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CHAPTER 1

INTRODUCTION – PRELIMINARIES

We start with basic definitions and concepts before continuing.

1.1 Integer Compositions

Definition 1.1. A composition C of an integer n is a vector in which the components

are positive integers that sum to n. Each component of C is called a part of C.

For instance the compositions of 3 are (1, 1, 1), (1, 2), (2, 1), and (3).

Definition 1.2. Let (a1, a2, a3, · · · , an) be a composition C. The tail of C is an. If

an = 2m for some m ∈ Z+, then we say C has an even tail. If an = 2m− 1 for some

m ∈ Z+, then we say that C has an odd tail.

Definition 1.3. Let (a1, a2, a3, · · · , ak−1, ak, ak+1, · · · , an) be a composition C with

ak = ak+1 = · · · = an and ak−1 �= ak. Then C has a repeating tail of n − k + 1

an’s.

Example 1.4. If a composition C is of the form (a1, a2, a3, · · · , ak−1,

n︷ ︸︸ ︷
1, 1, · · · , 1) with

ak−1 �= 1, we say that the composition has a repeating tail consisting of n 1’s.

Composition Tail

(3, 1,2) Even

(3, 1,3) Odd

(3, 1,2,2) Two repeating 2’s

(3,1,1,1,1) Four repeating 1’s

Table 1.1: Composition Tails



2

1.2 Binary Representations of Compositions

Compositions of an integer n can be represented by binary strings of n − 1 bits. To

illustrate, let’s look at the integer compositions of 4. We can represent the integer 4

with four dashes.

_ _ _ _

By placing vertical lines between these dashes we can count each adjacent dash

and use each vertical bar as a marker to indicate the next part in the composition.

Thus,

_ _ | _ _

represents the composition (2, 2) and

_ | _ | _ _

represents the composition (1, 1, 2). Now replace the vertical bars in between the

dashes with 0 and every other space between the dashes with a 1. So

_ | _ | _ _

becomes

_ 0 _ 0 _ 1 _.

Thus, 001 corresponds to (1, 1, 2). Looking at another example we get

_ _ | _ _

which becomes

_ 1 _ 0 _ 1 _.

Thus, 101 corresponds to (2, 2).



3

Example 1.5. To translate 1010 to a composition reverse the technique above to get

_1_0_1_0_

Now remove the 1’s and replace the 0’s with vertical bars.

_ _ | _ _ | _

So 1010 translates to the composition (2, 2, 1)

Example 1.6. Translating 0000 to a composition we get

_0_0_0_0_

which goes to

_ | _ | _ | _ | _

which translates to (1, 1, 1, 1, 1)

Example 1.7. Translating 1111 to a composition we get

_1_1_1_1_

which translates to

_ _ _ _ _

which is simply the trivial composition- the integer itself: (5).

Definition 1.8. We shall call this dashed representation of a composition of n a

MacMahon graph, and for the purposes of this thesis we shall just call it a graph

in the upcoming tables [6].

By utilizing the Macmahon graphs we have a clear bijection between composi-

tions of an integer n and binary strings of length n− 1, thus the following theorem is

immediate.

Theorem 1.9. For every positive integer n there are 2n−1 compositions [5].

The full list of compositions of 4 with binary representations are listed below.
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Binary Translation Graph Composition

000 0 0 0 | | | (1, 1, 1, 1)

001 0 0 1 | | (1, 1, 2)

010 0 1 0 | | (1, 2, 1)

011 0 1 1 | (1, 3)

100 1 0 0 | | (2, 1, 1)

101 1 0 1 | (2, 2)

110 1 1 0 | (3, 1)

111 1 1 1 (4)

Table 1.2: MacMahon Graphs and Compositions of 4

1.3 Gray Code

Gray Code was introduced by Bell Labs researcher Frank Gray in a 1947 patent

application under the name ‘reflected binary code’. The name was derived from the

fact that it “may be built up from the conventional binary code by a sort of reflection

process” [1].

Much as the usual binary code provides a way to represent integers in base 2,

Gray Code is a binary encoding method, but with an additional valuable property

the Gray Code representations of two consecutive integers differ by only one bit. For

instance, the integer representations of zero to three in binary is shown in table 1.3.

