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APPROXIMATE SIMILARITY REDUCTION

by

RUI ZHANG

(Under the Direction of Chunshan Zhao)

ABSTRACT

The nonlinear K(n, 1) equation with damping is investigated via the approxi-

mate homotopy symmetry method and approximate homotopy direct method. The

approximate homotopy symmetry and homotopy similarity reduction equations of dif-

ferent orders are derived and the corresponding homotopy series reduction solutions

are obtained. As a result, the formal coincidence for both methods is displayed.

Index Words : symmetry method, direct method, homotopy model
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CHAPTER 1

INTRODUCTION – PRELIMINARIES

With progress and development of the modern science and technology, nonlinear

science has gradually become a cross-discipline. Modern technology has played a

pivotal role in providing a theoretical support to advance the technological innovation

for industrial production. Physics and many other disciplines are now usually in the

state of describing the issues in their field via the models of the nonlinear partial

differential equations. Therefore, it becomes increasingly important to investigate

the various nonlinear problems involved in these disciplines.

There are numerous partial differential equations (PDEs) with small parameters

or weak perturbations involved in the fields of applied mathematics, nonlinear physics

and engineering, etc. In order to further discuss such equations mentioned above,

one can apply perturbation theory [1]-[4] to these problems via diverse approaches,

among which approximate symmetry perturbation method [5] and approximate direct

method [6] are two optimal choices. Approximate symmetry perturbation method and

approximate direct method are both efficient ways in investigating weakly perturbed

PDEs, especially in finding whose similarity reductions and approximate solutions

[7],[8], [9]. Nonetheless, in more general situations, the parameters may not be small

at all. For investigating these PDEs with strong perturbations, one can consult to

some other methods such as homotopy analysis method [11] , the linear [12] and

nonlinear nonsensitive homotopy approaches [13], etc.

In this thesis, we try to combine homotopy analysis method with symmetry

reduction method and direct method respectively to form approximate homotopy

symmetry method [14] and the approximate homotopy direct method [15].

This thesis is organized in the following ways:

• In the first chapter, we introduce the development of approximate symmetry
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method, which leads to the perturbed problems based on the perturbation theory.

For the partial differential equations with strong perturbation, we then introduce the

homotopy mode which leads to the K(n,1) equation with strong damping.

• In the second chapter, we describe the approximate symmetry method. Via

the approximate symmetry method, we can further obtain the approximate series

solutions of the K(n,1) equation with damping.

• In the third chapter, we describe the approximate direct method. Via the

approximate direct method, we can further obtain the approximate series solutions

of the K(n,1) equation with damping.

• In the fouth chapter, the formal coincidence of results for both methods is

displayed.

• In the fifth chapter, we give the concluding remarks.
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1.1 Homotopy analysis method

The homotopy analysis method (HAM) targetss to solve nonlinear differential equa-

tions.The homotopy analysis method derives the concept of the homotopy from topol-

ogy to generate a convergent series solution for nonlinear systems. We could use

homotopy-Mclaurin series to handle with the nonlinearities involved in the given sys-

tem. The homotopy analysis method (HAM) was devised by Shijun Liao of Shanghai

Jiaotong University in 1992. The method is different from other analytical methods

in the following aspects. Firstly, it is a series expansion method but it is entirely inde-

pendent of small embedding parameters. Thus, it is applicable for not only weakly but

also strongly nonlinear problems, going beyond some of the limitations well known

in perturbation methods. Secondly, the HAM is an unified method. This method

allows for strong convergence of the solution over larger spacial and parameter do-

mains. Thirdly, the homotopy analysis method (HAM) shows great freedom in the

expression of the solution and how the solution is gained. It also provides a simplier

path to enable the convergence of the solution, flexibiity to choose the basis func-

tions of the desired solution and flexibility in determining the linear operator of the

homotopy. Fourthly, combined with symbolic computation, the homotopy analysis

method (HAM) ccould be connected with many other efficient PDE methods such as

reduction methods, series expansion methods and numerical methods.

Definition 1.1.1. Homotopy bewteen two continuous functions f and g from a topo-

logical space X to a topological space Y is defined to be a continuous function H :

X × [0, 1] → Y from the product of the space X with unit interval [0, 1] to Y such

that, if x ∈ X then H(x, 0) = f(x) and H(x, 1) = g(x).

When perturbations is not weak, the homotopy analysis method can be success-
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fully applied to the nonlinear PDEs

A(u) = A(x, t, ux, ut, uxx, uxt, . . .) = 0 (1.1)

where A is a nonlinear operator and u = u(x, t) is an undetermined function of the

independent variables {x, t}. The homotopy model H(u, q) = 0 with an embedding

homotopy parameter q ∈ [0, 1] has the following properties

H(u, 0) = H0(u), H(u, 1) = A(u) (1.2)

where H0(u) is a general form of a differential equation for certain type. Usually, the

homotopy model H(u, q) can be selected freely. For the briefness later, we introduce

the following linear homotopy model in this study

(1− q)H0(u) + qA(u) = 0, (1.3)
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1.2 Perturbation theory

Perturbation theory are used to find an approximate solution to a given problem

which is too complex to solve exactly, by starting from the exact solution of a related

problem.

