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ABSTRACT 

Diabetic peripheral neuropathy (DPN), a common complication of diabetes, involves 

nerve damage in the arms and legs. Segmental demyelination is one of the basic patterns 

observed in the pathology of DPN. Demyelinating neuropathies are those in which the 

Schwann cells (SCs) are primarily affected and these undergo substantial degeneration in 

diabetic neuropathy. Hence, it is of pertinence to investigate possible mechanisms which 

may contribute to the demyelination of SCs and the progression of DPN.  To address this 

issue, this project aims to generate three different bi-transgenic mouse models that 

provide for the SC-specific expression of several transgenes that can be induced by the 

addition of the antibiotic doxycycline. 

For temporal, spatial and cell-specific control of transgene expression in mice, the above 

mentioned transgenes were constructed based on the Tet-On gene regulation system. In 

order to yield spatially regulated transgene expression, rtTA (reverse tetracycline 

transactivator) was placed under the control of the SC-specific promoter for 2‟, 3‟-cyclic 

nucleotide 3‟-phosphodiesterase. Placement of genes under the control of the rtTA- Ptight 

system has been shown to display excellent dose-response characteristics, which allows 

not only a qualitative off-on transition but also a fine tuning of gene expression and the 

study of quantitative aspects of gene activity. The above mentioned transgenes 

constructed in this project were validated in Hek293T cells to ensure that they expressed 

in a tight and highly inducible manner. The transgene transfected cell lines when treated 

with doxycycline showed a dose-dependent expression of the gene of interest. Maximum 

gene induction was observed when treated with 0.5μg/ml doxycycline. In the absence of 

doxycycline, almost no or minimal gene expression was observed. The transgenes were 
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then excised out of the vector backbone for pronuclear microinjection. Once the 

transgenic mice are born, identified and validated, they shall be used for diabetic 

peripheral neuropathy research in the laboratory. 
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I) INTRODUCTION 

1.1) Mouse Transgenesis 

                         An animal that gains new genetic information from the addition of foreign 

DNA is described as transgenic. The first transgenic animals were mice created by 

Rudolf Jaenisch in 1974[1]. Rudolf Jaenisch successfully managed to insert foreign DNA 

into the early-stage mouse embryos, where the resulting mice carried the modified gene 

in all their tissues[1]. Subsequent experiments in which leukemia genes were injected 

into early mouse embryos using a retroviral vector proved that the genes integrated not 

only to the mice themselves, but also to their progeny[2]. Transgenic animals have been 

produced in a variety of species with both commercial and scientific value[3]. 

Commercially they can be used for the preparation of recombinant proteins, protection of 

animals against disease, and introduction of new genetic traits into herds[2]. The 

generation of transgenic animals is essential for the in vivo study of gene function during 

development, organogenesis and aging[3]. It also permits the evaluation of therapeutic 

strategies in models of human diseases, as well as the investigation of disease progression 

in a manner not possible in human subjects[3].  

                        Mice in particular offer the advantages of being relatively low in cost and 

having a short gestation time. Moreover, a well developed set of technologies exist for 

introducing genetic modifications into mice. The availability of genetically inbred strains 

and the relatively close evolutionary relationship of mice to humans are additional 

advantages[3]. Therefore, transgenesis in mice has been widely in use. 

                        The discovery of new therapies for neurological disorders is predicated on 

the use of transgenic mice models, both to identify new therapeutic targets and to perform 

http://www.transgenicmouse.com/
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preclinical trials of drugs before using them in patients[4]. Genetically engineered mice 

that recapitulate some of the features of human diseases can provide important new 

information about the neurobiology of these diseases[5].  

 

1.2) Generation of Transgenic mice  

                        The two most commonly used techniques for producing transgenic mice 

involves either the pronuclear injection of transgenes into fertilized oocytes or embryonic 

stem cell-mediated gene targeting[3]. Using embryonic stem cell technology, genetic 

modifications are first made in the embryonic stem (ES) cells. ES cell lines are derived 

from early-stage mouse embryos and can be maintained indefinitely in vitro in an 

undifferentiated state[3]. However, when injected back into an early-stage mouse embryo, 

they retain the capacity to mix with the endogenous cells of the embryo and contribute to 

the formation of all tissues in the developing mouse, including the germ cells[3] . Using a 

targeting vector that consists of a modified version of the endogenous gene, the gene of 

interest is integrated into the genome of the ES cells by homologous recombination. For 

efficient recombination to occur the targeting vector should include >3 kb of DNA 

homologous to the endogenous mouse gene[3]. Targeting vectors are also fitted with a 

gene conferring drug resistance or sensitivity for the selection of recombinant ES cells. 

Positive selectable markers like neomycin phosphotransferase (neo) resistance allow 

selection of ES cell clones that have incorporated the targeting vector. Figure 1 illustrates 

homologous recombination resulting in gene knockout. 
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Figure 1: Homologous recombination 

ES cells containing the recombined gene are then injected into a blastocyst-stage mouse 

embryo from which a chimeric mouse is generated. The resulting chimeras are bred and 

if successful integration of the ES cells into the germ line has occurred, the genetic 

modification will be propagated as part of the mouse genome creating stable lines 

harboring the specific genetic modification[6-7]. In contrast to pronuclear injection where 

multiple copies of the transgene insert randomly in the genome, the native mouse gene is 

modified in its normal chromosomal location using ES cell-based methods [3].  

Pronuclear injection 

                       Gordon et al. (1980) first described the introduction of a foreign gene into 

mice using pronuclear injection into oocytes. This approach has since been widely 

employed to study the molecular and cellular functions of many genes[8].  

                        Transgene construction: When using pronuclear injection, a plasmid is 

constructed in which the gene/cDNA of interest is placed under the control of a 

heterologous promoter, whose choice depends upon where and when it is desired that the 

transgene be expressed. For a protein to be expressed, the cDNA must contain a 

translational start codon (ATG) with an upstream Kozak sequence [GCCGCC (G/A) NN] 
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to provide for ribosomal recognition of the mRNA start site and an in-frame translation 

stop codon (UGA, UAG, UAA) for translational termination[9]. Inclusion of an intron at 

the 5‟ or 3‟ end of the transgene allows splicing of the transgene[3]. Splicing generally 

results in more stable mRNAs and more efficient RNA translocation from the nucleus to 

the cytoplasm, which typically leads to better transgene expression[3]. Naturally 

occurring introns such as the simian virus 40 (SV40) intron or the rabbit β-globin intron, 

as well as artificial introns, can be used. In addition, eukaryotic transcriptional stop 

signals that include the poly (A)-addition sequence (AAUAAA) are usually positioned at 

the 3‟ end of the protein translation sequence. Termination sequences widely used 

include those from SV40, bovine growth home (BGH), and human growth hormone 

(HGH)[10]. Enhancer sequences are genetic control elements that act in position- and 

orientation-independent manners to control the level and pattern of gene expression[3]. 

Cell type specific expression of a transgene may be controlled by the inclusion of 

appropriate enhancer sequences. In order to prevent vector sequences from interfering 

with transgene expression, the transgenic cassette is typically excised from the plasmid 

backbone for microinjection[3]. 

