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Evidence demonstrated that glial cells, mainly astrocytes, regulate glutamate uptake, 

which is regulated by several glutamate transporters. Among these glutamate 

transporters, glutamate transporter 1 (GLT-1, its human homolog is excitatory amino acid 

transporter-2) is responsible for the majority of glutamate uptake by glial cells. Cystine-

glutamate antiporter (xCT) is another glial protein that regulates glutamate transmission. 

It has been previously shown that a β-lactam antibiotic, ceftriaxone, upregulated GLT-1 

and xCT expression levels in prefrontal cortex (PFC) and nucleus accumbens (NAc), and 

consequently reduced ethanol intake and relapse-like ethanol intake in alcohol-preferring 

(P) rats.  It has been shown that found recently that β-lactam antibiotics (ampicillin, 

cefazolin, and cefoperazone) upregulated GLT-1 expression in the prefrontal cortex 



iv 
 

(PFC) and nucleus accumbens (NAc) and consequently reduced ethanol intake in 

alcohol-preferring (P) rats. 

In this study, we investigated the effects of ampicillin, cefazolin, and cefoperazone on the 

expression levels of xCT and GLT-1 isofroms (GLT-1a and GLT-1b) as well as on 

GLAST expression using western blot assay. We found that these compounds reduced 

alcohol intake as compared to saline treated group.  In addition, we found that ampicillin, 

cefazolin and cefoperazone induced upregulation of GLT-1a and GLT-1b expression 

levels in both PFC and NAc, but no significant effects in glutamate/aspartate transporter, 

GLAST, expression were induced.  We also found that ampicillin and cefazolin increased 

xCT expression in both NAc and PFC. However, cefoperazone increased xCT expression 

only in the NAc. Additionally, we found that cefoperazone prevented relapse like-ethanol 

intake. Our findings provide additional information about the potential uses of β-lactam 

antibiotics as target drugs for the treatment of alcohol dependence. 
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Chapter 1 

 

Introduction 

 

1.1. Overview 

 

       Drug dependence is defined as chronic relapsing condition characterized by high 

tendency to take drug, no control to limit drug consumption, developing several 

emotional conditions (e.g. dysphoria, and anxiety) and developing withdrawal symptoms 

(Koob and Volkow, 2010). Pre-clinical studies showed that glutamate and dopamine play 

an important role in the neuroplastic changes (Wolf et al., 2004, Kalivas and O'Brien, 

2008, Thomas et al., 2008). Changes in dopamine release and neuroadaptation in 

amygdala, striatum, prefrontal cortex (PFC), and orbitofrontal cortex  are involved in 

drug addiction (Koob and Volkow, 2010). In rewarding effects of drug addiction, 

glutamate plays a critical role in the modulation of dopamine release in the nucleus 

accumbens (NAc) (Kalivas and Volkow, 2005). Alcoholism is defined as chronic alcohol 

consumption, which can lead to social, mental and physical problems. This disease is also 

called alcohol dependence (Bush et al., 1987). Several health problems are developed  by 

alcohol dependence depending on the amount of alcohol consumption and pattern of 
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drinking (Anderson et al., 1993).  According to National Institute of Alcohol Abuse and 

Alcoholism (NIAAA), alcohol develops health problems in the body (Table 1.1). 

 

Table 1.1. Effects of Alcohol on the Body (National Institute of Alcohol Abuse and 

Alcoholism (NIAAA)). 

 

Organs Effects 

Brain Brain performance and appearance, Mood Changes, 

Behavioral Changes, Thinking Problems 

Heart Heart Damage, Cardiomyopathy, Arrhythmias, Stroke, 

Hypertension 

Liver Liver Cancer, Fibrosis, Cirrhosis, Alcoholic Hepatitis, and 

Steatosis or Fatty Liver 

Pancreas Pancreatitis, Blood vessels swelling or inflammation in 

pancreas 

Immune System Immune system weakness, alcoholism is more likely to have a 

disease like pneumonia and tuberculosis   

Breast Breast Cancer 
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Throat Throat Cancer 

Esophagus Esophagus Cancer 

Mouth Mouth Cancer 

 

        Most of drugs of abuse increase dopamine release in the central nervous system. A 

study investigated the reinforcing effect of alcohol – nicotine co-abuse in dopamine 

release within the ventral tegmental area (VTA) through stimulation of nicotinic 

acetylcholine receptors (nAChRs)(Tizabi et al., 2002). This study reported that dopamine 

release in VTA was higher in rats that were given 0.5 g/kg ethanol plus 0.25 mg/ kg 

nicotine than those who were given ethanol or nicotine alone. Furthermore, dopamine is 

significantly higher in groups that received only nicotine or ethanol as compared to saline 

group (Tizabi et al., 2002).   Moreover, it was shown that i.p. injections of alcohol 

increased dopamine concentration in the NAc and dorsal striatum (dSTR) (Melendez et 

al., 2003).  

 

        Importantly, ethanol withdrawal rats (four to ten hours after last ethanol intake) 

showed a higher extracellular glutamate concentration in the NAc as compared to ethanol 

naïve group (Saellstroem Baum et al., 2006). Studies demonstrated that N-methyl-D-

aspartate (NMDA) receptors, which is ionotropic glutamate receptor, play a critical role 
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on enhancing the effect of nicotine on ethanol administration (Ford et al., 2013). It has 

been shown that NMDA  and  1-a-amino-3-hydroxy-5- methylisoxazole-4-propionic acid 

hydrate (AMPA) are involved in the mechanism of ethanol and nicotine interaction (Al-

Rejaie and Dar, 2006).  

 

1.2. Mesolimbic pathway to produce addictive and rewarding 

effects 

 

        Several studies investigated extensively the role of the mesolimbic pathway 

(dopaminergic, glutaminergic and GABAergic) in drug addiction (Adinoff, 2004, Russo 

and Nestler, 2013).  

 

1.2.1. Nucleus Accumbens (NAc) 

 

       Several studies examined the role of NAc in drug addiction (Wise and Rompre, 

1989, Di Ciano and Everitt, 2004). It is well known that NAc receives glutamatergic 

projections from amygdala and PFC inducing drug-seeking behavior (Kalivas et al., 

2009).  It is well known that alcohol and nicotine administration increased dopamine 

concentration in NAc (Yoshimoto et al., 1992, Tizabi et al., 2002, Melendez et al., 2003, 

Di Chiara et al., 2004). Our lab has shown that GLT-1 is downregulated in the NAc in 

rats exposed to ethanol for five weeks as compared to ethanol naïve group (Alhaddad et 

al., 2014a, Alhaddad et al., 2014b). Glutamate transmission in the NAc is important to 
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produce an addictive effect. Alternatively, cocaine- seeking behavior and reinstatement of 

cocaine taking are linked to changes in glutamate transmission in the NAc. In addition, it 

has been suggested that AMPA receptor antagonist could be considered as a 

pharmacological target for the treatment of drug addiction (Cornish and Kalivas, 2000).   

 

1.2.2. Prefrontal Cortex (PFC) 

 

        PFC is one of the mesocorticolimbic regions that sends glutamatergic projections  

into the NAc (Kalivas et al., 2009). It has been shown that prelimbic cortex hypoactivity 

is developed with compulsive cocaine- dependent rats (Chen et al., 2013). Moreover, 

activation of the prelimbic cortex could be used to reduce compulsive cocaine- seeking 

behavior. Therefore, PFC can be a target to treat drug dependence (Chen et al., 2013). 

Several studies from our lab showed that ceftriaxone, MS-153 and GPI-1046  attenuated 

alcohol drinking in part by upregulatory effects of GLT-1, GLT-1 isoforms and xCT 

expression levels in the PFC (Sari and Sreemantula, 2012, Alhaddad et al., 2014a, 

Alhaddad et al., 2014b, Rao and Sari, 2014). It has been reported that nicotine applied on 

medial prefrontal pyramidal cells could lead to increase glutamate concentration in these 

cells in rats (Lambe et al., 2003). The medial prefrontal cortex (mPFC) plays a critical 

role in heroin self-administration (Doherty et al., 2013).  Several studies showed that 

alcohol intake decreased the activity of neurons in PFC (Kahkonen et al., 2003, Tu et al., 

2007, Goldstein and Volkow, 2011)  
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1.2.3. Striatum  

 

        It has been demonstrated that alcohol administration increased dopamine 

concentration in both NAc and striatum in a Wister rats (Melendez et al., 2003). In 

addition, cocaine exposure increased dopamine concentration in the dorsal striatum 

(Volkow et al., 2006). Inhibition of cue to cocaine-induced dopamine release in the 

striatum is a novel pharmacological target to treat cocaine addiction (Volkow et al., 

2006). Importantly, dopaminergic and glutamatergic pathways in the striatum have a 

critical role in cocaine addiction. Intradorsal striatal infusion of dopamine antagonist and 

AMPA receptor antagonist, but not NMDA receptor antagonist, decreased cocaine self-

administration in rats (Vanderschuren et al., 2005). Alternatively, chronic 

methamphetamine injection decreased glutamate receptors expression in the striatum by 

changing in DNA methylation and hydroxymethylation (Jayanthi et al., 2014).  It is 

suggested that cocaine dependence developed a disruption in glutamate transmission in 

the dorsal striatum (Parikh et al., 2014). Ceftriaxone, beta- lactam antibiotic, reduced 

cocaine intake and this effect might be mediated through activation/upregulation of GLT-

1 in the striatum as well as in the PFC and NAc (Sari et al., 2009, Knackstedt et al., 2010, 

Parikh et al., 2014). 

