3 presents the moments and moment generating functions,

Fisher information and Shanon entropy of the weighted inverse Weibull distribution

introduced in chapter 2. Chapter 4 contains the estimation of parameters in the
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weighted inverse Weibull distribution including the maximum likelihood estimators

and method of moments estimation technique. Chapter 5 contains the derivation and

properties as well as important results on the beta-inverse Weibull distribution.



CHAPTER 2

WEIGHTED INVERSE WEIBULL DISTRIBUTION

2.1 Introduction and Basic Utility Notions

The distribution of a random variable X can essentially be characterized by four

functions, namely, the survival function which is the probability that an individual

survives beyond a time x, the probability density (or mass) function which is the

approximate unconditional probability of the event occurring at time x, the failure

rate function or hazard rate, which is approximately the probability or chance an

individual of age x experiences the event in the next instant in time, and the mean

residual life at time x which is the mean time to the event of interest, given the event

has not occurred at x. See Ross [24]; Shaked and Shanthikumar [25] for additional

details.

The survival function of a continuous random variable X, denoted by F (x) or S(x)

is a continuous monotone, decreasing function, given by

F (x) = 1− F (x) =

∫ ∞
x

f(t)dt, (2.1)

where f(t) is the probability density function (pdf) and F (t) is the cumulative dis-

tribution(cdf). The hazard function also known as the conditional failure rate in

reliability is given by

λF (x) = lim
∆x→0

P (x ≤ X < x+ ∆x|X ≥ x)

∆x
. (2.2)

Note that λF (x)∆x is the approximate probability that an individual who has sur-

vived to age x will experience the event in the interval (x, x+∆x). The mean residual

life function is given by

δF (x) = EF (X − x|X ≥ x) =

∫∞
x
F (u)du

F (x)
=

∫∞
x

(u− x)f(u)du

F (x)
. (2.3)
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This is a parameter that measures for an individual at age x, their expected remaining

lifetime.

In general, if X is a continuous random variable with distribution function F,

and probability density function (pdf) f, then the hazard function, reverse hazard

function and mean residual life functions are given by λF (x) = f(x)

F (x)
, τF (x) = f(x)

F (x)
, and

δF (x) =
∫∞
x F (u)du

F (x)
respectively. The functions λF (x), δF (x), and τF (x) are equivalent.

See Shaked [24] and Shanthikumar [25].

The concept of reverse hazard rate was introduced as the hazard rate in the

negative direction and received minimal attention, if any, in the literature. Keilson

and Sumita [15] demonstrated the importance of the reverse hazard rate and reverse

hazard orderings. Shaked and Shanthikumar [25] presented results on reverse hazard

rate. See Chandra and Roy [6], Block and Savits [2] for additional details. We

present formal definitions of the reverse hazard function of a distribution function F

and stochastic order of two distributions F and G respectively.

Definition 2.1.1. Let (a, b), −∞ ≤ a < b < ∞, be an interval of support for F.

Then the reverse hazard function of X (or F) at t > a is denoted by τF (t) and is

defined as

τF (t) =
d

dt
logF (t) =

f(t)

F (t)
. (2.4)

Definition 2.1.2. Let X and Y be two random variables with distribution functions

F and G respectively. We say F <st G, stochastically ordered, if F (x) ≤ G(x), for

x ≥ 0 or equivalently, for any increasing function Φ(x),

E(Φ(X)) ≤ E(Φ(Y )). (2.5)
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2.2 Weibull Distribution

Consider the Weibull distribution used to model degradation of mechanical compo-

nents such as pistons, crankshafts of diesel engines, as well as breakdown of insulating

fluid to mention just a few areas. If a random variable X has a Weibull distribution

with shape parameter α and scale parameter β, we write X ∼ Weibull(α, β). The

probability density function (pdf), cumulative distribution function (cdf), and non

central moments are given by

f(x;α, β) = αβxβ−1e−αx
β

, x ≥ 0, α > 0, β > 0, (2.6)

F (x;α, β) =

∫ x

0

αβtβ−1e−αt
β

dt = 1− e−αxβ , x ≥ 0, α > 0, β > 0, (2.7)

and

E(Xk) =

∫ ∞
0

xkαβxβ−1e−αx
β

dx =
kΓ(k/β)

βαk/β
. (2.8)

respectively.

When k = 1, the mean µ is given by

E(X) =

∫ ∞
0

xαβxβ−1e−αx
β

dx =
Γ(1/β)

βα1/β
. (2.9)

The Fisher information (FI) in X are denoted by

I(α, x) = E
[∂ log

(
f(x;α, β)

)
∂α

]2

,

I(β, x) = E
[∂ log

(
f(x;α, β)

)
∂β

]2

,

I(α, β, x) =

E
[∂ log

(
f(x;α, β)

)
∂α

]2

E
[∂2 log

(
f(x;α, β)

)
∂α∂β

]
E
[∂2 log

(
f(x;α, β)

)
∂β∂α

]
E
[∂ log

(
f(x;α, β)

)
∂β

]2


(2.10)

and can be readily obtained.
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2.3 Inverse Weibull Distribution

Consider the inverse Weibull distribution which can be readily applied to a wide range

of situations including applications in medicine, reliability and ecology. Keller [16]

obtained the inverse Weibull model by investigating failures of mechanical components

subject to degradation. Calabria and Pulcini [4] obtained the maximum likelihood

and least squares estimates of the parameters of the inverse Weibull distribution.

They also obtained the Bayes estimator of the parameters. See Johnson [14] for

details. The inverse Weibull (IW) cumulative distribution function (cdf) is given by

F (x, α, β) = exp

[
− (α(x− x0))−β

]
, x ≥ 0, α > 0, β > 0, (2.11)

where α, x0 and β are the scale, location and shape parameters respectively. Often

the parameter x0 is called the minimum life or guarantee time. When α = 1 and

x = x0 + α, then F (α+ x0; 1; β) = F (α+ x0; 1) = e−1 = 0.3679. This value is in fact

the characteristic life of the distribution. In what follows, we assume that x0 = 0,

and the inverse cumulative Weibull distribution function becomes

F (x, α, β) = exp[−(αx)−β], x ≥ 0, α > 0, β > 0. (2.12)

Note that when α = 1, we have the Frechet distribution function. The inverse Weibull

probability density function (pdf) is given by

f(x, α, β) = βα−βx−β−1exp[−(αx)−β], x ≥ 0, α > 0, β > 0. (2.13)

When β = 1 and β = 2, the inverse Weibull distribution pdfs are referred to as the

inverse exponential and inverse Raleigh pdfs respectively.
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2.3.1 Moments

In this subsection, we present the raw moments, mean, variance, coefficients of vari-

ation, skewness and kurtosis for the inverse Weibull distribution. See Johnson [14].

The kth raw or non central moments are given by

E(Xk) =

∫ ∞
0

xkf(x;α, β) dx =

∫ ∞
0

β(αx)−βxk−1e−(αx)−β dx.

Let (αx)−β = t, then x = α−1t−1/β and dx = −α−1β−1t−1/β−1 dt

so that t = (αx)−β|x=0 =∞, and t = (αx)−β|x=∞ = 0.

Consequently,

E(Xk) =

∫ ∞
0

βte−t(−α−kβ−1t−k/β−1) dt

= α−k
∫ ∞

0

t−k/βe−t dt =
Γ(1− k/β)

αk
, for β > k.

(2.14)

Note that E(Xk) does not exist, when β ≤ k.

The mean is given by

µF = E(X) =
Γ(1− 1/β)

α
.

