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OPIAL’S INEQUALITY ON TIME SCALES

AND

AN APPLICATION

by

TAMARA V. GRAY

(Under the Direction of Billûr Kaymakçalan)

ABSTRACT

In view of the recently developed theory of calculus for dynamic equations on time

scales (which unifies discrete and continuous systems), in this project we give some

basic Opial type dynamic Inequalities. We discuss the background developed for

Opial Inequalities which have many important applications both in the continuous

and discrete cases in many areas of applicable analysis. Finally, having the above

developed tools at our disposal, we give an example that concerns upper bound es-

timates of Dynamic Initial Value Problems and illustrate the usage of the developed

Dynamic Opial Inequality.

INDEX WORDS: Discrete, Continuous, Time Scales, Dynamic Equations, Opial’s

inequality, Upper bounds of solutions of Initial Value Problems.
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CHAPTER 1

INTRODUCTION

Difference equations appear as natural descriptions of observed evolution phenom-

ena, because most measurements of time evolving variables are discrete and as such,

these equations are in their own right important mathematical models. More impor-

tantly, since nonlinear problems cannot be solved, for such equations discretization

methods which make use of difference equations are employed. Several results in

difference equations have been obtained as more or less natural discrete analogs of

corresponding results of differential equations. Furthermore, the application of the

theory of difference equations to various fields such as numerical analysis, control

theory, finite mathematics, computer science, probability theory, queuing problems,

statistical problems, stochastic time series, etc. is rapidly increasing. Therefore, dif-

ference equations are not merely the discrete analogs of differential equations, in fact

they have led the way for the development of the latter. In [1] several examples from

the diverse fields have been illustrated which are sufficient to convey the importance

of the serious qualitative as well as quantitative study of difference equations.

In recent years discrete time dynamical systems have experienced rapidly grow-

ing popularity thereby paving its way into an independent discipline [1, 38]. They

are no longer only auxiliary systems for continuous time dynamical systems through

discretization but rather they have developed their own independent right to exist.

Despite this tendency of independence; however, there is a well-known striking sim-

ilarity or even duality between the two concepts and therefore the discrete systems

are commonly treated ”along the lines” of continuous time theory. Nevertheless, the

two kinds of systems have a number of significant differences mainly due to the topo-

logical fact that in one case the time scale and the corresponding trajectories are
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connected while in the other case they are not. All the investigations on the two

time scales show that much of the analysis is analogous but, at the same time, usu-

ally additional assumptions are needed in the discrete case in order to overcome the

topological deficiency of lacking connectedness.

In view of many well-known analogies in the concepts of difference calculus with

the difference operator

(∆hf)(t) =
f(t + h) − f(t)

h

on one hand and differential calculus with the differential operator

(
df

dt
)(t) = limh→0

f(t + h) − f(t)

h

on the other hand, it is an obvious desire to have a better way of dealing with

problems treated in a parallel manner in both continuous and discrete time scales by

establishing a method for theory which allows us to systematically handle both time

scales simultaneously. In the context of such a theory it should also be possible to get

some insight and better understanding of the sometimes subtle differences between

the two types of systems. To create the desired theory first of all requires to set up a

certain structure T which is to play the role of the time scale generalizing R and Z.

Furthermore, an operation on the space of functions from T to the state space has to

be defined generalizing the differential and difference operations.

Perhaps from a modeling point of view, it is more realistic to model a phenomenon

by a dynamic system which incorporates both continuous and discrete times, namely,

time as an arbitrary closed set of reals. It is therefore natural to ask whether it is

possible to provide a framework which allows us to handle both dynamic systems

simultaneously so that we can get some insight and a better understanding of the

subtle differences of these two systems. The answer is affirmative and the recently
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developed theory of ”dynamic systems on time scales” ”or dynamic systems on mea-

sure chains”, (by a measure chain we mean the union of disjoint closed intervals of

R) offers the desired unified approach.

In [9, 10, 11, 25, 26, 27], Aulbach and Hilger have initiated the development

of this theory with the aim of treating dynamic problems from a qualitative point

of view. A calculus on measure chains meeting the requirements described above is

developed and in this general framework some basic results for linear dynamic systems

are given.

Later in [30, 32, 34, 35, 36] Kaymakçalan and others have extended this theory

to a unified analysis of nonlinear systems from the point of view of investigating

qualitative and quantitative behaviors of such systems. Most of these results are

contained in the monograph [33], which is the first book containing extensive coverage

of up-to-date results in the area of ”Time-Scales” or ”Measure Chains”. Recently,

many new results in the area have been obtained, and the two monographs [15, 16] by

Bohner and Peterson, give very thorough insight into some of the more contemporary

developments in the area.

Having the basics of the Theory of Time-Scales at our disposal, in this thesis

we want to focus our attention to obtaining unified results in the context of Inequal-

ities, in particular some kinds which involve integrals of functions and derivatives,

namely Opial Type inequalities. It has been shown that these type of inequalities

are of great importance in Mathematics with applications in the theory of differen-

tial equations, approximations and probability. For detailed investigations of Opial’s

type inequalities , their several generalizations, extensions and discretizations along

with applications such as their role in establishing the existence and uniqueness of
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solutions to initial and boundary value problems for ordinary and partial differential

equations as well as difference equations, the recently published monograph [7], which

is the first book dedicated to the theory of Opial type inequalities, serves as an ex-

cellent reference. In addition to the above mentioned applications, many qualitative

behaviours such as oscillation, non-oscillation, boundedness, have also been discussed

[7] in the light of Opial’s inequality .

We begin this work, with giving the basics of Time-Scales in Chapter 2. Through-

out T denotes a time-scale (any closed subset of R with order and topological struc-

ture defined in a canonical way) with t0 ≥ 0 as a minimal element. In Section 2.1,

some of the essential features of the order and topological structure of time-scales

are introduced, with the Induction Principle which is well suited for Time-Scales and

constituting an efficient tool for unified results for both continuous and discrete sys-

tems, being given in Section 2.2. The concepts and results given in sections 2.3, 2.4,

2.5, 2.6 and 2.7 form the basics of the calculus developed and includes those features

necessary for our Opial inequality unification purpose, concepts such as rd-continuity,

differentiation, integral and the exponential function.

In Chapter 3, along with the basic Opial inequality given by Zdzidlaw Opial in

1960, we state some basic analogous discrete and continuous inequalities and results

pertaining to them. Then in Section 3.2, the introduced inequalities are given in the

time scale set-up along with generalizations. In these unifications the calculus on

time-scales plays a vital role, the theorems are modified in a manner to reflect the

differences of the discrete and continuous results at the same time.

Chapter 4 is devoted to establishing upper bound estimates for the solutions

of I.V.P.’s by making use of the Opial type inequalities obtained in Chapter 3. As



5

auxiliary tools, generalized Gronwall type inequalities which were obtained earlier in

time-scales are also employed for our purpose. Examples which realize the usage of

the obtained upper-bound estimates are given.



