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SURVEY OF GENERALIZED CONTACT STRUCTURES

by

JAMES BLAND

(Under the Direction of Dr. Yi Lin)

ABSTRACT

A generalized complex structure, as introduced by N. Hitchin , is a common gener-

alization of both symplectic and complex structures. Generalized complex geometry

provides a natural geometric framework to understand certain recent developments

in string physics, and has developed into an active area of research. Very recently, an

odd dimensional analogue of a generalized complex structure, namely a generalized

contact structure, has been introduced in the works of Vaizman, Poon and Wade.

In this thesis, we survey the recent works on generalized contact structures. More

importantly, we prove a local normal form theorem of a generalized contact structure.

This result, which is a joint work with Yi Lin, is original.
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CHAPTER 1

INTRODUCTION

The goal of this paper is to establish similar results of generalized complex geome-

try introduced by Nigel Hitchin [10] for generalized contact geometry introduced by

Iglesias-ponte and Wade [11]. Our focus is to work toward a working definition of

the Darboux Theorem for generalized contact structures. Dr. Marco Gualtieri had a

similar goal when working on his PhD thesis. He proved that a generalized version

of the Darboux theorem exists for generalized complex structures. We plan to use

his approach in [8] as a guideline in showing the Darboux theorem for generalized

contact structures.

Beginning in the second chapter and throughout the third, we give a brief

overview of common objects and properties. This gives a reader without prior ex-

perience in differential geometry a beginning point in the subject matter. Showing

the connection between pure spinors and maximal isotropic subspaces, will provide

a framework for how we define complex structures. Along, with the B-transform we

can take a generalized complex structure and generate another.

In the next chapter, we show the properties of generalized complex structures.

Most importantly, how Dr. Gualtieri approached creating the Darboux theorem

for generalized complex structures. Dr. Gualtieri represented generalized complex

strucutres using pure spinors. This representation gives a general form for general-

ized complex structures and allowed Dr. Gualtieri to finish his proof.

Using the same spinor representation used in [8] we want to expand on the ideas

of Poon and Wade in [15]. By defining a generalized contact structure using spinors

we can follow [8] and finally create an analog of the Darboux theorem for generalized
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contact structures.



CHAPTER 2

V ⊕ V ∗

In this chapter we prepare readers who are unfamiliar with the fundamentals of dif-

ferential geometry. We will introduce the dual space in order to set up V ⊕ V ∗.

2.1 Dual Space and B-transforms

The dual space of a vector space V is defined as the set of all linear functionals on

V . So, we must first define a functional.

Definition 2.1.1. Let V be a real vector space. A functional f : V → R is called

linear if

f(λx+ µy) = λf(x) + µf(y),∀ x, y ∈ V, and ∀ λ, µ ∈ R

The set of all linear functionals on V is called the dual space of V , denoted as

V ∗. Suppose that {e1, · · · , en} is a basis for V . Then, v ∈ V can be written as

v = a1e1 + · · · + anen. If f ∈ V ∗ then f(v) = a1f(e1) + · · · + anf(en). Assume V ∗

has a basis {f1, · · · , fm} and that fi(ej) = 1 when i = j and 0 otherwise. This will

make fi(v) = ai. We shall prove that {fn+1, · · · , fm} are linearly dependent. Now if

{f1, · · · , fn} is linearly independent we can conclude that it is a basis for V ∗. Given

an element f ∈ V ∗ we have f = b1f1 + · · · + bnfn. Applying an arbitrary v ∈ V

we have f(v) = b1a1 + · · · + bnan. Since v is an arbitrary vector the only way for

b1a1 + · · · + bnan = 0 to be true for all v is if b1 = · · · = bn = 0. Thus, {f1, · · · , fn}

is a basis for V ∗. This result demonstrates that V and V ∗ have the same dimension

and, given a basis {e1, · · · , en} for V there exists a basis {f1, · · · , fn} for V ∗, called

the dual basis, such that fi(ej) = δji , 1 ≤ i, j ≤ n.
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There exists a canonical metric on V ⊕ V ∗ which is defined by

< X + α, Y + β >=
1

2
(α(Y ) + β(X)),

where X, Y ∈ V are vectors and α, β ∈ V ∗ are one forms. We need to show that the

signature of the metric is (n, n). We can show this by letting {e1, · · · , en} be the basis

for V and {e∗1, · · · , e∗n} be the basis for V ∗. Let fi = ei + e∗i , gi = ei − e∗i , 1 ≤ i ≤ n.

Using the metric, {f1, f2, · · · , fn, g1, g2, · · · , gn} form an orthogonal basis such that,

< fi, fj >= δji , < gi, gj >= −δji , < fi, gj >= 0. This basis shows that the signature

is (n, n).

A B-transform is a linear map eB as follows:

Definition 2.1.2. Let B ∈ Ω2(V ) be a two form.

eB : V ⊕ V ∗ → V ⊕ V ∗, X + ξ 7−→ X + ξ + ιXB

Sometimes eB will be used to represent 1 + B + B∧B
2!

+ B∧B∧B
3!

+ · · · depending

on the context in which it is used. This B-transform is an orthogonal automorphism

of V ⊕ V ∗. The automorphism can be seen if written in the matrix convention used

in [1].

B :=

 1 0

B 1


We can also show directly that this B-transform is orthogonal with respect to the

canonical metric.

Lemma 2.1.3.

< X + ξ, Y + η >=< X + ξ + ιXB, Y + η + ιYB >, ∀ X, Y ∈ V, ∀ ξ, η ∈ V ∗.
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Proof. For X, Y ∈ V and for ξ, η ∈ V ∗

< X + ξ + ιXB, Y + η + ιYB > =
1

2
(ξ(Y ) + ιXB(Y ) + η(X) + ιYB(X))

=
1

2
(ξ(Y ) +B(Y,X) + η(X) +B(X, Y ))

=
1

2
(ξ(Y ) +B(Y,X) + η(X)−B(Y,X))

=
1

2
(ξ(Y ) + η(X))

= < X + ξ, Y + η >

2.2 Maximal Isotropic Subspace

Given a subspace L of V ⊕ V ∗ if the restriction of <,> on L vanishes, i.e., < X +

α, Y +β >= 0, ∀ X+α, Y +β ∈ L then L is isotropic. From before it is shown that

the signature of the metric is (n,n), so the maximum dimension of the subspace would

be dimension n. Therefore, when L has dimension n, we call L a maximal isotropic

subspace of V ⊕ V ∗. Sometimes, we will refer to L as a linear Dirac structure. The

two easiest examples of maximal isotropic subspaces are V and V ∗. Another example

would be a subspace and its annihilator.

Example 2.2.1. [8] Let E ∈ V be any subspace. Then the subspace

E ⊕ Ann(E) ⊂ V ⊕ V ∗

is a maximal isotropic subspace.

A maximal isoptropic subspace under the B-transform is also a maximal isotropic

subspace.
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Lemma 2.2.2. Suppose that L is a maximal isotropic subspace of V ⊕ V ∗. Then

LB = {X + ξ + ιXB|X + ξ ∈ L},

is also a maximal isotropic subspace.

Proof. Let X + ξ, Y + η ∈ L where L is a maximal isotropic subspace

< X + ξ + ιXB, Y + η + ιYB >=< X + ξ, Y + η > because L is a maximal isotropic

subspace < X + ξ, Y + η >= 0

The next example will provide a general form for maximal isotropic subspaces.