Perturbation theory is derived from early celestial mechanics, where the theory

was majorly utilized to make modifications to the predicted paths of planets. Curi-

ously, it was increasingly needed for epicycles that eventually led to the 16th century

Copernican revolution in the understanding of planetary orbits. The development of

fundamental perturbation theory for nonlinear problems was fairly completed in the

middle of the 19th century. At that time Charles-Eugéne Delaunay was investigating

the perturbative expansion for the Earth-Moon-Sun system and discovered the prob-

lem of small denominators where the denominator appearing in the n’th term of the

perturbative expansion could become arbitrarily small, causing the n’th correction to

be as large or larger than the first-order correction. In the early 20th century, this

problem led Henri Poincaré to make one of the first deductions of the existence of

chaos, or known as the butterfly effect: that even a very small perturbation can have

a very large impact on a system.

Perturbation theory shows dramatic extension and evolution with the arrival

of quantum mechanics. Although perturbation theory was pratical, the calculations

were astonishingly complicated, and subject to some extent ambiguous explanation.

The discovery of Heisenberg’s matrix mechanics allowed a vast simplification of the

application of perturbation theory. Other applications of perturbation theory include

the fine structure and the hyperfine structure in the hydrogen atom.

In recent times, perturbation theory was largely used in quantum chemistry and

quantum field theory. In chemistry, perturbation theory was utilized to obtain the

first solutions for the helium atom.
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In the middle of the 20th century, Richard Feynman realized that the pertur-

bation theory could be applied to give an exact graphical representation in terms

of Feynman diagrams. Although originally those applications limited in quantum

field theory, such diagrams now are increasingly used in any area where perturbative

expansions are investigated.

In 1954, the KAM theorem Developed by Andrey Kolmogorov, Vladimir Arnold

and Jrgen Moser stated the conditions under which a system of partial differential

equations will have only mildly chaotic behaviour under small perturbations.

Later,it arises dissatisfaction with perturbation theory in the quantum physics

community, including not only the difficulty of going beyond second order in the

expansion, but also questions about whether the perturbative expansion is even con-

vergent, has led to a strong interest in the area of the study of exactly solvable models.

The typical example is the Kortewegde Vries equation cannot be reached by pertur-

bation theory, even if the perturbations were carried out to infinite order. Much of

the theoretical work in non-perturbative analysis goes under the name of quantum

groups and non-commutative geometry.

Perturbation theory [1] is closely related to methods used in numerical analysis.

The earliest use of what would now be called perturbation theory was to deal with the

otherwise unsolvable nonlinear problems of celestial mechanics: Newton’s solution for

the orbit of the Moon, which moves differently from a simple Keplerian ellipse because

of the balance of the gravitation between Earth and the Sun. Perturbation methods

initiate with a simplified form of the original problem, which is simple enough to be

solved exactly. In celestial mechanics, this is usually a Keplerian ellipse. Under non

relativistic gravity, an ellipse is exactly correct when there are only two gravitating

bodies (say, the Earth and the Moon) but not quite correct when there are three or

more objects (say, the Earth, Moon, Sun, and the rest of the solar system).
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Definition 1.2.1. Perturbation series is an expression in terms of power series with

small parameter writen as

u =
∞∑
k=0

εkuk (1.4)

Theorem 1.2.2. If perturbation series is represented as

A0 + A1ε+ . . .+ Anε
n +O(εn+1) = 0 (1.5)

for ε→ 0 and A0, A1, . . . , independent of ε, then A0 = A1 = . . . = An = 0.
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1.3 Introduction of KdV Equation

KdV equation first arose as the modelling equation for solitary gravity waves in a

shallow canal. Such waves are rare and not easy to produce, and they were apparently

only first noticed in 1834 (by the naval architect, John Scott Russell). Early attempts

by Stokes and Airy to model them mathematically seemed to indicate that such waves

could not be stableand their very existence was at first a matter of debate. Later work

by Boussinesqand Rayleigh corrected errors in this earlier theory, and finally a paper

in 1894 by Korteweg and de Vries [KdV] settled the matter by giving a convincing

mathematical argument that wave motion in a shallow canal is governed by KdV,

and showing by explicit computation that their equation admitted travelling-wave

solutions that had exactly the properties described by Russell, including the relation

of height to speed that Russell had determined experimentally in a wave tank he had

constructed.

But it was only much later that the truly remarkable properties of the KdV

equation became evident. In 1954, Fermi, Pasta and Ulam (FPU) used one of the

very first digital computers to perform numerical experiments on a one-dimensional,

anharmonic lattice model, and their results contradicted the then current expectations

of how energy should distribute itself among the normal modes of such a system. They

showed that, in a certain continuum limit, the FPU lattice was approximated by the

KdV equation. They then did their own computer experiments, solving the Cauchy

Problem for KdV with initial conditions corresponding to those used in the FPU

experiments. In the results of these simulations they observed the first example of a

soliton, a term that they coined to describe a remarkable particle-like behavior (elastic

scattering) exhibited by certain KdV solutions. Zabusky and Kruskal showed how the

coherence of solitons explained the anomalous results observed by Fermi, Pasta, and

Ulam. But in solving that mystery, they had uncovered a larger one; KdV solitons
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were unlike anything that had been seen before, and the search for an explanation

of their remarkable behavior led to a series of discoveries that changed the course of

applied mathematics for the next thirty years.

Deviation of KdV equation begin with a conservation equations for fluid motion

∂tρ+∇(ρ~v) = 0, (1.6)

ρ(∂t + ~v∇)~v = −∇P + ~f (1.7)

With density ρ, velocity of the fluid ~v, internal pressure P and external force

density ~f .