CHAPTER 2

BASIC CONCEPTS OF TIME SCALES

2.1 Order and Topological Structure

In this chapter we give the main definitions and characteristics of the calculus on time

scales initiated by Aulbach and Hilger [9, 10, 11, 25, 26, 27] which comprise those

features of the differential and difference calculus as they are relevant for the devel-

opment of a qualitative theory of dynamical systems. We note that the contents of

such a development of some higher ranging calculus is quite extensive. So we suffice

only with giving the essentials necessary for the further aims of this work and refer

to [9, 10, 15, 33] for more details.

Throughout this chapter we remark the many similarities and differences in con-

sidering the Time Scale as in the R or Z set-up.

We begin this chapter with highlighting the basics of the order and topological

structure of Time Scale. In this context the special features of openness brings ad-

ditional considerations into account. Next, we continue by giving the special type

of Induction Principle that is used as a main tool in the arguments. We proceed by

paying special attention to concepts such as Continuity, Rd-Continuity, Differentia-

bility which possess important roles in the analysis of discrete and continuous scales

in a unified manner. As a result of these concepts, we end this chapter by considering

Integrals and Exponential Functions for Time Scales, and give some so-called Useful

Time Scales Formulas that will be employed throughout the thesis.

As subsets of R, time scales carry an order structure in a canonical way. A time

scale T may be bounded above or below. As a consequence of the embedding of T

in R, all order theoretical notions such as bounds, least upper bounds, greatest lower

bounds and intervals are available in T as they are in R.
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We note that the order structure of R induces an order structure on each time-

scale T. On time scales, there exist primarily two order structures that should be

distinguished from each other. But this distinction is easily seen to be only figurative;

since it can be shown that due to the closedness assumption of time-scales, the R or T

suffixes need not be mentioned. Hence, when order theoretical concepts are concerned

the R or T specifications can be dropped and for instance; bound, boundedness

or supremum concepts can be used, instead of R-boundedness, T-boundedness, R-

supremum, T-supremum, etc.

As a consequence of the definition of a time-scale T being a closed subset of R,

topological structure of T, especially from the openness point of view has various

features. Obviously any subset A of T which is open in R, is also open in T. The

reverse is generally not true, though, as the simple example T := Z shows, where any

subset in the induced topology is open in T but not open in R. This is taken care of by

distinguishing between R-openness and T-openness. In order to investigate the details

of the notion of openness in time-scales, we must define the concept of neighborhood in

this set-up. We give two different versions of neighborhood definitions, distinguishing

between the concepts of R-neighborhood and T-neighborhood, giving way to the

distinction between R-openness and T-openness.

Given a time-scale T, t ∈ T and an ǫ > 0, we denote by

Rǫ(t) := {x ∈ R : t − ǫ < x < t + ǫ}

Tǫ(t) := {x ∈ T : t − ǫ < x < t + ǫ}

the ǫ-neighborhoods of t in R and T, respectively.

An interval, in the time-scale context, is always understood as the intersection

of a real interval with a given time-scale.
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The following definition will lead the way to the concept of T-openness.

Definition 2.1.1. Let T be a time-scale and t ∈ T. The set U ⊆ R is called an

R-neighborhood of t provided that there is ǫ > 0 with Rǫ(t) ⊆ U. The set V ⊆ T is

called a T-neighborhood of t, provided that there is ǫ > 0 with Tǫ(t) ⊆ V.

Neighborhood concepts give rise to further topological notions.

Definition 2.1.2. A subset A of a time-scale T is open in T if for each t ∈ A there

is an ǫ > 0 such that Tǫ(t) ⊆ A.

Remark 2.1.1. : For any time-scale T, φ and T are open in T.

Example 2.1.1:

For the time-scale T := {x ∈ R : −1 ≤ x ≤ 0} ∪ { 1
n

: n ∈ N}, any a ∈ T, a > 0 is

of the form a = 1
n
, for some n ∈ N and since

Tǫ(a) = {x ∈ T : a − ǫ < x < a + ǫ} = {a} ⊆ {a},

{a}, a > 0, is a T-open set. Similarly; for −1 ≤ b ≤ c ≤ 1; (b, c) is a T-open set, and

since

Tǫ(−1) = {x ∈ T : −1 − ǫ < x < −1 + ǫ} ⊆ [−1, d], d > 0

and

Tǫ(d) = {x ∈ T : d − ǫ < x < d + ǫ} = {d} ⊆ [−1, d],

we observe that [−1, d] is a T-open set for d > 0.

Likewise, [−1, d) is T-open for all d < 0.

For all e ∈ T, e > 0, T \ {e} is T-open, since for any t ∈ T \ {e}, (t 6= e),

Tǫ(t) = {x ∈ T : t − ǫ < x < t + ǫ} ⊆ T \ {e}.
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On the other hand, for a ∈ T, a ≤ 0, {a} is not T-open, since

Tǫ(a) = {x ∈ T : a − ǫ < x < a + ǫ} 6⊆ {a}.

Example 2.1.2: For the time-scale

T := {x ∈ R : −1 ≤ x ≤ 0} ∪ { 1

n
: n ∈ N},

the set A = { 1
n

: n ∈ N} is open in T. This can easily be seen by observing that A

is an arbitrary union of sets of the form { 1
n
}, which are shown to be T-open for each

n ∈ N by Example 2.1.1 Hence A is also T-open.

The next result enables us to observe a connection between the concepts of T-

openness and R-openness.

Theorem 2.1.1. A set A ⊆ T is open in T if and only if there is a set B ⊆ R, open

in R, with A = B ∩ T.

Example 2.1.3: For the time-scale

T := {x ∈ R : −1 ≤ x ≤ 0} ∪ { 1

n
: n ∈ N},

we have seen in Example 2.1.2 that the set A = { 1
n

: n ∈ N} is T-open. Hence by

Theorem 2.1.1 there should be a set B, open in R, such that A = B ∩T. Clearly, the

set B =
⋃

n∈N

In, where

In = {x ∈ R :
1

2n
≤ x <

3

2n
} for each n ∈ N

being an R-open interval, has this property. Namely; B ∩ T = { 1
n

: n ∈ N} = A and

B is R-open.

Next, we give the following result which was mentioned earlier and remark once

again that the converse is not true, referring to the Example 2.1.3.
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Theorem 2.1.2. If A is a subset of T, then A is open in R implies that A is open

in T.

Although, due to the closedness of T, the notion of closedness in T coincides

with that of R, also the definition of T-openness gives way in a natural manner to

the following concept of closedness.

Definition 2.1.3. A subset A of T is called closed in T provided that T \ A is open

in T.

Having mentioned the concepts of openness and closedness for time-scales; we can

also remark about other topological concepts such as compactness and connectedness

and their special features in time-scales.

Definition 2.1.4. A subset A of a time-scale T is called compact in T provided that

A is bounded and closed in T.

Next, in order to consider the concept of connectedness for time-scales we first

concentrate on the following example.