First we prove it is indeed a maximal isotropic subspace. Then, we will find that all

maximal isotropic subspaces can be written in its form.

Example 2.2.3. Let E ⊂ V be any subspace of V , and let ε ∈ ∧2E∗ be a two form

on E.

L(E, ε) = {X + ξ| ξ|E = ιXε}

is a maximal isotropic subspace of V ⊕ V ∗.

Proof. Suppose X + ξ, Y + η ∈ L(E, ε) :

< X + ιXε, Y + ιY ε > =
1

2
(η(X) + ξ(Y ))

=
1

2
((ιXε)(Y ) + (ιY ε)(X))

=
1

2
(ε(Y,X) + ε(X, Y ))

= 0

Thus, L(E, ε) is an isotropic subspace. In order to show that it is maximal, we will

show that the dimension is n. We need to show Ann(E) ⊂ L(E, ε).

Ann(E) := {α ∈ V ∗| α(X) = 0, ∀X ∈ E}
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Thus, for all ξ ∈ Ann(E), ξ|E = 0 = ιOε, where O is the zero vector in E. This

proves that Ann(E) ⊂ L(E, ε). Choosing a basis {X1, · · · , Xr} of E we are going to

extend each one form on E (ιXiε) into one forms on V (ξi), using the following linear

map:

Φ : E → L(E, ε), Xi 7→ Xi + ξi

We can set Φ(
∑

i aiXi) =
∑

i(aiXi+aiξi) = 0. Then
∑

i aiXi = 0. Since {X1, · · · , Xr}

is basis of E, ai, · · · , ar are all forced to equal 0. Therefore, the null space is 0. This

shows that Φ is an injective map.

Finally, we want to show that the dimension of the image of Φ equals dim(E).

We can do this by showing Im Φ∩Ann(E) = {0}. Let X+ξ ∈ Im Φ∩Ann(E). Since

X + ξ ∈ Ann(E) is a one form, X = 0. With ξ ∈ Im Φ, ξ =
∑

i aiXi +
∑

i aiξi. Since

X = 0, then all the ai’s= 0, forcing ξ = 0. Now we have the following established

inequalities:

dimL(E, ε) ≥ dimImΦ + dimAnn(E) = dimE + dimAnn(E) = n

However, since L(E, ε) is an isotropic subspace of V ⊕ V ∗, its dimension can not

exceed n. This will force dim L(E, ε) = n.

Now we know L(E, ε) is a maximal isotropic subspace. We will show that all

maximal isotropic subspaces can be represented in the form L(E, ε).

Lemma 2.2.4. [8] Suppose that L is a maximal isotropic subspace of V ⊕ V ∗, and

let E = π(L). Then there exists a two form ε ∈ Ω2(E) such that L = L(E, ε).

Proof. We will define a two form ε on E ⊂ V

ε(X, Y ) = α(Y )
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where α ∈ V ∗ such that X + α ∈ L.

To show that ε is independant of choice, let α1, α2, β ∈ V ∗. With X+α1, X+α2, Y +

β ∈ L we have that α1 − α2 = (X + α1) − (X + α2) ∈ L. Since L is an isotropic

subspace,

0 = < Y + β, α1 − α2 >

=
1

2
(α1(Y )− α2(Y ))

1

2
α2(Y ) =

1

2
α1(Y )

α2 = α1

Given X, Y ∈ E, choose α, β ∈ V ∗ such that X + α, Y + β ∈ L. We have ε(Y,X) =

β(X). Using the canonical metric:

< X + α, Y + β >=
1

2
(α(Y ) + β(X)) = 0.

This gives α(Y ) = −β(X), which yields ε(X, Y ) = −ε(Y,X). Thus, ε is anti-

symmetric and shows that L ⊂ L(E, ε). Since L is a maximal isotropic subspace,

L = L(E, ε).

Definition 2.2.5. [8] The type of maximal isotropic L(E, ε), is the codimension K

of its projection onto V .

2.3 Exterior Algebra

In this section we will review properties on exterior forms. This will be essential to

the following section and following chapters. The space of exterior forms of degree

r is denoted as ∧r(V ∗). By design, we have the following conveniences: ∧1(V ) = V

and ∧0(V ) = F.[4] Where in our practices the field is R.
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Definition 2.3.1. Suppose that ξ ∈ ∧p(V ∗), and η ∈ ∧q(V ∗). Define

ξ ∧ η = Ap+q(ξ ⊗ η).

Then ξ ∧ η is an exterior (p+ q)− form, called the exterior (wedge) product of

ξ and η

The wedge product satisfies common properties.

Theorem 2.3.2. Let ξ1, ξ2 ∈ ∧k(V ), η1, η2 ∈ ∧l(V ), ζ ∈ ∧h(V ). Then:

1)DistributiveLaw (ξ1 + ξ2) ∧ η1 = ξ1 ∧ η1 + ξ2 ∧ η1

ξ1 ∧ (η1 + η2) = ξ1 ∧ η1 + ξ1 ∧ η2

2)AnticommutativeLaw ξ1 ∧ η1 = (−1)klη1 ∧ ξ1

3)AssociativeLaw (ξ1 ∧ η1) ∧ ζ = ξ1 ∧ (η1 ∧ ζ)

The proofs of the laws can be found in [4]. Using the anticommutative law, we

can easily see that if ξ, η ∈ V = ∧1(V ), then ξ ∧ η = −η ∧ ξ. This result implies that

ξ ∧ ξ = η ∧ η = 0.

2.4 Spinors

Definition 2.4.1. The Spinorial action of elements of V ⊕V ∗ on Ω(V ), the space of

exterior forms, is defined by the following formula:

(X + ξ) · α = ιXα + ξ ∧ α,

where X ∈ V , ξ ∈ V ∗, and α ∈ Ω(V ).
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Lemma 2.4.2. ∀X + ξ ∈ V ⊕ V ∗, we have

(X + ξ) · ((X + ξ) · α) =< X + ξ,X + ξ > α.

Proof.

(X + ξ) · ((X + ξ) · α) = ιXα(ιXα + ξ ∧ α) + ξ ∧ (ιXα + ξ ∧ α)

= (ιXξ)α

= < X + ξ,X + ξ > α,

Lemma 2.4.3. Given any non-zero form ϕ ∈ Ω(V ), define

Lϕ = {X + ξ, |(X + ξ) · ϕ = 0}.

Then Lϕ is an isotropic subspace of V ⊕ V ∗.

Proof. Using the above lemma we know (X + ξ) · ((X + ξ) ·α) =< X + ξ,X + ξ > α.

If X + ξ ∈ Lϕ, we have that < X + ξ,X + ξ > ϕ = 0. Since ϕ 6= 0, < X + ξ,X + ξ >

must be 0. Now, given X + ξ, Y + η ∈ Lϕ we need to show < x + ξ, Y + η >= 0.

Using the identity

< a, b >=
< a+ b, a+ b > − < a− b, a− b >

4
,

we can rewrite < x+ ξ, y + η > ϕ as

< a+ b, a+ b > ϕ− < a− b, a− b > ϕ

4
,

where a = X + ξ, and b = Y + η. < a + b, a + b > ϕ =< a − b, a − b > ϕ = 0 so,

< x+ ξ, y + η > ϕ = 0. Since ϕ 6= 0, < x+ ξ, Y + η >= 0.
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Definition 2.4.4. The form ϕ is called a pure spinor when Lϕ is a maximal isotropic

subspace.