The integer representations of zero to three in Gray Code is shown in table 1.4.

Note that we can go back to the original state of ‘00’ with another 1 bit change.

This makes the code cyclic in nature and forms a natural Hamiltonian path.

The method used in this thesis utilizes the exclusive or ‘XOR’ to change binary

digits to Gray Code. This is illustrated by the following Matlab function, named
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Binary Bit Changes

00 Start

01 1 bit change

10 2 bit change

11 1 bit change

Table 1.3: Binary

Gray Code Bit Changes

00 Start

01 1 bit change

11 1 bit change

10 1 bit change

Table 1.4: Gray Code

bi2gray [2] . The subroutine is as follows, where b is a given binary integer,

function g = bi2gray( b )

g(1) = b(1);

for i = 2 : length(b),

x = xor(str2num(b(i-1)), str2num(b(i)));

g(i) = num2str(x);

end

return;
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First let’s remind ourselves how the ‘exclusive or’ works.

0 XOR 0 → 0

1 XOR 0 → 1

0 XOR 1 → 1

1 XOR 1 → 0

Table 1.5: XOR Table

Going through the algorithm step by step, the first digit of the binary code is

always the first digit in the corresponding Gray Code. Then we get the output of the

second digit XOR’ed with the first. So if the first digit is 1 and second digit 0, we get

a 1 for the second digit, if both first and second digit are 0 or 1, we just get a zero.

This process is repeated until the end of the binary string is reached.

Example 1.10. To illustrate, let’s use this algorithm to convert 1011 from binary to

Gray Code.

Binary 1 0 1 1

Conversion ↓ 0 XOR 1 1 XOR 0 1 XOR 1

Gray Code 1 1 1 0

Table 1.6: Binary to Gray Code Conversion

Here are the first eight integers starting at zero with their representations in both

binary and Gray Code.
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Integer Binary Gray Code

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

Table 1.7: Counting to 8 in Binary and Gray Code



CHAPTER 2

GENERATING FUNCTIONS

2.1 Generating functions

Definition 2.1. The generating function G ({an}∞n=0; x) of a sequence {an}∞n=0 is

G (an; x) = G ({an}∞n=0; x) =
∞∑
n=0

anx
n.

If we have a generating function of the form

∞∑
n=0

axn

with a ∈ R, then we can give a closed form representation of the generating function

by using the well known formula for the sum of a geometric series:

G(a; x) =
∞∑
n=0

axn =
a

1− x
.

When using generating functions for combinatorial analysis we do not need to worry

about convergence conditions as x is used strictly as a formal variable. The generating

function for the Fibonacci numbers will be calculated in Section 2.3.

2.2 Examples of Generating functions

Definition 2.2. Let CS(n) denote the number of compositions of n with parts in the

set S.

Definition 2.3. Let CS(n,m) denote the number of compositions of n with exactly m

parts and all parts in the set S.

Definition 2.4. Let CS,t,k(n) denote the number of compositions of n with all parts in

the set S with a repeating tail of k t’s. The third subscript is omitted when k = 1.

Example 2.5. CZ+(n, 3) denotes the number of compositions of n into exactly 3 parts.

The generating function for CZ+(n, 3) is:
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(
x1 + x2 + x3 + x4 + · · · )

× (
x1 + x2 + x3 + x4 + · · · )

× (
x1 + x2 + x3 + x4 + · · · )

=x1+1+1 +
(
x1+1+2 + x1+2+1 + x2+1+1

)
+
(
x1+1+3 + x1+3+1 + x3+1+1 + x1+2+2 + x2+1+2 + x2+2+1

)
+ · · ·

=x3 + 3x4 + 6x5 + · · ·

Multiply these series together and the coefficients indicate how many composi-

tions consisting of 3 parts there are for each integer.(
x

∞∑
n=0

xn

)
×

(
x

∞∑
n=0

xn

)
×

(
x

∞∑
n=0

xn

)

=

(
x

1− x

)
×

(
x

1− x

)
×

(
x

1− x

)

=

(
x

1− x

)3

=
∞∑
n=0

CZ+(n, 3).