The variance σ2, coefficient of variation (CV), coefficient of skewness (CS), and

coefficient of kurtosis (CK) are given by

σ2 =
Γ(1− 2

β
)− Γ2(1− 1

β
)

α2
, (2.15)

CV =
σ

µ
=

[Γ(1− 2
β
)− Γ2(1− 1

β
)]1/2

Γ(1− 1
β
)

=
(δ2 − δ2

1)1/2

δ1

, (2.16)
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CS =
E(X − µ)3

[E(X − µ)2]3/2

=
Γ(1− 3

β
)− 3Γ(1− 1

β
)Γ(1− 2

β
) + 2Γ3(1− 1

β
)

[Γ(1− 2
β
)− Γ(1− 1

β
)2]3/2

=
δ3 − 3δ1δ2 + 2δ3

1

(δ2 − δ2
1)3/2

, (2.17)

and

CK =
E(X − µ)4

[E(X − µ)2]2

=
Γ(1− 4

β
)− 4Γ(1− 1

β
)Γ(1− 3

β
) + 6Γ2(1− 1

β
)Γ(1− 2

β
)− 3Γ4(1− 1

β
)

[Γ(1− 2
β
)− Γ(1− 1

β
)2]2

=
δ4 − 4δ1δ3 + 6δ2

1δ2 − 3δ4
1

(δ2 − δ2
1)2

, (2.18)

where δk = Γ(1− k/β).

2.3.2 Some Basic Properties

In this subsection, some basic properties involving the reverse hazard function as

well as stochastic order relations in the inverse Weibull distribution are established.

Stochastic and reverse order relations between two inverse Weibull distributions F

and G are presented. The first result gives the length-biased pdf in terms of the

corresponding parent cumulative distribution function. The second result gives the

reverse hazards function and the third result deals with stochastic and reverse order

relations.

1. xf(x;α, β) = βF (x;α, β)(−ln[F (x;α, β)])

Proof. With F (x;α, β) = e−(αx)−β , we have

f(x;α, β) = F ′(x;α, β) = e−(αx)−ββα(αx)−β−1,
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so that

xf(x;α, β) = e−(−αx)−ββ(αx)−β = βe−(αx)−β(αx)−β.

Also,

lnF (x;α, β) = ln(e−(αx)−β) = −(αx)−β ⇒ −lnF (x;α, β) = (αx)−β.

Therefore,

xf(x;α, β) = βF (x;α, β)(−lnF (x;α, β)),

and the length-biased pdf is

xf(x;α, β)

µ
=
αβF (x;α, β)(−ln[F (x;α, β)])

Γ(1− 1/β)
.

2. Reverse Hazard Function.

The reverse hazard function is given by:

τF (x;α, β) =
f(x;α, β)

F (x;α, β)
= −β

x
lnF (x;α, β)

Proof.

τF (x;α, β) =
xf(x;α, β)

xF (x;α, β)

=
βF (x;α, β)(−lnF (x;α, β))

xF (x;α, β)

= −β
x
lnF (x;α, β). (2.19)

3. Stochastic and Reverse Hazard Order Relations.

Consider the inverse Weibull cumulative distribution functions given by

F (x;α1, β1) = e−(α1x)−β1 and G(x;α2, β2) = e−(α2x)−β2 respectively.
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Note that by stochastic order relations we have F >st G, if F̄ (x) ≥ Ḡ(x), for

any x.

(a) Now, let β1 = β2, then F̄ (x;α1, β1) ≤ Ḡ((x;α2, β2) if α1 ≥ α2.

(b) τ
F

(x;α1, β1) ≤ τ
G

(x;α2, β2), if and only if F (x;α1, β1) ≥ G(x;α2, β2), and

β1 ≥ β2.

Proof. Note that τ
F

(x;α1, β1) = f(x;α1,β1)
F (x;α1,β1)

= α1β1(α1x)−(β1+1) and

τ
G

(x;α2, β2) = g(x;α2,β2)
G(x;α2,β2)

= α2β2(α2x)−(β2+1), so that for fixed β1 = β2 > 0,

τ
F

(x;α1, β1 ≤ τ
G

(x;α2, β2) if α1 ≥ α2 .

Also, note that xf(x;α, β) = βF (x;α, β)(−lnF (x;α, β)),

so that τ
F

(x;α1, β1) ≤ τ
G

(x;α2, β2), if and only if

F (x;α1, β1) ≥ G(x;α2, β2), and β1 ≥ β2.

2.4 Weighted Distributions

Weighted distributions occur in various areas including medicine, ecology, reliability

and branching processes. Results on applications in these and other areas can be seen

in Patil and Rao [20], Gupta and Keating [12], Oluyede [19] and in other references

therein.

Recall that in a weighted distribution problem, a realization x of X enters into

the investigators record with probability proportional to a weight function w(x). The

recorded x is not an observation of X, but rather an observation on a weighted random

variable Xw.

Let X be a nonnegative random variable with distribution function F (x) and



13

probability density function (pdf) f(x). Let w(x) be a positive weight function such

that 0 < E(w(X)) <∞. The pdf of the weighted random variable Xw is given by

fw(x) =
w(x)f(x)

E(w(X))
, x ≥ 0, and 0 < E(w(X)) <∞. (2.20)

The corresponding weighted survival or reliability function of Xw is given by

Fw(x) =
EF [w(X)|X > x]

EF [w(X)]
F (x), x ≥ 0, and 0 < E(W (X)) <∞. (2.21)

If the weight function is monotone increasing and concave, then the weighted distri-

bution of an increasing failure rate (IFR) distribution is an IFR distribution. Also,

the size-biased distribution of a decreasing mean residual (DMRL) distribution has

decreasing mean residual life. The residual life at age t, is a weighted distribution,

with survival function given by

F t(x) =
F (x+ t)

F (t)
, (2.22)

for x ≥ 0. The weight function is w(x) = f(x+t)
f(x)

, where f(u) = dF (u)
du

, the hazard func-

tion and mean residual life functions are λFt(x) = λF (x+ t) and δFt(x) = δF (x+ t). It

is clear that if F is IFR (DMRL) distribution, then Ft is IFR (DMRL) distribution,

where the hazard function λF (x) and mean residual life function δF (x) of the distri-

bution function F are given by λF (x) = f(x)/F (x), and δF (x) =
∫∞
x
F (u)du/F (x)

respectively.

2.5 Weighted Inverse Weibull Distribution

In this section, we present the weighted inverse Weibull distribution, the correspond-

ing reliability function, hazard and reverse hazard functions, and apply Glaser [11]

result to study the behavior of the hazard function.
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Consider the weight function w(x) = x and inverse Weibull distribution given by

f(x;α, β) = βα−βx−β−1e−(αx)−β , x ≥ 0, α > 0, β > 0.

The length-biased inverse Weibull (LBIW) distribution is given by

gw(x;α, β) =
xf(x;α, β)

µF
=
xβα−βx−(β+1)e−(αx)−β

Γ(1−1/β)
α

=
βα−β+1

Γ(1− 1/β)
x−βe−(αx)−β , x ≥ 0, α > 0, β > 1. (2.23)

Note that

lim
x→0

gw(x;α, β) =
βα−β+1x−β

Γ(1− 1
β
)
exp(−(αx)−β) = 0, (2.24)

and by letting u = αx, we have

lim
x→∞

gw(x) = lim
u→∞

βαu−β

Γ(1− 1
β
)
exp(−(u)−β) = 0. (2.25)

Note that ∂(ln(gw(x)))
∂x

= 0 implies β( (αx)−β−1
x

) = 0, so that gw(x) has a maximum at

x0 = α−1
0 . Hence gw(x) increases to maximum at x0 and then decreases. Also

∂2(ln(gw(x)))

∂x2
= −β

(
(β + 1)α2(αx)−β−2 − x−2

)
< 0, (2.26)

all values of x.

Plots of the length-biased inverse Weibull (LBIW) probability density function

are given below when either the parameter α or the parameter β is fixed.