Example 2.1.4: Considering the time-scale

T := {x ∈ R : −1 ≤ x ≤ 0} ∪ { 1

n
: n ∈ N},

as a result of Example 2.1.1 and Example 2.1.3, it is clear that {1} is both open and

closed in T. Therefore, T can be written as a disjoint union of non-empty T-open sets,

giving way to the disconnectedness of this particular time-scale T.

On the other hand, obviously there exist connected time-scales such as T := R.
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Consequently; from the connectedness point of view, there can not be one single

notion that applies to all time scales, and we conclude that a time-scale T may or

may not be connected. In order to overcome this topological deficiency, we introduce

the concept of jump operators.

Definition 2.1.5. The mappings σ, ρ : T → T, such that

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}

are called jump operators. In the case T is bounded above, we supplement the

definition by σ(max T) := max T and accordingly ρ(min T) := min T if T is bounded

below.

These jump operators enable us to classify the points {t} of a time-scale as right-

dense, right-scattered, left-dense and left-scattered depending on whether σ(t) = t,

σ(t) > t, ρ(t) = t and ρ(t) < t, respectively, for any t ∈ T.

Example 2.1.5: For the time-scale;

T := {x ∈ R : −2 ≤ x ≤ 0} ∪ { 1

n
: n ∈ N} ∪ {x ∈ R : 2 ≤ x ≤ 3} ∪ {4}

points which are;

- right-dense and left-dense: all t ∈ [−2, 0] ∪ (2, 3),

- right-dense and left-scattered: 2,4,

- right-scattered and left-dense: 3,

- right-scattered and left-scattered: all 1
n
, n ∈ N.

Here, we take into account the facts that −2 is a minimal and 4 is a maximal

point, respectively. Hence ρ(−2) = −2, thereby implying −2 to be a left-dense point

and σ(4) = 4, also implying 4 to be a right-dense point.
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Remark 2.1.2. :

(1) So far, we have not specified any direction in a time-scale and used both (positive

and negative) directions in a symmetric manner. But from now on we have to cease

this symmetric consideration, since the time-scale calculus will naturally include the

classical difference operation as a special case and needless to mention, symmetry will

automatically be destroyed in the development of this “difference” process. Hence,

we will consider the direction for a time-scale T to be in the sense of increasing values

of t, for t ∈ T.

(2) If a time-scale T has a maximal element, which is moreover left-scattered, then

this point plays a particular role in several respects and therefore we call it degenerate.

All other elements of T are called non-degenerate and the subset of non-degenerate

points of T is denoted by T
k. Since each closed subset A of a time-scale T is also a

time-scale, it is possible that Ak is formed. Naturally A = Ak is possible as long as

A does not have a left-scattered maximum.

Having characterized the points of a time-scale by use of jump operators we can

remark about the topology on T and show that the so-called order topology (interval

topology) on T is compatible with the metric topology on T, which is induced on T

as a consequence of the embedding of T in R.

To show this, let t0 ∈ T and consider the neighborhood systems in both topolo-

gies. In the open interval topology (order topology), the neighborhood system is

generated by open intervals of the form (t1, t2) such that t1 < t0 < t2. In the

metric topology, the neighborhood system is generated by open balls of the form

{t ∈ T : |t− t0| < ǫ; ǫ ∈ R+}. It is easy to observe that corresponding to each member

of the first system, we can find a member of the second contained in it and vice versa.
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Let t1, t2 ∈ T ∪ {−∞, +∞} such that t1 < t0 < t2. Clearly, there exists ǫ > 0

such that t1 ≤ t0 − ǫ < t0 < t0 + ǫ ≤ t2. Thus {t ∈ T : |t − t0| < ǫ} ⊆ (t1, t2).

Conversely, if δ > 0 is given, then {t ∈ T : |t − t0| < δ} is a neighborhood in the

metric topology on T. We consider the interval (σ(t0 − δ), ρ(t0 + δ)), where σ, ρ are

the jump operators given by Definition 2.1.5 Then s ∈ (σ(t0−δ), ρ(t0 +δ))∩T implies

t0 − δ ≤ σ(t0 − δ) < s < ρ(t0 + δ) ≤ t0 + δ.

Hence any interval in the order topology is contained in a neighborhood in the metric

topology. So the (interval) topology on T is metrizable. In fact we can give the

following theorem.

Theorem 2.1.3. A time-scale T equipped with the order topology is metrizable and

is a Kσ-space; i.e. it is a union of at most countably many compact sets. The metric

on T which generates the order topology is given by

d(r, s) := |µ(r, s)|

where µ∗(·) = µ(·, τ) for a fixed τ ∈ T is defined as follows:

Definition 2.1.6. The mapping µ∗ : T → R
+ such that µ∗(t) = σ(t) − t is called

graininess.

When T = R, µ∗(t) ≡ 0 and for T = Z, µ∗(t) ≡ 1, if T = hZ, µ∗(t) = h.

2.2 Induction Principle

A basic tool which is employed in the proofs is the following Induction Principle, well

suited for time scales.

Theorem 2.2.1. Let T be a time-scale with minimal element t0 ≥ 0. Suppose for

any t ∈ T, there is a statement A(t) such that the following conditions are verified:
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(I) A(t0) is true;

(II) If t is right-scattered and A(t) is true, then A(σ(t)) is also true;

(III) For each right-dense t, there exists a neighborhood U such that whenever A(t)

is true, A(s) is also true for all s ∈ U, s ≥ t;

(IV) For left-dense t, A(s) is true for all s ∈ [t0, t) implies A(t) is true.

Then the statement A(t) is true for all t ∈ T.

Remark 2.2.1. :

For T = N, conditions (III) and (IV) are redundant and the theorem reduces to the

usual principle of mathematical induction for the natural numbers.

On the other hand, if T is a real interval closed at its left end, condition (II) becomes

superfluous.

This induction principle then contains the (topological) principle that a nonvoid

subset of an interval which is at the same time open and closed coincides with the

interval under consideration.

The continuous type of Induction Argument given by the above theorem is being

used by Dieudonnè [21] for proving basic results in differential and integral calculus.

Therefore, his presentation serves as a good guideline for the endeavor to generalize

fundamental results such as the intermediate value theorem, the mean value theorem

and existence theorems for differential equations. The use of the above induction

principle makes particularly clear the difference between real intervals on the one

hand and arbitrary time-scales on the other hand. This is due to the possible absence

or presence of jumps. As it turns out, the verification of (II) is always algebraic. In
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contrast, the proofs in which (III) and (IV) are valid usually require topological or

analytical tools such as inequalities or fixed point theorems.

Since time-scales are not-connected in general, the Intermediate Value Theorem

must be modified. An application of the Induction Principle, Theorem 2.2.1, gives

the following form of the Intermediate Value Theorem on time-scales.

Corollary 2.2.1. Suppose T is a time-scale and f is a real-valued continuous function

on the closed interval [t1, t2] = {t ∈ T : t1 ≤ t ≤ t2}, t1, t2 ∈ T with f(t2) < 0 < f(t1).