We assume the fluid is incompressible and irrotational which means

∇ρ = 0, ∂tρ = 0,∇× ~v = 0. (1.8)

If we consider the external force ~f invovled in the equation caused by gravity, we

caould rewrite it as ~f = −ρgτ .After inserting the gravity form of external force, we

could transform our equation into

ρ(∂t + ~v∇)~v = −∇P − ρgτ, (1.9)

Then, we divide both side of the equation by ρ

(∂t + ~v∇)~v +∇(
P

ρ
) + gτ = 0, (1.10)

Considering the relation, we have

~v × (∇× ~v) = −(~v∇)~v +
1

2
∇(~v2), (1.11)

Under the condition of irrotation, we have

~v × 0 = −(~v∇)~v +
1

2
∇(~v2), (1.12)
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Then,

(~v∇)~v =
1

2
∇(~v2), (1.13)

Moreover, the potential satisfies the Laplace’s equation:

~v = ∇φ = ui+ vj,∇2φ = 0, (1.14)

Hence, our original fluid equation could be rewritten as a gradient

∇(∂tφ+
1

2
~v2 +

P

ρ
+ gτ) = 0, (1.15)

Under the notification that ∇ depend only on time, we lead to the following equation

to determine the velocity:

∂tφ+
1

2
(∇φ)2 +

P

ρ
+ gτ = ∂tφ+

1

2
(u2 + v2) +

P

ρ
+ gτ = 0, (1.16)

Under the notification u = φx and v = φy, we could differentiate both side of the

equation with respect to x and get

ut + uux + vvx + gτx = φxt + φxφxx + φyφxy + gτx = 0, (1.17)

By introducing the series form of φ as
∑∞

n=0
(−1)my2m

(2m)!
f (2m), where f = φ0 we have

u = φx = fx −
1

2
y2fxxx + · · · ; (1.18)

v = φy = −yfxx +
1

6
y3fxxxx + · · · ; (1.19)

Under these relations, we can derive the KdV equation from the fluid motion.

To understand the role of nonlinear dispersion in pattern formation, Rosenau

and Hyman [16] introduced the K(n,m) equation

ut + (un)x + (um)xxx = 0, (1.20)

where n and m are restricted as positive integers.The KdV equation has several

connections to physical problems. In addition to being the governing equation of the
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string in the Fermi−Pasta−Ulam problem in the continuum limit, it approximately

describes the evolution of long, one-dimensional waves in many physical settings Lou

and Wu[17] characterized its Painlevé integrability under certain relations between

n and m. The K(2, 1) and K(3, 1) models are just the KdV and mKdV equations

respectively. Accordingly, the K(2, 1) equation with damping

ut + auux + uxxx = −εu, (1.21)

was introduced and discussed in [18].
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1.4 Application of both methods

The perturbation to the KdV equation is caused by an external force. In this thesis,

we intend to investigate the nonlinear K(n, 1) equation with damping [19]

ut + a(un)x + uxxx = −εu (1.22)

via the approximate homotopy symmetry method and the approximate homotopy

direct method, where u is a function of x and t. Hereafter, we put stress on the

general case while n > 2, irrespective of the simple case of n = 2. Additionally, it

should be underscored that ε is not a small parameter.

For the formal succinctness, we rewrite Eq. (1.22) as

A(u) = ut + a(un)x + uxxx + εu = 0 (1.23)

For the chosen linear homotopy model (1.3), H0(u) take the form

H0(u) = ut + a(un)x + uxxx (1.24)

Accordingly, we change the Eq. (1.3) into

(1− q)(ut + a(un)x + uxxx) + q(ut + a(un)x + uxxx + εu) = 0 (1.25)

It is obvious that Eq. (1.25) is K(n, 1) equation just when q = 0.

For Eq. (1.25), based on the perturbation theory, the solution can be represented

as

u =
∞∑
k=0

qkuk, (1.26)

with uk functions of x and t. Substituting Eq. (1.26) into Eq. (1.25) and vanishing

the coefficients of all different powers of q, we obtain the following system

uk,t + na
∑

i1+i2+···+in=k

ui1ui2 . . . ui(n−1)
uin,x

+uk,xxx + εuk−1 = 0, (k = 0, 1, 2, . . .) (1.27)

where 0 ≤ im ≤ k (m = 1, . . . , n) and u−1=0.



CHAPTER 2

APPROXIMATE SYMMETRY TO EQUATION

2.1 Lie symmetry method

Towards the end of the nineteenth century, Sophus Lie introduced the notion of Lie

group in order to study the solutions of ordinary differential equations (ODEs). He

showed the following main property: the order of an ordinary differential equation

can be reduced by one if it is invariant under one-parameter Lie group of point

transformations. This observation unified and extended the available integration

techniques. Lie devoted th e remainder of his mathematical career to developing

these continuous groups that have now an impact on many areas of mathematically-

based sciences. The applications of Lie groups to differential systems were mainly

established by Lie and Emmy Noether.[2]

Definition 2.1.1. A Lie group is a set G with two structures: G is a group and G is a

(smooth, real) manifold. These structures agree in the following sense: multiplication

and inversion are smooth maps.

Lie symmetries were introduced by Lie in order to solve ordinary differential

equations. Another application of symmetry methods is to reduce systems of differ-

ential equations, finding equivalent systems of differential equations of simpler form.