• fix parameter β: see fig2.1

• fix parameter α: see fig2.2
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Figure 2.1: plot of gw(x;α, β) with fixed β
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Figure 2.2: plot of gw(x;α, β) with fixed α
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If the weight function is w(x; c) = xc, for c ≥ 1, then the weighted inverse Weibull

probability density function is given by

gw(x;α, β, c) =
βαc−β

Γ(1− c/β)
xc−β−1e−(αx)−β , x ≥ 0, α > 0, β > c. (2.27)

Now, the length-biased cdf is given by

Gw(x;α, β) =

∫ x

0

gw(t;α, β) dt =
βα−β+1

Γ(1− 1/β)

∫ x

0

t−βe−(αx)−β dt

and the reliability or survival function is given by

Ḡw(x;α, β) = 1−Gw(x;α, β)

= 1− βα−β+1

Γ(1− 1/β)

∫ x

0

t−βe−(αt)−β dt

=
βα−β+1

Γ(1− 1/β)

∫ ∞
x

t−βe−(αt)−β dt. (2.28)

The hazard function is given by

λGw(x;α, β) =
gw(x;α, β)

Ḡw(x;α, β)

=
x−βe−(αx)−β∫∞

x
t−βe−(αt)−β dt

. (2.29)

The reverse hazard function is given by

τGw(x;α, β) =
gw(x)

Gw(x)
=

βα1−β

Γ(1−1/β)
x−βe−(αx)−β

βα1−β

Γ(1−1/β)

∫ x
0
t−βe−(αt)−β dt

=
x−βe−(αx)−β∫ x

0
t−βe−(αt)−β dt

. (2.30)

We study the behavior of the hazard function of the LBIW distribution via the

following lemma, due to Glaser [11].

Lemma 2.5.1. Let f(x) be a twice differentiable probability density function of a

continuous random variable X. Define η(x) = −f ′(x)
f(x)

, where f ′(x) is the first derivative

of f(x) with respect to x. Furthermore, suppose the first derivative of η(x) exist.
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1. If η′(x) < 0, for all x > 0, then the hazard function is monotonically decreasing

(DFR).

2. If η′(x) > 0, for all x > 0, then the hazard function is monotonically increasing

(IFR).

3. If there exist x0 such that η′(x) > 0, for all 0 < x < x0, η′(x0) = 0 and

η′(x) < 0 for all x > x0. In addition, limx→0 f(x) = 0, then the hazard function is

upside down bathtub shape (UBT).

4. If there exist x0 such that η′(x) < 0, for all 0 < x < x0, η′(x0) = 0 and

η′(x) > 0 for all x > x0. In addition, limx→0 f(x) = ∞, then the hazard function is

bathtub shape (BT).

Now consider the weighted distribution discussed above. We compute the quan-

tity η(x) = −g′(x)
g(x)

, and apply Glaser [11] result. Note that

g′w(x) = gw(x){αβ(αx)−β−1 − βx−1}, (2.31)

so that

η(x) =
−g′w(x)

gw(x)
= βx−1 − αβ(αx)−β−1, (2.32)

and

η′(x) =
β

x2
{(αx)−β(1 + β)− 1}. (2.33)

Since α > 0, β > 1 and x > 0, we have η′(x) > 0 if (αx)−β(1 + β)− 1 > 0.

Theorem 2.5.2. Let β > 1, and x∗ = (1+β)1/β

α
, then η′(x) = 0 if x = x∗, η′(x) > 0 if

x < x∗, and η′(x) < 0 if x > x∗.

Proof: The results in the theorem follows from the fact that η′(x) = 0 implies

x = (1+β)1/β

α
.
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2.6 Concluding Remarks

In chapter 2, the weighted inverse Weibull distribution was presented. At first, we

introduced four functions that characterize the distribution of a random variable X,

namely the survival function, the probability density or mass function, the failure rate

function or hazard function and the mean residual life. Then we gave a simple review

on the Weibull distribution and the inverse Weibull distribution. We also presented

the moments E(Xk), the coefficient of variation CV, the coefficient of skewness CS

and the coefficient of Kurtosis CK of the inverse Weibull distribution as well as some

basic properties of this distribution. A brief discussion of weighted distributions was

presented followed by an introduction of the weighted inverse Weibull distribution.

We computed the cdf Gw(x;α, β), reliability or survival function Ḡw(x;α, β), hazard

function λGw(x;α, β), reverse hazard function τGw(x;α, β) and found that the hazard

function of gw(x;α, β), (using the function η(x) = −g′w(x)
gw(x)

,) is upside down bathtub

shape on applying the Glaser’s [11] result. In chapter 3, we will continue discussing

more properties of the weighted inverse Weibull distribution including the moments,

moment generating function, the variance, the coefficient of variation CV, the coeffi-

cient of skewness CS, and the coefficient of Kurtosis CK. We will also present results

on Fisher information and Shanon entropy.



CHAPTER 3

MOMENTS AND MOMENT GENERATING FUNCTION, FISHER

INFORMATION AND SHANON ENTROPY

3.1 Introduction

This chapter contains the moments, moment generating function as well as the mean,

variance, coefficients of variation, skewness, and kurtosis for the weighted inverse

Weibull distribution. Also, the Fisher information and the Shanon entropy for the

weighted inverse Weibull distribution are presented.

3.2 Moments and Moment Generating Function

3.2.1 Moments

The moments of the length-biased random variable Y are related to those of the

original or parent random variable X by

EGw(Y k) =
E
F

(Xk+1)

E
F

(X)
, k = 1, 2, ..., provided E

F
(Xk+1) exists. (3.1)

Noting that the moments of F are given by

E
F

(Xk) = γk =
Γ(1− k

β
)

αk
, k ≥ 1, β > k, (3.2)

we obtain the moments of Y as follows:

EGw(Y k) =
Γ(1− (k+1)

β
)

αkΓ(1− 1
β
)

=
γk+1

γ1

, k ≥ 1, β > k. (3.3)

The mean and variance of Y are given by

µGw = EGw(Y ) =
Γ(1− 2

β
)

αΓ(1− 1
β
)

=
γ2

γ1

, (3.4)
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and

σ2
Gw = EY 2

Gw − [EGw(Y )]2 =
Γ(1− 3

β
)

α2Γ(1− 1
β
)
−

{
Γ(1− 2

β
)

Γ(1− 1
β
)

}2

=
γ1γ3 − γ2

2

γ2
1

(3.5)

respectively.

The coefficient of variation (CV) is given by

CV =
σGw
µGw

=

√√√√ Γ(1− 3
β

)

α2Γ(1− 1
β

)
−

{
Γ(1− 2

β
)

αΓ(1− 1
β

)

}2

Γ(1− 2
β

)

αΓ(1− 1
β

)

=

√
γ3γ1

γ2
2

− 1, (3.6)

where γk =
Γ(1− k

β
)

αk
.

The coefficients of skewness (CS) and kurtosis (CK) are given by

CS =
E(Y − µGw)3

(E(Y − µGw)2)3/2
=
γ2

1γ4 − 3γ1γ2γ3 + 2γ3
2

(γ1γ3 − γ2
2)3/2

(3.7)

and

CK =
E(Y − µGw)4

(E(Y − µGw)2)2
=
γ3

1γ5 − 4γ2
1γ2γ4 + 6γ1γ

2
2γ3 − 3γ4

2

γ2
1γ

2
3 − 2γ1γ2

2γ3 + γ4
2

(3.8)

respectively.

The Table 3.1 shows the mean, standard deviation (STD), coefficient of variation

(CV), coefficient of Skewness (CS) and coefficient of Kurtosis (CK) with some values

of the parameters α and β.

Note that CV, CS and CK do not depend on the parameter α. Plots for CV,

CS, CK as functions of β are presented below. (see fig3.1, fig3.2 and fig 3.3)
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α β Mean STD CV CS CK

1 3 1.9184 Inf Inf NaN NaN

5 1.2791 0.5188 0.4056 5.8578 Inf

8 1.1246 0.2276 0.2023 2.5156 18.5192

10 1.0895 0.1666 0.1529 2.0949 12.7770

2 3 0.9892 Inf Inf NaN NaN

5 0.6396 0.2594 0.4056 5.8578 Inf

8 0.5623 0.1138 0.2023 2.5156 18.5192

10 0.5447 0.0833 0.1529 2.0949 12.7770

5 3 0.3957 Inf Inf NaN NaN

5 0.2558 0.1038 0.4056 5.8578 Inf

8 0.2249 0.0455 0.2023 2.5156 18.5192

10 0.2179 0.0333 0.1529 2.0949 12.7770

10 3 0.1978 Inf Inf NaN NaN

5 0.1279 0.0519 0.4056 5.8578 Inf

8 0.1125 0.0228 0.2023 2.5156 18.5192

10 0.1089 0.0167 0.1529 2.0949 12.7770

Inf: ∞, NaN: Not Defined

Table 3.1: Table of Mean, STD, Coefficients of Variation, Skewness and Kurtosis
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Figure 3.1: plot of CV against β
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Figure 3.2: plot of CS against β
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Figure 3.3: plot of CK against β

3.2.2 Moment Generating Function

The moment generating function of the length-biased inverse Weibull distribution is

given by

MY (t) =
βα−β+1

Γ(1− 1/β)

∫ ∞
0

etyy−βe−(αy)−βdy

=
βα−β+1

Γ(1− 1/β)

∞∑
j=0

tj

j!