Of course, being a maximal isotropic subspace, Lϕ would have dimension n.

Lemma 2.4.5. Let E ⊂ V have codimension k. The maximal isotropic L(E, 0) = E⊕

Ann(E) = Lϕ, for any non-zero ϕ in the one dimensional space ∧k(Ann(E)) ∈ ∧kV ∗.

Proof. For anyX+α ∈ L(E, 0) as defined before, X must be in E and α, when applied

to E, equals 0. So, α ∈ Ann(E). Therefore, L(E, 0) = E⊕Ann(E). To show the rest

of the lemma, we will let {v∗1, · · · v∗j} be a basis for Ann(E). Now, we will extend the

basis to a basis for V ∗ {v∗1, · · · v∗k, v∗k+1, · · · , v∗n}. So, ∀ X+α ∈ L(E, 0) = E⊕Ann(E),

we have that

(X + α) · (v∗1 ∧ · · · ∧ v∗k) = ιX(v∗1 ∧ · · · ∧ v∗k) + α ∧ (v∗1 ∧ · · · ∧ v∗k)

=
∑
i

(−1)i−1(v∗i (X))v∗1 ∧ · · · ∧ v̂∗i ∧ · · · ∧ v∗k + α ∧ (v∗1 ∧ · · · ∧ v∗k)

= 0

If ϕ is annihilated by the spinorial actions of the elemenets in L(E, ε), then

ϕ =
∑

0≤r≤n

∑
i1<···<ir

airv
∗
i1
∧ · · · ∧ v∗ir ,

where air are scalars. By the way ϕ is constructed it is forced to have a common

factor of v∗1 ∧ · · · ∧ v∗k, where v∗1, · · · , v∗k are all in Ann(E). ϕ can be represented in a

simpler form, once a common factor is pulled out.

ϕ = v∗1 ∧ · · · ∧ v∗k ∧ β, β =
n∑
r=0

∑
k+1≤ji<···<jr≤n

ajrv
∗
j1
∧ · · · ∧ v∗jr ∈ Ω(V )
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We have the equation

ιXϕ = ιX(v∗1 ∧ · · · ∧ v∗k ∧ β)

= ιX(v∗1 ∧ · · · ∧ v∗k) ∧ ιXβ

= ιXβ

Since ∀X ∈ E, ιXϕ = 0, ιXβ = 0. So β must be of degree zero or, in other words, a

constant. This leaves

ϕ = λv∗1 ∧ · · · ∧ v∗k

where λ is a constant.

Lemma 2.4.6. [8] Let L be a maximal isotropic subspace of V ⊕ V ∗, and let B be

a two form. Suppose that ϕ is annihilated by the spinorial actions of the elements

in L. Then exp(B) ∧ ϕ is annihilated by the spinorial actions of the elements in

exp(−B)(L).

Proof. Assume that X+ξ ∈ L such that (X+ξ) ·ϕ = ιXϕ+ξ∧ϕ = 0. By calculation:

(X + ξ − ιXB) · (exp(B) ∧ ϕ) = (exp(B)) ∧ (ιXB ∧ ϕ− ιXBϕ+ ιXϕ+ ξ ∧ ϕ)

= (exp(B)) ∧ ((X + ξ) · ϕ)

= 0



CHAPTER 3

DIFFERENTIAL GEOMETRY

In this chapter we will define the Lie bracket and show its relation to the Lie derivative

using one-parameter groups of diffeomorphisms. The setup will allow us to explain

the Frobenius Theorem, which will be used in later chapters. Then, using vector

bundles, we will be able to establish a differential structure with tangent bundles

and cotangent bundles. We will then extend the Lie bracket to the Courant bracket,

allowing us to have a defined bracket on sections of T ⊕ T ∗.

3.1 Lie Algebra

A Lie bracket can be described by

[X, Y ](f) = (XY − Y X)(f)

The other way to define the Lie bracket is by using local coordinates.

[X, Y ] =

[
n∑
i=1

ai
∂

∂xi
,

n∑
j=1

bj
∂

∂xj

]

=
n∑

i,j=1

ai
∂bj
∂xi

∂

∂xj
−

n∑
i,j=1

bj
∂ai
∂xj

∂

∂xi

=
n∑

i,j=1

aj
∂bi
∂xj

∂

∂xi
−

n∑
i,j=1

bj
∂ai
∂xj

∂

∂xi

=
n∑

i,j=1

(
aj
∂bi
∂xj
− bj

∂ai
∂xj

)
∂

∂xi

Lie brackets have the following properties.

1. [X, Y ] = −[Y,X]
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2. [X, fY ] = (Xf)Y + f [X, Y ]

3. [X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0

Definition 3.1.1. Suppose that M is an m-dimensional smooth manifold. If there is

a smooth map ϕ : R×M →M , denoted for any (t, p) ∈ R×M by

ϕt(p) = ϕ(t, p),

such that the following conditions are satisfied:

1. ϕ0(p) = p

2. ϕs ◦ ϕt = ϕs+t for s, t ∈ R

then we say that R acts on the manifold M (from the left) smoothly, and call ϕt a

one-parameter group of diffeomorphisms on M .

Using the above conditions, we see that ϕ−1
t = ϕ−t. So every ϕt is invertible and

a diffeomorphism from M to itself. A one-parameter group ϕt induces a vector field

X on M as follows:

Xpf =
df(ϕt(p))

dt
, ∀f ∈ C∞(M), ∀p ∈M (3.1)

By definition, any smooth function f on M , Xpf = limt→0
f(ϕ(t,p))−f(p)

t
. ϕ : R×M →

M is a smooth function, so Xf will be a smooth function. Therefore, X is a smooth

vector field.

Now we can choose p ∈M and let

γp(t) = ϕt(p).
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Then γp is a parametrized curve through p on M , called the orbit of ϕt through p.

γp is the integral curve of the tangent vector field X. For any point q = γp(s) on

the orbit γp, Xq is the tangent vector of γp at t = s. In fact, since γq(t) = ϕt(q) =

ϕt ◦ ϕs(p) = ϕt+s(p) = γp(t+ s), we have

Xpf = lim
t→0

f(ϕt(q))− f(q)

t

= lim
t→0

f(ϕt ◦ ϕs(p))− f(ϕs(p))

t

= Xp(f ◦ ϕs)

= ((ϕs)∗Xp)f.

That is

(ϕs)∗Xp = Xγp(s).

We have shown global one-parameter group of diffeomorphisms, now we will show

local representation of one-parameter groups.

Definition 3.1.2. Suppose that U is an open set in the smooth manifold M . If there

is a smooth map ϕ : (−ε, ε)×U →M, denoted by ϕt(p) = ϕ(t, p) for any p ∈ U, |t| < ε,

which satisfies

1. for any p ∈ U,ϕ0(p) = p

2. if |s| < ε, |s+ t| < ε and p, ϕt(p) ∈ U, then ϕt+s(p) = ϕs ◦ ϕt(p),

then ϕt is called a local one-parameter group of diffeomorphisms acting on

U .