This is called reduction.

Lie’s fundamental theorems underline that Lie groups can be characterized by

their infinitesimal generators. These mathematical objects form a Lie algebra of in-

finitesimal generators. Deduced ”infinitesimal symmetry conditions” (defining equa-

tions of the symmetry group) can be explicitly solved in order to find the closed form

of symmetry groups, and thus the associated infinitesimal generators.

Definition 2.1.2. An infinitesimal generator V in the canonical basis of elementary
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derivations { ∂
∂z1
, · · · , ∂

∂zn
} can be written as

V =
n∑
k=0

ζzi
∂

∂zi
, (2.1)

In order to study Lie symmetry reduction of Eq. (1.27), we construct the Lie

point symmetry in the vector form

V = X
∂

∂x
+ T

∂

∂t
+
∞∑
k=0

Uk
∂

∂uk
, (2.2)

where X, T , and Uk are functions of x, t, and uk, (k = 0, 1, . . .), equivalently, Eq.

(1.27) is invariant under the transformation

{x, t, uk, k = 0, 1, . . .} → {x+ ζX, t+ ζT, uk + ζUk, k = 0, 1, . . .},

with infinitesimal parameter ζ.
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2.2 Application of symmetry method

Since Eq. (1.22) is not explicitly dependent upon space-time x, t, the symmetry in

the vector form (2.2) can be written as a function form

σk = Uk −XUk,x − TUk,t, (k = 0, 1, . . .), (2.3)

Under notation (2.3), the symmetry equations for Eqs. (1.27)

uk,t + na
∑

i1+i2+···+in=k

ui1ui2 . . . ui(n−1)
uin,x

+uk,xxx + εuk−1 = 0, (k = 0, 1, 2, . . .) (2.4)

read

σk,t + na
∑

i1+i2+···+in=k

[σi1ui2 . . . ui(n−2)
ui(n−1)

uin,x + ui1σi2 . . .

ui(n−2)
ui(n−1)

uin,x + · · ·+ ui1ui2 . . . ui(n−2)
ui(n−1)

σin,x] + σk,xxx

+εσk−1 = 0, (k = 0, 1, 2, . . .) (2.5)

which are the linearized equations for Eqs. (1.27), with 0 ≤ im ≤ k (m = 1, . . . , n)

and σ−1 = 0.

It seems difficult to figure out X, T and Uk, (k = 0, 1, . . .) directly because

there are infinite number of equations and arguments concerning or in X, T and

Uk, (k = 0, 1, . . .). To make brief of it, we begin the discussion with finite number of

equations.

Confining the range of k to (k = 0−2) in Eqs. (1.27), (2.3) and (2.5), we see that

X, T , U0, U1 and U2 are functions of x, t, u0, u1 and u2. In this case, the determining

equations can be derived by substituting Eq. (2.3) into Eq. (2.5), eliminating u0,t,
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u1,t and u2,t in terms of Eq. (1.27). Some of the determining equations read

Tx = Tu0 = Tu1 = Tu2 = 0, Xt = Xu0 = Xu1 = Xu2 = 0,

U0,u0u0 = U0,u0u1 = U0,u0u2 = U0,u1u1 = U0,u1u2 = U0,u2u2 = 0,

U1,u0u0 = U1,u0u1 = U1,u0u2 = U1,u1u1 = U1,u1u2 = U1,u2u2 = 0,

U2,u0u0 = U2,u0u1 = U0,u0u2 = U2,u1u1 = U2,u1u2 = U2,u2u2 = 0.

(2.6)

The general solution to Eqs. (2.6) is

X = X(x), T = T (t),

U0 = a0(x, t)u0 + a1(x, t)u1 + a2(x, t)u2 + a3(x, t),

U1 = a4(x, t)u0 + a5(x, t)u1 + a6(x, t)u2 + a7(x, t),

U2 = a8(x, t)u0 + a9(x, t)u1 + a10(x, t)u2 + a11(x, t).

(2.7)

Using relations (2.7), the remaining determining equations are immediately simplified

to

a0 = − 2

n− 1
Xx =

1

n− 1
(Xx − Tt) ,

a5 + (n− 2)a0 = Xx, a10 + (n− 1)a0 − a5 = Xx,

a1 = a2 = a3 = a4 = a6 = a7 = a8 = a9 = a11 = Xxx = 0.

It is straightforward to find that

X =
c

3
x+ x0, T = ct+ t0, U0 = − 2

3(n− 1)
cu0,

U1 =

(
1− 2

3(n− 1)

)
cu1, U2 =

(
2− 2

3(n− 1)

)
cu2.

Likewise, restricting the range of k to {k | k = 0, 1, 2, 3} in Eqs. (1.27) (2.3) and

(2.5), where X, T , U0, U1, U2 and U3 are functions of x, t, u0, u1, u2 and u3, repeating



17

the calculation process as before, then we have

X =
c

3
x+ x0, T = ct+ t0,

U0 = − 2

3(n− 1)
cu0, U1 =

(
1− 2

3(n− 1)

)
cu1,

U2 =

(
2− 2

3(n− 1)

)
cu2, U3 =

(
3− 2

3(n− 1)

)
cu3.

With more similar computation considered, we find that X, T and Uk (k =

0, 1, . . .) are formally coherent, i.e.,

X =
c

3
x+ x0, T = ct+ t0, Uk =

(
k − 2

3(n− 1)

)
cuk, (k = 0, 1, . . .) (2.8)

where c, x0 and t0 are arbitrary constants.