Let’s look at another.

Example 2.6. Letting E denote the set of positive even integers, CE(n,m) denotes the

number of compositions of n into exactly m even parts only. The generating function

for CE(n,m) is:

m times

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(x2 + x4 + x6 + x8 + · · · )
× (x2 + x4 + x6 + x8 + · · · )
× · · ·
× (x2 + x4 + x6 + x8 + · · · )

=
(
x2 + x4 + x6 + x8 + · · · )m =

(
x2

1− x2

)m
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Thus the generating function for compositions into m even parts is

∞∑
m=0

(
x2

1− x2

)m

=
x2

1−x2

1− x2

1−x2

=
x2

1−x2

1− x2

1−x2

× 1− x2

1− x2

=
x2

1− x2 − x2

=
x2

1− 2x2

=
∞∑
n=0

CE(n,m)xn.

2.3 The Fibonacci Sequence

The Fibonacci numbers are a sequence of numbers named after Leonardo Fibonacci,

though it was known by Indian Mathematicians as early as the 6th century. Fi-

bonacci’s Liber Abaci introduced it to the west in 1202 and is why the sequence bears

his name.

The Fibonacci numbers are defined by F0 = 0 and F1 = 1, with Fn+1 = Fn+Fn−1

for n ≥ 1. So the sequence starts: 0, 1, 1, 2, 3, 5, 8, 13, ....

The generating function for the Fibonacci numbers is calculated as follows.

F(x) = G(Fn; x) =
∞∑
n=1

Fnx
n = 0 + 1x+ 1x2 + 2x3 + 3x4 + 5x5 + 8x6 + · · · .

Multiply Fn+1 = Fn + Fn−1 by xn and obtain

Fn+1x
n = Fnx

n + Fn−1x
n.

Now sum each from n = 1 to ∞ to obtain

∞∑
n=1

Fn+1x
n =

∞∑
n=1

Fnx
n +

∞∑
n=1

Fn−1x
n.
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In order to get the generating function we must put all of these sums in terms of F(x)

so a little algebra is needed:

1

x

( ∞∑
n=1

Fnx
n − 1x

)
=

∞∑
n=1

Fnx
n + x

∞∑
n=1

Fnx
n.

Substituting in F(x) we get

1

x
(F(x)− x) = F(x) + xF(x),

so

F(x)− x

x
= F(x) + xF(x).

Solve for F(x) :

F(x)− x = x (F(x) + xF(x))

F(x)− x = xF(x) + x2F(x)

F(x)− xF(x)− x2F(x) = x

F(x)
(
1− x− x2

)
= x

F(x) =
x

1− x− x2
= G(Fn; x).

So the generating function for the Fibonacci sequence is

∞∑
n=0

Fn(x) =
x

1− x− x2
. (2.1)



CHAPTER 3

GENERATING FUNCTIONS OF SELECTED INTEGER

COMPOSITIONS

3.1 Generating function proofs

Theorem 3.1. The number of compositions of n consisting of only 1’s and 2’s equals

the (n+ 1)st Fibonacci number [4].

Proof. Let C{1,2}(n) denote the number of compositions of n into parts consisting

of only 1’s and 2’s. The generating function for compositions into 1’s and 2’s with

exactly m parts is

(x1 + x2)m.

Therefore,

∞∑
n=1

C{1,2}(n)xn =
∞∑
n=1

(
x+ x2

)n
=

1

1− x− x2

=
∞∑
n=1

Fnx
n−1

=
∞∑
n=0

Fn+1x
n.

Theorem 3.2. The number of compositions of n consisting of only 1’s and 2’s with

a repeating tail of k ones equals the (n− k + 1)st Fibonacci number.

Proof. Let C{1,2},1,k(n), denote the number of compositions of n into parts consist-

ing of only 1’s and 2’s with a repeating tail of k 1’s. The generating function for

compositions into 1’s and 2’s with a repeating tail of k 1’s with exactly m parts is

(x1 + x2)m−k × xk.
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Therefore,

∞∑
n=k

C{1,2},1,k(n)xk =
∞∑
n=k

(
x+ x2

)n−k
xk =

∞∑
n=k−(k−1)

(
x+ x2

)n+(k−1)−k
xk

=
∞∑
n=1

(
x+ x2

)n−1
xk

=
xk

1− x− x2

= xk−1 x

1− x− x2

= xk−1

∞∑
n=0

Fnx
n

=
∞∑
n=0

Fnx
n+k−1

=
∞∑

n=k−1

Fn−k+1x
n.