                        Pro-nuclear DNA micro-injection is the oldest and most common 

method for transgenic mouse creation. A solution of the transgene is injected into 

fertilized oocytes with a microsyringe under a microscope[11]. These micro-injected 

oocytes are then transplanted in a surrogate mother. At birth the newborn are then tested 

for the presence of the transgene.  
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Figure 2: Pronuclear microinjection[11]. 

The foreign DNA integrates randomly and usually in the form of concatemers containing 

multiple copies of the original fragment (~70–100 kb). As there is no corresponding 

allele on the homologous chromosome opposite the integration site, these mice are most 

appropriately referred to as „„hemizygous‟‟ rather than „„heterozygous‟‟[3]. The number 

of integrated transgenes (the transgene copy number) is generally inversely proportional 

to fragment size. Therefore, with larger DNA fragments, fewer copies will typically 

integrate. Due to the random nature of transgene integration following pronuclear 

microinjection, position site-dependent effects may alter transgene expression. These 

effects may produce transgene silencing, modify the cell and tissue specificity of the 

transgene or affect overall level of expression.  

                       Inclusion of insulator sequences can minimize insertion site effects. 

Chromatin insulator elements are DNA sequences that together with their binding 

proteins block interactions between adjacent chromatin domains. These elements 

establish genomic barriers that protect DNA sequences from the effects of neighboring 

sequences[3]. Among the insulator sequences that have been studied, the 5‟HS4 chicken 
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β-globin (a constitutive DNAse I-hypersensitive site 5‟ of the chicken beta-globin locus) 

and the mouse tyrosinase locus control region (LCR) insulator elements have both been 

shown to reduce the variability of transgenic expression when introduced either 5‟, or 5‟ 

and 3‟ relative to heterologous transgenes[12-14]. 

                        Inducible transgene expression: In most gene therapies the transgene is 

delivered under the control of a promoter that allows constitutive expression[15]. In these 

cases, no control on the level or the timing of transgene expression can be exerted. 

However, there are numerous cases in which controlling the transgene expression "from 

outside" would be preferable[15]. For instance, if high levels of the transgene are toxic, 

quantitative control of its expression should prevent adverse side effects. Moreover, if the 

window of action of the transgene is narrow, temporal control could allow delivery of the 

product at the right moment[15]. The study of gene function in complex genetic 

environments such as mammalian cells would greatly profit from systems that would 

allow stringent control of the expression of individual genes[16]. Ideally, such systems 

would not only mediate an "on/off" situation of gene activity but would also permit 

limited expression at a defined level[16]. Attempts to control gene activity by various 

inducible eukaryotic promoters responsive to, for example, heavy metal ions[17-18], heat 

shock[16], or hormones have generally suffered from leakiness of the inactive state. In 

search of regulatory systems that do not rely on endogenous control elements, Gossen 

and Bujard developed the tet regulatory system.  
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1.3) Tet regulatory system 

                        This system is based on the regulatory elements of the Tn 10-specified 

(transposable element) tetracycline-resistance operon of E. coli[19]. In E. coli, the 

tetracycline repressor (tetR) is inactivated by the interaction with tetracycline. Due to this, 

it is unable to bind to the tet operator sequences (tetO) located within the promoter region 

of the operon. This leads to the transcription of the genes of the tetracycline resistance 

operon. In the absence of tetracycline, tetR blocks transcription of these genes by binding 

to the tet operator (tetO) sequences. The design of the "Tet-on" and "Tet-off system is the 

fruit of Dr. Gossen and his colleagues[16, 20]. These systems have two critical 

components; 1) the response plasmid containing the gene of interest and the tetracycline 

response element (TRE); 2) the regulatory protein based on tetR. 

                         The response plasmid expresses the gene of interest under the control of 

TRE. The TRE consists of seven direct repeats of a 42bp sequence containing the tetO 

(tetracycline operator sequences), located just upstream of the minimal CMV promoter 

(PminCMV). PminCMV lacks the strong enhancer elements normally associated with the CMV 

immediate early promoter[21]. As these enhancer elements are missing, there is low 

background expression of the gene of interest from the TRE in the absence of binding by 

the tTA or the rtTA[21]. 

                         In the Tet-off system, the 37-kDa regulatory protein is a fusion of amino 

acids 1-207 of tetR and the C terminal (127a.a.) of the Herpes simplex virus VP16 

activation domain[22]. The VP16 domain converts the tetR from a transcriptional 

repressor to a transcriptional activator, and the resulting hybrid protein is known as the 

tetracycline-controlled transactivator (tTA)[21]. Doxycycline interacts with tTA and 
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inactivates it (tetR inactivation). In the absence of doxycycline, tTA is capable of binding 

to TRE. Being a transactivator, it interacts with TRE and helps transcribe the gene of 

interest only after the removal of doxycycline (Figure 3a). 

                       The Tet-on system is similar to the Tet-off system, but the regulatory 

protein is based on a “reverse” tetracycline repressor (rtetR) which was created by four 

amino acid changes in tetR[20] (Glu
71→Lys

71
, Asp

95→Asn
95

, Leu
101→Ser

101
, and Gly

102

→Asp
102

).  The resulting hybrid protein after the addition of the VP16 domain is called 

the reverse tetracycline transactivator (rtTA). Due to the amino acid changes in tTA, the 

resultant rtTA can bind the TRE only in the presence of doxycycline. Thus, rtTA interacts 

with TRE and causes gene transcription in the presence of doxycycline (Figure 3b). 

                        The pTRE-Tight vector series (Clontech) used in this study contains a 

modified TRE (TREmod) upstream of an altered minimal CMV promoter (PminCMV∆), 

resulting in further reduced basal expression of the gene of interest[21]. pTRE-Tight can 

fully minimize background expression  in certain cell lines, and is especially useful in 

cases where background expression is unacceptable[21]. Thus, when the cells contain the 

two components of this system; the regulatory plasmid (containing the rtTA or the tTA) 

and the response plasmid (gene of interest under the control of TRE), the gene of interest 

is only expressed upon binding of the rtTA or tTA to the TRE.  

                        pTet-On Advanced expression system: The pTet-On-Advanced vector 

(Clontech) expresses an improved version of the reverse tetracycline-controlled 

transactivator protein (rtTA), called rtTA-Advanced (Figure 3c). It is more sensitive to 

doxycycline (Dox) and yields lower background expression than the original rtTA[21]. 

The rtTA-Advanced protein is a fusion of amino acids 1-207 of the mutant tetracycline-
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repressor (rtetR) and 39 amino acids containing three minimal “F”- type transcriptional 

activation domains from the VP16 protein of the herpes simplex virus[21]. It is fully 

synthetic, lacks cryptic splice sites, and is codon optimized for stable expression in 

mammalian cells[21].  

 
                     Figure 3a[21]. 
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                                    Figure 3b[21]. 

Figure 3: Tet regulatory system 

 

                                    Figure 3c[21]. 