 

1.2.4. Amygdala  

 

        The role of the amygdala in drug addiction has been investigated extensively (Di 
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Ciano and Everitt, 2004). Amygdala plays a significant role in memory (learning), 

anxiety, and emotional behavior conditions (Lalumiere, 2014).  Moreover, glutamate 

release from the PFC and amygdala into the NAc is important in the sensitization and 

drug- seeking behaviors (Kalivas et al., 2009). It is shown that dopamine antagonist in 

amygdala reduces cocaine seeking (Di Ciano and Everitt, 2004). Moreover, dopamine 

receptor plays a critical role in nicotine addiction. Dopamine (D3) receptor antagonist 

reduced cue-induced reinstatement nicotine – seeking behavior in the Amy (Khaled et al., 

2014).  The role of amygdala in heroin addiction was examined. Blocking amygdala 

reduced heroin – seeking behavior in conditioned cues induced reinstatement (Rogers et 

al., 2008). It is known that metabotropic glutamate receptor 5 (mGluR5) is an important 

receptor, which is distributed in different brain areas, including NAc and amygdala. 

Inhibition of mGluR5 in amygdala reduced cue-induced reinstatement of ethanol - 

seeking behavior (Sinclair et al., 2012). Furthermore, synaptic glutamate concentration is 

increased in rats withdrawal from chronic alcohol exposure (Christian et al., 2013) 

 

1.2.5. Hippocampus  

 

        It is well known that hippocampus plays a critical role in drug addiction and 

formation of memory (Adcock et al., 2006, Meyers et al., 2006, Shen et al., 2006, 

Hernandez-Rabaza et al., 2008, Delgado and Dickerson, 2012). In addition to PFC and 

amygdala, hippocampus also sends glutamatergic projections into NAc.  Therefore, 

hippocampus  has a crucial role in drug dependence (Meyers et al., 2006, Britt et al., 
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2012, Papp et al., 2012). It has been shown that a decrease in hippocampal neurogenesis 

by irradiation led to an increase in cocaine self-administration in rats (Noonan et al., 

2010). Alternatively, chronic alcohol administration decreased neurogenesis in 

hippocampus (Herrera et al., 2003, He et al., 2005). It is known that hippocampus is 

involved in relapse – like cocaine intake (Vorel et al., 2001, Fuchs et al., 2005). The 

expression of cocaine conditioned place preference (CPP) is affected by inhibition of 

dorsal hippocampus (Meyers et al., 2006).  

 

1.2.6. Ventral Tegmental Area (VTA) 

 

       It has been shown VTA is involved in drug dependence. Dopaminergic projections 

from VTA into the shell of the NAc and the PFC play a key role in drug dependence 

(Wise and Rompre, 1989). Cocaine increased synapses of glutamatergic by inducing long 

term potentiation depending on the local rapid stimulation of NMDARs in the VTA 

(Heshmati, 2009). This action may be occurred due to stimulation of NMDA receptor and 

dopamine (D5) receptors cascade (Heshmati, 2009). It has been demonstrated that 

cocaine at low concentration may have blocking action on dopamine reuptake in the VTA 

(Brodie and Dunwiddie, 1990).  It has been reported that nicotine binds to α4 and α6 

subunits of nAChRs in dopaminergic axon terminals, which lead to stimulation of 

dopaminergic neurons activity in the VTA (Liu et al., 2012, Baker et al., 2013). It has 

been also shown that AMPA administration increased glutamate and dopamine release in 

amphetamine treated group as compared to saline- treated group  in the VTA (Giorgetti et 
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al., 2001). Importantly, ethanol at low concentration binds to presynaptic dopamine (D1) 

receptor producing high extracellular glutamate concentrations and then high dopamine 

concentration (Xiao et al., 2009). Furthermore, DNQX, an AMPA receptor antagonist, 

reduced ethanol-induced dopamine release suggesting the important role of the VTA in 

alcohol addiction (Xiao et al., 2009). 

 

 

1.3. Glutamate Transporters 

 

        Glutamate transporters regulate glutamate concentration released from presynaptic 

neurons to reduce toxic glutamate concentration. There are two major types of glutamate 

transporters. These transporters are the excitatory amino acid transporters (EAATs) and 

the vesicular glutamate transporters (VGLUTs) [for review see ref.(Shigeri et al., 2004). 

VGLUTs are expressed in both central and peripheral nervous system as well as 

peripheral non-neuronal system (Moriyama and Hayashi, 2003, Moriyama and 

Yamamoto, 2004). It has been shown that VGLUT 1 and VGLUT 2 are transporters of 

glutamatergic neurons, while VGLUT 3 is a transporter of both glutamatergic and non- 

glutamatergic neurons (Stornetta et al., 2002, Takamori et al., 2002). VGLUT 1, VGLUT 

2, and VGLUT 3  transporters can transport glutamate from cytoplasm to storage vesicle 

(Takamori, 2006). 

 

       The second type of glutamate transporters is EAAT family, which contains five 
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subtypes [for review see ref.(Shigeri et al., 2004): 

 

1- GLT-1 (human homologue is EAAT2), glutamate transporter 1 

2- GLAST (human homologue is EAAT1), glutamate/aspartate transporter. 

3- EAAC1 (human homologue is EAAT3), excitatory amino acid carrier type 1 

4- EAAT4, excitatory amino acid carrier type  4 

5- EAAT5, excitatory amino acid carrier type 5 

 

       The most important transporter expressed highly in astrocytes is glutamate 

transporter 1 (GLT-1, its human homolog is excitatory amino acid transporter-2, 

EAAT2). The majority (approximately 90%) of glutamate uptake is regulated by GLT-1. 

Therefore, GLT-1 can remove high concentration of glutamate to make the extracellular 

glutamate concentration below the toxic level (Mitani and Tanaka, 2003). There are two 

isoforms for GLT-1: GLT-1a and GLT-1b. It has been shown that GLT-1a is found in 

both neurons and astrocytes while GLT-1b is expressed only in astrocytes (Berger et al., 

2005, Holmseth et al., 2009). It has been reported that the ability of one isoform to 

transport extracellular glutamate into glia cells is not that different than the second 

isoform (Holmseth et al., 2009). 

 

       GLAST is considered as the major glutamate transporter in the cerebellum (Lehre 

and Danbolt, 1998). It has been reported that GLAST is distributed throughout brain 

(Schmitt et al., 1997). However, GLAST is the most common glutamate transporter in the 

inner ear and the retina (Takumi et al., 1997, Lehre and Danbolt, 1998). 
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       EAAT3 transports glutamate at post-synaptic neurons. It has been reported that 

neuronal activity as well as other signaling pathways (phosphatidylinositol-3-kinase 

(PI3K) and alpha protein kinase C (alphaPKC)) regulated EAAT3 (Nieoullon et al., 

2006).  Additionally, EAAT4 is also primarily expressed in neurons. It has been shown 

that EAAT4 as well as EAAT3 are found in neurons of hippocampus and cerebellum 

(Rothstein et al., 1994, Dehnes et al., 1998). Alternatively, EAAT5 is mainly expressed in 

the retinal bipolar cells and rod photoreceptor (Arriza et al., 1997).  

 

       Cystine-glutamate antiporter (xCT), another glial protein, plays an important role in 

glutamate regulation. xCT regulates glutamate transmission by exchanging extracellular 

cystine for intracellular glutamate (Baker et al., 2002) 

 

1.4. Glial Proteins and Alcohol Dependence 

 

        Several studies from our laboratory showed that continuous and relapse – like 

ethanol intake are associated with the decrease in the expression levels of GLT-1, GLT-1 

isoforms (GLT-1a and GLT-1b) and  xCT in mesocorticolimbic area of male P rats (Rao 

and Sari, 2012, Qrunfleh et al., 2013, Alhaddad et al., 2014a, Alhaddad et al., 2014b, Rao 

and Sari, 2014). We focus here on investigating these selected glutamatergic transporters 

as well as others. 
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1.4.1 GLT-1 and Alcohol Dependence 

        It has been shown that a decrease in GLT-1 expression was found associated with 

increase extracellular glutamate concentration in animal models of alzheimer and 

ischemia (Li et al., 1997, Martin et al., 1997, Sari and Sreemantula, 2012). Moreover, 

glutamate transporters upregulator compound, tamoxifen, enhances uptake of 

extracellular glutamate concentrations into astrocyte (Lee et al., 2009, Karki et al., 2013). 