Then there exists a t ∈ [t1, t2] such that

f(t)f(σ(t)) ≤ 0,

Such a point t with the property (2.2.1) is called “ node point ” and in that case

f is said to “vanish between ” t and σ(t).

Remark 2.2.2. :

If τ is right-dense, then from the statement of Corollary 2.2.1, we necessarily have

that f(τ) ≡ 0. In all other cases f : τ → σ(τ).

Remark 2.2.3. :

In some situations we might encounter points of a time-scale which are both left-dense

and right-scattered at the same time. For instance, in the consideration of impulsive

systems such points arise naturally. In order to consider dynamic systems containing

such points we must guarantee the applicability of the Induction Principle at these

points. It can be observed that assuming conditions (II) and (IV) of the Induction

Principle to hold gives rise intrinsically to the validity of a statement at such left

dense-right scattered points. To show this, let U be a left-neighborhood of the point

t0 which is both left-dense and right-scattered. Then ρ(t0) = t0 and by (IV) assuming
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A(s) to be true for all s ∈ U, s < t0 = ρ(t0), we have that A(ρ(t0)) is true. Now by

(II), validity of A(ρ(t0)) implies A(σ(ρ(t0))) to be true. But A(σ(ρ(t0))) = A(t0) and

hence the statement A(t) is true at t0.

2.3 Continuity and Rd-Continuity

In order to introduce the concept of integration on time-scales, we need a notion

which is related to the approximation of continuous functions by step-functions.

Definition 2.3.1. If a function is defined on a compact interval [ta, tb] of a time-scale

T and if there are finite number of elements t0, · · · , tn of T with ta = t0 < t1 < · · · <

tn = tb and such that f : [ta, tb] → R is constant on [ti, ti+1], for i = 1, 2, · · · , n − 1,

then f is called a step-function.

There is no difficulty in defining the continuity concept for R
n-valued functions

on Time Scales. The continuity definition can be taken from Real Analysis without

any alteration.

Definition 2.3.2. The function f : T → R is said to be continuous at t0 ∈ T if for

all ǫ > 0, there exists a neighborhood U(t0) such that

|f(t) − f(t0)| < ǫ for all t ∈ U(t0).

In analysis on R discontinuity points are usually given graphically by jump points.

But since Time Scales are not connected in general, a similar result need not be

necessary.

Example 2.3.1: Consider the function f : T → R given by
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f(t) =











|t|, t < 0

t + 1, t ≥ 0.

(i) If T := R, f is not continuous at t = 0.

(ii) If T := Z, f is continuous for all t ∈ Z. Here attention should be paid to various

topological properties. For instance, {0} can be chosen for the neighborhood of

“0”.

Remark 2.3.1. :

(i) The last example shows that at right and left-scattered points every function

is continuous. This may be possible by choosing U = {t0} as the neighborhood

of t0, so that at every point of this neighborhood, the difference between the

value of the function at that point and the value of the function at t0 remains

less than ǫ.

(ii) Properties of continuous functions may be adapted similarly from Real Analysis

by taking the topological properties into account.

In order to pave our way to the concept of integration, we first have to obtain

an appropriate class of functions having anti-derivatives. For this purpose we define

the following notions.

Definition 2.3.3. Let X be an arbitrary topological space and T a time-scale. The

mapping g : T → X is said to be regulated if at each left-dense t ∈ T, g(t−) =

lim
s→t−

g(s) exists and at each right-dense point t ∈ T, g(t+) = lim
s→t+

g(s) exists.

Definition 2.3.4. The mapping g : T → X is called rd-continuous if
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(i) it is continuous at each right-dense or maximal t ∈ T,

(ii) at each left-dense point, left sided limit g(t−) exists.

We denote by Crd[T, X] the set of rd-continuous mappings from T to X. The

class of rd-continuous functions turns out to be a “natural” class within the context

of the Time Scale calculus. The function µ∗ : T → R in case T := [0, 1] ∪ N, for

example, is rd-continuous but not continuous at 1.

The following implications are immediate:

continuous ⇒ rd- continuous ⇒ regulated.

If T contains ldrs-points (left-dense and right-scattered) then the first implication

is not invertible. However, on a discrete time scale all three notions coincide.

As a generalization of Definition 2.3.4, we give the following.

Definition 2.3.5. The mapping f : T
k × X → X is called rd-continuous if it

(i) is continuous at each (t, x) with right-dense or maximal t,

and

(ii) the limits f(t−, x) : lim
(s,y)→(t,x)

s<t

f(s, y) and lim
y→x

f(t, y) exist at each (t, x) with left-

dense t.

Hence, in general for left-dense t, the function f(t, ·) : T
k ×X → X is in no way

a continuous continuation of the mapping f : (−∞, t) × X → X to the point t.

Example 2.3.2: Given an rd-continuous function g : T → X1, which is in the sense of

Definition 2.3.4, a continuous function h : X2 → X3 and another continuous function
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f : X1 × X2 → X3, the composite function f(g(·), h(·)) is rd-continuous in the sense

of Definition 2.3.5.

We conclude this section by introducing a tool which is useful in some qualitative

properties and give a relevant result to this section.

Definition 2.3.6. Consider the mapping f τ ] : (−∞, τ ] × X → X which is defined

for a fixed τ ∈ T
k as:

f τ ](t, x) =











f(t, x), if (t, x) ∈ (−∞, τ) × X

f(τ−, x), if (t, x) ∈ {τ} × X.
(2.3.1)

Here f is assumed to be rd-continuous on T × X. f τ ] does not necessarily coincide

with f on (−∞, τ ] if τ is a ldrs-point, otherwise it does.

Using Definition 2.3.6, we can give the following result which is related to rd-

continuous functions.

Lemma 2.3.1. For each continuous function x : T → X, the mapping f τ ](·, x(·)) is

rd-continuous with respect to the interval (−∞, τ ], where f ∈ Crd[T × X,X].

2.4 Differentiation

When we consider functions which are defined on a time-scale T and taking their

values in a topological space X, due to the embedding of T in R, the concept of conti-

nuity arises in a straightforward manner. For the concept of differentiation, however,

the topological structure of T plays a vital role. In fact the generally lacking openness

of T requires a particular proceeding when one aims at a concept of differentiability

which contains as special cases the differential calculus on one hand and the difference

calculus on the other.
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Definition 2.4.1. Let T be a time-scale and f : T → R. f is called differentiable at

t0 ∈ T, if there exists an a ∈ R with the following property:

For any ǫ > 0, there exists a neighborhood U of t0, such that
∣

∣

∣

∣

f(σ(t0)) − f(t) − (σ(t0) − t)a

∣

∣

∣

∣

≤ ǫ|σ(t0) − t| (2.4.1)

for all t ∈ U.

f : T → X, where X is any Banach Space, is called differentiable if f is differen-

tiable for each t ∈ T.