Figure 3a and 3b are schematics of gene regulation in the Tet-Off and Tet-On Systems 

respectively. Figure 3c is the vector map of the pTet-On Advanced vector provided by 

Clontech. 
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Tet-Off vs Tet-On Systems:  

                        When properly optimized, both systems give tight on/off control of gene 

expression, regulated dose-dependent induction with similar kinetics of induction, and 

high absolute levels of gene expression[21]. Thus, for most purposes, there is no inherent 

advantage of using one system over the other[21]. With the Tet-Off system, it is 

necessary to keep tetracycline (Tc) or doxycycline (Dox) in the medium to maintain the 

native (off) state. Due to the relatively short half-lives of Tc and Dox, one must add them 

to the medium at least every 48 hours to suppress the expression of the gene of interest. 

Conversely, in the Tet-On system, Dox is added to the medium only when induction is 

required. 

                       The Tet-On system is only responsive to Dox, not Tc [20]. In contrast the 

Tet-Off systems respond equally well to either Tc or Dox[21]. Dox has been 

recommended for all Tet Systems in part because a significantly lower concentration of 

Dox is required for complete activation or inactivation (0.01-1μg/ml Dox vs 1-2 μg/ml 

Tc)[21]. Moreover, Dox has a longer half-life (24 hours) than Tc (12 hours)[21].  

 

1.4) Analysis of transgenic mice 

                        Genomic DNA isolated from a small piece of tail or ear tissue is used for 

the identification and analysis of transgenic mice. The analysis must establish the 

presence of the transgene, the zygosity, the transgene copy number, and whether 

transgene rearrangement or deletion has occurred[3]. Polymerase chain reaction (PCR) 

and/or Southern blotting can be used to detect the presence of the transgene. Transgene 

copy number can be determined using Southern blotting or real-time quantitative PCR 
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(qPCR) based assays. Southern blotting can also be used to detect major rearrangements 

of the transgene. Moreover, fluorescence in situ hybridization (FISH) can be used to 

microscopically visualize transgenic integration. This technique allows detection of 

transgenic animals[23], determination of the chromosomal integration site[24], the local 

chromatin structure, and the effect of the integration site on gene expression[25].  

                         For the next level of analysis, quantitative RT-PCR (qRT-PCR) is usually 

the technique of choice. It helps to determine, the pattern and level of transgene 

transcription or, the absence of expression in animals in which a gene target has been 

silenced or deleted[3]. Finally, characterization should include analysis of the protein 

product and its level of expression, which can be correlated with any phenotype that the 

transgenic mouse exhibits[3]. Western blotting, enzyme-linked immunosorbent assays 

(ELISA), radioimmunoassay (RIA), and immunohistochemistry are some of the 

techniques that could be used for the above.  

 

1.5) PROJECT OUTLINE 

                       Aim: To generate three different bi-transgenic mouse models for diabetic 

neuropathy research.  

                      Summary: The transgenes were constructed based on the Tet-On gene 

regulation system. Each model is represented by two transgenes; the regulatory transgene 

and the response transgene. The regulatory transgene contains the rtTA-advanced cDNA 

under the control of the promoter for 2‟, 3‟-cyclic nucleotide 3‟-phosphodiesterase 

(CNPase), which ensures the transgene‟s expression in myelinating Schwann cells. The 
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response transgene contains the gene of interest under the control of the Ptight Tet-

responsive promoter (Clontech).  

1)      Cnpase-rtTA;   Ptight -DN-ErbB4  

2)      Cnpase-rtTA;   Ptight -dn-Ubc9 

3)      Cnpase-rtTA;   Ptight -Cre 

 

                        The above transgenes are discussed in more detail in the ensuing sections. 

In order to validate the expression of the transgene pairs, these were tested on cell lines. 

The transgene transfected cell lines when treated with doxycycline showed a dose-

dependent expression of the gene of interest. Maximum gene induction was observed 

when treated with 0.5μg/ml doxycycline. In the absence of doxycycline, almost no or 

minimal gene expression was observed. In vitro, the transgenes expressed in a tight and 

highly inducible manner.  

                        The transgenes were excised out of the vector backbone for pronuclear 

microinjection. In order to genotype the transgenic mice, when born, PCR conditions 

were standardized using the primers designed against the transgenes.  

 

1.6) Diabetic Peripheral Neuropathy 

                       Peripheral neuropathy, also called distal symmetric neuropathy or 

sensorimotor neuropathy, is the nerve damage in the arms and legs[26]. Diabetic 

peripheral neuropathy (DPN) is a common complication of diabetes[27]. About 60% to 

70% of all people with diabetes will eventually develop peripheral neuropathy, although 

not all suffer pain[26]. Symptoms of peripheral neuropathy may include 

 numbness or insensitivity to pain or temperature  

 a tingling, burning, or prickling sensation  
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 sharp pains or cramps  

 extreme sensitivity to touch, even light touch  

 loss of balance and coordination  

                      Although hyperglycemia is the definitive cause of DPN, the vascular, glial, 

and neuronal damage that underlies the progressive axonopathy in DPN has a complex 

biochemical etiology involving oxidative stress, protein glycation, protein kinase C 

activation, polyol synthesis, and the hexosamine pathway[27]. 

                     The pathology of peripheral neuropathy follows three basic patterns: 

Wallerian degeneration, distal axonopathy, and segmental demyelination[28]. 

Demyelinating neuropathies are those in which the Schwann cells (SCs), which form 

myelin, are primarily affected and migrate away from the nerve[28]. This process causes 

the insulating myelin of axon segments to be lost, and conduction of nerve impulses 

down the axon is blocked. Though demyelination occurs in human neuropathy, it is not a 

hall mark of neuropathy in rodents[29]. Thus, it is important to study the mechanisms 

affecting myelination, to throw light on the pathophysiological progression of DPN. Our 

strategy has been to use the dominant negative transgenes, with SC specific expression, 

to investigate the role of these target genes in DPN. 

                         The following sections shall describe the CNPase promoter and the 

dominant negative constructs. 

 

1.7) 2’,3’-cyclic nucleotide 3’-phosphodiesterase 

                       The enzyme 2‟,3‟-cyclic nucleotide 3‟-phosphodiesterase is an 

oligodendroglial protein comprising 4-5% of the total protein of isolated CNS myelin[30]. 
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It is named for its ability to catalyze the phosphodiester hydrolysis of 2',3'-cyclic 

nucleotides to 2'-nucleotides, though a cohesive understanding of its specific physiologic 

functions are still ambiguous[31]. CNPase's catalytic core consists of three alpha-helices 

and nine beta-strands[32].  

                       CNPase is found mainly in the central nervous system of vertebrates, 

especially of amphibia and higher vertebrates[33]. It is the first of the major myelin-

related proteins to appear in the developing brain[34]. The deposition of this protein in 

brain parallels the developmental accumulation of myelin and thus has served as a useful 

biochemical marker for myelin membrane in vitro[35-37]. It is relatively abundant in 

myelinating oligodendrocytes and Schwann cells [38-39] and is found to be localized in 

the cytoplasm of non-compact myelin[31]. It is also present at low levels in some other 

non-neural tissues, notably, lymphoid tissues and photoreceptor cells[38-39]. 

                      Several functional studies have suggested possible functions of CNPase. 