∫ ∞
0

yj−βe−(αy)−βdy

=
1

Γ(1− 1/β)

∞∑
j=0

tj

j!αj

∫ ∞
0

t−(j+1)/βe−tdt

=
1

Γ(1− 1/β)

∞∑
j=0

tj

j!

Γ(1− j+1
β

)

αj
(3.9)

=
α

Γ(1− 1/β)

∞∑
j=0

tj

j!
γj+1, (3.10)

for β > j + 1.
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3.3 Fisher Information and Shanon Entropy

The information (or Fisher information) that a random variable X contains about

the parameter θ is given by

I(θ) = E

[
∂

∂θ
log(f(X, θ))

]2

. (3.11)

Now, if in addition, the second derivative with respect to θ of f(x, θ) exits for all x

and θ and the second derivative with respect to θ of
∫
f(x, θ)dx = 1 can be obtained

by differentiating twice under the integral sign, then

I(θ) = −Eθ
[
∂2

∂θ2
log(f(X, θ))

]
. (3.12)

For the weighted inverse Weibull distribution, the Fisher information (FI) that X

contains about the parameters θ = (α, β) is obtained as follows:

E

{
∂log(gw(x;α, β))

∂α

}2

=

∫ ∞
0

(
1− β
α

+ βα−β−1x−β)2gw(x;α, β) dx

= (1− β)2α−2

∫ ∞
0

gw(x;α, β) dx

+
2β2(1− β)α−2β−1

Γ(1− 1/β)

∫ ∞
0

x−2βe−(αx)−β dx

+
β3α−3β−1

Γ(1− 1/β)

∫ ∞
0

x−3βe−(αx)−β dx

= (1− β)2α−2 +
2β(1− β)α−2

Γ(1− 1/β)
Γ(2− 1/β)

+
β2α−2

Γ(1− 1/β)
Γ(3− 1/β)

= (1− β)2α−2 + 2(1− β)βα−2(1− 1/β)

+ β2α−2(2− 1/β)(1− 1/β)

= β(β − 1)α−2. (3.13)
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Also,

E

{
∂log(gw(x;α, β))

∂β

}2

=

∫ ∞
0

{ 1

β
− Γ′(1− 1/β)

β2Γ(1− 1/β)
+ log(αx)[(αx)−β − 1]}2gw(x;α, β) dx

= [
1

β
− Γ′(1− 1/β)

β2Γ(1− 1/β)
]2
∫ ∞

0

gw(x;α, β) dx

+ 2[
1

β
− Γ′(1− 1/β)

β2Γ(1− 1/β)
]

∫ ∞
0

log(αx)[(αx)−β − 1]gw(x;α, β) dx

+

∫ ∞
0

[log(αx)]2[(αx)−β − 1]2gw(x;α, β) dx

=

[
1

β
− Γ′(1− 1/β)

β2Γ(1− 1/β)

]2

− 2

[
1

β
− Γ′(1− 1/β)

β2Γ(1− 1/β)

]
[Γ′(2− 1/β)− Γ′(1− 1/β)]

βΓ(1− 1/β)

+
β2[Γ′′(3− 1/β)− 2Γ′′(2− 1/β) + Γ′′(1− 1/β)]

Γ(1− 1/β)
, (3.14)

and,

E
[∂2 log

(
gw(x;α, β)

)
∂α∂β

]
= E

[∂2 log
(
gw(x;α, β)

)
∂β∂α

]
=

∫ ∞
0

[
α−β−1x−β(1− β logα− β log x)− 1

α

]
gw(x;α, β) dx

= α−β−1(1− β logα)

∫ ∞
0

x−βgw(x;α, β) dx

− α−2ββ2

Γ(1− 1/β)

∫ ∞
0

x−2β log xe−(αx)−β dx− 1

α

∫ ∞
0

gw(x;α, β) dx

= α−β−1(1− β logα)[(1− 1/β)αβ]− 1

α

+
α−1β logα

Γ(1− 1/β)
Γ(2− 1/β) +

α−1

Γ(1− 1/β)
Γ′(2− 1/β)

= α−1β−2(1− β) + α−1β−3(β − 1)
Γ′(1− 1/β)

Γ(1− 1/β)

=
β − 1

αβ3

[
Γ′(1− 1/β)

Γ(1− 1/β)
− β

]
. (3.15)
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Therefore,

I(α, β) =

E
[∂ log

(
gw(x;α, β)

)
∂α

]2

E
[∂2 log

(
gw(x;α, β)

)
∂α∂β

]
E
[∂2 log

(
gw(x;α, β)

)
∂β∂α

]
E
[∂ log

(
gw(x;α, β)

)
∂β

]2



=

 E
[∂ log

(
gw(x;α, β)

)
∂α

]2 β − 1

αβ3

[
Γ′(1− 1/β)

Γ(1− 1/β)
− β

]
β − 1

αβ3

[
Γ′(1− 1/β)

Γ(1− 1/β)
− β

]
E
[∂ log

(
gw(x;α, β)

)
∂β

]2

 , (3.16)

where E

{
∂log(gw(x;α,β))

∂α

}2

and E

{
∂log(gw(x;α,β))

∂β

}2

are given by equations (3.13) and

(3.14) respectively.

Consider gw(x;α1, β1) and gw(x;α2, β2). Note that for β1 = β2,

E

{
∂log(gw(x;α1, β1))

∂α1

}2

≥ E

{
∂log(gw(x;α2, β2))

∂α2

}2

⇐⇒ β1(β1 − 1)

α2
1

≥ β2(β2 − 1)

α2
2

⇐⇒ α2
2 ≥ α2

1

⇐⇒ α2 ≥ α1. (3.17)

Similarly, for α1 = α2,

E

{
∂log(gw(x;α1, β1))

∂α1

}2

≥ E

{
∂log(gw(x;α2, β2))

∂α2

}2

⇐⇒ β1(β1 − 1) ≥ β2(β2 − 1)

⇐⇒ β2
1 − β2

2 − (β1 − β2) ≥ 0

⇐⇒ (β1 − β2)(β1 + β2 − 1) ≥ 0. (3.18)

Consequently,

E

{
∂log(gw(x;α1, β1))

∂α1

}2

≥ E

{
∂log(gw(x;α2, β2))

∂α2

}2

(3.19)
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if and only if β1 ≥ β2, since βj > 1, j = 1, 2.

The Shanon entropy of a random variable X is a measure of the uncertainty and

is given by EF (−log(f(X)), where f(x) is the pdf of the random variable X. Under

the length-biased inverse Weibull distribution, the Shanon entropy is given by

EG(−log(gw(x;α; β)) =

∫ ∞
0

[
− log(

βα−β+1

Γ(1− 1/β)
) + β log x+ (αx)−β

]
gw(x;α, β) dx

= − log
( βα−β+1

Γ(1− 1/β)

)
+ β

∫ ∞
0

log xgw(x;α, β) dx

+

∫ ∞
0

(αx)−βgw(x;α, β) dx

= − log
( βα−β+1

Γ(1− 1/β)

)
+ β

[
− logα− Γ′(1− 1/β)

βΓ(1− 1/β)

]
+
β − 1

β

= log
Γ(1− 1/β)

αβ
− Γ′(1− 1/β)

Γ(1− 1/β)
+
β − 1

β
.

(3.20)
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3.4 Concluding Remarks

This chapter includes some computation. Here are the main results :

• moments

EGw(Y k) =
Γ(1− (k+1)

β
)

α(k)Γ(1− 1
β
)

=
γk+1

γ1

, k ≥ 1, β > k, (3.21)

where γk =
Γ(1− k

β
)

αk
.