Several studies found that cocaine self-administration, nicotine self-administration and 

chronic alcohol consumption decreased GLT-1 level (Knackstedt et al., 2009, Knackstedt 

et al., 2010, Kryger and Wilce, 2010, Alhaddad et al., 2014a). A study from our 

laboratory found that chronic alcohol intake for five weeks decreased GLT-1 expression 

in the NAc as compared to water naïve group (Sari and Sreemantula, 2012). As compared 

to water naïve group, continuous ethanol drinking for five weeks downregulated GLT-1 

isoforms (GLT-1a and GLT-1b) in the NAc (Alhaddad et al., 2014a).  

 

        It has been shown that ceftriaxone, a beta- lactam antibiotic, upregulated GLT-1 

expression and consequently reduced reinstatement of cocaine- seeking behavior (Sari et 

al., 2009). Ceftriaxone also attenuated alcohol intake in male P rats in part by 

upregulatory effects on GLT-1 and its isoforms in the NAc and the PFC (Alhaddad et al., 

2014a, Rao and Sari, 2014). It has also been reported that MS-153 and GPI-1046 were 

able to upregulate GLT-1 and consequently decreased alcohol intake in male P rats (Sari 

and Sreemantula, 2012, Alhaddad et al., 2014b).  
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1.4.2 xCT and Alcohol Dependence 

 

        Our lab recently reported that xCT expression is downregulated in the NAc and the 

PFC in P rats exposed to ethanol for five weeks as compared to water naïve group 

(Alhaddad et al., 2014a).          In addition to upregulatory effect on GLT-1 in the NAc 

and the PFC, ceftriaxone increased also xCT expression in both NAc and the PFC, and 

consequently reduced alcohol intake and cue to cocaine -seeking behavior (Knackstedt et 

al., 2010, Alhaddad et al., 2014a).  

 

1.4.3 Other Glutamate Transporters and Alcohol Dependence 

 

        It has been shown that tamoxifen, estrogen receptor antagonist, upregulated both 

GLT-1 and GLAST, and consequently increased glutamate uptake (Karki et al., 2013). 

However, GLAST expression was not affected in P rats exposed to ethanol for five weeks 

(Alhaddad et al., 2014a, Alhaddad et al., 2014b). It has been shown that an acute dose of 

ethanol did not change the levels of both GLAST and GLT-1 expression levels 

(Melendez et al., 2005). In addition, studies from our lab did not find any upregulatory 

effects on GLAST with the two compounds known as GLT-1 upregulators,       

Ceftriaxone and MS-153, in male P rats exposed to alcohol (Alhaddad et al., 2014a, 

Alhaddad et al., 2014b). 

 

         Alternatively, acute ethanol exposure increased EAAT3 activity; however, EAAT3 
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activity is reduced by chronic exposure to alcohol (Kim et al., 2005). However, EAAT4 

activity was found reduced by acute alcohol administration (Park et al., 2008). 

 

1.5. Alcohol-Preferring (P) rats as an Established Animal 

Model for Alcohol Dependence 

 

        Most of the studies examined the neurobiological mechanisms for continuous 

alcohol intake and relapse-like alcohol. It has been reported that P rats met the criteria for 

animal model that is applicable for alcohol dependence.  P rats can be used to assess 

alcohol preference. Moreover, P rats display a robust response to the alcohol deprivation 

effect (ADE), therefore, P rats are animal model for relapse like-alcohol intake (Bell et 

al., 2006). A study showed that alcohol non-preferring rats (NP) drink less than 1 

g/kg/day, while P rats consumed more than 4 g/kg/day (Li et al., 1987).  It has been 

reviewed and suggested that  P rats and high-alcohol-drinking (HAD) rats met all the 

criteria as animal models for alcoholism, which can be used to  investigate the effects of 

several compounds on alcohol consumption, relapse-like alcohol intake, alcohol and 

nicotine co-addiction (McBride et al., 2014). In addition, it has been shown  that P rats 

had higher preference to 10% (v/v) alcohol as compared to water (Li et al., 1993). A 

comparative study found that P rats consumed more alcohol after deprivation period, 

which makes P rats a good model to study relapse-like alcohol intake (Vengeliene et al., 

2003). Furthermore, study investigated the effect of isolate housing in alcohol 

consumption in P and NP rats, showed that ethanol intake was higher in P rats as 



15 

 

compared to NP rats (Ehlers et al., 2007).  

 

1.6. Aims and Objectives 

 

         Several studies tested the effects of several compounds on GLT-1 expression to 

discover a new compound, that offers neuroprotection. One of these studies found that β-

lactam antibiotics were the most potent upregulators of GLT-1(Rothstein et al., 2005). 

Rothestein et al (2005) tested the effect of several β-lactam antibiotics on GLT-1 

expression. Among these antibiotics that stimulated GLT-1 expression are ampicillin and 

cefoperazone. Therefore, in this study, the effects of ampicillin (Figure 1-1) and 

cefoperazone (Figure 1-2) on alcohol intake were examined using alcohol preferring rat. 

We also have investigated the effect of cefazolin, another β-lactam antibiotic (Figure 1-3) 

on alcohol consumption in P rats. Ampicillin is semisynthetic penicillin β-lactam 

antibiotic, while cefazolin and cefoperazone are first and third generations cephalosporin 

β-lactam antibiotics. We also have determined the effects of selected β-lactam antibiotics 

in the expression of GLT-1a, GLT-1b, xCT, and GLAST in the NAc and the PFC of male 

P rats using western blot assay.  

 

        It has been reported that ceftriaxone, third generation cephalosporin β-lactam 

antibiotic, attenuated relapse-like ethanol intake (Qrunfleh et al., 2013). Therefore, we 

investigated the effects of cefoperazone with β-lactam structure and third generation 

cephalosporin similar to ceftriaxone on relapse like ethanol intake in male P rats. 
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Figure 1-1 Chemical Structure of Ampicillin  

 

 

Figure 1-2 Chemical Structure of Cefazolin  

 

 

Figure 1-3 Chemical Structure of Cefoperazone  
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Chapter 2 

 

 

Materials and Methods 

 

 

2.1. Animals 

 

         Alcohol-preferring male (P) rats were received from Indiana University, School of 

Medicine (Indianapolis, IN, USA). Rats were housed in bedded plastic tubs and kept at 

21°C, 50% humidity in the Department of Laboratory Animal Resource at The University 

of Toledo, Health Science Campus. The Institutional Animal Care and Use Committee of 

The University of Toledo approved all animal housing and experimental procedures in 

accordance with guidelines of the Institutional Animal Care and Use Committee of the 

National Institutes of Health and the Guide for the Care and Use of Laboratory Animals 

(Institute of Laboratory Animal Resources, Commission on Life Sciences, 1996). All rats 

were at age of 90 days, and they were individually housed in standard plastic cages and 

divided into four experimental groups:  saline group received water and food and i.p. 

injection of 0.9 % saline solution (n=6), ampicillin group received 100 mg/kg of the drug 
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(i.p) (n=6), cefazolin group received 100 mg/kg of the drug (i.p) (n=6), and  cefoperazone 

group received 100 mg/kg of the drug (i.p) (n=6). In regard to cefoperazone relapse 

study, 3 months old rats were divided into two experimental groups: ethanol vehicle 

group received water and food and i.p. injection of vehicle solution (1% DMSO in PBS) 

(n=6), and cefoperazone group (CPZ) received 100 mg/kg of the drug (i.p) (n=6). 

 

2.2. Behavioral drinking paradigms 

 

2.2.1 Beta-lactam antibiotics study 

 

        At age of 90 days, designated saline, ampicillin, cefazolin, and cefoperazone groups 

of rats were given free choice to food, water and two ethanol concentrations (15% and 

30%, v/v) for five weeks.  Body weight, water intake and ethanol intake were evaluated 

three times a week during the last two weeks.  Densitometry formula was used to convert 

ethanol intake measurements to gram per kilogram of body weight of animal per day.  

Rats selected for the study were required to achieve at least 4 g/kg/day or more of ethanol 

intake.  Body weight, water intake and ethanol intake were measured during Week 4 and 

Week 5, which served as baseline values.  On Week 6, P rats were i.p. injected either 

saline, ampicillin (100 mg/kg), cefazolin (100 mg/kg), or cefoperazone  (100 mg/kg) 

daily for five consecutive days. During these five days animals body weight, water intake 

and ethanol intake were measured every day.   Rats were euthanized by CO2 inhalation 

and further decapitated 24 hours after the last i.p. injections of saline or drug. Note that 
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ethanol preference was calculated using the following formula: (ethanol intake 

measurement/ total fluid consumed) x 100  

 

Figure 2-1 Timeline for Continuous Ethanol Drinking Paradigm 

 

2.2.2. Cefoperazone Relapse Study 

 

        At age of 90 days, rats were given access to free choice to ethanol concentrations 

(15% and 30%, v/v), water and food for five weeks.  We evaluated water intake, body 

weight, and ethanol intake three times a week during last two weeks.  We also used 

densitometry formula to convert alcohol consumption measurements to gram per 

kilogram of body weight of each animal per day.  Rats selected for the study were 

required to consume at least 4 g/kg/day or more of alcohol intake.  We measured body 

weight, water intake and ethanol intake during Week 4 and Week 5, which served as 

baseline values. On week 6, P rats were deprived of ethanol for two weeks and divided 
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into two experimental groups. During last five days of 14 days deprivation time, P rats 

were i.p. injected either vehicle solution or cefoperazone (100 mg/kg) daily for five 

consecutive days. Twenty-four hours after last injection, all rats were re-exposed to 

ethanol for seven days. During these seven days, animals body weight, water intake and 

ethanol intake were measured every day. Twenty-four hours after these seven days, rats 

were euthanized by CO2 inhalation and then rapidly decapitated. Note that ethanol 

preference was calculated as:  (ethanol intake measurement / total fluid consumed) x 100. 