Remark 2.4.1. :

In the two special cases R and Z the derivative is uniquely determined, in fact one

gets a = df

dt
(t0) and a = f(t0 + 1) − f(t0), respectively.

Theorem 2.4.1. If f : T → R is differentiable at a non-degenerate point t0, then

from the Definition 2.4.1, a ∈ R is uniquely determined. It is denoted by f∆(t0) and

called the derivative of f at t0.

Remark 2.4.2. :

Sometimes we may need the generalized derivatives corresponding to Dini derivatives

from the right, in which case we write

f(σ(t)) − f(s) − (σ(t) − s)a < ǫ(σ(t) − s)

for all s ∈ W ; W being a right-neighborhood of t ∈ T. We denote in this case

a = D+f∆(t).

Note that if t is right-scattered, then D+f∆(t) is the same as the f∆(t) given

above. In this case we write

f∆(t) =
f(σ(t)) − f(t)

(σ(t) − t)
.
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The relationship between differentiability and continuity follows from Real Anal-

ysis.

Theorem 2.4.2. If f : T → R is differentiable at t0 ∈ T, then it is continuous at t0.

Theorem 2.4.3. If f is continuous at t0 and t0 is right-scattered, then f is differen-

tiable at t0 with derivative

f∆(t0) =
f(σ(t0)) − f(t0)

σ(t0) − t0

as indicated in Remark 2.4.2.

Example 2.4.1: Let T := {x ∈ R : −2 ≤ x ≤ 0} ∪ { 1
n

: n ∈ N} and

f(x) := |x|, fn(x) = |x − 1
n
|, n ∈ N, for all x ∈ T.

Then all functions fn’s are differentiable for all points of T, but the limit function f

has no derivative at 0, hence it is not differentiable.

Example 2.4.2: For T := {0} ∪
⋃

n∈N

{x ∈ R :
1

2n
≤ x ≤ 1

2n − 1
} and

f(x) :=











0, if x = 0

1
2n

, if 1
2n

≤ x ≤ 1
2n−1

which gives, f∆(0) = 1.

2.5 Antiderivative and Integral

After the development of the Time-Scale Analysis in the previous sections up to

the concept of differentiability, now the concepts of antiderivative (primitive) and

integration are to be presented. For this purpose, restricting ourselves to the class

of differentiable functions, we consider the definition of the immediate concepts of

antidifferentiation.
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Once the main theorem, which guarantees the existence of a primitive (antideriva-

tive) function for continuous functions, has been given, we must introduce the concept

of Cauchy-Integral which is an essential tool for further purposes.

In the following, T is a Time-Scale and T
′ is a subinterval of T.

Definition 2.5.1. Let f : T
′ → R be a differentiable function.

The function

f∆ :











(T)k → R

t → f∆(t)

is called the Derivative of f on T
′. In the case of T

′= T, the statement ”on T
′”

disappears.

Remark 2.5.1. :

(i) From the Theorem 2.4.2, it is obvious that a mapping which is differentiable on

T
′ is continuous.

(ii) If T
′ ⊂ R is an interval, which is open in R; then the above concept coincides

with differential calculation.

Definition 2.5.2. A function f : T
k → R is called an antiderivative (primitive) of g

on T
′, if it is differentiable on T

′ and for all t ∈ T
′k , the condition f∆(t) = g(t) is

satisfied.

As shown by the following theorem, just like in Real Analysis, there corresponds

an anti-derivative for each rd-continuous function on Time-Scale.

Theorem 2.5.1. For any rd-continuous mapping g : T
k → R, there exists an an-

tiderivative function f : T → R ; f : t →
∫ t

s

g(s)∆s, s, t ∈ T
k.
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Since, as a result of Definition 2.5.2 we can deduce that the difference of two

antiderivative functions is constant, the following definition can be used similar to

that in Real Analysis.

Definition 2.5.3. If the function g : T
k → R has an antiderivative function f on

[r, s] ⊂ T, then
∫ s

r

g(t)∆t := f(s) − f(r)

is called the Cauchy-Integral from r to s of the function g.

For T = R the Cauchy integral coincides with the Riemann integral.

For T = hZ where h > 0, the identity

∫ s

r

g(t) ∆t =







































































s
h
−1
∑

i= r
h

g(ih)h if s > r

0 if s = r

−
r
h
−1
∑

i= s
h

g(ih)h if s < r

can be shown. For further properties of integrals on T we refer to [10].

2.6 The Exponential Function

We start this section by introducing the so-called Hilger complex plane, Ch and refer

to [27, 28, 15] for many results concerning this concept.

Let h > 0 be fixed and define the Hilger complex numbers by

Ch :=
{

z ∈ C : z 6= −1

h

}

.

Also if h = 0, let C0 := C.
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Now recalling that the unique solution of the initial value problem

x′ = αx, x(0) = 1

is the exponential function x(t) = eαt, we are motivated to the following definition

Definition 2.6.1. For α ∈ Ch, we define the exponential function eα(t) on hZ to be

the solution of the initial value problem

x∆(t) = αx(t), t ∈ T := hZ, x(0) = 1. (2.6.1)

The following theorem, whose proof can be found in the [27], gives the explicit

formulation of the defined exponential function eα(t), i.e. the unique solution of the

I.V.P. (2.6.1)

Theorem 2.6.1. For α ∈ Ch, the exponential function eα(t) is given by

eα(t) = (1 + αh)
t
h (2.6.2)

for t ∈ T := hZ.

We can define a more general exponential function as follows;

Definition 2.6.2. Assume α : T → C is rd-continuous and α(t)µ(t) + 1 6= 0 for

t ∈ T
k. Then for t ∈ T, s ∈ T

k, eα(t, s) is defined to be the function such that for

each fixed s ∈ T
k, eα(t, s) is the solution of the initial value problem

x∆(t) = α(t)x(t), t ∈ T
k, x(s) = 1.

For each fixed s, we say that α(t) is the growth rate of the exponential function eα(t, s)

The above defined generalized exponential function eα(t, s) can be explicitly given

by;
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Theorem 2.6.2. The explicit formulation of the exponential function eα(t, s) is

eα(t, s) = exp

(
∫ t

s

ξµ(r)(α(r))∆r

)

(2.6.3)

for t, s ∈ T, where for h > 0, the so-called cylindrical transformation

ξh : Ch → Zh is defined by

ξh(z) =
1

h
Log(1 + zh) (2.6.4)

with Log being the principle logarithm function.

For h = 0, ξ0(z) is defined to be equal z for all z ∈ C.

For further details we refer to [15] , [27] and [28].

2.7 Some Useful Time Scale Formulas

The following formulas are useful and will be employed in the following chapters:

• fσ = f + µf∆;

• (fg)∆ = f∆g + fσg∆ (“Product Rule”);

• (f/g)∆ = (f∆g − fg∆)/(ggσ) (“Quotient Rule”).