• mean

µGw = EGw(Y ) =
Γ(1− 2

β
)

αΓ(1− 1
β
)

=
γ2

γ1

. (3.22)

• variance

σ2
Gw = EY 2

Gw − [EGw(Y )]2 =
Γ(1− 3

β
)

α2Γ(1− 1
β
)
−

{
Γ(1− 2

β
)

Γ(1− 1
β
)

}2

=
γ1γ3 − γ2

2

γ2
1

. (3.23)

• coefficient of variation

CV =

√
γ3γ1

γ2
2

− 1. (3.24)

• coefficient of skewness

CS =
E(Y − µGw)3

(E(Y − µGw)2)3/2
=
γ2

1γ4 − 3γ1γ2γ3 + 2γ3
2

(γ1γ3 − γ2
2)3/2

. (3.25)

• coefficient of kurtosis

CK =
E(Y − µGw)4

(E(Y − µGw)2)2
=
γ3

1γ5 − 4γ2
1γ2γ4 + 6γ1γ

2
2γ3 − 3γ4

2

γ2
1γ

2
3 − 2γ1γ2

2γ3 + γ4
2

. (3.26)

• the moment generating function

MY (t) =
1

Γ(1− 1/β)

∞∑
j=0

tj

j!

Γ(1− j+1
β

)

αj
=

α

Γ(1− 1/β)

∞∑
j=0

tj

j!
γj+1. (3.27)
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• Fisher information matrix

see (3.16)

• some inequalities from Fisher information matrix

For β1 = β2,

E

{
∂ log(gw(x;α1, β1))

∂α1

}
≥ E

{
∂ log(gw(x;α2, β2))

∂α2

}
⇔ α2 ≥ α1;

For α1 = α2,

E

{
∂ log(gw(x;α1, β1))

∂α1

}
≥ E

{
∂ log(gw(x;α2, β2))

∂α2

}
⇔ β1 ≥ β2.

• Shanon Entropy

EG(−log(gw(x;α; β)) = log
Γ(1− 1/β)

αβ
− Γ′(1− 1/β)

Γ(1− 1/β)
+
β − 1

β
. (3.28)



CHAPTER 4

ESTIMATION OF PARAMETERS IN THE WEIGHTED INVERSE

WEIBULL DISTRIBUTION

In this section we obtain estimates of the scale and shape parameters for the length-

biased inverse Weibull (LBIW) distribution. Method of moment (MOM) and maxi-

mum likelihood (ML) estimators are presented.

4.1 Method of Moment Estimators

Let Y1, Y2, · · · , Yn be an independent length biased sample, then the method of mo-

ments estimators are obtained by setting the moments E(Y ) and E(Y 2) equal to the

corresponding sample moments, that is

Γ(1− 2
β
)

αΓ(1− 1
β
)

=
1

n

n∑
j=1

Yj and
Γ(1− 3

β
)

α2Γ(1− 1
β
)

=
1

n

n∑
j=1

Y 2
j . (4.1)

For fixed β > 1, the method of moment estimate (MME) of α is

α̂ =
n∑n
j=1 Yj

Γ(1− 2
β
)

Γ(1− 1
β
)
. (4.2)

4.2 Maximum Likelihood Estimators

The log likelihood function for a single observation x of X is

l(α, β) = log

{
βα−β+1

Γ(1− (1/β))
x−(β)exp(−(αx)−β)

}
= log(β)− (β − 1)log(α)− βlogx− (αx)−β − log(Γ(1− 1/β)).

(4.3)

Now,

∂l

∂α
= −β − 1

α
+
β(αx)−β

α
, (4.4)
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and

∂l

∂β
=

1

β
− log(α)− log(x) + (αx)−βlog(αx) +

Γ′(1− 1/β)

β2Γ(1− 1/β)
. (4.5)

From E( ∂l
∂α

) = 0, we obtain

E(X−β) =
αβ(β − 1)

β
, (4.6)

and from E( ∂l
∂β

) = 0, we have

E{−logX + (αX)−βlog(αX)} = logα− 1

β
− Γ′(1− 1/β)

β2Γ(1− 1/β)
. (4.7)

Now the loglikelihood function for n observations of X is given by

L(α, β) = nlog(β)−n(β−1)log(α)−β
n∑
j=1

log(Xj)−
n∑
j=1

(αXj)
−β−

n∑
j=1

logΓ(1−1/β).

(4.8)

The normal equations are

∂L(α, β)

∂α
=
−n(β̂ − 1)

α̂
+ α̂−β̂−1

n∑
j=1

X−β̂j = 0, (4.9)

and

∂L(α, β)

∂β
=
n

β̂
− nlogα̂−

n∑
j=1

logXj +
n∑
j=1

(α̂Xj)
−β̂log(α̂Xj) +

1

β̂2

n∑
j=1

Ψ(1− 1/β̂) = 0

(4.10)

respectively.

From equation (4.9), we have the MLE of α is

α̂ =

{
n(β̂ − 1)∑n
j=1X

−β̂
j

}1/β̂

. (4.11)
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Now replace α̂ in equation (4.10) to obtain

∂L(α, β)

∂β

∣∣∣∣
α̂,β̂

=
n

β̂
− nlog

(
n(β̂ − 1)∑n
j=1X

−β̂
j

)1/β̂

−
n∑
j=1

logXj

+
n∑
j=1

[(
n(β̂ − 1)∑n
j=1 X

−β̂
j

)1/β̂

Xj

]−β̂
log

[(
n(β̂ − 1)∑n
j=1X

−β̂
j

)1/β̂

Xj

]

+
1

β̂2

n∑
j=1

Γ′(1− 1/β̂)

Γ(1− 1/β̂)

= 0. (4.12)

This equation does not have a closed form solution and must be solved iteratively to

obtain the MLE of the scale parameter β. When α is unknown and β is known, the

MLE of α is obtained from equation (4.10) with the value of β in place of β̂. When

both α and β are unknown, the MLE of α and β are obtained by solving the normal

equations in (4.9) and (4.10). The MLE of the reliability and hazard functions can

be obtained by replacing α and β by their MLEs α̂ and β̂.

4.3 Test for Length-Biasedness

Let X1, X2, · · · , Xn, be a random sample from

f(x, α, β) = βα−βx−β−1exp[−(αx)−β], x ≥ 0, α > 0, β > 0. (4.13)

Consider the weighted inverse Weibull pdf given by

gw(x, α, β, c) =
βαc−β

Γ(1− c/β)
x−β−1exp[−(αx)−β], x ≥ 0, α > 0, β > 0, c > 0.

(4.14)

If c = 1, we have the length-biased inverse Weibull pdf.

We test the hypothesis

H0 : f0(x, α, β) = f(x, α, β),
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against

HA : f0(x, α, β) = gw(x, α, β).

To test whether a random sample of size n comes from the inverse Weibull distri-

bution (parent distribution) or the weighted inverse Weibull distribution (weighted

distribution), we use the following statistic:

Λ =
n∏
i=1

gw(xi, α, β, c)

f(xi, α, β)

=
n∏
i=1

[ βαc−β

Γ(1−c/β)
x−β−1
i exp[−(αxi)

−β]

βα−βx−β−1
i exp[−(αxi)−β]

]
=

n∏
i=1

[
αcxci

Γ(1− 1/β)

]
=

αnc
∏n

i=1 x
c
i

(Γ(1− 1/β))n
. (4.15)

We reject H0 when

Λ =
αnc
∏n

i=1 x
c
i

(Γ(1− 1/β))n
> K, for some K > 0. (4.16)

Equivalently, we reject the null hypothesis when

Λ∗ =
n∏
i=1

xci > K∗, where K∗ =
K(Γ(1− c/β)n

αnc
> 0. (4.17)

Note also that −2 log Λ ∼ χ2
1, for large sample size n, we can get the p-value

from the χ2 table. Also, we can reject the null hypothesis when the probability value

(p-value) given by

P (Λ∗ > λ∗), where λ∗ =
n∏
i=1

xci , (4.18)

is less than a specified level of significance, where λ∗ is the observed value of the test

statistic Λ∗. The p-value can be readily computed via Monte Carlo simulation. That
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is, simulate n samples from the distribution under H0, and compute the test statistic

Λ∗ for each sample, then compute p-value for given λ∗.

p− value =
the number of simulated value in which is Λ∗ > λ∗

n
.