We can show that a local one-parameter group also induces a smooth vector field

on U . Suppose that p ∈ U , and choose a local coordinate system (V, xi), V ⊂ U, at
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p. Due to the smoothness of ϕ, for sufficiently small positive ε0 < ε, if |t| < ε0 then

we have ϕt(p) ∈ V . Using the equation 3.1 we have

Xp =
m∑
i=1

X i
q

(
∂

∂xi

)
p

,

where

X i
p =

dxi(γp(t))

dt
|t=0.

When p and q = γp(s) are both in V , we also have

Xq =
m∑
i=1

X i
q

(
∂

∂xi

)
q

,

where

X i
q =

dxi(γp(t))

dt
|t=s.

Theorem 3.1.3. Suppose that X is a smooth vector field on M . Then for any point

p ∈ M there exist a neighborhood U and a local one-parameter group ϕt of diffeo-

morphisms on U , |t| < ε, such that X|U is precisely the vector field induced by ϕt on

U .

If Xp 6= 0 at the point p, then there exists local coordinates ui near p such that

X = ∂
∂u1 . Then ϕt has the very simple expression:

ϕt(u
1, · · · , um) = (u1 + t, u2, · · · , um),

in other words, ϕt manifests itself as a displacement along the u1-axis.

Corollary 3.1.4. Suppose that X is a smooth vector field on a smooth compact

manifold M . Then X determines a one-parameter group of diffeomorphisms on M .
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Theorem 3.1.5. Suppose that X, Y are any two smooth vector fields on a manifold

M . If the local one-parameter group of diffeomorphisms generated by X is ϕt, then

[X, Y ] = lim
t→0

Y − (ϕt)∗Y

t

using a change of variable t = −t we see:

[X, Y ] = lim
t→0

(ϕ−1
t )∗Y − Y

t

Definition 3.1.6. The Lie Derivative of the tangent vector field Y with respect to X

is denoted by LXY and is equal to [X, Y ].

This can be shown by supposing that γp is the orbit through p of the one-

parameter group of ϕt. Because ϕ−1
t maps the point q = γp(t) = ϕt(p) in γp to

the point p, (ϕ−1
t )∗ establishes a homomorphism from the tangent space TqM to

the tangent space TpM . If Y is a vector field on M defined on the orbit γp, then

(ϕ−1
t )∗Yϕt(p) is a curve on the tangent space Tp(M). We already know that [X, Y ]p is

precisely the tangent space of this curve at t = 0, hence it is the rate of change of the

tangent vector Y along the orbit of X.

We can generalize the Lie derivative to any tensor field on M . The map (ϕt)
∗

establishes a homomorphism from the cotangent space T ∗qM to the cotangent space

T ∗pM . This map and (ϕ−1
t )∗ together then induce a homomorphism Φt : T rs (ϕt(p))→

T rs (p) between tensor spaces so that for any v1, · · · , vr ∈ Tϕt(p)(M), and v∗1, · · · , v∗r ∈

T ∗ϕt(p)(M), we have

Φt(v1 ⊗ · · · ⊗ vr ⊗ v∗1 ⊗ · · · ⊗ v∗s) = (ϕ∗t )∗v1 ⊗ · · · ⊗ (ϕ−1
t )∗vr ⊗ ϕ∗tv∗1 ⊗ · · ·ϕ∗tv∗s .

Thus given a type (r, s) tensor field ξ, the Lie Derivative of ξ with respect to X

is defined by

LXξ = lim
t→0

Φt(ξ)− ξ
t
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This shows that LXξ is also a type (r, s) tensor field.

Definition 3.1.7. For a smooth vector X on M , we define a linear operator ιX :

Ωr(M)→ Ωr−1(M) as follows:

1. If r = 0, then ιX acts on Ω0(M) as the zero map.

2. If r = 1, ω ∈ Ω1(M), then define

ιXω =< X,ω > .

3. If r > 1, then for any r − 1 smooth vector fields Y1, · · · , Yr−1, we have

< Y1 ∧ · · · ∧ Yr−1, ιXω >=< X ∧ Y1 ∧ · · · ∧ Yr−1, ω > .

Suppose X is a smooth vector field on the manifold M , and that α and β are

smooth differential forms of degree p and q respectively. We can use the definitions

of Lie derivative and the definition of the linear operator ιX to obtain the following

common properties:

1. LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ)

2. ιX(α ∧ β) = (ιXα) ∧ β + (−1)Pα ∧ (ιXβ)

Theorem 3.1.8. Frobenius Theorem: An r-distribution ∆ on an m-manifold M is

involutive if and only if ∆ is completely integrable.

We say that ∆ is involutive if for any X, Y ∈ ∆, [X, Y ] ∈ ∆. ∆ is completely

integrable if there exists a local coordinate system {x1, · · · , xm}, such that ∆ =

span{ ∂
∂x1
, · · · , ∂

∂xn
}.
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3.2 Vector Bundles

A vector bundle is a topological construction.

Definition 3.2.1. Suppose that E and M are two smooth manifolds, and π : E →M

is a smooth surjective map. Let V = Rq be a q-dimensional vector space. If an open

covering Uα of M and a set of maps ϕα satisfy all of the following conditions, then

(E, π,M) is called a (real) q-dimensional vector bundle on M , where E is called the

total space, M is called the base space, π is called the bundle projection, and

V = Rq is called the typical fiber:

1. Each map ϕα is a diffeomorphism from Uα × Rq → π−1(Uα), and for any p ∈

Uα, y ∈ Rq,

π ◦ ϕα(p, y) = p.

2. For any fixed p ∈ Uα, let

ϕα,p(y) = ϕα(p, y), y ∈ Rq.

Then ϕα,p : Rq → π−1(p) is a homeomorphism. When Uα ∩ Uβ 6= ∅, for any

p ∈ Uα ∩ Uβ,

gαβ(p) = ϕ−1
β,pϕα,p : Rq → Rq

is a linear isomorphism of V = Rq, i.e., gαβ ∈ GL(V ).

3. When Uα ∩ Uβ 6= ∅, the map gαβ : Uα ∩ Uβ → GL(V ) is smooth.

The simplest example of a vector bundle is the trivial vector bundle which is

constant.
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Example 3.2.2. Let M be a smooth manifold. Let E = M × Rq and let

π : E →M, (p, v)→ p, ∀(p, v) ∈M × Rq.

While the previous example is the simplest vector bundle, the two most useful

vector bundles are the tangent bundle and cotangent bundle. The tangent bundle

is the collection of all the tangent spaces at every point in a differential manifold.

Similarly, we can define the cotangent bundle.

Definition 3.2.3. Suppose that M is an n-dimensional differentiable manifold, and

that TpM and T ∗pM are the tangent spaces and cotangent spaces of M at a point p.

We can define the tangent bundle (TM) and the cotangent bundle (T ∗M) as,

TM =
⋃
p∈M

TpM, T ∗M =
⋃
p∈M

T ∗pM.

We will need to define a topology on TM in order to define a C∞ differentiable

structure on TM to make it a smooth manifold. First, we will suppose that V is

a n-dimensional vector space. Denote the group of linear automorphisms of V by

GL(V ). We will choose a basis {e1, · · · , en} then, V is isomorphic to Rn. We will

represent an element y ∈ V as a coordinate row

y = (y1, · · · , yn).

Now, GL(V ) is a multiplicative group of n × n matrices, i.e., GL(V ) is the general

linear group GL(n; R). We can define the action of GL(V ) on V as a multiplication

on the right, with the matrix representation given by

y · a = (y1, · · · , yn) ·


a11 · · · a1n

...
. . .