 

Figure 2-2 Timeline for Relapse-Like Ethanol Drinking Paradigm.  
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2.3. Brain tissue harvesting 

 

        Brains were removed then immediately frozen on dry ice and stored at -80°C.  

Brains regions (NAc and PFC) were microdissected with Leica cryostat apparatus using 

stereotaxic coordinates from the rat brain Atlas (Paxinos and Watson, 2007). These brain 

regions were then immediately stored at -80ºC for further immunoblot testing. 

 

2.4. Protein Quantification Assay 

 

2.4.1 Beta-lactam antibiotics study 

 

        After all brain samples were lysed using buffer containing protease and phosphatase 

inhibitors, we used Lowry protein quantification assay to determine the exact amount of 

proteins in each sample. We then determined regression line and standard curve using 

bovine serum albumin (BSA) (New England Bio labs). Further, 1μL from each sample 

was added into 4μL of  lysis buffer in four well in 96 well plates. Then, we added 25μL 

of mixture contains 3 ml of reagent A and 60 μL of reagent S (Both reagents are 

purchased from BioRad Laboratories) into each well. After that, 200μL of reagent B 

(BioRad Laboratories) was added into each well, then plates were kept at room 

temperature in a dark place for 15 minutes.  Multiskan FC spectrophotometer (Thermo 

Scientific) was used to measure the absorbance of all samples at 750 nm.  Finally, 

samples protein concentrations were determined using standard curve and line regression. 
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Therefore, equal amount of proteins were used for Western Blot Assay.  

 

 

 

Figure 2-3 Standard curve generated for NAc  (Saline (n =4), ampicillin (n =4), cefazolin 

(n =4), and cefoperazone (n =4))  
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Figure 2-4 Standard curve generated for PFC (Saline (n =4), ampicillin (n =4), cefazolin 

(n =4), and cefoperazone (n =4))  

 

Figure 2-5 Standard curve generated for NAc and PFC (Saline (n =4), ampicillin (n =4), 

cefazolin (n =4), and cefoperazone (n =4))  
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2.5. Western blot protocol  

2.5.1 Beta- lactam antibiotics study 

 

2.5.1.1. Gel Preparation 

 

        We used 10-20% polyacrylamide gel for western blot assay. We mixed different 

reagents to prepare the separating and stacking gels. Those reagents were used in specific 

concentrations based on the number of gels that we prepare. The reagents using in this 

study are as follows: 1.5 M Tris Buffer pH 8.8, 10 % SDS, 30 % Acrylamide/Bis solution 

(BioRad), 10% Ammonium Persulfate (APS, Fisher Scientific), Deionized water (DI 

water, and TEMED (N,N,N’,N’- tetramethylethylenediamine, BioRad). We added the 

separating mixture into specific apparatus (BioRad), then we immediately added DI water 

in the same apparatus to avoid the dryness of separating gel. After separating gel was 

solidified, we removed DI water and immediately added the stacking gel. Thirty minutes 

after the gels are prepared; we used them for western blot assay. 

 

2.5.1.2. Western blot protocol for detection of GLT-1a, GLT-1b, xCT 

and GLAST 

 

        Changes in GLT-1a, GLT-1b, xCT, GLAST and GAPDH expression levels in NAc 

and PFC were determined using Western Blot technique as described previously (Sari et 

al., 2011, Alhaddad et al., 2014a, Rao and Sari, 2014). Brain tissues were homogenized in 
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lysis buffer containing protease inhibitor, and the total protein were quantified using 

BioRad kit.  Equal amount of lysed NAc or PFC from both groups were loaded on 10-

20% polyacrylamide gel.  Proteins were then transferred electrophoretically onto PVDF 

membrane using transfer apparatus. The membranes were blocked in 3%  milk in Tris-

buffered saline Tween-20 (TBST ) for 30  minutes at room temperature, then incubated 

overnight at 4°C with one of the following antibodies: rabbit anti-GLT-1a ( 1:5,000  gift 

from Dr. Jeffery Rothstein, Johns Hopkins University), rabbit anti-GLT-1b ( 1:5,000 gift 

from Dr. Paul Rosenberg, Harvard Medical School University), rabbit anti-xCT ( 1:1,000 

Abcam), rabbit anti- GLAST ( 1:5,000 Abcam) and mouse anti-GAPDH( 1:5,000, 

Millipore). The membranes were washed next day withTBST, and then blocked with 3% 

milk in TBST for 30 minutes at room temperature.  Immunoblotting membranes were 

then incubated with Anti-rabbit IgG (1:3000) or anti-mouse IgG (1:3000) for 90 minutes. 

After washing, membranes were dried and incubated with chemiluminescentkit (Super 

Signal West Pico, Pierce Inc.) for one minute. Membranes were then further dried and 

exposed to HyBlot CL Film (Thermo Fisher Scientific).  Films were developed using 

SRX-101A Film processor and digitized blots were quantified with MCID software. Data 

for GLT-1a, GLT-1b, xCT and GLAST expression levels were represented as ratio of 

GAPDH expression in NAc and PFC.  

 

2.6. Statistical analysis 

 

2.6.1 Beta -Lactam Antibiotics Study 
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         Two-ways (mixed) ANOVA with repeated measures were performed to analyze 

behavioral statistical data (daily ethanol intake, average body weight, daily water intake, 

and daily ethanol preference). We also used ordinary one-way ANOVA followed by 

Dunnett’s multiple comparison test to determine the effect of ampicillin cefazolin and 

cefoperazone treatments on each day. Quantitative t-test was used to analyze western blot 

analysis data for comparisons between treatment (ampicillin, cefazolin and cefoperazone) 

and saline groups. 

2.6.2 Cefoperazone Relapse Study 

 

         Two way (mixed) ANOVA with repeated measures, followed by Bonferroni 

multiple comparisons, was used for analysis of ethanol intake, water intake, ethanol 

preference, and body weight.  All statistical analyses were based on p<0.05 level of 

significance. 
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Chapter 3 

 

Effects of β-lactam antibiotics treatment on xCT, 

GLT-1 isoforms, GLAST expression levels as well 

as ethanol drinking in male P rats 

 

3.1. Introduction 

 

        Ethanol dependence is a public health issue. Existing treatments for ethanol 

addiction are limited, and finding a neurotransmitter system as a therapeutic target is 

important (Heilig et al., 2011). Among the neurotransmitters involved, the glutamatergic 

system is now well known for its important role in drug abuse, including ethanol (Kalivas 

et al., 2009, Sari et al., 2009, Rao and Sari, 2012, Sari, 2014). Glutamatergic inputs from 

the prefronal cortex (PFC) into the nucleus accumbens (NAc) are critical in ethanol 

dependence [for review see refs (Rao and Sari, 2012, Sari, 2014)].  
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Glutamate transmission is regulated by several glutamate transporters, glutamate 

transporter-1 (GLT1, it human homolog excitatory amino acid transporter 2, EAAT2) is 

considered as the major glutamate transporter responsible for regulating the majority of 

glutamate uptake (Greene et al., 1979, Tanaka et al., 1997, Grewer et al., 2000, Bunch et 

al., 2009, Vandenberg and Ryan, 2013, Jensen et al., 2014). 

        Importantly, GLT-1 is expressed in the mammalian brain primarily in two isoforms, 

GLT-1a and GLT-1b (Chen et al., 2002, Chen et al., 2004, Berger et al., 2005). However, 

GLT-1c isoform is less expressed in the brain but highly expressed in the retina (Chen et 

al., 2002, Chen et al., 2004, Berger et al., 2005, Sogaard et al., 2013).  It has been 

reported that GLT-1a is expressed in both neurons and astrocytes, however GLT-1b is 

expressed only in astrocytes (Berger et al., 2005, Holmseth et al., 2009). Changes in the 

expression levels of these isoforms may vary among different diseases.  Thus, in 

amyotrophic lateral sclerosis disease it was found downregulation of GLT-1a expression 

and upregulation of GLT-1b expression (Maragakis et al., 2004). We have investigated in 

this study the effects of ampicillin in the expression levels of GLT-1a and GLT-1b on 

association with ethanol intake. We have also determined the expression of 

cysteine/glutamate exchanger transporter (xCT) as another glial glutamate transporter.  

xCT system transports anionic cystine inside astrocytes in exchange with glutamate 

(Bannai, 1986, Melendez et al., 2005).  xCT was found to be downregulated in P rats 

exposed to free choice ethanol (15% and 30%) for 5 weeks (Alhaddad et al., 2014a).  In 

addition, studies have shown also downregulated of xCT in cocaine seeking behavior 

(Knackstedt et al., 2010).  xCT has been found to be associated with cocaine, nicotine 
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and ethanol seeking behaviors (Baker et al., 2003, Knackstedt et al., 2009, Knackstedt et 

al., 2010, Alhaddad et al., 2014a, Rao et al., 2015b). Together, these studies provide 

ample information about the important role of GLT-1 and xCT in drug abuse, including 

ethanol. 