4.4 Concluding Remarks

Method of moment estimators and maximum likelihood estimators are used to esti-

mate the scale and shape parameters of the length-biased inverse Weibull distribution

in chapter 4. For fixed β > 1, the method of moment estimate (MME) of α is

α̂ =
n∑n
j=1 Yj

Γ(1− 2
β
)

Γ(1− 1
β
)
. (4.19)

The MLE of the parameters α and β does not have closed form. If the parameter β

is known, then the maximum likelihood estimators (MLE) of α is given by

α̂ =

{
n(β − 1)

β
∑n

j=1X
−β−1
j

}1/(β+1)

. (4.20)

A test procedure for the detection of length-biasedness in the inverse Weibull distri-

bution was constructed.



CHAPTER 5

THE BETA-INVERSE WEIBULL DISTRIBUTION

In this section, we present results on the beta-inverse Weibull Distribution (BIW).

In particular, we derive the probability density function (pdf), cumulative distribu-

tion function (cdf), moment generating function and some other useful distributional

properties.

5.1 Introduction to Beta-Inverse Weibull Distribution

There are several generalizations of the beta distribution including those of Eugene

[8] dealing with the beta-normal distribution, as well results on the moments of the

beta-normal distribution given by Gupta and Nadarajah [13]. Famoye [9] discussed

and presented results on the beta-Weibull distribution. Nadarajah [18] presented

results on the exponentiated beta distribution. Kong and Sepanski [17] presented

results on the beta-gamma distribution.

The pdf and cdf of beta distribution are given by:

f(x; a, b) =
1

B(a, b)
xa−1(1− x)b−1, 0 < x < 1, (5.1)

and

F (x; a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1 dt, 0 < x < 1, (5.2)

respectively, where B(a, b) = Γ(a+b)
Γ(a)Γ(b)

.

Recall that inverse Weibull distribution function is given by,

F (x) = exp(−(αx)−β), x ≥ 0, α > 0, β > 0. (5.3)
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In general the beta-inverse Weibull distribution is given by:

G(x) =
BF (x)(a, b)

B(a, b)
, (5.4)

where B(a, b) = Γ(a+b)
Γ(a)Γ(b)

, BF (x)(a, b) =
∫ F (x)

0
ta−1(1− t)b−1 dt, and

F (x) = exp(−(αx)−β), x ≥ 0, α > 0, β > 0. (5.5)

Clearly, the beta-inverse Weibull distribution is a weighted distribution. The

derivation of the cdf and pdf of the beta-inverse Weibull distributions are presented

below.

• Result 1:

The cdf of beta-inverse Weibull distribution is given by

G(x;α, β, a, b) =
βα−β

B(a, b)

∫ x

0

t−(β+1) exp(−a(αt)−β)(1− exp(−(αt)−β))b−1 dt,

(5.6)

for x ≥ 0, α > 0, β > 0, a > 0, b > 0.

Proof

Let u = F−1(t), then t = F (u), and

dt = d[exp(−(αu)−β)] =
β

αβuβ+1
exp(−(αu)−β) du, so that the cumulative dis-

tribution function is
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G(x;α, β, a, b) =
1

B(a, b)

∫ F (x)

0

ta−1(1− t)b−1 dt

=
1

B(a, b)

∫ F (x)

0

[F (u)]a−1[1− F (u)]b−1 dF (u)

=
βα−β

B(a, b)

∫ x

0

[exp(−(αu)−β)]a[1− exp(−(αu)−β)]b−1u−β−1 du

=
βα−β

B(a, b)

∫ x

0

[exp(−a(αu)−β)][1− exp(−(αu)−β)]b−1u−(β+1) du

=
βα−β

B(a, b)

∫ x

0

t−(β+1)[exp(−a(αt)−β)][1− exp(−(αt)−β)]b−1 dt.

If we let y = (αt)−β, then t = α−1y−1/β, and dt = −α−1β−1y−1/β−1 dy

so that (αt)−β|t=0 =∞, and (αt)−β|t=x = (αx)−β.

The cdf can also be written as follows:

G(x;α, β, a, b) =
βα−β

B(a, b)

∫ x

0

t−(β+1) exp(−a(αt)−β)[1− exp(−(αt)−β)]b−1 dt

=
βα−β

B(a, b)

∫ ∞
(αx)−β

αββ−1 exp(−ay)[1− exp(−y)]b−1 dy

=
1

B(a, b)

∫ ∞
(αx)−β

exp(−ay)[1− exp(−y)]b−1 dy.

• Result 2:

The pdf of the beta-inverse Weibull distribution is given by

g(x;α, β, a, b) =
βα−β

B(a, b)
x−(β+1) exp(−a(αx)−β)(1− exp(−(αx)−β))b−1, (5.7)

for x ≥ 0, α > 0, β > 0, a > 0, b > 0.

This follows from the fact that

G(x;α, β, a, b) =
βα−β

B(a, b)

∫ x

0

t−(β+1) exp(−a(αt)−β)[1− exp(−(αt)−β)]b−1 dt,
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so that,

g(t;α, β, a, b) =
βα−β

B(a, b)
t−(β+1) exp(−a(αt)−β)[1− exp(−(αt)−β)]b−1,

for x ≥ 0, α > 0, β > 0, a > 0, b > 0.

We can plot g(x;α, β, a, b) for fixed values of:

• β, a, b: see fig5.1

• α, a, b: see fig5.2

• α, β, b: see fig5.3

• α, β, a: see fig5.4
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Figure 5.1: plot of g(x;α, β, a, b) with fixed values of β, a, b
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Figure 5.2: plot of g(x;α, β, a, b) with fixed values of α, a, b
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Figure 5.3: plot of g(x;α, β, a, b) with fixed values of α, β, b
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Figure 5.4: plot of g(x;α, β, a, b) with fixed values of α, β, a
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If we use the formula (1 − w)b−1 =
∞∑
j=0

(−1)jΓ(b)wj

Γ(b− j)j!
, where b > 0 and b is non

integer, real number, and let y = (αt)−β, then we have

G(x;α, β, a, b) =
βα−β

B(a, b)

∫ x

0

t−(β+1) exp(−a(αt)−β)[1− exp(−(αt)−β)]b−1 dt

=
1

B(a, b)

∫ ∞
(αx)−β

exp(−ay)[1− exp(−y)]b−1 dy

=
1

B(a, b)

∫ ∞
(αx)−β

exp(−ay)
∞∑
j=0

(−1)jΓ(b)[exp(−y)]j

Γ(b− j)j!
dy

=
Γ(b)

B(a, b)

∞∑
j=0

(−1)j

Γ(b− j)j!

∫ ∞
(αx)−β

exp(−ay) exp(−jy) dy

=
Γ(b)

B(a, b)

∞∑
j=0

(−1)j

Γ(b− j)j!

∫ ∞
(αx)−β

exp[−(a+ j)y] dy

=
Γ(b)

B(a, b)

∞∑
j=0

(−1)j

Γ(b− j)j!

(
− 1

a+ j

)
exp[−(a+ j)y]

∣∣∣∞
(αx)−β

=
Γ(b)

B(a, b)

∞∑
j=0

(−1)j+1

Γ(b− j)j!(a+ j)
[0− exp[−(a+ j)(αx)−β]]

=
Γ(b)

B(a, b)

∞∑
j=0

(−1)j

Γ(b− j)j!(a+ j)
exp[−(a+ j)α−βx−β]. (5.8)

This provides an alternative representation of the cdf of the beta-inverse Weibull

distribution in terms of an infinite series.
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5.2 Some Useful Transformations

In this section, some useful transformations and the resulting distribution are pre-

sented. We assume that the random variable Y has a beta distribution with param-

eters a and b. The following questions are addressed.

1. What is the distribution of X if X =
Y

1− Y
?

2. What is the distribution of X if X =
−[loge(1− Y )]−

1
β

α
?

3. What is the distribution of X if X =
−[loge Y ]−

1
β

α
?