We have that (see e.g. [10, Theorem 7])

f(t) ≥ 0, a ≤ t < b implies

∫ b

a

f(t)∆t ≥ 0. (2.1)

Throughout this paper we assume that 0 ∈ T and let h > 0 with h ∈ T. Hence, if

T = R, then
∫ h

0
f(t)∆t =

∫ h

0
f(t)dt, and if T = Z, then

∫ h

0
f(t)∆t =

∑h−1
t=0 f(t).

Other examples of time scales (to which our inequalities apply as well) are e.g.

hZ = {hk : k ∈ Z} for some h > 0,
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qZ = {qk : k ∈ Z} ∪ {0} for some q > 1

(which produces so-called q-difference equations),

N
2 = {k2 : k ∈ N},

{

n
∑

k=1

1

k
: n ∈ N

}

,
⋃

k∈Z

[2k, 2k + 1],

and the Cantor set.

We conclude this section with giving two simple consequences of the product rule

as well as Hölder’s inequality for time scales. Those results we shall need in Sections

3.2 and 3.3 to come.

First,

(f 2)∆ = (f · f)∆ = f∆f + fσf∆ = (f + fσ)f∆, (2.2)

and in general, one can use mathematical induction to prove the formula

(f l+1)∆ =

{

l
∑

k=0

fk(fσ)l−k

}

f∆, l ∈ N. (2.3)

Finally, Hölder’s inequality for time scales (see [19, Lemma 2.2 (iv)]) reads

∫ h

0

|f(t)g(t)|∆t ≤
{
∫ h

0

|f(t)|p∆t

}

1
p
{
∫ h

0

|g(t)|q∆t

}

1
q

, (2.4)

where p > 1 and q = p/(p − 1).



CHAPTER 3

SOME OPIAL INEQUALITIES AND AN APPLICATION

3.1 Preliminaries

In 1960, the Polish Mathematician Zdzidlaw Opial [48] published an inequality in-

volving integrals of functions and their derivatives;

∫ h

0

|x(t)x′(t)| dt ≤ h

4

∫ h

0

|x′(t)|2 dt (3.1.1)

where x ∈ C(1)[0, h], x(0) = x(h) = 0 and x(t) > 0 in (0, h), and the constant h/4 is

the best possible.

Inequalities which involve integrals of functions and their derivatives are of great

importance in mathematics with applications in the theory of differential equations,

approximations and probability. It has been shown that inequalities of the form

(3.1.1) can be deduced from those of Wirtinger and Hardy type, but the importance

of Opial’s result is in the establishment of the best possible constant. A recently

published monograph [7] is the first book dedicated to the theory of Opial type

inequalities .

The positivity requirement of x(t) in the original proof of Opial was shown to

be unnecessary later by Olech in [47] where he proved that the inequality (3.1.1)

holds even for functions x(t) which are only absolutely continuous in [0,h]. Moreover,

Olech’s proof is simpler than that of Opial.

Theorem 3.1.1. (Olech): Let x(t) be absolutely continuous in [0, h] and x(0) =

x(h) = 0.Then the following inequality holds;

∫ h

0

|x(t)x′(t)|dt ≤ h

4

∫ h

0

(x′(t))2dt (3.1.2)
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Works containing discrete analogues of Opial-Type inequalities started in 1967-

69 with the papers of Lasota [39], Wong [49], Beesack [13] which provided discrete

versions of inequality (3.1.1).

The next result is the discrete analogue of the above theorem.

Theorem 3.1.2. (Lasota’s Inequality): Let {xi}N
i=0 be a sequence of numbers, and

x0 = xN = 0. Then the following inequality holds

N−1
∑

i=1

|xi∆xi| ≤
1

2
[[
N + 1

2
]]

N−1
∑

i=0

|∆xi|2 (3.1.3)

where ∆ is the forward difference operator, and [[.]] is the greatest integer function.

Now, if we consider Olech’s result under weaker conditions, we get the following

estimate with a less sharper bound.

Theorem 3.1.3. Let x(t) be absolutely continuous in [0, a] and x(0) = 0.Then the

following inequality holds.

∫ a

0

|x(t)x′(t)|dt ≤ a

2

∫ a

0

(x′(t))2dt (3.1.4)

In (3.1.4) equality holds if and only if x(t) = ct

The following theorem is a non-trivial generalization of Theorem 3.1.3 and is

given in Hua [29].

Theorem 3.1.4. (Hua’s generalization)

Let x(t) be absolutely continuous on [0, a], and x(0) = 0 . Further let ε be a positive

integer. Then the following inequality holds

∫ a

0

|xε(t)x′(t)|dt ≤ aε

ε + 1

∫ a

0

|x′(t)|ε+1dt (3.1.5)

with equality being valid in (3.1.5) if and only if x(t) = ct.
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Finally we give a discrete analogue of Theorem 3.1.4 due to Wong [49].

Theorem 3.1.5. (Wong’s inequality)

Let
{

xi

}τ

i=0
be a non-decreasing sequence of nonnegative numbers, and x0 = 0. Then

for ε ≥ 1, the following inequality holds

τ
∑

i=1

xε
i∇xi ≤

(τ + 1)ε

ε + 1

τ
∑

i=1

(∇xi)
ε+1. (3.1.6)

where ∇ is the backward difference operator i.e.,∇xi = xi − xi−1.

Remark 3.1.1: In terms of the forward difference operator, ∆xi, the above Wong’s

inequality (3.1.6) can be restated as follows;

{

xi

}τ

i=0
is a non-decreasing sequence of non-negative numbers with x0 = 0, for ℓ ≥ 1,

the inequality
τ−1
∑

i=0

xε
i+1∆xi ≤

(σ(τ))ε

ε + 1

τ−1
∑

i=0

(∆xi)
ε+1. (3.1.7)

holds where ∆ is the forward difference operator.

3.2 Time-Scale Set-up of Basic Opial Type Inequality

For convenience we now recall the following easiest versions of Opial’s inequality.

Theorem 3.2.1 (Continuous Opial Inequality, [7, Theorem 1.4.1]). For absolutely

continuous x : [0, h] → R with x(0) = 0 we have

∫ h

0

|xẋ|(t)dt ≤ h

2

∫ h

0

|ẋ|2(t)dt,

with equality when x(t) = ct.

Theorem 3.2.2 (Discrete Opial Inequality, [7, Theorem 5.2.2]). For x0 = 0 and a

sequence {xi}0≤i≤h ⊂ R, we have

h−1
∑

i=1

|xi(xi+1 − xi)| ≤
h − 1

2

h−1
∑

i=0

|xi+1 − xi|2,

with equality when xi = ci.
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In [18] a Dynamic Opial inequality is proven that contains both Theorem 3.2.1 and

Theorem 3.2.2 as special cases. We now give this simplest version of Opial’s inequality

on time scales as presented in [18].

Theorem 3.2.3 (Dynamic Opial Inequality). Let T be a time scale. For delta dif-

ferentiable x : [0, h] ∩ T → R with x(0) = 0 we have

∫ h

0

|(x + xσ)x∆|(t)∆t ≤ h

∫ h

0

|x∆|2(t)∆t,

with equality when x(t) = ct.