Subsequently, solving the characteristic equations

dx

X
=
dt

T
,
du0
U0

=
dt

T
, . . . ,

duk
Uk

=
dt

T
, . . . . (2.9)

leads to the similarity solutions to Eq. (1.27). Two subcases are distinguished as

follows.
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2.3 Results

Case 1: When c 6= 0, without loss of generality, making the transformation x0 −→
1
3
cx0 and t0 −→ ct0, we rewrite Eq. (2.8) as

X =
1

3
c (x+ x0) , T = c (t+ t0) , U0 = − 2

3(n− 1)
cu0,

U1 =

(
1− 2

3(n− 1)

)
cu1, . . . , Uk =

(
k − 2

3(n− 1)

)
cuk, (k = 0, 1, . . .)(2.10)

in this case, solving Eq. (2.9) leads to the following invariants

I(x, t) = ξ = (x+ x0)(t+ t0)
− 1

3 , (2.11)

I0(x, t) = V0 = (t+ t0)
2

3(n−1)u0, (2.12)

and

Ik(x, t) = Vk = (t+ t0)
2

3(n−1)
−kuk, (k = 1, 2, . . .) (2.13)

viewing Vk (k = 0, 1, . . .) as functions of ξ, we get the similarity solutions

uk = Vk(ξ)(t+ t0)
k− 2

3(n−1) , (k = 0, 1, . . .) (2.14)

to Eqs. (1.27) with similarity variable

ξ = (x+ x0)(t+ t0)
− 1

3 . (2.15)

From Eq. (1.26), the series reduction solution to Eq. (1.25) is given by

u =
∞∑
k=0

qk(t+ t0)
k− 2

3(n−1)Vk(ξ), (k = 0, 1, . . .) (2.16)

substituting Eqs. (2.14) into Eqs. (1.27), we get the following related similarity
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reduction equations

O(q0) : V0,ξξξ + naV n−1
0 V0,ξ −

2

3(n− 1)
V0 −

1

3
ξV0,ξ = 0,

O(q1) : V1,ξξξ + naV n−1
0 V1,ξ + n(n− 1)aV n−2

0 V1V0,ξ

+

(
1− 2

3(n− 1)

)
V1 −

1

3
ξV1,ξ + εV0 = 0,

O(q2) : V2,ξξξ + naV n−1
0 V2,ξ + n(n− 1)aV n−2

0 V1V1,ξ

+n(n− 1)aV n−2
0 V2V0,ξ +

n(n− 1)(n− 2)

2
aV n−3

0 V 2
1 V0,ξ

+

(
2− 2

3(n− 1)

)
V2 −

1

3
ξV2,ξ + εV1 = 0,

. . . ,

O(qk) : Vk,ξξξ + na
∑

i1+i2+···+in=k

Vi1Vi2 . . . Vi(n−1)
Vin,ξ

+

(
k − 2

3(n− 1)

)
Vk −

1

3
ξVk,ξ + εVk−1 = 0,

with 0 ≤ im ≤ k, (m = 1, . . . , n) and V−1 = 0. The kth (k > 0) similarity reduction

equation is in fact a third order linear ordinary differential equation (ODE) of Vk

when the previous V0, V1, . . . , Vk−1 are known, since it can be rewritten as

Vk,ξξξ + na[V0
n−1Vk,ξ + (n− 1)V0

n−2VkV0,ξ]

+

(
k − 2

3(n− 1)

)
Vk −

1

3
ξVk,ξ = Gk(ξ), (k = 0, 1, . . .) (2.17)

where Gk is an only function of {V0, V1, . . . Vk−1}

Gk(ξ) = −εVk−1 − na
∑

i1+i2+···+in=k

Vi1Vi2 . . . Vi(n−1)
Vin,ξ, (k = 0, 1, . . .) (2.18)

with im 6= k (m = 1, . . . , n).

Case 2: When c = 0, we have

X = x0, T = t0, Uk =

(
k − 2

3(n− 2)

)
cuk = 0, (k = 1, 2, . . .) (2.19)

the similarity solutions are

uk = Vk(ξ), ξ = t0x− x0t, (k = 1, 2, . . . , n) (2.20)
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thus the series reduction solution to Eq. (1.22) is

u =
∞∑
k=0

qkVk(ξ), (2.21)

where Vk(ξ) (k = 0, 1, 2 . . .) yields

O(q0) : (t0)
3V0,ξξξ + nat0V

n−1
0 V0,ξ − x0V0,ξ = 0,

O(q1) : (t0)
3V1,ξξξ + nat0V

n−1
0 V1,ξ + n(n− 1)at0

V n−2
0 V1V0,ξ − x0V1,ξ + εV0 = 0,

. . . ,

O(qk) : (t0)
3Vk,ξξξ + nat0

∑
i1+i2+···+in=k

Vi1Vi2 . . . Vi(n−1)
Vin,ξ

−x0Vk,ξ + εVk−1 = 0,

with 0 ≤ im ≤ k, (m = 1, . . . , n) and V−1 = 0. The kth (k > 0) similarity reduction

equation can be rewritten as an ODE

(t0)
3Vk,ξξξ + nat0[V0

n−1Vk,ξ + (n− 1)V0
n−2VkV0,ξ]− x0Vk,ξ = Gk(ξ), (k = 0, 1, . . .)