...

an1 · · · ann

 ,
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where det(a) = det(aij) 6= 0. Define a map π as follows:

π : TM →M, Xp 7→ p, ∀Xp ∈ TpM.

For any coordinate neighborhood Uα with local coordinates x1, · · · , xn, define

ϕα : Uα × V → TM, (p, y1, · · · , yn) 7→
n∑
i=1

yi
(
∂

∂xi

)
p

.

The map ϕα is a one-to-one map from Uα × V onto π−1(Uα). Now consider all such

coordinate neighborhoods Uα and maps ϕα, and define

S = {Oα|Oα = ϕα(Uα ×Wα), Wα is an open set in Rn}.

Then S generates a topology Ξ on TM .

Lemma 3.2.4. For any coordinate neighborhood Uα ⊂M , let ψα : Uα → Vα ⊂ Rn be

the coordinate map on Uα. Define a one-to-one map

Fα : π−1(Uα)→ Vα × Rn, (x, y) 7→ ϕα(ψ−1
α (x), y), ∀x ∈ Vα, y ∈ Rn,

and define Φα = F−1
α . Then, (π−1(Uα),Φα) defines a differentiable structure on TM .

Proof. It suffices to show that for any two coordinate neighborhoods Uα ∩ Uβ 6= ∅ of

M , the transition function

Φβ ◦ Φ−1
α : (Vα ∩ Vβ)× Rn → (Vα ∩ Vβ)× Rn

is a smooth map. Now suppose that Φβ◦Φ−1
α (x, v) = (y, w), where x = (x1, · · · , xn), y =

(y1, · · · , yn) = ψβ ◦ ψ−1
α (x1, · · · , xn) ∈ Vα ∩ Vβ, v = (v1, · · · , vn), w = (w1, · · · , wn) ∈

Rn. So, y = ψβ ◦ ψ−1
α (x) is a smooth function of x. Also, by definition we have that

n∑
i=1

wi
∂

∂yi
=

n∑
i=1

vi
∂

∂xi
.
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Since ∂
∂xj

=
∑ ∂xj

∂yi

∂
∂yi

, we get that

n∑
i=1

wi
∂

∂yi
=

n∑
j=1

vj
∂

∂xj
=

n∑
i=1

(
n∑
j=1

vj
∂xj
∂yi

)
∂

∂yi

It follows

(w1, · · · , wn) = (v1, · · · , vn) ·


∂x1

∂y1
· · · ∂x1

∂yn

...
. . .

...

∂xn
∂y1

· · · ∂xn
∂yn


because of the Jacobi matrix we can conclude that Φβ ◦ Φ−1

α is a smooth map.

Similarly, we can find a topology on T ∗M . Then we would be able to define a

differentiable structure on T ∗M by making only a few adjustments.

3.3 T ⊕ T ∗

The Lie bracket is not defined on T ⊕ T ∗, so we will introduce the Courant bracket

which fails the Jacobi identity.

Definition 3.3.1. The Courant bracket is a skew-symmetric bracket defined on smooth

sections of T ⊕ T ∗, where X + ξ, Y + η ∈ C∞(T ⊕ T ∗),

[X + ξ, Y + η] = [X, Y ] + LXη − LY ξ −
1

2
d(ιXη − ιY ξ). (3.2)

From the definition of the Courant bracket we can see how vector fields are

affected. In this instance, the Courant bracket will reduce to the Lie bracket. We

would like for the B − transform to preserve Courant bracket. We can show that it

indeed is preserved but only when B is closed.

Theorem 3.3.2. [8] The map eB is an automorphism of the Courant bracket if and

only if B is closed, i.e. dB = 0.
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Proof. Let X + ξ, Y + η ∈ C∞(T ⊕ T ∗) and let B be a smooth 2-form. Then,

[eB(X + ξ), eB(Y + η)] = [X + ξ + ιXB, Y + η + ιYB]

= [X + ξ, Y + η] + [X, ιYB] + [ιXB, Y ]

= [X + ξ, Y + η] + LXιYB −
1

2
dιXιYB − LY ιXB +

1

2
dιY ιXB

= [X + ξ, Y + η] + LXιYB − ιYLXB + ιY ιXdB

= [X + ξ, Y + η] + ι[X,Y ]B + ιY ιXdB

= eB([X + ξ, Y + η]) + ιY ιXdB

We see that eB is an automorphism of the Courant bracket if and only if ιY ιXdB = 0

for all X, Y , which happens only when dB = 0.



CHAPTER 4

GENERALIZED COMPLEX GEOMETRY

4.1 Linear structure

Let V be a vector space. A generalized complex structure on V is an orthogonal linear

automorphism J : V ⊕ V ∗ → V ⊕ V ∗ such that J 2 = −id (identity)[1]. J extends

naturally to the complexification of V ⊕ V ∗. This extension will also be denoted as

J .

Definition 4.1.1. Let L ⊆ VC ⊕ V ∗C be a maximal isotropic subspace. Then L ∩ L̄ is

real, i.e. the complexification of a real space: L ∩ L̄ = K ⊗ C, for K ⊆ V ⊕ V ∗. The

real index r of the maximal isotropic L is defined by

r = dimCL ∩ L̄ = dimRK.

Proposition 4.1.2. A generalized complex structure on V is equivalent to the speci-

fication of a maximal isotropic complex subspace L ⊆ VC ⊕ V ∗C of real index zero, i.e.

such that L ∩ L̄ = {0}.

Proof. If J is a generalized complex structure, then let L be its +i-eigenspace in

VC ⊕ V ∗C . Then if x, y ∈ L, < x, y >=< J x,J y > by orthogonality < J x,J y >=<

ix, iy >= − < x, y >, implying that < x, y >= 0. Therefore, L is isotropic and h

alf-dimensional, i.e. maximally isotropic. Also, L is the +i-eigenspace of J and thus

L∩ L̄ = {0}. Conversely, given such an L, simply define J to be the multiplication of

i on L and by −i on L̄. This real transformation then defines a generalized complex

structure on V .

Proposition 4.1.3. [8] The maximal isotropic L(E, ε) has real index zero if and
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only if E + E = V ⊗ C and ε such that the real skew 2-form ω∇ = Im(ε|E∩E) is

non-degenerate on E ∩ E = ∆⊗ C.

Proof. Let L have real index zero. Then, since VC ⊕ V ∗C = L ⊕ L, we see that

E + E = V ⊗ C. Also, if 0 6= X ∈ ∆ such that (ε − ε)(X) = 0, then there exists

ξ ∈ V ∗C such that X + ξ ∈ L ∩ L, which is a contradiction. Hence, ω∇ is non-

degenerate. Conversely, assume E + E = V ⊗ C and that ω∇ is non-degenerate.

Suppose 0 6= X + ξ ∈ L∩L; then ξ|E = ξ|E = 0, hence ε = 0 as well, a contradiction.

So it follows that L ∩ L = {0}.

Corollary 4.1.4. Suppose that a real vector space V admits a generalized complex

structure J . Then V must be even dimensional.

Proof. Let L = L(E, ε) be the i-eigenspace of the generalized complex structure

J : VC⊕V ∗C → VC⊕V ∗C . It follows from 4.1.2 and 4.1.3 that E∩E is even dimensional.

Let W be any subspace of E complement to E ∩ E. Then it follows that

V ⊗ C = (E ∩ E)⊕W ⊕W.