Theorem 3.3. The number of compositions of n consisting of only 1’s and 2’s with

a repeating tail of k twos equals the (n− 2k + 1)st Fibonacci number.

Proof. Let C{1,2},2,k(n), denote the number of compositions of n into parts consist-

ing of only 1’s and 2’s with a repeating tail of k 2’s. The generating function for

compositions into 1’s and 2’s with a repeating tail of k 2’s with exactly m parts is

(x1 + x2)m−k × (x2)k.
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Therefore,

∞∑
n=k

C{1,2},2,k(n)xk =
∞∑
n=k

(
x+ x2

)n−k
x2k =

∞∑
n=k−(k−1)

(
x+ x2

)n+(k−1)−k
x2k

=
∞∑
n=1

(
x+ x2

)n−1
x2k

=
x2k

1− x− x2

= x2k−1 x

1− x− x2

= x2k−1

∞∑
n=0

Fnx
n

=
∞∑
n=0

Fnx
n+2k−1

=
∞∑

n=2k−1

Fn−2k+1x
n.

Theorem 3.4. The number of compositions of n consisting of only odd parts equals

the nth Fibonacci number [4].

Proof. Letting O denote the set of positive odd integers, CO(n) denotes the number of

compositions of n into odd parts. Note that the generating function for compositions

of n into exactly m odd parts is:

(x1 + x3 + x5 + x7 + · · · )m =

(
x

1− x2

)m

Therefore,

∞∑
n=1

CO(n)x
n =

∞∑
n=1

∞∑
m=1

CO(n,m)xn =
∞∑

m=1

(
x

1− x2

)m

=
x

1−x2

1− x
1−x2

× 1− x2

1− x2

=
x

1− x− x2

=
∞∑
n=0

Fnx
n.
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Theorem 3.5. The number of compositions of n consisting of only odd parts with an

even tail equals the (n− 1)st Fibonacci number.

Proof. Let C{O},E(n) where E = (2a) with a ∈ Z+ denote the number of composi-

tions of n into odd parts with an even tail. Note that the generating function for

compositions of n into exactly m odd parts with an even tail is:

(x1 + x3 + x5 + x7 + · · · )m−1 × (x2 + x4 + x6 + · · · ) =
(

x

1− x2

)m−1

× 1

1− x2

Therefore,

∞∑
n=1

C{O},E(n)xk =
∞∑
n=1

(
x

1− x2

)n−1

× 1

1− x2
=

1
1−x2

1− x
1−x2

=
1

1−x2

1− x
1−x2

× 1− x2

1− x2

=
1

1− x− x2

=
∞∑
n=1

Fnx
n−1

=
∞∑
n=0

Fn−1x
n.

Theorem 3.6. The number of compositions of n consisting of only 1’s and 2’s equals

the number of compositions of n into odd parts plus the number of compositions of n

into odd parts with an even tail.

Proof. The result is immediate we get C{1,2}(n) = Fn+1 from Theorem 3.1, C{O}(n) =

Fn from Theorem 3.4 and C{O},E(n) = Fn−1 from Theorem 3.5. Therefore,

C1,2(n) = C{O}(n) + C{O},E(n)

is equivalent to:

Fn+1 = Fn + Fn−1.
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A combinatorial proof of this fact will be presented in the following chapter.



CHAPTER 4

BINARY TO GRAY CODE MAP AND COMPOSITIONS

4.1 Zeckendorf’s Theorem

Theorem 4.1. (Zeckendorf) Every positive integer can be represented uniquely as the

sum of one or more distinct Fibonacci numbers in such a way that the sum does not

include any two consecutive Fibonacci numbers. More precisely, if N is any positive

integer, there exist positive integers c1, c2, . . . , ck for some k such that ci ≥ 2, with

ci+1 > ci + 1, such that

N =
k∑

i=0

Fci (4.1)

where Fn is the nth Fibonacci number [3].