(2.22)

of Vk(ξ), where Gk is a function of {V0, V1, . . . , Vk−1} defined as

Gk(ξ) = −εVk−1 − nat0
∑

i1+i2+···+in=k

Vi1Vi2 . . . Vi(n−1)
Vin,ξ, (k = 0, 1, . . .) (2.23)

with im 6= k (m = 1, . . . , n).



CHAPTER 3

APPROXIMATE DIRECT METHOD TO EQUATION

3.1 Direct method

Direct method or CK method was developed by P.A.Clarkson and M.D. Kruscal

in 1989([6]). This method first is applied to investigate the approximate solution

forboussinesq equation. CK method is different from Lie syemmetry method because

CK method don’t need any symmetry to achieve the solution and could get more

general solution than Lie symmetry method.

In this section, we develop the direct method to investigate Eq.(1.27) for its

similarity solutions of the form

uk = fk(x, t, Pk(z(x, t))), (k = 0, 1, . . .) (3.1)

which satisfy a system of ODEs resulting from inserting Eq. (3.1) into Eq. (1.27).

On substituting Eq. (3.1) into Eq. (1.27), since only one term uk,xxx in Eq. (1.27)

generates the terms Pk,zzz and Pk,zPk,zz during the substitution, it is easily seen that

the coefficients of Pk,zzz and Pk,zPk,zz are fk,Pk
(zx)

3 and 3fk,PkPk
(zx)

3, respectively.

We reserve uppercase Greek letters for undetermined functions of z hereafter. The

ratios of the coefficients are functions of z, namely,

fk,Pk
(zx)

3 = 3fk,PkPk
(zx)

3Γk(z), (k = 0, 1, . . .) (3.2)

Then, we have

fk,Pk
= 3fk,PkPk

Γk(z), (k = 0, 1, . . .) (3.3)

Hence,

1

3Γ(z)
=
fk,PkPk

fk,Pk

Γk(z), (k = 0, 1, . . .) (3.4)



22

with the solution

fk = αk(x, t) + βk(x, t)e
1

3Γ(z)
Pk , (k = 0, 1, . . .)

where αk(x, t) and βk(x, t) are arbitrary functions. Hence, rewriting e
1

3Γ(z)
Pk as Pk, it

is sufficient to seek the similarity reduction of Eq. (1.27) in the special form

uk = αk(x, t) + βk(x, t)Pk(z(x, t)), (k = 0, 1, . . .) (3.5)

instead of the general form Eq. (3.1).

Remark: Three freedoms in the determination of αk(x, t), βk(x, t) and z(x, t)

should be notified:

(i) If αk(x, t) = α
′

k(x, t) + βk(x, t)Ω(z), then one can take Ω(z) = 0;

(ii) If βk(x, t) = β
′

k(x, t)Ω(z), then one can take Ω(z) = constant;

(iii) If z(x, t) is determined by Ω(z) = z0(x, t), where Ω(z) is any invertible

function, then one can take Ω(z) = z.
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3.2 Application of Direct method

Substituting Eq. (3.5) into Eq. (1.27), we find that the coefficients for P0,zzz,

P n−1
0 P0,z, P0,zz and P n−2

0 P0,z are β0(zx)
3, naβn0 zx, 3β0,x(zx)

2 + 3β0zxzxx and n(n −

1)aα0β
n−1
0 zx, respectively. Since Pk is only a function of z, it requires that

naβn0 zx = β0(zx)
3Φ0(z), (3.6)

3β0,x(zx)
2 + 3β0zxzxx = β0(zx)

3Ψ0(z), (3.7)

n(n− 1)aα0β
n−1
0 zx = β0(zx)

3Ω0(z). (3.8)

From Eq. (3.6) and remark (ii), we get

βn−10 = z2x, (3.9)

β0 = z
2

n−1
x . (3.10)

From Eq. (3.8) and remark (i), we can see α0 = 0.

From Eqs. (3.7), (3.10) and remark (iii), we have

6

n− 1
zxzxx + 3zxzxx = z3xΨ0(z),

we have

zxx = 0, (3.11)

then

z = θ(t)x+ σ(t), (3.12)

where θ(t) and σ(t) are some functions to be settled.

Then Eq. (1.27) is degenerated into

θ4P0,zzz + naθ4P n−1
0 P0,z + θ(xθt + σt)P0,z +

2

n− 1
θtP0 = 0. (3.13)
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From the coefficients of P0,zzz, P0,z and P0 and the relations

xθt + σt = θ3Γ1(z),
2

n− 1
θt = θ4Γ2(z),

we have

Γ1(z) = Az +B, Γ2(z) =
2

n− 1
A,

dθ

dt
= Aθ4,

dσ

dt
= θ3(Aσ +B), (3.14)

where A and B are arbitrary constants.

Assume that k ≥ 1, inserting Eq. (3.5) into Eq. (1.27), we know that the

coefficients of Pk−1, P n−2
0 P0,z and Pk,zzz are εβk−1, n(n − 1)aβn−10 zxαk and βkz

3
x

respectively, which leads to

εβk−1 = βkz
3
xΦk(z), n(n− 1)aβn−10 zxαk = βkz

3
xΨk(z), (k ≥ 1)

then using remark (i) and (ii), we have

αk = 0, βk = (zx)
2

n−1
−3k (k = 0, 1, 2, . . .).
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3.3 Results

We distinguish the following two subcases.