Consequently dimR(V ) = dimC(VC) = dim(E ∩E) + dim(W ) + dim(W ) = dim(E ∩

E) + 2dim(W ). So, V must be even dimensional.

Let ω be a two form on V . It induces a linear map

ω : V → V ∗, X 7→ ιXω = ω(X, ·). (4.1)

If 4.1 is an isomorphism, then ω is called a symplectic form on V . On the other

hand, a complex structure on a vector space V is a linear automorphismm I : V → V

such that I2 = −1.
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Example 4.1.5. Let ω be a symplectic structure on V . Then

Jω =

 0 −ω−1

ω 0

 : V ⊕ V ∗ → V ⊕ V ∗

is a generalized complex structure. The i-eigenspace of Jω is given by

L = {X − iιXω|X ∈ VC}.

Example 4.1.6. Let I be a complex structure on V . Then

JI =

 I 0

0 −I∗

 : V ⊕ V ∗ → V ⊕ V ∗

defines a generalized comples structure. The i-eigenspace of JI is given by

L = V0,1 ⊕ V ∗1,0.

4.2 Complex Structures on Sub-bundles

Let M be a smooth manifold. A sub-bundle L of TCM ⊕ T ∗CM is called an almost

Dirac structure if ∀x ∈M , Lx is a maximal isotropic subspace of TC⊕T ∗C. An almost

Dirac structure L is said to be an integrable Dirac structure, or simplay a Dirac

structure, if its smooth sections are closed under the Courant bracket (3.2).

Proposition 4.2.1. [8] Let E ⊂ TC be a sub-bundle and ε ∈ C∞(∧2(E∗)). Then the

maximal isotropic L(E, ε) defines an integrable Dirac structure if and only if E is

involutive and dEε = 0.

Proof. Let i : E → TC be the inclusion. Then dE : C∞(∧kE∗) → C∞(∧k+1E∗) is

defined by i∗ ◦ d = dE ◦ i∗. Now let σ ∈ C∞(∧2T ⊗ C) be a smooth extension of ε,
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i.e. i∗σ = ε. Suppose that X + ξ, Y + η ∈ C∞(L), which means that ξ|E = ιXε and

η|E = ιY ε. Consider the bracket Z + ζ = [X + ξ, Y + η]; if L is Courant involutive,

then Z ∈ C∞(E), showing E is involutive, and the difference

ζ|E − ιZε = i∗(LXη − LY ξ −
1

2
d(ιXη − ιY ξ))− ι[X,Y ]i

∗σ

= ιXdEi
∗η − ιY dEi∗ξ +

1

2
dE(ιXιY ε− ιY ιXε)− i∗[LX , ιY ]σ

= ιXdEi
∗η − ιY dEi∗ζ + dEιXιY ε− i∗(ιXdιY σ + dιXιY σ − ιY dιXσ − ιY ιXdσ)

= ιY ιXdEε

must vanish for all X + ξ, Y + η ∈ C∞(L), showing that dEε = 0. Reversing the

argument, we see that the converse holds as well.

Let M be an n-dimensional manifold. There is a natural metric of type (n, n)

on TM ⊕ T ∗M given by

< X + α, Y + β >=
1

2
(α(Y ) + β(X))

which extends naturally to TCM ⊕ T ∗CM = (TM ⊕ T ∗M)⊗ C. A generalized almost

complex structure on a manifold M is a bundle map J : TM ⊕ T ∗M → TM ⊕ T ∗M

which is orthogonal with respect to the natural metric defined above so that J 2 =

−1. A generalized complex structure on a manifold M is an almost generalized

complex structure J so that the sections of its i-eigenbundle is closed under the

Courant bracket.

A two form ω on a manifold M is called a symplectic form if ∀ p ∈ M , the

restriction of ω to each tangent space TpM is a symplectic structure, and dω = 0.

Example 4.2.2. Let ω be a symplectic form on a manifold M , and let Jω be the

almost generalized complex structure defined as in 4.1.5. Then the i-eigenbundle of
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Jω is given by

L = {X − iιXω|X ∈ TCM}.

It follows immediately from 4.2.1 that Jω is a generalized complex structure on M .

4.3 Darboux Theorem

Theorem 4.3.1. Darboux Theorem. Let ω be a symplectic form on a 2n-dimensional

manifold M . Then for any p ∈M , there exists a coordinate neighborhood (U, x1, · · · , x2n)

such that

ω =
n∑
i=1

dx2i−1 ∧ dx2i.

Using Moser’s method we can show a slightly stronger result. Suppose that

ω0≤t≤1 is a family of symplectic forms on M which depend smoothly on t, and that

dωt
dt

= dσt for a family of one forms σt on M which depend smoothly on T . We would

like to find a family of diffeomorphisms ϕt which depend smoothly on t such that

ϕ∗tωt = ω0. (4.2)

Suppose that Xt is the flow on M generated by ϕt , i.e., a family of vector fields on

M depending smoothly on t such that

d(f ◦ ϕt)
dt

= Xt(f), ∀f ∈ C∞(M) (4.3)
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Differentiate both sides of 4.2 to get

0 =
d

dt
ϕ∗tωt

=
dϕ∗t
dt

ωt + ϕ∗t
dωt
dt

= ϕ∗tLXtωt + dϕ∗tσt

= ϕ∗t (dιXt + ιXtd)ωt + ϕ∗tdσt

= dϕ∗t ιXtωt + dϕ∗tσt

= dϕ∗t (ιXtωt + σt)

Since ωt are symplectic forms, one can always find a smooth family of vector fields

Xt such that

ιXtωt + σt = 0.

Let ϕt be the diffeomorphisms generated by the flow Xt by 4.3, then we must have

4.2.

There exists an analogous Darboux theorem for generalized complex structures.

Shown in [8] by Dr. Gualtieri.

Theorem 4.3.2. [8] Any regular point in a generalized complex manifold has a neigh-

borhood which is equivalent, via a diffeomorphism and a B-field transformation, to

the product of an open set in Ck with an open set in the standard symplectic space

(R2n−2k, ω0).

Proof. From 4.2.1 in a regular neighborhood, a generalized complex structure can be

expressed by L(E, ε) where E ⊂ TC is an involutive sub-bundle and ε ∈ C∞(∧2E∗)

satisfies dEε = 0. E determines a foliation of the neighborhood with transverse
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complex structure isomorphic to an open set in R2n−2k × Ck, where E is spanned

by {∂/∂x1, · · · , ∂/∂x2n−2k, ∂/∂z1, · · · , ∂/∂zk}, where xi are coordinates for the leaves

R2n−2k and zi are transverse complex coordinates. Therefore, by choosing B + iω ∈

C∞(∧2T ∗ ⊗C) such that i∗(B + iω) = ε, we may write a generator for the canonical

bundle defining L(E, ε) as follows:

ρ = eB+iωΩ,

where Ω = dz1 ∧ · · · ∧ dzk; note ρ is independent of the choice of extension for ε. It

is shown that

i∗d(B + iω) = dEi
∗(B + iω) = dEε = 0,

which means that d(B + iω) ∈ Ann(E), implying finally that

dρ = eB+iωd(B + iω) ∧ Ω = 0.