Isoprenylation of rat CNPase demonstrated that the C-terminal domain of CNPase is 

important for membrane binding and localization[40]. Overexpression of CNPase in 

transgenic mice induced aberrant myelination[41]. CNPase has been implicated in several 

diseases: Down‟s syndrome[42], Alzheimer‟s disease[42-43], and multiple sclerosis[44]. 

Recent studies on CNPase-knockout mice revealed that disruption of the CNPase gene 

causes hydrocephalus and premature death[45] 

                      There are two isoforms of this protein: CNPase1 (46 kDa) and CNPase2 (48 

kDa)[46]. CNPase2 differs structurally from CNPase1 by having a 20-amino acid 

extension at the N-terminus[47-49]. Molecular genetic studies have shown that the two 

CNPase isoforms are encoded by a single CNPase gene[48, 50]. Analysis of the structure 
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of CNPase cDNAs and genomic regions from rat, mouse, bovine, and human suggest that 

the overall organization of the gene is very similar in all species[48-49, 51-52]. The gene 

is composed of four exons[46]. Two AUG codons responsible for the translation 

initiation of CNPase2 and CNPase1 polypeptide isoforms are located in the first and 

second exons, respectively. Separate promoter regions control the expression of CNPase1 

and CNPase2 transcripts[46]. The CNPase1 mRNA (2.6 Kb) is transcribed from the 

proximal promoter (P1 in Figure 4) and contains only the open reading frame for 

CNPase1 protein[46]. Transcription from the distal promoter (P2 in Figure 4), followed 

by an additional splicing event within the non-coding region of exon 1, produces the 

CNPase2 mRNA (2.4 Kb). The CNPase2 mRNA contains both AUG initiation codons 

and has the coding capacity for the translation of both CNPase isoforms (Figure 4). 

 

                         Figure 4. Alternative splicing of exon 0 to exon 1 in the CNPase gene[46].             

                      

                         Findings suggest that the CNPase promoter could be a valuable tool for 

targeting expression of other heterologous genes in the CNS for the purpose of studying 

brain development or for developing expression systems in gene therapy [53]. Transgenic 

mice are one of the best overall gene function assay systems for the characterization and 
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identification of regulatory elements[53]. This approach was used to characterize the 

properties of the CNPase promoter.  

 

 

 

 
 

Figure 5: Structure of the CNPase gene and the CNPase-lacZ transgene 

construct[53]. 

 

                           Shown above is the structure of the CNPase gene and the CNPase-lacZ 

transgene construct. The relevant restriction endonuclease sites are indicated as XbaI (X), 

HindIII (H), EcoRI (E), and KpnI (K). P1 and P2 indicate the two TATA-box sequences 

of CNPase1 and CNPase2 promoters, respectively[53]. Solid boxes are common coding 

regions of both CNPase1 and CNPase2; open boxes are noncoding regions; hatched 

boxes contain the sequence corresponding to the 20–amino acid extension at the N-

terminus of CNPase2[53]. The XbaI site at the leftmost end in Figure 5 is 4kb upstream 

from the cap site of CNPase1. The sequence between this XbaI site and the HindIII site in 

exon1 contains both CNPase1 and CNPase2 promoter core elements[53]. Linking the 

4kb CNP promoter sequence  
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lacZ reporter gene (along with the SV40 polyadenylation signal) downstream of the 4kb 

promoter sequence generated the CNPase-lacZ transgene construct[53].  

                        It has been demonstrated that the CNPase-lacZ fusion gene contains 

sufficient information to allow spatial and temporal regulation of lacZ expression in a 

manner similar to endogenous CNPase expression[53]. CNPase promoter driven lacZ 

expression is shown to be strongest in neural tissues; in non-neural tissues, only testis and 

thymus are reported to have low levels of expression[53]. Moreover, it has been 

demonstrated that in the brain, the CNPase-driven lacZ expression is strongest in the 

oligodendrocytes[53]. The distribution and the level of transgene expression in these 

transgenic mice agree well with the level of endogenous CNPase activity[53].  

                         The transgene constructs developed in this project have incorporated the 

CNPase promoter to drive the expression of two dominant negative genes, namely; DN-

ErbB4 and dnUbc9 

 

1.8) DN-ErbB4 

                       The ErbB protein family or epidermal growth factor receptor (EGFR) 

family is a family of four structurally related receptor tyrosine kinases[54] namely: 

 ErbB-1, also named epidermal growth factor receptor (EGFR)  

 ErbB-2, also named HER2 in humans and neu in rodents  

 ErbB-3, also named HER3 and  

 ErbB-4, also named HER4  

                        All the above family members have in common an extracellular ligand-

binding domain, a single membrane spanning region and a cytoplasmic protein tyrosine 

http://en.wikipedia.org/wiki/Receptor_tyrosine_kinase
http://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
http://en.wikipedia.org/wiki/HER2
http://en.wikipedia.org/wiki/HER2/neu
http://en.wikipedia.org/wiki/ERBB3
http://en.wikipedia.org/wiki/Her_4
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kinase domain[55]. A family of ligands (EGF-related peptide growth factors) bind the 

extracellular domain of ErbB receptors leading to the formation of both homo- and 

heterodimers[55]. Dimerization consequently stimulates the intrinsic tyrosine kinase 

activity of the receptors and triggers autophosphorylation of specific tyrosine residues 

within the cytoplasmic domain. These phosphorylated residues serve as docking sites for 

signaling molecules involved in the regulation of intracellular signaling cascades[55]. 

Ultimately, downstream effects on gene expression determine the biological response to 

receptor activation. 

                       The neuregulins (NRGs 1–4) have been identified as a family of EGF-

domain containing molecules that serve as ligands for the ErbBs[56-65]. In the central 

nervous system (CNS), NRG1/ErbB signaling has been implicated in a broad range of 

roles, including myelination, neuronal migration, axonal pathfinding, and synaptic 

function[66-68]. Activation of ErbB receptors through tyrosine phosphorylation has been 

shown to regulate cell proliferation, migration and differentiation in different neural 

systems[69-71]. The involvement of ErbB signaling in the above mentioned biological 

processes makes it important to explore this signaling pathway further.  

                       In order to elucidate the role of ErbB signaling, and to determine whether 

the disruption of this pathway produces defects related to disease, a construct containing 

a truncated version of the ErbB4 receptor has been generated. This dominant negative 

ErbB4 receptor (DN-ErbB4) lacks most of the intracellular domain, including the 

tyrosine kinase domain and the tyrosine phosphorylation sites[72]. These domains and 

sites have been replaced by a FLAG epitope tag[72]. The protein expressed by the DN-

ErbB4 construct is ~130kDa[72]. This construct blocks all neuregulin signaling by 
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binding NRG ligands and preventing them from binding to endogenous ErbB3, and 

ErbB4[73]. Thus, the over-expression of DN-ErbB4 completely blocks ErbB2, ErbB3, 

and ErbB4 receptor signaling[72, 74-75].  

                       Some reports indicate that increased ErbB4 expression or signaling is 

associated with tumorigenesis. ErbB4 over-expression has been observed in a variety of 

cancers, including tumors of the thyroid, breast, and gastrointestinal tract[76-77]. 