Case 1: When A 6= 0, Eq. (3.14) has solution

θ = −(3A(t− t0))−
1
3 , σ = −B

A
+ s0(t− t0)−

1
3 , (3.15)

where t0 and s0 are arbitrary constants.

In terms of Eqs. (3.5), (3.10), (3.12), (3.14) and (3.15), we get the following

solution to Eq. (1.27)

uk = (−1)k(3A(t− t0))k−
2

3(n−1)Pk(z), (k = 0, 1, 2, . . .) (3.16)

where the similarity variable z = −(3A(t− t0))−
1
3x+ s0(t− t0)−

1
3 − B

A
.

From Eqs. (3.16) and (1.26), we obtain the series reduction solution

u =
∞∑
k=0

(−1)kqk(3A(t− t0))k−
2

3(n−1)Pk(z), (k = 0, 1, 2, . . .) (3.17)

to Eq. (1.25). Inserting Eq. (3.16) into Eq. (1.27), we get the similarity reduction

equations

Pk,zzz + na
∑

i1+i2+···+in=k

Pi1Pi2 . . . Pi(n−1)
Pin,z + (Az +B)Pk,z

+

(
2

n− 1
− 3k

)
APk + εPk−1 = 0, (k = 0, 1, 2, . . .) (3.18)

with P−1 = 0.

Case 2: When A = 0, Eq. (3.14) has the solution

θ = t0, σ = Bt30t+ s0, (3.19)

where t0 and s0 are arbitrary constants. By Eqs. (3.5), (3.10), (3.12), (3.14) and

(3.19), we obtain the similarity solution

uk = t
2

n−1
−3k

0 Pk(z), (k = 0, 1, 2, . . .) (3.20)
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with the similarity variable z = t0x + Bt30t + s0. Based on this, the series reduction

solution to Eq. (1.25) is

u =
∞∑
k=0

qkt
2

n−1
−3k

0 Pk(z), (3.21)

and the similarity reduction equation is boiled down to

Pk,zzz + na
∑

i1+i2+···+in=k

Pi1Pi2 . . . Pi(n−1)
Pin,z

+BPk,z + εPk−1 = 0, (k = 0, 1, 2, . . .) (3.22)

with P−1 = 0.



CHAPTER 4

ANALYSIS ON FORMAL COINCIDENCE FOR BOTH METHODS

In the following, we discuss the formal coincidence for both methods on the basis of

the results obtained by both methods.

4.1 Formal Coincidence under Case 1

Case 1: We now compare Eqs. (3.16) and (3.18) with the results concerning similarity

reduction equations and similarity solutions in Case 1 of Chapter 2 which are

θ = −(3A(t− t0))−
1
3 , σ = −B

A
+ s0(t− t0)−

1
3 , (4.1)

where t0 and s0 are arbitrary constants. The series reduction solution written as

u =
∞∑
k=0

(−1)kqk(3A(t− t0))k−
2

3(n−1)Pk(z), (k = 0, 1, 2, . . .) (4.2)

we get the similarity reduction equations

Pk,zzz + na
∑

i1+i2+···+in=k

Pi1Pi2 . . . Pi(n−1)
Pin,z + (Az +B)Pk,z

+

(
2

n− 1
− 3k

)
APk + εPk−1 = 0, (k = 0, 1, 2, . . .) (4.3)

By the transformationsA→ −1
3
, B → 0, t0 → −t0 and s0 → x0, we can get the

similarity variable z = (x+x0)(t+ t0)
− 1

3 , then Eqs. (3.16) and (3.18) are respectively

changed into

uk = (t+ t0)
k− 2

3(n−1)Pk(z), (k = 0, 1, 2, . . .) (4.4)

and

Pk,zzz + na
∑

i1+i2+···+in=k

Pi1Pi2 . . . Pi(n−1)
Pin,z −

1

3
zPk,z

+

(
k − 2

3(n− 1)

)
Pk + εPk−1 = 0, (k = 0, 1, 2, . . .), (4.5)
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with P−1 = 0.

On the other hand, for Case 1 in Chapter 3,

Ik(x, t) = Vk = (t+ t0)
2

3(n−1)
−kuk, (k = 1, 2, . . .) (4.6)

u =
∞∑
k=0

qk(t+ t0)
k− 2

3(n−1)Vk(ξ), (k = 0, 1, . . .) (4.7)

and

O(q0) : V0,ξξξ + naV n−1
0 V0,ξ −

2

3(n− 1)
V0 −

1

3
ξV0,ξ = 0,

O(q1) : V1,ξξξ + naV n−1
0 V1,ξ + n(n− 1)aV n−2

0 V1V0,ξ

+

(
1− 2

3(n− 1)

)
V1 −

1

3
ξV1,ξ + εV0 = 0,

O(q2) : V2,ξξξ + naV n−1
0 V2,ξ + n(n− 1)aV n−2

0 V1V1,ξ

+n(n− 1)aV n−2
0 V2V0,ξ +

n(n− 1)(n− 2)

2
aV n−3

0 V 2
1 V0,ξ

+

(
2− 2

3(n− 1)

)
V2 −

1

3
ξV2,ξ + εV1 = 0,

. . . ,

O(qk) : Vk,ξξξ + na
∑

i1+i2+···+in=k

Vi1Vi2 . . . Vi(n−1)
Vin,ξ

+

(
k − 2

3(n− 1)

)
Vk −

1

3
ξVk,ξ + εVk−1 = 0,

with 0 ≤ im ≤ k, (m = 1, . . . , n) and V−1 = 0. Making the transformationVk(ξ) →

Pk(ξ), Eqs. (2.14) and (2.17) are respectively converted into

uk = (t+ t0)
k− 2

3(n−1)Pk(ξ), (k = 0, 1, 2, . . .) (4.8)

and

Pk,ξξξ + na
∑

i1+i2+···+in=k

Pi1Pi2 . . . Pi(n−1)
Pin,ξ −

1

3
ξPk,ξ

+

(
k − 2

3(n− 1)

)
Pk + εPk−1 = 0, (k = 0, 1, 2, . . .)