Every maximal isotropic in V ⊕V ∗ corresponds to a pure spinor line in the sense

of 2.4.5 generated by

ϕL = eB+iωΩ, (4.4)

where B,ω are real 2-forms and Ω = θ1 ∧ · · · ∧ θk for some linearly independent

complex 1-forms (θ1, · · · , θk). k refers to the type of maximal isotropic subspace. We

know that dimL ∩L = 0 if and only if (ϕL, ϕL) 6= 0, in other words

0 6= (eB+iωΩ, eB−iωΩ)

= (e2iωΩ,Ω)

=
(−1)2n−k(2i)n−l

(n− k)!
ωn−k ∧ Ω ∧ Ω,

So, it suffices to say the maximal isotropic subspace is of real index zero if and only

if

ωn−k ∧ Ω ∧ Ω 6= 0.
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According to Weinstein’s proof of the Darboux normal coordinate theorem for a family

of symplectic structures, we can fine a leaf-preserving local diffeomorphism ϕ taking

ω to a 2-form whose pullback to each leaf preserves the standard Darboux theorem.

So,

ϕ∗ω|R2n−2k×{pt} = ω0 =
2n−2k∑

1

dx2n−1 ∧ dx2n.

Applying the diffeomorphism, we obtain the new 2-forms ϕ∗B + iϕ∗ω. Since, zi

are constant along the leaves, Ω is unaffected by the diffeomorphism.

Now, we can set up a tri-degree (p, q, r) , by letting K = R2n−2k and N = CK .

All components can be separated into three parts (∧pK∗ ⊗ ∧qN∗1,0 ⊗ ∧rN∗0,1). The

exterior derivative will decompose into the sum of three operators.

d = df + ∂ + ∂

Each component is of degree 1. Ω is of type (0, k, 0), while the complex 2-form

A = ϕ∗B + iϕ∗ω decomposes into six components:

A200

A110 A101

A020 A011 A002

Only components A200, A101, A002 act nontrivially on Ω since each of the other com-

ponents would have an element in common with Ω causing eAΩ = 0. So, we can

modify A110, A020, and A011 without loss of generality. The imaginary part of A200 is

ω0. Since ω0 is in constant Darboux form, d(A200 − A200) = 0.

Using the condition that d(B + iω) ∧ Ω = 0, we obtain the following equations

by computing (0, k, 3), (1, k, 2), (2, k, 1), and (3, k, 0) respectively.

∂A002 = 0 (4.5)
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∂A101 + dfA
002 = 0 (4.6)

∂A200 + dfA
101 = 0 (4.7)

dfA
200 = 0. (4.8)

Now we can work on modifying A, so that ϕ∗ρ = eAΩ is unchanged, but A is

replaced with Ã = B̃ + 1
2
(A200 − A200). B̃ is a real closed 2-form. This gives

ϕ∗ρ = eB̃+iωoΩ,

or, that ρ is equivalent, via the composition of a B-field transformation and a diffeo-

morphism, to the product of a symplectic with a complex structure.

The most general form for B̃ is represented as

B̃ =
1

2
(A200 + A200) + A101 + A101 + A002 + A002 + C,

where C is a real 2-form of type (0,1,1). Requiring dB̃ = 0 will give the following

constraints:

(dB̃)012 = ∂A002 + ∂C = 0 (4.9)

(dB̃)111 = ∂A101 + ∂A101 + dfC = 0 (4.10)

Now, we will use these condition to find an appropriate real (0,1,1)-form C. First,

Dr. Gualtieri uses the Dolbeault lemma and 4.5 to obtain that A002 = ∂α for some

(0,0,1)-form α. Then 4.9 is equivalent to ∂(C − ∂α) = 0, whose general solution is

C = ∂α + ∂α + i∂∂χ,

for any real function χ. Now, all we need to do is find a suitable χ to satisfy 4.10.

Using 4.6 we obtain that ∂(A101− dfα) = 0, implying that A101 = dfα+ ∂β for some

(1,0,0)-form β. Condition 4.10 then is equivalent to

−idf∂∂χ = ∂∂(β − β),
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which can be solved if and only if the right hand side is df -closed. Using 4.7 we

see that ∂(A200 − dfβ) = 0, showing that A200 = dfβ + δ, where δ is a ∂-closed

(2,0,0)-form. Hence,

df∂∂(β − β) = ∂∂(A200 − A200),

and the right hand side vanishes precisely because A200−A200 = 2ω0, which is closed.

So, χ can be chosen to satisfy 4.10, and we obtain a closed 2-form B̃.



CHAPTER 5

GENERALIZED CONTACT GEOMETRY

5.1 Review of Generalized Contact Structures

Definition 5.1.1. Suppose V is a 2n+1 dimensional real vector space. A generalized

contact structure on V is a triple (X, η,Φ), where X ∈ V, η ∈ V ∗, and Φ : V ⊕ V ∗ →

V ⊕ V ∗, is a linear map such that

1. η(X) = 1,Φ(X) = 0,and Φ(η) = 0;

2. Φ + Φ∗ = 0;

3. ∀ Y +ξ ∈ L0
X⊕L0

η, we have Φ2(Y +ξ) = −(Y +ξ), where L0
η = {Y ∈ V |η(Y ) =

0}, and L0
X = {ξ ∈ V ∗|ξ(X) = 0}.

Now set

LX = span{X}, Lη = span{η},

and set E0,1 to be the i-eigen-space of Φ. Define

L = LX ⊕ E0,1. (5.1)

Lemma 5.1.2. [15] Both E0,1 and L are isotropic subspaces of VC ⊕ V ∗C .

Proof. First note that we have the natural isomorphism

L0
X → (L0

η)
∗, α 7→ α|L0

η
, α ∈ L0

X .

It gives rise to the following metric preserving natural identification

L0
η ⊕ L0

X
∼= (L0

η)⊕ (L0
η)
∗.
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Using the above identification, Φ|Lη defines a generalized complex structure on Lη,

and the i-eigenspace of the generalized complex structure is exactly E0,1. It follows

immediately that E0,1 is an isotropic subspace of L0
η⊕L0

X , and so an isotropic subspace

of VC ⊕ V ∗C . Now a check of the definition of L shows that it is an isotropic subspace

of (VC/LX)⊕ (VC/LX)∗ as well.

In [15] an alternate proof can be found which also shows that E1,0, L∗, and L∗

are also isotropic.

A generalized almost contact structure on a (2n+ 1) dimensional manifold M is

a triple (X, η,Φ) such that on the tangent space TxM , for any point x ∈M , it creates

a generalized contact structure.

Definition 5.1.3. [15] Given a generalized almost contact structure, if the space Γ(L)

of sections of the associated bundle L is closed under the Courant bracket, then the

generalized almost contact structure is simply called a generalized contact structure.

However, when Γ(L) is closed under the Courant bracket, Γ(L∗) is not guaranteed

to be closed.

5.2 Pure Spinor Representation

Using pure spinors we can give a representation of generalized contact structures

which allows us to use results from generalized complex structures.

Proposition 5.2.1. Let (X, η,Φ) be a generalized contact structure on a vector space

V , and let L be a maximal isotropic subspace of VC ⊕ V ∗C . Then L corresponds to a



36

pure spinor line generated by

eB+iωΩ,

where B,ω ∈ ∧2L0
X are real two forms, Ω = θ1∧· · ·∧θk for some linearly independent

complex one forms θ1, · · · , θk ∈ L0
X , and

ωn−k ∧ Ω ∧ Ω 6= 0.