Proof. Consider

y(t) =

∫ t

0

|x∆(s)|∆s.

Then we have y∆ = |x∆| and |x| ≤ y so that

∫ h

0

|(x + xσ)x∆|(t)∆t ≤
∫ h

0

[(|x| + |xσ|)|x∆|](t)∆t

≤
∫ h

0

[(y + yσ)|x∆|](t)∆t

=

∫ h

0

[(y + yσ)y∆](t)∆t

=

∫ h

0

(y2)∆(t)∆t

= y2(h) − y2(0)

=

{
∫ h

0

|x∆(t)|∆t

}2

≤ h

∫ h

0

|x∆|2(t)∆t,

where we have used formulas (2.2) and (2.4) for p = 2.

Now, let x̃(t) = ct for some c ∈ R. Then x̃∆(t) ≡ c, and it is easy to check that the

equation
∫ h

0

|(x̃ + x̃σ)x̃∆|(t)∆t = h

∫ h

0

|x̃∆|2(t)∆t
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holds.

Next a generalization of Theorem 3.2.3 is offered where x(0) does not need to

be equal to 0. This result is not found in the book [7] (neither a continuous nor a

discrete version of it), but both a weaker version of Theorem 3.2.3 (with x(0) = 0)

and the subsequent Theorem 3.2.5 (with x(0) = x(h) = 0) are corollaries of Theorem

3.2.4, and continuous [7, Theorem 1.3.1] and discrete [7, Theorem 5.2.1, “Lasota’s

inequality”] versions of Theorem 3.2.5 can be found in the book by Agarwal and

Pang [7].

Theorem 3.2.4. Let x : [0, h] ∩ T → R be differentiable. Then

∫ h

0

|(x + xσ)x∆|(t)∆t ≤ α

∫ h

0

|x∆(t)|2∆t + 2β

∫ h

0

|x∆(t)|∆t,

where

α ∈ T with dist(h/2, α) = dist(h/2, T) (3.1)

and β = max{|x(0)|, |x(h)|}.

Proof. We consider

y(t) =

∫ t

0

|x∆(s)|∆s and z(t) =

∫ h

t

|x∆(s)|∆s.

Then y∆ = |x∆|, z∆ = −|x∆|,

|x(t)| ≤ |x(t) − x(0)| + |x(0)|

=

∣

∣

∣

∣

∫ t

0

x∆(s)∆s

∣

∣

∣

∣

+ |x(0)|

≤
∫ t

0

|x∆(s)|∆s + |x(0)|

= y(t) + |x(0)|,
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and similarly |x(t)| ≤ z(t) + |x(h)|. Let u ∈ [0, h] ∩ T. Then

∫ u

0

|(x + xσ)x∆|(t)∆t ≤
∫ u

0

[y(t) + |x(0)| + yσ(t) + |x(0)|]y∆(t)∆t

=

∫ u

0

[(y + yσ)y∆](t)∆t + 2|x(0)|
∫ u

0

y∆(t)∆t

= y2(u) + 2|x(0)|y(u)

≤ u

∫ u

0

|x∆(t)|2∆t + 2|x(0)|
∫ u

0

|x∆(t)|∆t,

where we have used again (2.2) and (2.4) for p = 2. Similarly, one shows

∫ h

u

|(x + xσ)x∆|(t)∆t ≤ z2(u) + 2|x(h)|z(u)

≤ (h − u)

∫ h

u

|x∆(t)|2∆t + 2|x(h)|
∫ h

u

|x∆(t)|∆t.

By putting ν(u) = max{u, h − u} and adding the above two inequalities, we find

∫ h

0

|(x + xσ)x∆|(t)∆t ≤ ν(u)

∫ h

0

|x∆(t)|2∆t + 2β

∫ h

0

|x∆(t)|∆t.

This is true for any u ∈ [0, h]∩T, so it is also true if ν(u) is replaced by minu∈[0,h]∩T ν(u).

However, this last quantity is easily seen to be equal to α.

Theorem 3.2.5. Let x : [0, h] ∩ T → R be differentiable with x(0) = x(h) = 0. Then

∫ h

0

|(x + xσ)x∆|(t)∆t ≤ α

∫ h

0

|x∆(t)|2∆t,

where α is given in (3.1).

Proof. This follows easily from Theorem 3.2.4 since in this case we have β = 0.

3.3 Upper Bound Estimates of Solutions of Dynamic Initial Value

Problems

We now proceed to give an application of Theorem 3.2.3.
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Example 3.3.1. Let y be a solution of the initial value problem

y∆ = 1 − t +
y2

t
, 0 < t ≤ 1, y(0) = 0. (3.2)

Then y ≤ ỹ on [0, 1] ∩ T, where ỹ(t) = t solves (3.2).

Proof. Clearly ỹ as defined above solves (3.2). We let y be a solution of (3.2) and

consider R defined by

R(t) = 1 − t +

∫ t

0

|y∆|2(s)∆s.

Let t ∈ [0, 1] ∩ T. Then

|y∆(t)| =

∣

∣

∣

∣

1 − t +
y2(t)

t

∣

∣

∣

∣

≤ |1 − t| + 1

t
|y2(t)|

= 1 − t +
1

t

∣

∣

∣

∣

∫ t

0

(y2)∆(s)∆s

∣

∣

∣

∣

≤ 1 − t +
1

t

∫ t

0

|(y2)∆(s)|∆s

= 1 − t +
1

t

∫ t

0

|(y + yσ)y∆|(s)∆s

≤ 1 − t +
1

t
t

∫ t

0

|y∆|2(s)∆s

= R(t),

where we have used our Opial’s inequality, Theorem 3.2.3. Hence

R∆(t) = −1 + |y∆(t)|2 ≤ R2(t) − 1 and R(0) = 1.

Let w be the unique solution of

w∆ = (1 + R(t))w, w(0) = 1.

Note that this w exists since 1 + µ(R + 1) > 0 (see e.g. [10, Theorem 8]) because

R > |y∆| ≥ 0; actually w(t) > 0 for all t ∈ [0, 1] ∩ T. Hence, because of (R − 1)∆ =
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R∆ ≤ R2 − 1, we have

0 ≥ (R − 1)∆w − (R2 − 1)w

wwσ

=
(R − 1)∆w − (R − 1)w∆

wwσ

=

(

R − 1

w

)∆

(we used the quotient rule from Section 2.7) so that

(

R − 1

w

)

(t) =

(

R − 1

w

)

(0) +

∫ t

0

(

R − 1

w

)∆

(s)∆s ≤ 0

and hence R(t) ≤ 1. Therefore

y∆(t) ≤ |y∆(t)| ≤ R(t) ≤ 1

and y(t) =
∫ t

0
y∆(s)∆s ≤

∫ t

0
∆s = t.