(4.9)

where P−1 = 0, which are formally the same as Eqs. (4.4) and (4.5).
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4.2 Formal Coincidence under Case 2

Case 2: For case 2 in Chapter 3, we have the similarity solution

uk = t
2

n−1
−3k

0 Pk(z), (k = 0, 1, 2, . . .) (4.10)

with the similarity variable z = t0x + Bt30t + s0. Based on this, the series reduction

solution to Eq. (1.25) is

u =
∞∑
k=0

qkt
2

n−1
−3k

0 Pk(z), (4.11)

and the similarity reduction equation is boiled down to

Pk,zzz + na
∑

i1+i2+···+in=k

Pi1Pi2 . . . Pi(n−1)
Pin,z

+BPk,z + εPk−1 = 0, (k = 0, 1, 2, . . .) (4.12)

with P−1 = 0. Suppose that t0 6= 0, by the transformations B → −x0

t30
, t0 → t0 and

s0 → 0, Eqs. (4.10) and (4.11) are respectively transformed into

uk = t
2

n−1
−3k

0 Pk(z), (k = 0, 1, 2, . . .) (4.13)

and

u =
∞∑
k=0

qkt
2

n−1
−3k

0 Pk(z), (4.14)

with similarity variable z = t0x− x0t, then Eq. (4.12) becomes

Pk,zzz + na
∑

i1+i2+···+in=k

Pi1Pi2 . . . Pi(n−1)
Pin,zV

−x0
t30
Pk,z + εPk−1 = 0, (k = 0, 1, 2, . . .) (4.15)

with P−1 = 0.

Meanwhile, for Case 2 in Chapter 3,we have the similarity solutions are

uk = Vk(ξ), ξ = t0x− x0t, (k = 1, 2, . . . , n) (4.16)
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thus the series reduction solution to Eq. (1.22) is

u =
∞∑
k=0

qkVk(ξ), (4.17)

where Vk(ξ) (k = 0, 1, 2 . . .) yields

O(q0) : (t0)
3V0,ξξξ + nat0V

n−1
0 V0,ξ − x0V0,ξ = 0,

O(q1) : (t0)
3V1,ξξξ + nat0V

n−1
0 V1,ξ + n(n− 1)at0

V n−2
0 V1V0,ξ − x0V1,ξ + εV0 = 0,

. . . ,

O(qk) : (t0)
3Vk,ξξξ + nat0

∑
i1+i2+···+in=k

Vi1Vi2 . . . Vi(n−1)
Vin,ξ

−x0Vk,ξ + εVk−1 = 0,

with 0 ≤ im ≤ k, (m = 1, . . . , n) and V−1 = 0. The kth (k > 0) similarity reduction

equation can be rewritten as an ODE

(t0)
3Vk,ξξξ + nat0[V0

n−1Vk,ξ + (n− 1)V0
n−2VkV0,ξ]− x0Vk,ξ = Gk(ξ); (k = 0, 1, . . .)

(4.18)

of Vk(ξ), where Gk is a function of {V0, V1, . . . , Vk−1} defined as

Gk(ξ) = −εVk−1 − nat0
∑

i1+i2+···+in=k

Vi1Vi2 . . . Vi(n−1)
Vin,ξ, (k = 0, 1, . . .) (4.19)

with im 6= k (m = 1, . . . , n).

We make Vk(ξ)→ t
2

n−1
−3k

0 Pk(ξ) maps Eqs. (4.16) and (2.22) into

uk = t
2

n−1
−3k

0 Pk(ξ), (k = 0, 1, 2, . . .) (4.20)

and

Pk,ξξξ + na
∑

i1+i2+···+in=k

Pi1Pi2 . . . Pi(n−1)
Pin,ξ

−x0
t30
Pk,ξ + εPk−1 = 0, (k = 0, 1, 2, . . .) (4.21)
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with P−1 = 0, which are formally equivalent to Eqs. (4.13) and (4.15) respectively.

From the above analysis of the results from both methods, we can see that

approximate homotopy direct method produces more general approximate homotopy

similarity reduction than the approximate homotopy symmetry method does.



CHAPTER 5

CONCLUDING REMARKS

In sum, applying the approximate homotopy symmetry method and the approximate

homotopy direct method to the nonlinear K(n, 1) equation with damping, we have

obtained the homotopy similarity reduction equations of different orders in general

forms and gained the infinite homotopy series similarity reduction solutions in uniform

formulas for Eq. (1.22). As a result, we have revealed the formal coincidence for both

methods by relating both results. It is fascinating to take both methods into consid-

eration while handling with other perturbed PDEs. Furthermore, the prolongations

of approximate nonclassical symmetry ones is likely to improve this method.
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