        Studies from our lab demonstrated that administration of compounds that 

upregulated GLT-1 with its isoforms (GLT-1a and GLT-1b) and xCT reduced ethanol 

intake and relapse-like ethanol intake in P rats (Sari et al., 2011, Sari and Sreemantula, 

2012, Qrunfleh et al., 2013, Sari, 2013, Alhaddad et al., 2014a, Alhaddad et al., 2014b, 

Rao and Sari, 2014, Aal-Aaboda et al., 2015). These compounds are as follows: 

ceftriaxone, β-lactam antibiotic, neuroimmunophilin GPI-1046 (3-(3-pyridyl)-1-propyl 

(2S)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-pyrrolidinecarboxylate), and MS-153 ((R)-(-)-5-

methyl-1-nicotinoyl-2-pyrazoline).  

        In this study, using male P rats, we focused on testing the effects of ampicillin, 

cefazolin and cefoperazone, other β-lactam antibiotics, with a β-lactam structure similar 

to ceftriaxone on the expression levels of xCT, GLT-1a, GLT-1b, and glutamate aspartate 

transporter (GLAST) as another glial glutamate transporter.  The rationale for testing 

selected  β-lactam antibiotics is based in recent findings from our lab showing that these 

antibiotics upregulated GLT-1(Rao et al., 2015a).  However, it is unclear about the effects 

of ampicillin, cefazolin and cefoperazone on the expression levels of xCT and GLAST as 

well as on the expression of GLT-1 isofrms (GLT-1a and GLT-1b).  Furthremore, in 

contrast to ceftriaxone, ampicillin has clinical relevance, as it has the potential to be 

administered orally.  P rats were exposed for five weeks to free choice ethanol (15% and 
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30% v/v) as an established drinking paradigm, water and food.  Selected β-lactam 

antibiotics and saline vehicle were administered on Week 6 for five consecutive days.  

Ethanol intake, water intake, ethanol preference and body weight were measured for 

comparison between groups.  We further examined the effects of ampicillin, cefazolin 

and cefoperazone on ethanol intake and determined whether there are any upregulatory 

effects on xCT, GLT-1a, GLT-1b, and GLAST expression levels.   

 

3.2. Results 

3.2.1 Effect of β-lactam antibiotics on ethanol intake, water intake, ethanol 

preference and body weight 

 

        We examined the effect of ampicillin, cefazolin and cefoperazone on ethanol and 

water intakes as well body weight. Ordinary one way ANOVA followed by Dunnett’s 

multiple comparison test demonstrated a significant reduction on ethanol intake in 

selected β-lactam antibiotics treated groups compared to saline treated group on day 2 to 

day 5 (p<0.0001).  Moreover, mixed ANOVA demonstrated a significant main effect of 

day [F (1, 5) = 41.02, p<0.0001] and a significant day x treatment interaction [F (3, 15) = 

3.472, p<0.0001] of ethanol intake (Table 3.1).  Furthermore, ordinary one-way ANOVA 

followed by Dunnett’s multiple comparison tests showed a significant increase in water 

intake in ampicillin treated group compared to saline treated group started on day 2 

through day 4 (p≤0.01) and on Day 5 (p<0.05). Alternatively, cefazolin treatment 
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increased water intake significantly in P rats only on day 3 (p<0.01) and day 4 (p<0.05) 

compared to saline-treated animals. Cefoperazone resulted in higher water intake on day 

2 (p<0.01), day 4 (p<0.001) and day 5 (p<0.01). Additionally, a significant main effect of 

day [F (1, 5) = 6.992, p<0.0001] and a significant day x treatment interaction [F (3, 15) = 

2.791, p=0.0010] of water intake were found using mixed ANOVA analysis (Table 3.2). 

Furthermore, ordinary one-way ANOVA followed by Dunnett’s multiple comparisons 

test measures demonstrated that ampicillin and cefazolin treatments reduced ethanol 

preference significantly as compared to saline treated group started on day 2 through day 

5. Additionally, cefoperazone treatment resulted in a significant lower ethanol preference 

started on day 2 through day 5 except day 3.  Mixed ANOVA revealed a significant main 

effect of day [F (1, 5) = 6.212, p<0.0001] and a non-significant day x treatment 

interaction [F (3, 15) = 1.623, p>0.05] of ethanol preference (Table 3.3).  However, 

ordinary one-way ANOVA followed by Dunnett’s multiple comparisons test did not 

reveal any significant effect on body weight between control and all treatment groups.  

Moreover, mixed ANOVA did not show any significant main effect of day [F (1, 5) = 

0.6930, p=0.6297] and day x treatment interaction [F (3, 15) = 0.03184, p=1.0000] of 

average body weight (Table 3.4.). 
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Table 3.1. Effects of ampicillin, cefazolin and cefoperazone treatments on ethanol 

consumption (g/kg/day) in male P rats exposed to five weeks of continuous free choice of 

ethanol and water. 

 

 Ethanol Drinking 

(g/kg/day) 

 SALINE AMPICILLIN CEFAZOLIN CEFOPERAZONE 

Baseline 5.41±0.35 5.00±0.35 4.85±024 5.40±0.38 

Day 1 3.88±0.64 3.09±0.58 2.24±0.46 2.84±0.72 

Day 2 4.93±0.51 1.31±0.08# 1.76±0.19# 1.55±0.07# 

Day 3 4.37±0.35 1.19±0.03# 1.32±0.09# 1.33±0.10# 

Day 4 4.83±0.71 1.33±0.12# 1.53±0.11# 1.57±0.22# 

Day 5 4.43±0.39 1.42±0.13# 1.70±0.21# 1.62±0.18# 

 

Significant difference between treatment groups # (p<0.0001). Data are shown as mean ± 

SEM; (n= 6 for each group). 
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Table 3.2. Effects of ampicillin, cefazolin and cefoperazone treatments on water intake 

(g/kg/day) in male P rats exposed to five weeks of continuous free choice of ethanol and 

water. 

 

 Water Intake 

(g/kg/day) 

 SALINE AMPICILLIN CEFAZOLIN CEFOPERAZONE 

Baseline 13.50±0.90 12.50±0.40 12.30±0.80 14.70±1.30 

Day 1 13.10±2.60 17.10±3.90 15.30±0.70 15.60±3.20 

Day 2 11.10±1.40 26.10±2.10** 18.60±2.70 24.50±3.60** 

Day 3 9.90±1.80 24.00±1.70** 24.90±1.50** 17.60±4.70 

Day 4 10.40±1.50 25.70±1.50** 20.60±1.50* 31.10±5.00*** 

Day 5 12.30±0.90 20.40±2.20* 17.40±1.70 23.30±2.70** 

 

Significant difference between treatment groups *(p<0.05); **(p<0.01); ***( p <0.001). 

Data are shown as mean ± SEM; (n= 6 for each group). 
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Table 3.3. Effects of ampicillin, cefazolin and cefoperazone treatments on daily ethanol 

preference (%) in male P rats exposed to five weeks of continuous free choice of ethanol 

and water. 

 

 Ethanol Preference (%) 

 

 SALINE AMPICILLIN CEFAZOLIN CEFOPERAZONE 

Baseline 29.11.5±2.77 28.52±2.26 28.78±2.72 27.68±3.53 

Day 1 25.70±6.97 24.87±12.41 12.66±2.78 26.68±13.06 

Day 2 30.30±3.85 4.88±0.46# 11.99±4.65** 8.128±2.95*** 

Day 3 31.10±5.22 4.85±0.40* 5.12±0.48* 22.64±10.98 

Day 4 30.43±4.87 4.98±0.52# 7.13±0.78# 6.45±2.48# 

Day 5 26.88±2.88 6.88±0.91# 9.92±2.57# 7.23±1.82# 

 

Significant difference between treatment groups *(p<0.05); **(p<0.01); ***(p<0.001); 

#(p<0.0001). Data are shown as mean ± SEM; (n= 6 for each group). 
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Table 3.4. Effects of ampicillin, cefazolin and cefoperazone treatments on average body 

weight in male P rats exposed to five weeks of continuous free choice of ethanol and 

water. 