NRG1/erbB4 signaling is genetically linked to schizophrenia and bipolar disorder[78]. 

Moreover, mice with reduced levels of NRG1 or erbB4 exhibit behavioral alterations 

relevant to mental illness[79-82]. Although the evidence linking this pathway and 

psychiatric disorders is strong, the mechanisms by which it contributes to these diseases 

remain unknown[73]. NRG1-erbB signaling is important in neurons, astrocytes, and 

oligodendrocytes (OLs), but the specific cell types through which altered NRG1-erbB 

signaling contributes to these psychiatric disorders is undefined[73]. Efforts to elucidate 

ErbB4 function have been hampered by many factors. There are no known agonists or 

antagonists specific to the ErbB4 receptor[83]. All of the peptide hormones of the EGF 

family that are capable of binding ErbB4 also bind at least one other ErbB family 

member[83]. Upon NRG binding, erbB receptors form homo- and heterodimers and 

become active.  

                        It has been hypothesized that expression of DN-ErbB4 should block the 

activation of all NRG receptors[72]. This would help to study the role of these receptors 

in various biological processes. Transgenic mice have been generated that express 

dominant negative ErbB4 receptor (DN-erbB4) under the control of the CNPase promoter 

[74]. The CNP promoter ensures tissue specific expression of DN-ErbB4, which in turn 
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has helped to reveal the ErbB function in specific cell types and has been able to throw 

more light on the ErbB signaling network on the whole. However, this animal model is 

limited by its reliance on the endogenous regulation of CNPase promoter activity. Our 

transgene constructs will permit a temporal and spatial control over the DN-ErbB4 

expression since it is induced in the mice only in the presence of Dox. 

CNPase-rtTA; TRE-DN-ErbB4 bi-transgenic mouse model for DPN research: 

                       Evidence supports that pathologic activation of ErbB2 is sufficient to 

induce SC dedifferentiation and demyelination[84]. Additionally, studies have shown that 

endogenous proteins, like caveolin-1, that regulate the activity of ErbB2, may influence 

the development of certain aspects of sensory neuropathies[27]. Considering the 

importance of the ErbB2 receptor in the development of sensory neuropathies and the 

contribution of the NRG1-ErbB signaling for generating myelin with normal thickness, it 

is essential to determine if inhibiting the neuregulin signaling in SCs can increase 

demyelination in DPN. 

                      Knock-out (KO) mice failed to provide information about the roles of 

NRG1–erbB signaling in the postnatal period, the time at which myelination occurs, 

owing to their early lethality[74]. Moreover, because most of the analyses were 

performed in animal models with reductions (hypomorphs) rather than complete 

elimination of erbB signaling, the contributions of erbB signaling to myelin formation 

remained poorly defined[74].  

                        To elucidate the role of erbB receptor signaling in myelinating Schwann 

cells with respect to DPN, this project aims to generate bitransgenic (Tg) mice with the 

transgenes; CNPase-rtTA and TRE-DN-ErbB4. The CNPase promoter would ensure the 
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expression of the dominant negative ErbB4 only in myelinating Schwann cells, wherein, 

Dox would ensure that the DN-ErbB4 expresses in a tight and highly inducible manner. 

Expression of DN-erbB4 may completely block erbB2, erbB3, and erbB4 receptor 

signaling[72, 74-75]. Thus, once diabetes is induced in such mice, it would enable 

researchers to study the effect of impaired neuregulin signaling on myelination with 

respect to the progression of DPN. 

 

1.9) dnUbc9 

                       The ubc9 (Ubiquitin-like protein SUMO-1 conjugating enzyme) gene of 

the yeast Saccharomyces cerevisiae (Scubc9) is an essential gene which is required for 

cell cycle progression and is involved in the degradation of S phase and M phase cyclins. 

A human homolog of Scubc9 (termed hubc9) has been identified which shares a very 

high degree of amino acid sequence similarity with ScUBC9[85]. Genetic 

complementation experiments reveal that hUBC9 can substitute for the function of 

ScUBC9 required for cell cycle progression[85]. The hubc9 gene is located at the 

chromosomal position 16p13.3[86] and encodes a transcript of 1.3 kb[85].  The open 

reading frame of this gene encodes a protein of 158 amino acids with a predicted 

molecular size of 18kDa[85].  

                         Ubc9 is highly conserved across species and is expressed ubiquitously, 

but the expression level differs among various tissues[87]. This enzyme is a ubiqutin 

conjugating enzyme (E2 enzyme) required for small ubiqiutin-related modifier (SUMO) 

conjugation or sumoylation. Sumoylation is the covalent attachment of SUMO proteins to 

specific lysine residues of target proteins.  
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                       Modification by SUMO uses the same chemical steps of conjugation as 

other ubiquitin(-like) proteins (Figure 6), starting with an ATP-dependent activation step 

by an E1 enzyme (ubiquitin-activating enzyme) to form a thioester bond between an 

active site cysteine and the C terminus of the ubiquitin(-like) protein[88]. In the next step, 

this thioester is transferred to a cysteine on an E2 conjugating enzyme. From the E2 

thioester, the ubiquitin(-like) moiety is transferred to a lysine on the target protein[88]. 

Thus, the E2 enzymes function by accepting the ubiquitin(-like) protein through a 

thioester and then transferring it to form an isopeptide bond with the target lysine[88]. 

This E2-mediated transfer reaction can be catalyzed by E3 enzymes [89-91], but these 

seem to function mostly by providing a scaffold for the reactants, thus leaving the actual 

transfer reaction to the E2 protein[92-94].  

 

                                                                Figure 6: Scheme for Sumoylation[88]. 

                       Among the structurally conserved E2s, the SUMO E2 Ubc9 is special 

because it preferentially targets a ΨKXD/E consensus site[88]. Ubc9 is the sole E2-

conjugating enzyme required for protein sumoylation[95]. Sumoylation is a post-

translational modification required for various cellular processes, such as nuclear-

cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to 

stress, and progression through the cell cycle[96]. In addition, it has been demonstrated 

http://en.wikipedia.org/wiki/Cell_nucleus
http://en.wikipedia.org/wiki/Cytosol
http://en.wikipedia.org/wiki/Transcription_(genetics)
http://en.wikipedia.org/wiki/Apoptosis
http://en.wikipedia.org/wiki/Cell_cycle
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that sumoylation of DNA topoisomerase I plays a critical role in DNA metabolism and 

transcription. Since Ubc9 is critical for sumoylation, it plays an important role in the 

above mentioned biological processes through sumoylation. Ubc9 has also been 

implicated in apoptosis and DNA repair, because it interacts with proteins such as p53 

and Rad51[97-100]. Therefore, it would be useful to further explore the cellular functions 

of Ubc9. 

                        In yeast and higher eukaryotic cells, gene disruption of Ubc9 has been 

reported to be lethal[101-102]. Its involvement in regulating several critical pathways 

hampers researchers from knocking down this gene in order to study its functions. A 

substitution mutant of hubc9 (Cys→Ser at codon 93, TGC→AGC) was generated using 

PCR-mediated, site-directed mutagenesis[85]. This mutant exhibits a dominant inhibitory 

effect on the endogenous Ubc9[103] and hence provides a useful tool to study the cellular 

functions of Ubc9. 