This is known as Zeckendorf’s theorem, named after Belgian mathematician

Edouard Zeckendorf. This finite sum (Equation 4.1) is called the Zeckendorf rep-

resentation of N .

Example 4.2. The Zeckendorf representation of 10 is:

10 = 8 + 2 = F6 + F3.

Example 4.3. The Zeckendorf representation of 80 is:

80 = 55 + 21 + 3 + 1 = F10 + F8 + F4 + F2.

There is more than one way of representing 80 as the sum of Fibonacci numbers,

for example:

80 = 34 + 21 + 3 + 1,

80 = 55 + 13 + 8 + 3 + 1.

These are not Zeckendorf representations since 34 and 21 are consecutive Fibonacci

numbers (F9 and F8), as are 13 and 8.
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4.2 The Fibbinaries

From Zeckendorf’s Theorem we can write any positive integer N uniquely as

N = Fn1 + Fn2 + · · ·+ Fnk

where ni − ni+1 ≥ 2 for i = 1, 2, . . . , k − 1.

Definition 4.4. The Nth Fibbinary number [7], fib(N), is:

fib(N) =
k∑

m=1

2nm−2.

So from example 4.2 above we get:

10 = 8 + 2 = F6 + F3

so

fib(10) = 26−2 + 23−2 = 100102 = 18.

Note that we get the Fibbinary Sequence when we encode the positive integers

with the Zeckendorf representation, change to base 2, and let 0 represent the null

sum. The first few terms of the sequence are given by: (OEIS A003714)

1, 2, 4, 5, 8, 9, 10, 16, 17, 18, 20, 21, 32, 33, 34, 36, 37, 40, 41, 42, 64, 65, . . . .

Also, since the Zeckendorf representation of a number does not allow consecu-

tive Fibonacci numbers, the binary representation of Fibbinary numbers contain no

consecutive 1’s. Calculating fib(N) for N = 1, 2, 3, 4, 5, 6, 7 results in:
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1 = F2 → 22−2 = 20 = 012

2 = F3 → 23−2 = 21 = 102

3 = F4 → 24−2 = 22 = 1002

4 = F4 + F2 → 24−2 + 22−2 = 22 + 20 = 1012

5 = F5 → 25−2 = 23 = 10002

6 = F5 + F2 → 25−2 + 22−2 = 23 + 20 = 10012

7 = F5 + F3 → 25−2 + 23−2 = 23 + 21 = 10102

In order to check if an integer n is a Fibbinary number, simply write the integer

out in binary. Any consecutive 1’s will indicate the integer is not a Fibbinary.

Example 4.5.

27 = 110112

27 is not a fibbinary number since there are 2 pairs of consecutive 1’s.

21 = 101012

21 is a fibbinary number since there are no consecutive 1’s.

In order to check where a Fibbinary number lies in the sequence of Fibbinary

numbers, simply work out the Zeckendorf representation in reverse.

Example 4.6.

21 = 101012 = 26−2 + 24−2 + 22−2 → F6 + F4 + F2 = 8 + 3 + 1 = 12

so

fib(12) ↔ 21.
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The compositions of 5 can be represented by a binary string of length 4. The

eight fibbinaries computed above map to all 8 compositions of 5 consisting of only 1’s

and 2’s as shown in table 4.1. So the Fibbinaries with n bit binary representations

map to the Fn+1 compositions consisting of 1’s and 2’s of n. This result is immediate

from Theorem 3.1.

k fib(k) Fibbinary Number Translation Graph Composition

0 0 0000 0 0 0 0 | | | | (1, 1, 1, 1, 1)

1 1 0001 0 0 0 1 | | | (1, 1, 1, 2)

2 2 0010 0 0 1 0 | | | (1, 1, 2, 1)

3 4 0100 0 1 0 0 | | | (1, 2, 1, 1)

4 5 0101 0 1 0 1 | | (1, 2, 2)

5 8 1000 1 0 0 0 | | | (2, 1, 1, 1)

6 9 1001 1 0 0 1 | | (2, 1, 2)

7 10 1010 1 0 1 0 | | (2, 2, 1)

Table 4.1: Fibbinaries and Compositions of 1’s and 2’s

4.3 Binary and Gray Code Compositions

We can get a better picture of the relation between binary and Gray code by com-

bining the first 2n−1 nonnegative integers written in binary and Gray Code with the

corresponding compositions of n. The compositions of 4 with each element listed is

shown in Table 4.2.