For 1, let x =
y

1− y
. Then y =

x

1 + x
and y′ =

1

(1 + x)2
. Since the pdf of Y is

given by

gY (y) =
1

B(a, b)
ya−1(1− y)b−1,

the pdf of X is given by

gX(x) = gY

( x

1 + x

)d( x
1+x

)
dx

=
1

B(a, b)

( x

1 + x

)a−1(
1− x

1 + x

)b−1 1

(1 + x)2

=
1

B(a, b)
xa−1(1 + x)−a−b, (5.9)

for 0 < x < 1.

This is essentially the so called transformed beta distribution.

For 2, note that

x =
−
(

loge(1− y)
)−1/β

α
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implies −(αx) = [ln(1− y)]−1/β, so that y = 1− e(−(αx))−β , and

d
(

1− e(−αx)−β
)

dx
= (−α)−ββx−β−1e(−αx)−β .

Now,

gX(x) = gY (1− e(−(αx))−β)
(

(−α)−ββx−β−1e−((αx))−β
)

=
1

B(a, b)

(
1− e(−(αx))−β

)a−1(
e(−(αx))−β

)b−1

α−ββx−β−1e(−(αx))−β

=
1

B(a, b)

(
1− e(−(αx))−β

)a−1(
e(−(αx))−β

)b
α−ββx−(β+1)

=
α−ββx−(β+1)

B(a, b)

(
e(−(αx))−β

)b(
1− e(−(αx))−β

)a−1

, (5.10)

for α > 0, β > 0, a > 0, b > 0.

For 3, we have x =
[− loge(y)]−1/β

α
, so that,

(αx)−β = − ln(y) =⇒ y = e−(αx)−β .

Then,

dy

dx
= e−(αx)−β(−1)(−β)(αx)−β−1α = βα−βx−(β+1)e−(αx)−β ,

and the pdf of X =
−[loge Y ]−

1
β

α
is given by:

gX(x) = gY (e−(αx)−β)βα−βx−(β+1)e−(αx)−β

=
1

B(a, b)

(
e−(αx)−β

)a−1(
1− e−(αx)−β

)b−1

βα−βx−(β+1)e−(αx)−β

=
βα−β

B(a, b)
x−(β+1)

(
e−(αx)−β

)a(
1− e−(αx)−β

)b−1

, (5.11)

for x > 0, α > 0, β > 0, a > 0, b > 0.

This is the beta-inverse Weibull distribution. In essence, one can generate observa-

tions from beta-inverse Weibull distribution via the transformation X = −[log(Y )]−1/β

α
,

where Y is a random variable that follows a beta distribution with parameters a and

b.



44

5.3 Moments of the Beta-Inverse Weibull Distribution

The moments of the beta-inverse Weibull distribution are presented in this section.

The rth central moment is given by

E(Xr) =

∫ ∞
0

xr
βα−β

B(a, b)
x−(β+1)e−a(αx)−β

(
1− e−(αx)−β

)b−1

dx

=
βα−β

B(a, b)

∫ ∞
0

xr−β−1e−a(αx)−β
(

1− e−(αx)−β
)b−1

dx

=
βα−β

B(a, b)

∫ ∞
0

xc−1e−a(αx)−β
(

1− e−(αx)−β
)b−1

dx,

(5.12)

where c = r − β. Let y = (αx)−β, then y−1/β = αx, and x = α−1y−1/β.

This implies dx = α−1(−1/β)y−1/β−1dy = −α−1β−1y−1/β−1dy, and y = (αx)−β
∣∣∣
x=0

=

∞, y = (αx)−β
∣∣∣
x=∞

= 0.

Therefore,

E(Xr) =
βα−β

B(a, b)

∫ 0

∞
(α−1y−1/β)c−1e−ay(1− e−y)b−1(−α−1β−1y−1/β−1dy)

=
α−β−c

B(a, b)

∫ ∞
0

y−c/β−1e−ay(1− e−y)b−1dy.

Let k = − c
β

, then,

E(Xr) =
α−(β+c)

B(a, b)

∫ ∞
0

yk−1e−ay(1− e−y)b−1dy.

Define

∆k,a,b =

∫ ∞
0

yk−1e−ay(1− e−y)b−1dy. (5.13)

Then the moments of X can be written as

E(Xr) =
α−(β+c)

B(a, b)
∆k,a,b, (5.14)
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where c = r − β and k = − c
β

= β−r
β

. Since c = r − β, then c+ β = r, and

E(Xr) =
α−r

B(a, b)
∆β−r

β
,a,b =

∆β−r
β
,a,b

αrB(a, b)
.

For positive integer b,

∆c,a,b =

∫ ∞
0

yc−1e−ay(1− e−y)b−1dy

=

∫ ∞
0

yc−1e−ay
b−1∑
j=0

(b− 1)!(−1)j(e−y)j

j!(b− 1− j)!
dy

=

∫ ∞
0

yc−1

b−1∑
j=0

(b− 1)!(−1)je−(a+j)y

j!(b− 1− j)!
dy

=
b−1∑
j=0

(b− 1)!(−1)j

j!(b− 1− j)!

∫ ∞
0

yc−1e−(a+j)ydy.

(5.15)

Let t = (a+ j)y, then y = t
a+j

and dy = 1
a+j

dt, so that

∆c,a,b =
b−1∑
j=0

(b− 1)!(−1)j

j!(b− j − 1)!

∫ ∞
0

tc−1

(a+ j)c−1
e−t

1

a+ j
dt

=
b−1∑
j=0

(b− 1)!(−1)j

j!(b− j − 1)!

∫ ∞
0

1

(a+ j)c
tc−1e−tdt

=
b−1∑
j=0

(b− 1)!(−1)j

j!(b− j − 1)!(a+ j)c

∫ ∞
0

tc−1e−tdt

= Γ(c)
b−1∑
j=0

(b− 1)!(−1)j

j!(b− j − 1)!(a+ j)c
.

(5.16)
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For c > 0 and b > 0,

∆c,a,b =

∫ ∞
0

yc−1e−ay(1− e−y)b−1dy

=

∫ ∞
0

yc−1e−ay
∞∑
j=0

(−1)jΓ(b)(e−y)j

j!Γ(b− j)
dy

=

∫ ∞
0

yc−1

∞∑
j=0

(−1)jΓ(b)(e−(a+j)y)

j!Γ(b− j)
dy

=
∞∑
j=0

(−1)jΓ(b)

j!Γ(b− j)

∫ ∞
0

yc−1e−(a+j)y)dy.

(5.17)

With t = (a+ j)y, we also have

∆c,a,b =
∞∑
j=0

(−1)jΓ(b)

j!Γ(b− j)

∫ ∞
0

tc−1

(a+ j)c−1
e−t

1

a+ j
dt

=
∞∑
j=0

(−1)jΓ(b)

j!Γ(b− j)

∫ ∞
0

1

(a+ j)c
tc−1e−tdt

=
∞∑
j=0

(−1)jΓ(b)

j!Γ(b− j)
1

(a+ j)c

∫ ∞
0

tc−1e−tdt

= Γ(c)
∞∑
j=0

(−1)jΓ(b)

j!Γ(b− j)(a+ j)c
.

(5.18)
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5.4 Moment Generating Function

In this section, we derive the moment generating function of the beta-inverse Weibull

distribution. Recall that (by Taylor’s series expansion of etx about zero)

etx =
∞∑
j=0

(tx)j

j!
,

so the moment-generating function (MGF) of the beta-inverse Weibull distribution is

given by

MX(t) = E(etX) =

∫ ∞
0

etx
βα−β

B(a, b)
x−(β+1)e−a(αx)−β(1− e−(αx)−β)b−1dx

=
βα−β

B(a, b)

∫ ∞
0

∞∑
j=0

(tx)j

j!
x−(β+1)e−a(αx)−β(1− e−(αx)−β)b−1dx

=
βα−β

B(a, b)

∫ ∞
0

∞∑
j=0

tj

j!
x−(β+1)+je−a(αx)−β(1− e−(αx)−β)b−1dx.