 

 Average Body Weight (g /day) 

 

 SALINE AMPICILLIN CEFAZOLIN CEFOPERAZONE 

Baseline 439.3±11.0 454.3±13.9 433.3±9.8 446.1±13.5 

Day 1 451.9 ±15.8 472.4±15.2 450.0±10.0 462.7±16.6 

Day 2 452.3±14.7 476.0±15.7 449.3±9.0 461.4±17.6 

Day 3 449.3±17.1 474.2±14.6 445.1±10.6 459.0±20.2 

Day 4 447.8±19.1 475.0±14.9 452.2±8.9 453.9±22.4 

Day 5 449.8±19.0 474.4±14.4 450.6±8.8 460.7±18.3 

 

Significant difference between treatment groups. Data are shown as mean ± SEM; (n= 6 

for each group). 
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3.2.2. Effects of ampicillin on GLT-1a expression in NAc and PFC 

        Analysis of immunoblots (Fig. 3-1A) revealed a significant main effect of ampicillin 

treatment on GLT-1a expression in NAc and PFC.  Independent t-test analysis of 

timmunoblots demonstrated a significant increase in GLT-1a/GAPDH ratios (100% 

saline control-value) in NAc (p<0.05) and PFC (p<0.05) in ampicillin treated group as 

compared to saline treated group (Fig.e 3-1B).   
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Figure 3-1.  Effect ofampicillin on GLT-1a expression in NAc and PFC.   

A) Immunoblots for GLT-1a expression and GAPDH as control loading protein 

in NAc and PFC. 

B) Quantitative t-test analysis of immunoblots showed that ampicillin 

 increased significantly the % ratio of GLT-1a/GAPDH in NAc and PFC 

 as compared to saline control group (100% control-value).   

Data are shown as mean ± SEM; (n= 6 for each group); (*p<0.05). 

 

3.2.3. Effects of ampicillin on GLT-1b expression in NAc and PFC 

 

        We further investigated GLT-1b expression in NAc and PFC in ampicillin treated 

group.  Analysis of immunoblots (Fig. 3-2A) showed a significant main effect among 

ampicillin group on GLT-1b expression in both NAc and PFC.  Independent t-test 

revealed a significant increase in GLT-1b/GAPDH ratios (100% saline control-value) in 

ampicillin treated group NAc (p<0.05) and PFC (p<0.05) (Fig. 3-2B). 
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Figure 3-2. Effect of ampicillin)on GLT-1b expression in NAc and PFC.   

A) Immunoblots for GLT-1b expression and GAPDH as control loading protein in 

 NAc and PFC.  

 B) Quantitative t-test analysis of immunoblots revealed 

 that ampicillin increased significantly the % ratio of GLT-1b/GAPDH in 

 NAc and PFC as compared to saline control group (100% control-value). 

  Data are shown as mean ± SEM; (n= 6 for each group); (*p<0.05). 
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3.2.4. Effects of ampicillin on xCT expression in NAc and PFC 

        We investigated also the effect of ampicillin on xCT expression (Fig. 3-3A).  An 

independent t-test analysis of immunoblots revealed increased in xCT/GAPDH ratios in 

NAc (p<0.05) and PFC (p<0.05) in ampicillin treated group as compared to saline treated 

group (Fig. 3-3B).   
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Figure 3-3. Effect of ampicillin on xCT expression in NAc and PFC.   

A) Immunoblots for xCT expression and GAPDH as control loading protein  

in NAc and PFC.   

B) Quantitative t-test analysis of immunoblots showed that ampicillin 

 increased significantly in the expression of the % ratio of xCT/GAPDH in  

NAc and PFC as compared to saline control group (100% control-value).  

 Data are shown as mean ± SEM; (n= 6 for each group);  (*p<0.05). 

 

 

3.2.5. Effects of ampicillin on GLAST expression in NAc and PFC 

        We then determined GLAST expression in both NAc and PFC.  We did not observe 

any changes in GLAST expression between control and ampicillin treated groups in both 

NAc and PFC (Fig. 3-4A).  An independent t- test analysis did not show any significant 

effect between control and ampicillin treated groups in NAc ( p > 0.05)  and PFC  

(p >0.05) (Fig. 3-4B). 
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Figure 3-4. Effect of ampicillin on GLAST expression in in NAc and PFC.   

A) Immunoblots for GLAST expression and GAPDH as a control loading protein  

 in NAc and PFC.   

B) Quantitative t-test analysis of immunoblots showed no significant increase in  

the % ratio GLAST/GAPDH in NAc and PFC  saline control group (100% control-

value) and treatment group. Data are shown as mean ± SEM; (n= 6 for each group);  

(*p<0.05). 
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3.2.6. Effects of cefazolin and cefoperazone on GLT-1a expression in NAc  

and PFC 

 

        Immunoblots showed a significant increase in GLT-1a expression following 

treatment of both cefazolin and cefoperazone in both NAc and PFC (n=6 in each group) 

(Figure 2, 3; Upper Panel) and (Figure 3-5, 3-6; Upper Panel). As compared to saline-

treated group, independent t-test analyses of immunoblots demonstrated a significant 

increase in GLT-1a/GAPDH ratio in the NAc with cefazolin- (p<0.05) and cefoperazone- 

(p<0.05) treated groups and also in the PFC following treatment of cefazolin (p<0.05) 

and cefoperazone (p<0.05) (Figure 3-5, 3-6; Lower Panel).   
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Figure 3-5.  Effect cefazolin and cefoperazone on GLT-1a expression in NAc.   

Upper Panel) Immunoblots for GLT-1a expression and GAPDH as control loading 

                     protein in NAc  

Lower Panel) Quantitative t-test analysis of immunoblots showed that cefazolin  

                    and cefoperazone  increased significantly the % ratio of GLT-1a/GAPDH 

                       in NAc as compared to saline control group (100% control-value).  

                     Data are shown as mean ± SEM; (n= 6 for each group); (*p<0.05). 
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Figure 3-6.  Effect cefazolin and cefoperazone on GLT-1a expression in PFC.   

Upper Panel) Immunoblots for GLT-1a expression and GAPDH as control loading  

                     protein in PFC.  

Lower Panel) Quantitative t-test analysis of immunoblots showed that cefazolin  

                    and cefoperazone  increased significantly the % ratio of GLT-1a/GAPDH 

                       in PFC  as compared to saline control group (100% control-value).  

                     Data are shown as mean ± SEM; (n= 6 for each group);(*p<0.05) 
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3.2.7. Effects of cefazolin and cefoperazone on GLT-1b expression in NAc  

and PFC 

 

        Next, we further investigated GLT-1b expression in the NAc and PFC following 

treatment of cefazolin and cefoperazone. An increase in GLT-1b expression in the NAc 

and PFC were shown in both cefazolin- and cefoperazone-treated groups (n=6 in each 

group) (Figure 3-7, 3-8; Upper Panel). As normalized to GAPDH, an independent t-test 

analyses of the immunoblots demonstrated a significant increase in GLT-1b expression in 

NAc and PFC following treatment of cefazolin (p<0.05) and cefoperazone (p<0.05) as 

compared to saline-treated group (Figure 3-7, 3-8; Lower Panel).    
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Figure 3-7.  Effect cefazolin and cefoperazone on GLT-1b expression in NAc.   

Upper Panel) Immunoblots for GLT-1b expression and GAPDH as control loading 

                     protein in NAc.  

Lower Panel) Quantitative t-test analysis of immunoblots showed that cefazolin  

                    and cefoperazone  increased significantly the % ratio of GLT-1a/GAPDH 

                       in NAc as compared to saline control group (100% control-value).  

                     Data are shown as mean ± SEM; (n= 6 for each group); (*p<0.05). 
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Figure 3-8.  Effect cefazolin and cefoperazone on GLT-1b expression in PFC.   

Upper Panel) Immunoblots for GLT-1b expression and GAPDH as control loading 

                     protein in PFC.  

Lower Panel) Quantitative t-test analysis of immunoblots showed that cefazolin  

                    and cefoperazone  increased significantly the % ratio of GLT-1a/GAPDH 

                       in PFC  as compared to saline control group (100% control-value).  

                     Data are shown as mean ± SEM; (n= 6 for each group); (*p<0.05). 
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3.2.8. Effects of cefazolin and cefoperazone on xCT expression in NAc  

and PFC 

 

        Next, we tested the effect of cefazolin and cefoperazone in xCT expression, another 

important glial glutamate transporter in the brain. Western blot assay showed an 

upregulation in xCT expression in cefazolin-treated group in the NAc and PFC, while 

cefoperazone upregulated xCT expression only in the NAc (n=5-6 in each group) (Figure 

3-9, 3-10; Upper Panel). Moreover, a quantitative t-test analyses of immunoblots showed 

a significant increase in xCT/GAPDH ratio in the NAc after treatment of cefazolin 

(p<0.05) and cefoperazone (p<0. 05) as compared to saline-treated group. However, only 

cefazolin treatment increased xCT/GAPDH ratio in the PFC (p<0. 05) (Figure 3-9, 3-10; 

Lower Panel).   
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Figure 3-9.  Effect cefazolin and cefoperazone on xCT expression in NAc.   

Upper Panel) Immunoblots for GLT-1b expression and GAPDH as control loading 

                     protein in NAc.  