Proof. From the proof of 5.1.2, we know that E0,1 is the i-eigenspace of a generalized

complex structure. This generalized complex structure corresponds to a pure spinor

as seen from above.

eω+iBΩ,

where B,ω ∈ ∧2(L0
η)
∗ = ∧2L0

X , ω = θ1 ∧ · · · ∧ θk for some linearly independent

complex one forms θ1, · · · , θk ∈ L0
X . Now, from the isomorphism of 2.2.4 proposition

5.2.1 follows.

The direct product of two generalized complex manifolds is itself a complex man-

ifold. However, the direct product of two generalized contact manifolds cannot create

a generalized contact manifold since the dimension would be even. The following

construction shows how the direct product of a generalized complex manifold and a

generalized contact manifold is a generalized contact manifold. Suppose that (X, η,Φ)

is a generalized contact structure on an odd dimensional manifold M , and that I is

a complex structure on an even dimensional manifold N . Let

JI =

 I 0

0 −I∗





37

be the generalized complex structure induced by the complex structure I. Now using

the natural identification

T (M ×N)⊕ T ∗(M ×N) ∼= (TM ⊕ T ∗M)
⊕

(TN ⊕ T ∗N),

we define an automorphism

Ψ = Φ⊕ JI : T (M ×N)⊕ T ∗(M ×N)→ T (M ×N)⊕ T ∗(M ×N)

Define a vector field X on M ×N by the formula

X(p, q) = (iq)∗(Xp), ∀ (p, q) ∈M ×N

where

iq : M →M ×N, x 7→ (x, q)

is the inclusion map. Then the triple (X, π∗η,Γ) defines a generalized contact struc-

ture on M ×N , where π : M ×N →M is the natural projection map.

Example 5.2.2. Let {x0, x1, y1, x2, y2, · · · , xn, yn} be the standard coordinates on

R2n+1 = R × R2n, let ω0 =
∑n

i dxi ∧ dyi be the standard symplectic form on R2n,

and let X = ∂
∂x0

. Choose η to be any one form such that η(X) = 1. Note the map

# : TR2n+1 → T ∗R2n+1, Y 7→ ιY ω0 − η(Y )η

gives us an isomorphism from the tangent bundle to the cotangent bundle. Define a

bivector

π(α, β) = ω0(#
−1(α),#−1(β)),

and an automorphism

Φ =

 0 π

ω0 0

 : TR2n+1 ⊕ T ∗R2n+1 → TR2n+1 ⊕ T ∗R2n+1.

Then, (X, η,Φ) forms a generalized contact structure on R2n+1.
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Example 5.2.3. Let (X, η,Φ) be the generalized contact structure on an open subset

U ⊂ R2n+1 as constructed in example 5.2.2. Let I be the standard complex structure

on an open subset V ⊂ Cm. Then there is a generalized contact structure on U × V .

Theorem 5.2.4. [8] Let L be a complex Lie algebroid on the real n-manifold M with

anchor a, and such that E+E = TC, where E = a(L). Let m ∈M be a regular point

for the Lie algebroid, i.e. a point where k = dim(E ∩ E) is locally constant. Then

in some neighborhood U of m, there exist complex functions z1, · · · , zk ∈ C∞(U,C)

such that {dz1, · · · , dzk} are linearly independent at each point in U and annihilate

all complex vector fields lying in E, i.e. we have a transverse complex structure to

the foliation, at regular points.

Lemma 5.2.5. Let (X, η,Φ) be a generalized contact structure on a (2n+1)-dimensional

manifold M , and let L be the Dirac structure as defined in 5.2.1. Suppose that p is a

regular point of M . Then there exists an open neighborhood U of p which is isomorphic

to an open set in R2m+1 × Ck such that

1. The pure spinor ρ on U determined by the Dirac structure L can be expressed

as ρ = eB+iωΩ, where Ω is decomposable of degree 0 ≤ k ≤ n and such that

ωn−k ∧ Ω ∧ Ω 6= 0.

2. For the real coordinates {xi} on R2m+1 and complex coordinates {zi} on C2k,

we have that

X =
∂

∂x0

, E = π(L) = span{ ∂

∂x0

,
∂

∂x1

, · · · , ∂

∂x2m

,
∂

∂z1

, · · · , ∂

∂zk
},

ω =
n∑
i=1

dx2i−1 ∧ dx2i, and Ω = dz1 ∧ · · · ∧ dzn,

where π : TM ⊕ T ∗M → TM is the natural projection map.
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Proof. By Lemma 2.2.4, around an open neighborhood U of a regular point p ∈ M ,

L may be expressed as L(E, ε), where E ⊆ TC is an involutive sub-bundle and ε ∈

C∞(∧2E∗) satisfies dEε = 0. Therefore, by choosing B + iω ∈ C∞(∧2T ∗C) such that

B + iω)|E = ε, we have a generator for the canonical bundle defining L(E, ε) as

follows:

ρ = eB+iωΩ,

where Ω is a decomposable complex k-form. Let i : E → TCM be the inclusion

map. Observe that i∗d(B + iω) = dEi
∗(B + iω) = dEε = 0. This implies that

d(B + iω) ∈ Ann∗E. As a result, we have that

dρ = d(B + iω) ∧ eB+iω ∧ Ω = 0.

Now by Theorem 5.2.4 and using the algebroid L from equation 5.1, we may assume

that U is of the form U1 × U2 × U3, where U1 is an open set in R1, U2 is an open

set in R2m, and U3 is an open set in C2k; moreover, there exists real coordinates

{x0, x1, y1, · · · , xm, ym} on R2m+1 = R × R2m and complex coordinates {z1, · · · , zk}

on Ck, such that

1. E is spanned by { ∂
∂x0
, ∂
∂x1
, · · · , ∂

∂x2m
, ∂
∂z1
, · · · , ∂

∂zk
};

2. X = ∂
∂x0
, Ω = dz1 ∧ · · · ∧ dzk;

3. At point p, ω coincides with the closed two form

ω0 =
k∑
i=0

dxi ∧ dyi.

Note that ω|U1 is a symplectic form. From [13], the usual argument of the

Darboux theorem for a family of symplectic forms can be used to produce a local
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diffeomorphism ϕ such that ϕ∗ω|{pt}×U2×{pt} = ω0 and such that ϕ|U1×{pt}×U3 is the

identity map on each leave U1 × {pt} × U3.

Theorem 5.2.6. Darboux Theorem for Generalized Contact structures Any

regular point in a generalized contact manifold M has a neighborhood which is equiv-

alent, via a diffeomorphism and a B-transform, to the generalized contact structure

constructed in 5.2.3.

Proof. Let U1, U2, U3 and ϕ be the same as in the proof of Lemma 5.2.5. This proof

will give us ϕ∗(eB+iω0Ω) = eϕ
∗B+iω0Ω.

Set K = R2n+1 and N = Cm. Then differential forms now have tri-degree (p, q, r)

for components in ∧PK∗, ∧qN∗1,0, ∧rN∗0,1. The exterior derivative will decompose into

the sum of three operators

d = dK + ∂ + ∂,

each of degree 1 in the respective component of the tri-grading. Now following straight

from Dr. Gualtieri’s paper [8], we can modify ϕ∗B to a real closed two form B̃ such

that

eϕ
∗B+iω0Ω = eB̃+iω0Ω.
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