CHAPTER 4

EXTENSIONS OF DYNAMIC OPIAL INEQUALITIES

4.1 Extensions

Since its discovery more than four decades ago, Opial’s inequality has found many

interesting applications. In fact, Opial’s inequality and its several generalizations, ex-

tensions and discretizations, play a fundamental role in establishing the existence and

uniqueness of initial and boundary value problems for ordinary and partial differential

equations as well as difference equations. In addition, many qualitative behaviours

such as oscillation, non-oscillation, boundedness, have been discussed in the light of

Opial’s inequality . It may be asserted that this subject will continue to play a very

important part in the future of applied mathematics.

In this chapter, we give some of the various generalizations of the inequalities

presented in the previous chapter. The continuous and/or discrete versions of those

inequalities may be found in [7]. We have not included all of those results in this

work, but most of them may be proved using similar techniques as the ones presented

here. The results given here are in view of those obtained in [18] by Bohner and

Kaymakçalan.

Theorem 4.1.1 (see [7, Theorem 2.5.1]). Let p, q be positive and continuous on

[0, h],
∫ h

0
∆t/p(t) < ∞, and q non-increasing. For differentiable x : [0, h] ∩ T → R

with x(0) = 0 we have

∫ h

0

[qσ|(x + xσ)x∆|](t)∆t ≤
{
∫ h

0

∆t

p(t)

}{
∫ h

0

p(t)q(t)|x∆(t)|2∆t

}

.

Proof. We consider

y(t) =

∫ t

0

√

qσ(s)|x∆(s)|∆s.
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Then y∆ =
√

qσ|x∆| and (note that 0 ≤ s < t implies σ(s) ≤ t and hence q(σ(s)) ≥

q(t); apply (2.1))

|x(t)| ≤
∫ t

0

|x∆(s)|∆s ≤
∫ t

0

√

qσ(s)

q(t)
|x∆(s)|∆s =

y(t)
√

q(t)

so that (note that t ≤ σ(t) implies q(t) ≥ q(σ(t)))
∫ h

0

[qσ|(x + xσ)x∆|](t)∆t ≤
∫ h

0

qσ(t)

(

y(t)
√

q(t)
+

yσ(t)
√

qσ(t)

)

y∆(t)
√

qσ(t)
∆t

≤
∫ h

0

(y(t) + yσ(t))y∆(t)∆t

= y2(h)

=

{

∫ h

0

1
√

p(s)

√

p(s)qσ(s)|x∆(s)|∆s

}2

≤
{
∫ h

0

∆s

p(s)

}{
∫ h

0

p(s)qσ(s)|x∆(s)|2∆s

}

.

Again we have used (2.2) and (2.4) for p = 2.

The following result involves higher order derivatives. As usual, we write f∆n

for the nth (delta) derivative of f .

Theorem 4.1.2 (see [7, Chapter 3]). Suppose l, n ∈ N. For n-times differentiable

x : [0, h] ∩ T → R with x(0) = x∆(0) = . . . = x∆n−1
(0) = 0 we have

∫ h

0

∣

∣

∣

∣

∣

{

l
∑

k=0

xk(xσ)l−k

}

x∆n

∣

∣

∣

∣

∣

(t)∆t ≤ hln

∫ h

0

∣

∣x∆n

(t)
∣

∣

l+1
∆t.

Proof. We consider

y(t) =

∫ t

0

∫ τn−1

0

· · ·
∫ τ2

0

{
∫ τ1

0

∣

∣x∆n

(s)
∣

∣∆s

}

∆τ1∆τ2 · · ·∆τn−1.

Hence we have

y∆(t) =

∫ t

0

∫ τn−2

0

· · ·
∫ τ2

0

{
∫ τ1

0

∣

∣x∆n

(s)
∣

∣∆s

}

∆τ1∆τ2 · · ·∆τn−2,

. . . , y∆n−1

(t) =

∫ t

0

∣

∣x∆n

(s)
∣

∣∆s, y∆n

(t) =
∣

∣x∆n

(t)
∣

∣ ,
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and for 0 ≤ t ≤ h

|x(t)| ≤
∫ t

0

|x∆(t1)|∆t1 ≤
∫ t

0

∫ t1

0

|x∆∆(t2)|∆t2∆t1 ≤ . . . ≤ y(t)

=

∫ t

0

y∆(s)∆s ≤
∫ t

0

y∆(t)∆s ≤
∫ h

0

y∆(t)∆s = hy∆(t)

≤ h2y∆∆(t) ≤ . . . ≤ hn−1y∆n−1

(t) = hn−1f(t),

where we put f = y∆n−1
. Therefore

∫ h

0

∣

∣

∣

∣

∣

{

l
∑

k=0

xk(xσ)l−k

}

x∆n

∣

∣

∣

∣

∣

(t)∆t ≤
∫ h

0

{

l
∑

k=0

|x|k|xσ|l−k
∣

∣x∆n∣

∣

}

(t)∆t

≤
∫ h

0

{

l
∑

k=0

(hn−1f)k(hn−1fσ)l−k
∣

∣x∆n∣

∣

}

(t)∆t

= h(n−1)l

∫ h

0

{

l
∑

k=0

fk(fσ)l−kf∆

}

(t)∆t

= h(n−1)l

∫ h

0

(f l+1)∆(t)∆t

= h(n−1)lf l+1(h)

= h(n−1)l

{
∫ h

0

∣

∣x∆n

(t)
∣

∣∆t

}l+1

≤ h(n−1)lhl

∫ h

0

∣

∣x∆n

(t)
∣

∣

l+1
∆t

= hnl

∫ h

0

∣

∣x∆n

(t)
∣

∣

l+1
∆t,

where we have used (2.1), (2.3), and (2.4) with p = (l + 1)/l and q = l + 1.

The following two results are easy corollaries of the above Theorem 4.1.2.

Corollary 4.1.1 (see [7, Theorem 3.2.1]). Suppose n ∈ N. For n-times differentiable

x : [0, h] ∩ T → R with x(0) = x∆(0) = . . . = x∆n−1
(0) = 0 we have

∫ h

0

|(x + xσ)x∆n|(t)∆t ≤ hn

∫ h

0

∣

∣x∆n

(t)
∣

∣

2
∆t.
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Proof. This is Theorem 4.1.2 with l = 1.

Corollary 4.1.2 (see [7, Theorem 2.3.1]). Suppose l ∈ N. For differentiable x :

[0, h] ∩ T → R with x(0) = 0 we have

∫ h

0

∣

∣

∣

∣

∣

{

l
∑

k=0

xk(xσ)l−k

}

x∆

∣

∣

∣

∣

∣

(t)∆t ≤ hl

∫ h

0

∣

∣x∆(t)
∣

∣

l+1
∆t.

Proof. This is Theorem 4.1.2 with n = 1.
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[30] B. Kaymakçalan, Existence and Comparison Results for Dynamic Systems on
Time Scale, J. Math. Anal. Appl., 172, (1993), 243-255.
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