Lower Panel) Quantitative t-test analysis of immunoblots showed that cefazolin  

                    and cefoperazone  increased significantly the % ratio of GLT-1a/GAPDH 

                       in NAc as compared to saline control group (100% control-value).  

                     Data are shown as mean ± SEM; (n= 5-6 for each group); (*p<0.05). 
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Figure 3-10.  Effect cefazolin and cefoperazone on xCT expression in PFC.   

Upper Panel) Immunoblots for GLT-1b expression and GAPDH as control loading 

                     protein in PFC.  

Lower Panel) Quantitative t-test analysis of immunoblots showed that cefazolin  

                    increased significantly the % ratio of GLT-1a/GAPDH 

                       in PFC as compared to saline control group (100% control-value).  

                     Data are shown as mean ± SEM; (n= 6 for each group); (*p<0.05). 
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3.2.9. Effects of cefazolin and cefoperazone on GLAST expression in NAc  

and PFC 

 

        We did not observe any significant effect of cefazolin and cefoperazone treatment 

on GLAST expression using western blot assay in both NAc and PFC (n=6 in each 

group) (Figure 3-11, 3-12; Upper Panel). Additionally, an independent t-test analyses of 

immunoblots did not reveal any significant increase in GLAST/GAPDH ratio in the NAc 

and PFC in cefazolin- (p>0.05) and cefoperazone- (p>0.05) treated groups as compared 

to saline treated group (Figure 3-11, 3-12; Lower Panel). 
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Figure 3-11. Effect of cefazolin and cefoperazone on GLAST expression in in NAc.   

Upper Panel) Immunoblots for GLAST expression and GAPDH as a control loading                   

protein in NAc.   

Lower Panel) Quantitative t-test analysis of immunoblots showed no significant  

            increase in the % ratio GLAST/GAPDH in NAc as compared to 

            saline control group (100%  control-value) and treatment group. 

                      Data are shown as mean ± SEM; (n= 6 for each group); (*p<0.05).    

GLAST 

Saline             Cefazolin      Cefoperazone 

 GAPDH 
G

LA
ST

/G
AP

DH
 (%

 o
f E

th
an

ol
 S

al
in

e 
G

ro
up

)

Sali
ne

Cefa
zo

lin

Cefo
pera

zo
ne

0

50

100

150



53 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12. Effect of cefazolin and cefoperazone on GLAST expression in in PFC.   

Upper Panel) Immunoblots for GLAST expression and GAPDH as a control loading                   

protein in PFC.   

Lower Panel) Quantitative t-test analysis of immunoblots showed no significant  

            increase in the % ratio GLAST/GAPDH in PFC as compared to  

            saline control group (100%  control-value) and treatment group. 

            Data are shown as mean ± SEM; (n= 6 for each group); (*p<0.05). 
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3.3. Discussion 

        Studies from our lab have shown that treatment with ceftriaxone decreased ethanol 

intake and relapse-like ethanol drinking (Sari et al., 2011, Qrunfleh et al., 2013, Alhaddad 

et al., 2014a, Rao et al., 2015b). Additionally, we have recently shown that ampicillin, 

cefazolin and cefoperazone treatments reduced ethanol intake and upregulated in part 

GLT-1 expression in PFC and NAc (Rao et al., 2015a). However, the effects of 

ampicillin, cefazolin and cefoperazone on the expression levels of xCT, GLAST and 

GLT-1 isoforms have not been investigated.  Thus, we focused in this study to investigate 

these important proteins that have critical role in regulating extracellular glutamate. 

  

        It is well known that that ethanol consumption can lead to a marked increase in the 

extracellular glutamate concentrations in mesocorticolimbic brain regions (Kapasova and 

Szumlinski, 2008, Ward et al., 2009, Ding et al., 2012, Rao and Sari, 2012, Ding et al., 

2013). It has been reported that ceftriaxone-induced attenuation of ethanol intake and 

relapse-like ethanol drinking in male P rats is associated in part through upregulation of 

GLT-1 and its isoforms (GLT-1a and GLT-1b) in the NAc and PFC (Sari et al., 2011, 

Qrunfleh et al., 2013, Alhaddad et al., 2014a, Rao et al., 2015b). The upregulatory effects 

in GLT-1 could be associated with decrease in extracellular glutamate concentrations that 

may lead to reduction in ethanol intake. In our earlier study, we found that ampicillin, 

cefazolin and cefoperazone treatments successfully reduced ethanol consumption in male 

P rats, presumably through induction of  GLT-1 expression in NAc and PFC (Rao et al., 

2015a). As an extension of our previous work, in the present study, we report here that 
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selected β-lactam antibiotics treatment upregulated GLT-1 isoforms in the NAc and PFC, 

and conseuqenly reduced ethanol intake.  Although GLT-1a and GLT-1b are expressed 

differentially Although GLT-1a and GLT-1b are expressed differentially (Berger et al., 

2005, Holmseth et al., 2009), ampicillin, cefazolin and cefoperazone treatments found to 

increase the expression of both GLT-1 isoforms in astrocytes and neurons possibly by 

similar mechanism.  

 

        We have also investigated the effects of ampicillin in the expression of xCT, which 

is considered  as an exchanger tranporter of cystine and glutamate.  xCT has a role in 

neuroprotection by modulating glutathione supply in the brain through cystine/glutamate 

exchange (Shih et al., 2006). It has been shown that synaptic glutamate release is 

increased with downregulation of the expression of xCT.  Therefore, glutamate released 

through xCT can bind to metabotropic glutamate receptor 2/3 (mGluR2/3), and 

consequently reduced synaptic glutamate release (Shih et al., 2006). Several studies from 

our lab reported that the increases in xCT as well as GLT-1 expression levels are linked 

to the attenuation in ethanol consumption in male P rats (Alhaddad et al., 2014a, 

Alhaddad et al., 2014b, Rao and Sari, 2014, Rao et al., 2015b). In this study, we also 

tested for changes in the expression of xCT in both NAc and PFC with β-lactam 

antibiotics treatment.  It is noteworthy that previous study in our lab found that 

ceftriaxone treatment reduced ethanol intake possibly through upregulation of  xCT 

expression in the NAc, PFC, and amygdala in male P rat (Alhaddad et al., 2014a, Rao 

and Sari, 2014). Ceftriaxone also was able to attenuate relapse-like cocaine and ethanol 
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intake at least in part through upregulation of xCT expression (Knackstedt et al., 2010, 

Alhaddad et al., 2014a). It is important to note that chronic consumption of ethanol led to 

downregulation of the expression of xCT  in the NAc and PFC  (Alhaddad et al., 2014a). 

In accordance, downregulation of xCT was also observed in NAc in cocaine seeking 

animal model (Knackstedt et al., 2010). Importantly, we reported here that ampicillin and 

cefazolin has the ability to normalize the expression of xCT in both NAc and PFC. 

However, cefoperazone increased xCT expression only in the NAc.  This normalization 

of xCT may play a key factor in regulating extracellular glutamate and consequently 

contributed to the reduction in ethanol intake. 

 

        We further tested for the effect of ampicillin on GLAST expression, which is co-

localized with GLT-1 in astrocytes.  We did not observe an upregualtory effect on 

GLAST expression with β-lactam antibiotics treatments.  This effect is in accordance 

with a recent finding demonstrating that ceftriaxone treatment did not induce an 

upregulatory effect on GLAST expression (Alhaddad et al., 2014a, Rao et al., 2015b). 

Together, these findings suggest the selective upreglatory effects on xCT and GLT-1 

isoforms.   The upregulatory effects of selected β-lactam antibiotics on GLT-1 isoforms 

and xCT expression levels may play a criticle role on regulating extracellular glutamate 

concentrations in central reward brain regions.  
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        In summary, the present findings suggest that ampicillin, cefazolin and cefoperazone 

reduced alcohol intake significantly, at least in part through upregulation of xCT, GLT-1a 

and GLT-1b expression in both the NAc and PFC.  The upregulatory effects of selected 

β-lactam antibiotics on xCT and GLT-1 isoforms may normalize extracellular glutamate 

concentrations in these brain regions.  These data provide ample evidence about the 

potential therapeutic implications of β-lactam antibiotics for the treatment of alcohol 

dependence.   

 

        A worth mentioning that one of the adverse effects associated with the use of 

cefoperazone but not ampicillin and cefazolin is the disulfiram like-reaction (Fromtling 

and Gadebusch, 1983, Rao et al., 2015a), which means that the drug could act centrally in 

the brain and well as peripherally in liver in reducing of alcohol intake. Cefoperazone 

could work through several mechanisms, apart from modulating the glutamatergic 

neurotransmission, it may inhibit the enzyme aldehyde dehydrogenase in the liver, which 

could offer another possible mechanism for cefoperazone effect on alcohol consumption 

(Rao et al., 2015a) 

 

        It is important to note that ampicillin is a drug that can be given orally, thus it  

has clinical relevance for its use in alcohol dependence.  Studies are warranted to  

determine the effects of oral administration of this compound on ethanol intake  

as well as on the expression levels of xCT, GLT-1, GLT-1 isoforms and GLAST. 
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Chapter 4 

 

Effects of Cefoperazone Treatment on Relapse-

Like Ethanol Intake 

 

4.1 Introduction 

 

        Glutamate is taken up into astrocytes by specific transporters. There are two major 

types of glutamate transporters that normally transport glutamate into synaptic vesicles. 