With all these elements listed in this form we can get a better picture of the

relations between each element. Moreover, for an integer n, we have clear bijection

between the the set of integers from 0 to 2n−1, binary and Gray codes, along with the
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Binary Gray Code Bin Comp Gray Comp

000 000 (1, 1, 1, 1) (1, 1, 1, 1)

001 001 (1, 1, 2) (1, 1, 2)

010 011 (1, 2, 1) (1, 3)

011 010 (1, 3) (1, 2, 1)

100 110 (2, 1, 1) (3, 1)

101 111 (2, 2) (4)

110 101 (3, 1) (2, 2)

111 100 (4) (2, 1, 1)

Table 4.2: Binary and Gray Code with Corresponding Compositions

corresponding set of compositions of n.

4.4 Bijective Proof of Theorem 3.5

If we take the list of compositions from above and highlight the Fibbinary numbers

a clear pattern emerges (Table 4.3).

We see that the compositions corresponding to binary code are all the composi-

tions of 4 consisting of 1’s and 2’s, with 5 compositions total, this is expected from

Theorem 3.1. Also notice that the compositions corresponding to Gray Code are

the 3 odd compositions of 4 which corresponds to Theorem 3.4 and the 2 remaining

compositions are odd with an even tail by Theorem 3.5.

Proof. A Fibbinary number, fib(N), may be even or odd. For fib(N) to be odd the

units digit of the binary representation of fib(N) must be 1. The Fibbinary number

is even otherwise. Let n, k,m ∈ Z+. We consider cases.
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Integer Binary Gray Code Bin Comp Gray Comp

0 000 000 (1,1,1,1) (1,1,1,1)

1 001 001 (1,1,2) (1,1,2)

2 010 011 (1,2,1) (1,3)

3 011 010 (1, 3) (1, 2, 1)

4 100 110 (2,1,1) (3,1)

5 101 111 (2,2) (4)

6 110 101 (3,1) (2,2)

7 111 100 (4) (2,1,1)

Table 4.3: Highlighted Compositions Resulting from Fibbinary Numbers

(a) Every odd Fibbinary number’s binary representation will be of the form:

. . . 010 . . . 010 . . . 01.

Consider an odd Fibinnary consisting of alternating 1’s and 0’s with last digit

1. Its binary representation is thus:

2k−1︷ ︸︸ ︷
10101 · · · 01 . (4.2)

Since it starts and ends with a 1, the number of bits must be odd, say 2k−1 for

some k. Clearly, this is an odd number of bits. Its Gray Code representation is

a string of 2k − 1 1’s,ie.:
2k−1︷ ︸︸ ︷

111 · · · 1 .

The composition corresponding to the Gray Code thus has a single part:

(2k − 1 + 1) = (2k).

(2k) is an even number for all k, in other words a composition with a single

even part with zero odd parts in front of it.
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Fib. Number Gray Code Translation Map Composition

10101 11111 1 1 1 1 1 (6)
2k−1︷ ︸︸ ︷

1010 . . . 101

2k−1︷ ︸︸ ︷
111 . . . 1 1 1 . . . 1 . . . (2k)

Prepend a single 0 to equation 4.2:

0

2k−1︷ ︸︸ ︷
10101 · · · 01 .

Instead of a 1 for the first digit when we change to Gray Code we get a 0, so in

the example above we would get:

0

2k−1︷ ︸︸ ︷
111 · · · 1

which corresponds to the composition (1, 2k − 1 + 1) = (1, 2k).