                       Studies have indicated that sumoylation has a role in human disease 

pathogenesis. Indeed, proteins that have key roles in several human disease states, 

including huntingtin, ataxin-1, tau, a-synuclein, DJ-1 (also called Parkinson‟s disease 7 

[PARK7]), and superoxide dismutase 1 (SOD1), are targets of SUMO modification[104]. 

Ubc9 being the sole E2 conjugating enzyme required for sumoylation, has thus been 

implicated in the pathogenesis of the diseases associated with the above mentioned 

proteins. Increased Ubc9 levels are found in several human cancers and Ubc9 

overexpression can increase cancer cell growth[104].  

                      A Ubc9-DN transgene under the control of the Tet-regulatory system would 

be able to overexpress Ubc9-DN in the presence of Dox, thus exhibiting a dominant 
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inhibitory effect on the endogenous Ubc9. Such a transgenic mouse model would be able 

to elucidate the role of Ubc9 in the pathogenesis of several human diseases.   

 

CNPase-rtTA; Ptight -dnUbc9 bi-transgenic mouse model for DPN research: 

                        Apart from neuregulin signaling, the heat shock response too has an effect 

on myelination. Evidence from studies underscore the therapeutic potential of heat shock 

proteins for demyelinating neuropathies[105]. It has been reported that EC137, a small-

molecule inhibitor of HSP90, effectively enhances chaperone levels (HSP27, HSP70 and 

αB-crystallin) and improves myelination by SCs from neuropathic mice[105]. However, 

the precise molecular mechanism by which inhibition of HSP90 aids myelin formation 

remains unclear[105].  

                         The transcription of the genes of heat shock proteins is mediated by heat 

shock transcription factor 1 (HSF1), which exists in a non-DNA-binding form in the 

absence of stress[106]. Heat shock converts HSF1 to the trimeric DNA binding-form that 

then interacts with promoters of heat shock protein (hsp) genes to up-regulate 

transcription[107-108]. It has been demonstrated that heat stress causes HSF1 

sumoylation, and that this modification activates the DNA binding ability of HSF1[109]. 

Hence, sumoylation could be playing a pivotal role in the generation of heat shock 

proteins through HSF1 activation.  The role of sumoylation in the generation of HSPs, 

together with the evidence that the pharmacological induction of HSPs improves 

myelination in neuropathic models, implies that sumoylation could be involved in the 

progression of DPN. 
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                         Groups have reported that hyperglycemia increases mitochondrial fission 

in both in vitro and in vivo models of diabetic neuropathy[110]. Knockdown of the 

dynamin-related protein 1 (Drp1), a key regulator of mitochondrial fission, rescues 

mitochondria from short-term glucotoxicity in vitro[110]. Despite the short-term 

beneficial effects of Drp1 knockdown, its role in the long-term development of diabetic 

neuropathy remains to be defined[110]. Recent advances in understanding the role of the 

fission protein Drp1 in mitochondria function indicate that Drp1 may be a central 

regulator of neuropathies[111-113].  Thus, it is of relevance to explore the mechanisms 

through which Drp1 contributes to the progression of DPN. Recent data suggests that 

Drp1 interacts with the SUMO-conjugating enzyme Ubc9 via multiple regions and 

demonstrates that Drp1 is a direct target of SUMO modification[114]. Expression of the 

construct dn-Ubc9 exerts a dominant inhibitory effect on the UBC9 enzyme[103] and is 

thus capable of interfering with the sumoylation of Drp1. Such interference would throw 

light on the contribution of Drp1 sumoylation towards DPN. 

                         The above mentioned evidence led to the hypothesis that sumoylation 

could be involved in the progression of DPN. In order to study the role of sumoylation in 

SCs with respect to DPN, this project aims at generating a bi-transgenic mouse model 

(CNPase-rtTA;   Ptight -dn-Ubc9) that expresses the dominant negative Ubc9 construct in 

myelinating SCs in a temporally regulated manner. In such mouse models, the expression 

of the dnUbc9 transgene would interfere with sumoylation, thus permitting researchers to 

assess the role of this post-translational modification in DPN. 
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                         Apart from creating transgenic mice that express dominant negative genes, 

in order to elucidate the involvement of plausible mechanisms in the progression of DPN, 

gene knockout technology would also prove to be invaluable in understanding the 

pathogenesis of DPN. Though invaluable in the study of gene function in vivo, this 

technology may lead to embryonic lethal phenotypes. In order to circumvent this 

limitation, methods have been developed allowing in vivo gene inactivation at defined 

time points. The most widely used approach developed to date makes use of the Cre/loxP 

recombination system[115]. 

 

1.10) Cre Recombinase 

                       Site-specific recombinases from the lambda integrase family of enzymes 

catalyze DNA rearrangements that are critical for a variety of important biological 

functions[116].  Cre recombinase from bacteriophage P1 is one such enzyme. cre gene, 

short for cyclization recombination[117], encodes a 38kDa site-specific DNA 

recombinase[116] logically named Cre. Its roles in the P1 life cycle are thought to 

include cyclization of the linear genome and resolution of dimeric chromosomes formed 

following DNA replication as a result of homologous recombination[118]. The 

monomeric Cre protein contains amino terminal, linker and carboxy terminal 

domains[119]. The amino terminal domain comprises five alpha helices whereas the 

carboxy terminal domain contains nine alpha helices[119]. The carboxy terminal domain 

harbors the Cre recombinase active site, consisting of Arg
173

, His
289

, Arg
292

, Trp
315

, and 

the phosphate attacking Tyr
324

.  
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                          The stable introduction of DNA into mammalian cells by microinjection 

generally results in seemingly random integration of the DNA into the genome[120-123]. 

Homologous recombination events between the chromosome and introduced DNA's do 

occur, but at low efficiency[124-125]. As an alternative and complementary approach to 

effecting specific homologous recombination events in eukaryotes, the prokaryotic Cre-

lox site-specific DNA recombination system has been studied. Since being discovered, 

the bacteriophage's recombination strategy has been developed as a technology for 

genome manipulation and successfully applied in mammalian cell cultures, yeasts, plants, 

mice, and other organisms[126]. 

 

 

 

Figure 7: Cre recombinase structural elements[116]. 

                          Cre recombinase mediates intramolecular and intermolecular site-specific 

recombination[127]. The 34 base pair DNA sequences where recombinase binding and 

strand exchange take place are named loxP in the Cre recombinase system[115]. These 

sites are composed of two 14bp recombinase binding elements (RBEs) arranged as nearly 

perfect inverted repeats surrounding a 6bp central strand exchange or crossover region 

(Figure 7)[116]. Two recombinase subunits bind to each core site (one to each RBE) with 
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a high level of cooperativity[128-129]. On binding the palindromic halves of the loxP 

sites, the recombinase molecules form a tetramer, thus bringing together the two loxP 

sites and causing recombination within the spacer area of the loxP sites[115]. Figure 8A 

shows the target DNA flanked by loxP sites. The Cre enzyme binds to these sites and cuts 

them into palindromic halves[130]. This results in the excision of the target DNA (Figure 

8B). The remaining palindromic halves of the loxP sites are then spliced together[130]. 