These transporters called the Excitatory Amino Acid Transporters (EAATs) and the 

Vesicular Glutamate Transporters (VGLUTs) (Shigeri et al., 2004, Thompson et al., 

2005). Glutamate transporter-1 (GLT-1, its human homolog is excitatory amino acid 

transporter-2) is considered the major transporter in astrocytes. It transports majority of 

extracellular glutamate into astrocytes. It is responsible for removing high extracellular 

glutamate concentrations to below the toxic level (Tanaka et al., 1997). Cystine-

glutamate antiporter (xCT) is considered the regulator for glutamate neurotransmission. It 

exchanges cysteine which is found outside the cell for intracellular glutamate (Baker et 
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al., 2002).  

 

        Glutamine transmission is involved in alcohol addiction and drug abuse. It is 

noteworthy to mention that continuous and relapse-like ethanol drinking affect the 

glutamine-glutamate system (Backstrom and Hyytia, 2004, Besheer et al., 2010, Rao and 

Sari, 2012). Chronic alcohol consumption can lead to alcohol dependence partially by 

increasing extracellular glutamate concentrations [for review see ref. (Rao and Sari, 

2012)]. Ceftriaxone decreased cue to cocaine-seeking behavior  and attenuated relapse – 

like ethanol intake, in part, through upregulation of  GLT-1 and xCT expression levels 

(Sari et al., 2009, Knackstedt et al., 2010, Trantham-Davidson et al., 2012, Qrunfleh et 

al., 2013). Moreover, it has been shown that xCT played an important role in relapse-like 

cocaine behavior, relapse-like ethanol intake and also in nicotine self- administration 

(Knackstedt et al., 2009, Knackstedt et al., 2010, Alhaddad et al., 2014a). In addition, it 

has been reported that glutamate uptake is restored following treatment of ceftriaxone by 

increasing the expression of xCT in reinstatement of cocaine-seeking behavior animal 

model (Knackstedt et al., 2010, Trantham-Davidson et al., 2012). Ceftriaxone did not 

upregulate  GLAST in relapse like-ethanol drinking in P rats (Alhaddad et al., 2014a). 

Therefore, we have investigated the effects of cefoperazone on ethanol intake in male P 

rats. 
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4.2 Results  

4.2.1 Effect of Cefoperazone on relapse-like ethanol intake in male P rats  

        Two way ANOVA with repeated measures followed by Bonferroni multiple 

comparisons demonstrated a significant reduction on ethanol intake in cefoperazone-

treated group compared to saline-treated group on day 2 to day 7 (* p≤ 0.05; ** p≤ 0.01).  

Moreover, mixed ANOVA demonstrated a significant main effect of day [F (1, 7) = 

4.070, p≤ 0.001] and a non-significant day x treatment interaction [F (1, 7) = 1.803, 

p>0.05] of ethanol intake (Fig. 1A).   
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Figure 1. (A) Effects of cefoperazone treatment on ethanol consumption (g/kg/day) in 

male P rats exposed to five weeks of continuous free choice of ethanol and water.  Two 

way ANOVA followed by Bonferroni multiple comparisons revealed that cefoperazone 

decreased significantly ethanol consumption from day 2 through day 7 compared to 

control saline vehicle group. Data are shown as mean ± SEM; (n= 6 for each group);  

(* p≤ 0.05; ** p≤ 0.01). 
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4.2.2 Effects of cefoperazone on water intake in male P rats 

 

        Two way ANOVA with repeated measures followed by Bonferroni multiple 

comparisons showed a significant increase in water intake in cefoperazone-treated group 

compared to saline treated group on day 1 to day 7.  Additionally, a significant main 

effect of day [F (1, 7) = 4.090, p≤ 0.001] and a significant day x treatment interaction [F 

(1, 7) = 6.279, p≤0.0001] of water intake were found using mixed ANOVA analysis (Fig. 

1B). 
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Figure 1. (B) Effects of cefoperazone treatment on water consumption (g/kg/day).   

Two way ANOVA followed by Bonferroni multiple comparisons showed  

cefopeerazone increased significantly water intake from day 1 through day 7  

as compared to control saline vehicle group. Data are shown as mean ± SEM; 

 (n= 6 for each group); (* p≤ 0.05; **p≤0.01; ***p≤0.001; #p≤0.0001). 
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4.2.3 Effects of cefoperazone on daily ethanol preference (%) in male P rats 

 

        Repeated measures demonstrated that cefoperazone treatment reduced ethanol 

preference significantly as compared to saline-treated group started on day 1 to day 7 

(p<0.0001).  Mixed ANOVA revealed a significant main effect of day [F (1, 7) = 2.694, 

p≤ 0.05] and a significant day x treatment interaction [F (1, 7) = 5.637, p≤0.0001] of 

ethanol preference (Fig. 1C). 
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Figure 1. (C) Effects of cefoperazone treatment on ethanol preference (%).  

 Two way ANOVA followed by Bonferroni multiple comparisons showed  

cefoperazone decreased significantly the % of ethanol preference from day 1  

through day 7 as compared to control saline vehicle group.  

Data are shown as mean ± SEM; (n= 6 for each group);  

(# p≤0.0001). 
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4.2.4 Effects of cefoperazone on average body weight in male P rats 

 

        Two-way ANOVA with repeated measures did not reveal any significant effect on 

body weight between control and treated groups.  Moreover, mixed ANOVA showed a 

significant main effect of day [F (1, 7) = 12.51, p≤0.0001] and day x treatment interaction 

[F (1, 7) = 3.786, p≤ 0.01] of average body weight (Fig. 1D). 
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Figure 1. (D) Effects of cefoperazone treatment on body weight (g/day).  

Two way ANOVA followed by Bonferroni multiple comparisons demonstrated  

no significant effect on body weight between control and treatment groups.  

 Data are shown as mean ± SEM; (n= 6 for each group);  
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4.3 Discussion 

 

        The effect of cefoperazone treatment on relapse to alcohol in P rats was examined in 

this study.  

 

        Previous studies from our lab demonstrated that β-lactam antibiotic, ceftriaxone, 

decreased continuous ethanol intake and relapse-like alcohol intake (Sari et al., 2011, 

Qrunfleh et al., 2013, Alhaddad et al., 2014a). In this study, we found that cefoperazone 

treatment reduced relapse-like ethanol intake significantly in male P rats starting on day 2 

through day 7. We also reported that cefoperazone treatment increased water intake 

significantly from day 1 through day 7. Therefore, the increase in water intake could be a 

compensatory mechanism for decreasing alcohol consumption. However, we did not 

observe any significant changes in body weight following treatment of cefoperazone as 

compared to saline treated group in male P rats. Our findings  are in accordance with a 

recent findings revealing that ceftriaxone treatment reduced relapse- like ethanol intake, 

increased water intake and did not change body weight of male P rats (Qrunfleh et al., 

2013, Alhaddad et al., 2014a). 

 

        Rothstein and colleagues found that cefoperazone upregulated GLT-1 expression 

(Rothstein et al., 2005). It has been reported that ceftriaxone attenuated continuous and 

relapse-like ethanol drinking in male P rats, in part, through upregulation of GLT-1 levels 

in NAc and PFC regions (Sari et al., 2011, Qrunfleh et al., 2013, Rao and Sari, 2014, Rao 

et al., 2015b). Our lab reported recently that GLT-1 isoforms (GLT-1a and GLT-1b) may 
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have an important role in the attenuation of relapse-like ethanol consumption following 

treatment of ceftriaxone (Alhaddad et al., 2014a).  

 

        xCT is an important glial protein, which plays a role in the exchange between 

intracellular glutamate with extracellular cysteine. Several studies demonstrated that 

ceftriaxone attenuates alcohol intake in male P rats at least in part by increasing xCT and 

GLT-1 expression levels in mesocrticolibic brain regions (Alhaddad et al., 2014a, Rao 

and Sari, 2014, Rao et al., 2015b). A previous study in our laboratory found that 

ceftriaxone treatment reduced ethanol intake, in part, through upregulation of xCT 

expression in the NAc, the PFC, and amygdala in male P rat (Rao and Sari, 2014). 

Ceftriaxone also attenuated relapse-like cocaine and ethanol intake at least in part by 

upregulation of xCT in rats (Knackstedt et al., 2010, Alhaddad et al., 2014a).  

 

        In summary, we showed here that cefoperazone treatment reduced relapse-like 

ethanol consumption and preference in male P rats. We will further test the effect of 

cefoperazone on GLT-1, xCT and GLAST expression levels in mesocorticolimbic brain 

regions to determine whether the behavioral effects are associated in part with 

upregulation of GLT-1 and xCT expression levels.  
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