Fib. Number Gray Code Translation Map Composition

010101 011111 0 1 1 1 1 1 | (1,6)

01010. . . 0101 0111. . . 1 1 1 . . . 1 | . . . (1,2k)

Prepending a string of zeros, ie.

n︷ ︸︸ ︷
00 · · · 0 to 4.2 results in a binary string of the

form
n︷ ︸︸ ︷

00 · · · 0
2k−1︷ ︸︸ ︷

10101 · · · 01

Converting to Gray Code results in:

n︷ ︸︸ ︷
00 · · · 0

2k−1︷ ︸︸ ︷
111 · · · 1,

which corresponds to the composition: (

n︷ ︸︸ ︷
1, 1, · · · , 1, 2k).

Prepending a binary string of the form

2m−1︷ ︸︸ ︷
1010 · · · 01
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to add an integer other than 1 to the beginning of the composition results in a

binary string of the form

2m−1︷ ︸︸ ︷
1010 · · · 1

n︷ ︸︸ ︷
00 · · · 0

2k−1︷ ︸︸ ︷
10101 · · · 01, n ≥ 2,

During the Gray Code conversion the first zero from the string of n zeroes will

change to a 1 (since 1 XOR 0 results in a 1). Now regroup the former binary

string to compensate for this fact:

2m︷ ︸︸ ︷
1010 · · · 10

n−1︷ ︸︸ ︷
00 · · · 0

2k−1︷ ︸︸ ︷
10101 · · · 01,

we have shown that the tail of the composition must be even so we just need to

worry about the new integer we tried to adjoin to the composition. When we

convert to Gray Code we end up with

2m︷ ︸︸ ︷
111 · · · 1

n−1︷ ︸︸ ︷
00 · · · 0

2k−1︷ ︸︸ ︷
111 · · · 1,

the first part of the composition corresponds to the integer (2m + 1), an odd

integer. Thus, the composition is:

(2m+ 1,

n−2︷ ︸︸ ︷
1, · · · , 1, 2k − 1 + 1) = (2m+ 1,

n−2︷ ︸︸ ︷
1, · · · , 1, 2k).

Fib. Number Gray Code Graph Composition
2m−1︷︸︸︷
101

n︷︸︸︷
00

2k−1︷︸︸︷
101

2m︷︸︸︷
1111

n−1︷︸︸︷
0

2k−1︷︸︸︷
111 | (5, 4)

101000101 111100111 | | (5, 1, 4)

Repeat the process above indefinitely and every odd Fibbinary number when

converted to Gray Code will result in an odd composition with an even tail.
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Fib. Number Gray Code Composition
2m1−1︷︸︸︷
1

n1︷︸︸︷
00

2m2−1︷︸︸︷
101

n2︷︸︸︷
00

2k−1︷︸︸︷
101

2m1︷︸︸︷
11

n1−1︷︸︸︷
0

2m2︷︸︸︷
1111

n2−1︷︸︸︷
0

2k−1︷︸︸︷
111 (3, 5, 4)

2m1−1︷︸︸︷
1

n1︷︸︸︷
000

2m2−1︷︸︸︷
101

n2︷︸︸︷
00

2k−1︷︸︸︷
101

2m1︷︸︸︷
11

n1−1︷︸︸︷
00

2m2︷︸︸︷
1111

n2−1︷︸︸︷
0

2k−1︷︸︸︷
111 (3, 1, 5, 4)

101000101 111100111 (5, 1, 4)

(b) Every even Fibbinary number will be of the form:

. . . 010 . . . 010 . . . 010 . . . 0.

Consider an even Fibbinary number of the form:

2m−1︷ ︸︸ ︷
1010 · · · 1

n︷ ︸︸ ︷
00 · · · 0, n ≥ 1.

Translating through Gray Code we get:

2m︷ ︸︸ ︷
111 · · · 1

n−1︷ ︸︸ ︷
00 · · · 0 .

Therefore we get the composition (2m+ 1,

n−1︷ ︸︸ ︷
1, · · · , 1).