                                                     

Figure 8A[130].                                                    Figure 8B[130]. 
 

       Figure 8: Cre recombinase action mechanism                  

                        The outcome of a Cre-lox recombination is determined by the orientation 

and location of flanking loxP sites[131]. If the loxP sites are oriented in opposite 

directions, Cre recombinase mediates the inversion of the floxed segment (Figure 9A). If 

the loxP sites are located on different chromosomes (trans arrangement), Cre 

recombinase mediates a chromosomal translocation (Figure 9B). If the loxP sites are 

oriented in the same direction on a chromosome segment (cis arrangement), Cre 

recombinase mediates a deletion of the floxed segment (Figure 9C)[131]. 
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           Figure 9: loxP orientation[131]. 

 

                         The directed introduction of null mutations into defined genes has proven 

invaluable in elucidating gene function in experimental mice[132]. However, targeted 

null mutations in a gene of interest can lead to embryonic lethality in mice, thus 

obscuring the particular role of that gene in a target tissue or in the adult[132]. Site-

specific recombination strategies circumvent the problem of embryonic lethality by 

directing gene ablation in a spatially and temporally controlled manner[132]. As the Cre 

recombinase of phage P1 catalyzes efficient excisive recombination in mammalian 

cells[133], it has become a useful tool for generating a conditional knockout[134].  
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Figure 10: Cell type specific Cre recombination  

 

Figure 10[117]. The cell type specific promoter leads to Cre expression only in specific 

cells (violet). When such a cre transgenic is bred with a mouse containing the target gene 

flanked by loxP sites (green), their progeny will have the target gene deleted only in those 

cells where Cre expresses (violet). 

 

                        Conditional gene deletion allows assessment of a gene‟s function in a 

target tissue without disturbing expression of that gene in non-target tissues[132]. Two 

components are required: floxed mice created by homologous recombination (i.e., mice 

carrying two loxP sites surrounding the gene of interest), and a cre transgenic mouse that 

expresses Cre under the control of a promoter with the desired spatial and temporal 

pattern of expression. The exact placement of lox sites in the target gene depends both on 

the type of deletion event desired and on constraints imposed by the structure of the 

target gene[132]. Floxed mice are then crossed to mice expressing Cre recombinase 

leading to permanent inactivation of the gene based on the pattern of Cre expression that 

can be controlled with cell type specific promoters[3] like CNPase (Figure 10). Therefore, 

if the cre gene is bound to a promoter that allows Cre production only in neuronal cells, 

the target gene will be deleted in those cells alone[117]. This method allows researchers 
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to isolate the effects of genes in specific tissues, thereby providing very specific analysis 

of gene function[117]. 

                       Regulation can also be programmed in specific temporal patterns if the Cre 

expression is driven by the Tet-regulatory system. In case of a Tet-On system, Cre would 

be expressed, and consequently the gene deletion would occur, only in the presence of 

doxycycline.  

 

                               Figure 11: Cre recombinase for the targeted activation of genes[132]. 

 

                         In addition, Cre mediated excision has proven to be a very useful tool for 

targeted activation of genes in transgenic mice. A “STOP” cassette flanked by two 

directly repeated loxP sites (a lox
2
 STOP cassette) is placed between the promoter and the 

gene to be activated (Figure 11) [135]. STOP is designed to block gene expression and 

consists of a stuffer region (from the yeast HIS3 gene), the SV40 polyadenylation region, 

and errant optimized ATG translational start and splice donor signals[132]. Cre-mediated 

excision removes STOP thus permitting target-gene expression under the control of the 

adjacent promoter[132]. Two animals are required: one expressing Cre with the desired 
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spatial and temporal pattern and the other carrying a lox
2
 STOP-equipped transgene[132]. 

Mating of these two animals results in the activation of the target gene in those cells that 

express both Cre recombinase and are capable of expressing the target gene, as 

determined by the specificity of the promoter used in the lox target strain[132]. 

 

II) MATERIALS & METHODS 

Tissue culture: Hek-293T cells were cultured in Dulbecco's Modified Eagle's Medium 

(DMEM) purchased from Mediatech, Inc. This medium is augmented with 4.5 g/L of 

glucose, L-glutamine and sodium pyruvate. The cells were seeded in a 6 well plate such 

that they reach 70% confluence in 24 hours. 24 hours from seeding, 5 of the wells were 

transfected with the CNPase-rtTA and Ptight-gene of interest using Lipofectamine™ 2000 

(Invitrogen Corporation) as per the supplier‟s protocol. Opti-MEM reduced serum media, 

purchased from Invitrogen Corporation, was used as the cell transfection medium. 6 

hours after transfection the reduced serum medium was replaced with the regular high-

glucose DMEM.  

                        24 hours from transfection, the cells were treated with doxycycline HCL 

purchased from Research Products International Corp . Doxycycline was added to obtain 

the following concentrations: 0.01 μg/ml, 0.05 μg/ml, 0.1 μg/ml, 0.5 μg/ml. One of the 

wells containing transgene transfected cells was left untreated, which served as a negative 

control.  

                       48 hours after drug treatment, the cells were imaged under the fluorescent 

microscope to view GFP expression.                                        
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Immunoblot analysis: 48 hours after drug treatment the cells were harvested and lysed 

in modified radioimmune precipitation buffer (mRIPA)[136], having defined buffer 

composition, and 1X Complete Protease inhibitors (Roche diagnostics). After brief 

sonication, the cell debris was sedimented at 10,000g for 10 minutes. Protein 

quantification of the total cell lysates was carried out using the Bio-Rad protein assay kit. 

Proteins were separated by SDS-PAGE and transferred onto nitrocellulose for 

immunoblot analyses. Immunoblots were quantified by densitometry with the aid of the 

ImageJ software and the transgene expression levels were normalized to β-actin.  

                        

 

 

 

 

 

 

II) RESULTS 

1) CNPase promoter 

 

1.1. CNPase-rtTA transgene construction: The CNPase promoter sequence was 

obtained based on the following figure (Refer Figure 5 for explanation): 
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Figure 12: CNP promoter                       

 The sequence between P2 (upstream of exon 0) and the HindIII site (in the non-coding 

sequence of exon 1) was obtained from the database (contig sequence 89518948-

89525978 on chromosome 10). It contains both CNPase1 and CNPase2 promoter core 

elements. P1 and P2 indicate the two TATA-box sequences of CNPase1 and CNPase2 

promoters, respectively[53]. The rtTA-Advanced sequence was taken from the pTet-On-

Advanced vector (Figure 3c.) sequence (Clontech)[21].  