(5.19)

Let y = (αx)−β. Then x = α−1y−1/β and dx = −α−1β−1y−1/β−1,

so that y = (αx)−β
∣∣∣
x=0

=∞ and y = (αx)−β
∣∣∣
x=∞

= 0.

Consequently, the MGF of the beta-inverse Weibull distribution is given by

MX(t) =
1

B(a, b)

∞∑
j=0

tj

j!

∫ ∞
0

y−j/βe−ay(1− e−y)b−1dy

=
1

B(a, b)

∞∑
j=0

tj

j!
∆− j

β
+1,a,b

=
1

B(a, b)

∞∑
j=0

tj

j!
∆−β−j

β
,a,b. (5.20)
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5.5 Some Results

This section contains results that lead to further evaluation of the function ∆c,a,b in

terms of the moments of the beta random variable. The results are stated and proved

below.

1. If V ∼ Beta(a, b), then U = − log(V ) ∼ 1− FV (e−y).

Proof.

FU(y) = P (U ≤ y) = P (− log V ≤ y)

= P (V ≥ e−y)

= 1− P (V < e−y)

= 1− FV (e−y).

2. For c > 1, c an integer, E(U c−1) =
∆c,a,b

B(a,b)
.

Proof.

FU(y) = 1− FV (e−y) =⇒ F ′U(y) = −F ′V (e−y)e−y(−1) =⇒ FU(y) = e−yFV (e−y).

Since V ∼ Beta(a, b), then fV (v) = 1
B(a,b)

va−1(1 − v)b−1. Therefore, the pdf of U is

given by

fU(y) =
1

B(a, b)
e−y(e−y)a−1(1− e−y)b−1 =

1

B(a, b)
e−ay(1− e−y)b−1.
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Now,

E(U c−1) =

∫ ∞
0

uc−1fU(u)du

=

∫ ∞
0

uc−1 1

B(a, b)
e−au(1− e−y)b−1du

=
1

B(a, b)

∫ ∞
0

uc−1e−au(1− e−y)b−1du

=
∆c,a,b

B(a, b)
,

which implies that

∆c,a,b = E(U c−1)B(a, b).

3. Moment generating function of U:

MU(t) = E(etU) = E(e−U(−t)) = E(V −t) =

∫ 1

0

v−t
1

B(a, b)
va−1(1− v)b−1dv

=
1

B(a, b)

∫ 1

0

va−t−1(1− v)b−1dv =
B(a− t, b)
B(a, b)

.
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5.6 Concluding Remarks

We presented the beta-inverse Weibull distribution in this chapter. The beta-inverse

Weibull distribution is a weighted distribution and in fact contains a fairly large class

of distributions with potential applications to a wide area of probability and statis-

tics. Given the pdf or cdf of beta distribution, we computed the cdf and pdf of the

beta-inverse Weibull distribution and analyzed the behavior of the probability den-

sity function by plotting the probability density function for some fixed values of the

parameters. We also obtained very useful transformations which show us the relation-

ships between beta distribution and inverse beta distribution, beta distribution and

beta-inverse Weibull distribution in this chapter. The transformations provide a way

to generate data from the beta-inverse Weibull distribution. Moments and moment

generating function are derived in chapter 5 as well. There are still a lot more we

could do on this topic. Future work include estimation of parameters, goodness of fit

and tests of hypothesis in the beta-inverse Weibull distribution.



51

BIBLIOGRAPHY

[1] Bhattacharyya, G. K. and Roussas, G. G., Estimation of certain functional of a
probability density function, Skand. Aktuar. Tidskr., pp. 201-206, (1969).

[2] Block, H. W., and Savits, T. H., The Reverse hazard Function, Probability in
the Engineering and Informational Sciences,12, 69-90, (1998).

[3] Calabria, R. and Pulcini, G., Confidence Limits for Reliability and Tolerance
Limits in the Inverse Weibull Distribution, Engineering and System Safety, 24,
77-85, (1989).

[4] Calabria, R. and Pulcini, G., On the Maximum Likelihood and Lease Squares Es-
timation in Inverse Weibull Distribution, Statistica Applicata, 2, 53-66, (1990).

[5] Calabria, R. and Pulcini, G., Bayes 2-Sample Prediction for the Inverse Weibull
Distribution, Communications in Statistics-Theory and Methods, 23(6), 1811-
1824, (1994).

[6] Chandra, N. K. and Roy, D., Some Results on Reverse Hazard Rate, Probability
in the Engineering and Information Sciences, 15, 95-102, (2001).

[7] Cox, D.R., Renewal Theory, Barnes & Noble, New York, (1962).

[8] Eugene, N., Lee, C., and Famoye, F., Beta Normal Distribution and its Ap-
plications, Communications in Statistics-Theory and Methods, 31(4), 497-512,
(2002).

[9] Famoye, F., Lee, C., and Olumolade, O., The Beta-Weibull Distribution, Journal
of Statistical Theory and Applications, 121-138, (2005).

[10] Fisher, R. A., The Effects of Methods of Ascertainment Upon the Estimation of
Frequencies, The Annals of Eugenics 6, 13-25, (1934).

[11] Glaser, R. E., Bathtub and Related Failure Rate Characterizations, Journal of
American Statistical Association, 75, 667-672, (1980).



52

[12] Gupta, R. C., and Keating, J.P., Relation for Reliability Measures under Length
Biased Sampling, Scandinavian Journal of Statistics, 13, 49-56, (1985).

[13] Gupta, A. K., and Nadarajah, S., On the Moments of the Beta Normal Distri-
bution, Communications in Statistics-Theory and Methods, 33, (2004).

[14] Johnson, N. L., Kotz, S., and Balakrishnan, N.,Continuous Univariate
Distributions-1, Second Edition, John Wiley and Sons, (1984).

[15] Keilson, J. and Sumita, U., Uniform Stochastic Ordering and Related Inequali-
ties, Canadian Journal of Statistics, 10, 181-198, (1982).

[16] Keller, A. Z., Giblin, M. T., and Farnworth, N. R., Reliability Analysis of Com-
mercial Vehicle Engines, Reliability Engineering, 10, 15-25, 89-102, (1985).

[17] Kong, L., Lee, C., and Sepanski, J. H., On the Properties of Beta-Gamma Dis-
tribution, Journal of Modern Applied Statistical Methods, Vol. 6, No. 1, 187-211,
(2007).

[18] Nadarajah, S., Exponentiated Beta Distribution, Computers and Mathematics
with Applications, 49, 1029-1035, (2005).

[19] Oluyede, B. O., On Inequalities and Selection of Experiments for Length-Biased
Distributions, Probability in the Engineering and Informational Sciences, 13,
169-185, (1999).

[20] Patil, G. P. and Rao, C. R., Weighted Distributions and Size-Biased Sam-
pling with Applications to Wildlife and Human Families, Biometrics 34, 179-189,
(1978).

[21] Patil, G. P. and Ord, J. K., Weighted distributions, in Encyclopedia of Biostatis-
tics, Vol. 6, P. Armitage & T. Colton, eds, Wiley, Chichester, pp. 4735-4738,
(1997).

[22] Rao, C. R., On Discrete Distributions Arising Out of Methods of Ascertain-
ment,in Classical and contagious Discrete Distributions, G.P. Patil, ed., Perga-
mon Press and Statistical Publishing Society, Calcutta, pp. 320-332, (1965).

[23] Rao, C. R., Weighted Distributions Arising Out of Methods of Ascertainment, in
A Celebration of Statistics, A.C. Atkinson & S.E. Fienberg, eds, Springer-Verlag,
New York, Chapter 24, pp. 543-569, (1985).



53

[24] Ross, S. M., Stochastic Processes, Wiley, New York, (1983).

[25] Shaked, M. and Shanthikumar, J.G., Stochastic Orders and Their Applications,
New York, Academic Press, (1994).

[26] Vardi, Y., Nonparametric Estimation in the Presence of Bias, Annals of Statis-
tics, 10(2), 616-620,(1982).

[27] Zelen, M. and Feinleib, M., On the Theory of Chronic Diseases, Biometrika, 56,
601-614, (1969).


	Weighted Inverse Weibull and Beta-Inverse Weibull Distribution
	Recommended Citation

	tmp.1375238377.pdf.I1iHT