Fib. Number Gray Code Composition

1010 1111 (5)
2m−1︷ ︸︸ ︷

1010 . . . 1 0

2m︷ ︸︸ ︷
111 . . . 1 (2m+ 1)

2m−1︷ ︸︸ ︷
1010 . . . 1

n︷ ︸︸ ︷
0 . . . 0

2m︷ ︸︸ ︷
111 . . . 1

n−1︷ ︸︸ ︷
0 . . . 0 (2m+ 1,

n−1︷ ︸︸ ︷
1, . . . , 1)

Repeat the process for adding parts of compositions as demonstrated above to

see that every even Fibbinary number will translate to an odd composition.

Fib. Number Gray Code Composition
2m1−1︷︸︸︷
1

n1︷︸︸︷
00

2m2−1︷︸︸︷
101

n2︷︸︸︷
00

2m1︷︸︸︷
11

n1−1︷︸︸︷
0

2m2︷︸︸︷
1111

n2−1︷︸︸︷
0 (3, 5, 1)

2m1−1︷︸︸︷
1

n1︷︸︸︷
000

2m2−1︷︸︸︷
101

n2︷︸︸︷
000

2m1︷︸︸︷
11

n1−1︷︸︸︷
00

2m2︷︸︸︷
1111

n2−1︷︸︸︷
00 (3, 1, 5, 1, 1)

2m1−1︷︸︸︷
1

n1︷︸︸︷
0000

2m2−1︷︸︸︷
101

n2︷︸︸︷
000

2m1︷︸︸︷
11

n1−1︷︸︸︷
000

2m2︷︸︸︷
1111

n2−1︷︸︸︷
00 (3, 1, 1, 5, 1, 1)
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Therefore the number of compositions of some integer M into 1’s and 2’s equals the

number of compositions of M into compositions of all odd parts and compositions of

all odd parts with an even tail. More specifically,

(a) every composition of M into 1’s and 2’s with an odd tail equals the number of

odd compositions of M with an even tail and,

(b) every composition of M into 1’s and 2’s with an even tail equals the number of

odd compositions of M .

4.5 The occurence of the Golden Ratio

Taking the Zeckendorf representation of the odd fibbinarys and letting φ = 1+
√
5

2
we

get:

5 = 101 = 22 + 20 → F2+2 + F0+2 = 3 + 1 = 4 = 
2φ2� − 1

9 = 1001 = 23 + 20 → F3+2 + F0+2 = 5 + 1 = 6 = 
3φ2� − 1

17 = 10001 = 24 + 20 → F4+2 + F0+2 = 8 + 1 = 9 = 
4φ2� − 1

21 = 10101 → F4+2 + F2+2 + F0+2 = 8 + 3 + 1 = 12 = 
5φ2� − 1

33 = 100001 → F5+2 + F1+2 = 13 + 1 = 14 = 
6φ2� − 1

When we list the odd Fibbinary’s and work through the Zeckendorf representation

method in reverse, it appears that we form the terms of the sequence:

1, 4, 6, 9, 12, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 40, 43, . . . (OEIS A003622),

which is defined as:{
nφ2� − 1}∞n=1 , φ = 1+
√
5

2
.

Conjecture 4.7. The nth odd fibbinary number maps to 
nφ2� − 1 through the Zeck-

endorf representation.

fib(N)n → {
(n)φ2� − 1
}∞
n=1

,
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where fib(N)n = the nth odd Fibbinary Number.

This remains an open question.



CHAPTER 5

CONCLUSION

It is doubtful that Frank Gray ever thought his “reflected binary code” would be used

in the analysis of integer compositions, yet his code has produced an interesting bi-

jection between certain sets of compositions. Also this relation made certain relations

between sets of compositions and the Fibonacci numbers more clear. The occurrence

of the Golden Ratio was completely unexpected and proving the relation between the

odd Fibbinaries and the integer sequence formed by {
nφ2� − 1}∞n=1 is still an open

question.

The natural Hamiltonian Path formed by Gray Code may have some interesting

consequences when teamed up with Graph Theory. There appears to be a growing

interest regarding Gray Code and its relation to integer compositions in various forms.

This makes for an interesting fusion between computer science and pure mathematics.

Computers have served a major role in the advancement of mathematics with use of

programs such as Matlab, Maple, and Mathematica, just to name a few. However,

computer code and logic at the most basic levels can have applications to higher

mathematics, as has just been demonstrated.
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