                               EcoRI                             P2 

GTAATGAGATCTGATGCCCTCTTCTGGTGTGAATTCGTCTGAAGACAGCTACAGTGTACTAATATATAATA 

AATAAATAAGTCTTTAAAAAAAAAAGTTCGTCTCTCTCCTGGTAAAGTCTCTAATCTAAGCACTTGGGAGG

CAGAGGAGGCAGATCTCTCTATACCAGGCCAGCCTGATTTACAAAGTGAGTTCCAGGACGGCCAAGGCTAC

ATAGTGAGTCCCTGTCTCACAGGAGGGAAAAAGTTAATCTTCAACTTTTAAGTAACAAAGAGGTGGCGGAC

TCTTCTGGCATTGAGAGTCCAGGTGTGTTTTTGCTTTCTGCCAAGGCTCAGACAGCTGCTTCCTGGCACCC

AGGTTTCGATTCCCCGGGAGCGCGTGCGCAGAGGCTCGGGCTGACCCCGCCCCGTCCGCGCGCCCCGCCCC 

CGGGCTATGAAAGGAGCCCTGCGTGGGGTCCTGACACCCCGAGACGCCCCGTGTCCCTCGCGCAGGCGGGC

GGCCCCGGAGACATAGTGCCCGCAAAGGCGGTGACGGCGGTGCGCCCACTCATCATGGTGAGCGCAGCGCA 

                          CNPase promoter          {Exon0}   

CGCGTGGGGGGCGGGGCGGGAGAGATGCTAACGGAAAGCGAAAGTCTTGAGGATGCGTGAGCAGAAGTAGC

TTGCAAGTGAGGACACCAGGTTCCGAAGTTGAAGTCCAATCTCTGGGTCCTCCGAGGTAGCCCGAAGGCGG

GGAAGTTAGGGGGATTCTCAGTGTCTTTGGAGAAGGAAATATGGTAGCAAGAAAGAGAAAGTCGATGCGCC

CTGGAGACAACAGCTGGCAAATGGGCCTGTGCTCGGGGTAGCACCAGAGAGTCCAGGGCTGATGTCGAGCC

CTCGCGGGAGTGGGTTCCGAACCGCTTCCTGCTCAAGGCTATAGCGAAGCTGTAAGCCAGCTAAATTCTTA

AGGGTGCACACCAAAGGCGGAAGCCAGTGTAGATGACAATTGAAACCGCTATTCCTTGTTGCTTTTGTCAG

AGAGGTGCTGCTAACACACAGCCAAGTAGGGGGCAAAAATCCCTGAATACAGGTGCCCTGTGCTCCCTAGT

CCTACAGATTGGGGGAGGGGGTACAGCGAGAGCAGAGGAGGAGGTGGATGTGAATGAGGCCCTTTGTCCAG

TGCCCTCCTGCCCTGCCCCCCACTAGCCCTCTGTGGGACCATTGTCCCCCCACACCCAGACAAGAGAGTAT

TATCTGTTGGTGCCATTGTTGGGTGGAGGGAGGCGGTCTTTGGGTCACCCTCCTCTGCCCTCACCCTCCTC

TGCACACTCAGAAAGCCAGGGCAGCTGTGGCTTTGCCCAAACATAGAGCCTCAGGCTTCCACACAGGACAT

CCTTAAGAGGTGCCAAGAATATATAAGTTAGGGCTGACTGGGAGCAGCAGGCACTTGCTGCCCTTGCATGC 

                     P1 

CCTGCCACCAGGGTGTTCTCTCTGAGGGGTAGCTGAAAGCCGGGAGAGTAAGAGGTTTGATAGCTTCAGTG

AGGGTCCTTCTACTCATACAACCCTGCTGTTGAAGATACGGAAGGACCAGCTGGGAGGAAGAAAAGCTACC

ATTCCCTGCCGGGAGCTGGGAAAAGCGCCCACCATTCAAGGGTGCTTCAAGTTAGGCTCGGGGATTCCTGA

CNP promoter sequence 
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ACTGACATCCGGTCCCCCTCTGGGAGAACTAGGCCAAAGACAAGGGTTTGGTGCTTGTGGGCTGGCTTTGA

GGAGCCCGGGCTAACATCTCCTCCTCCCTTCTCACATAGAGCACAAGCTTGCCACCATGG 

                                    {Exon1 begins}   

ctagactggaca agagcaaagt cataaacggc gctctggaat tactcaatgg agtcggtatc  

          gaaggcctga cgacaaggaa actcgctcaa aagctgggag ttgagcagcc 

taccctgtac  

          tggcacgtga agaacaagcg ggccctgctc gatgccctgc caatcgagat 

gctggacagg  

          catcataccc acttctgccc cctggaaggc gagtcatggc aagactttct 

gcggaacaac  

          gccaagtcat tccgctgtgc tctcctctca catcgcgacg gggctaaagt 

gcatctcggc                     rtTA-advanced (Pink) 

          acccgcccaa cagagaaaca gtacgaaacc ctggaaaatc agctcgcgtt 

cctgtgtcag  

          caaggcttct ccctggagaa cgcactgtac gctctgtccg ccgtgggcca 

ctttacactg  

          ggctgcgtat tggaggaaca ggagcatcaa gtagcaaaag aggaaagaga 

gacacctacc  

          accgattcta tgcccccact tctgagacaa gcaattgagc tgttcgaccg 

gcagggagcc  

          gaacctgcct tccttttcgg cctggaacta atcatatgtg gcctggagaa 

acagctaaag  

          tgcgaaagcg gcgggccggc cgacgccctt gacgattttg acttagacat 

gctcccagcc  

          gatgcccttg acgactttga ccttgatatg ctgcctgctg acgctcttga 

cgattttgac  

          cttgacatgc tccccgggta actaagata cattgatgag           

tttggacaaa ccacaactag aatgcagtga aaaaaatgct ttatttgtga aatttgtgat  

gctattgctt tatttgtaac cattataagc tgcaataaac aagttaacaa caacaattgc 

attcatttta tgtttcaggt tcagggggag SV40polyA gtgtgggagg ttttttaaag 

caagtaaaac ctctacaaat gtggtatggc tgattatgat cctgcaagcc tcgtcgtctg 

gccggaccac gctatctgtg caaggtcccc ggacgcgcgc tccatgagca gagcgcccgc 

cgccgaggca agactcgggc ggcgccctgc ccgtcccacc aggtcaacag gcggtaaccg 

gcctcttcat  cgggaatgcg cgcgaccttc agcatcgccg gcatgtcccc tggcggacgg 

gaagtatAAGCTT(HindIII) 

Figure 13: Sequence for CNPase promoter-rtTA advanced-polyA signal 

The above sequence was given to GenScript for synthesis. The company synthesized the 

sequence and cloned it into pUC57 (2.7kb) using EcoRI and SalI: Gene Length = 2.96kb; 

GenScript Clone ID = C10929.  
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               On receiving the product, a confirmation digest was carried out. The plasmid 

was cut with SalI alone, EcoRI alone, and double digested with SalI and EcoRI. The 

digested products were run on a 1% agarose gel along with a 1kb plus ladder (Invitrogen) 

(Figure 14).  

Component                               SalI   EcoRI  SalI&EcoRI                                                                 

Buffer3(NEB)                            2μl          2μl                 2μl                                                                             

BSA                                          0.5 μl                   0.5 μl                      0.5 μl 

DNA                                         1 μg                      1 μg                        1 μg 

EcoRI                                          -                        0.5 μl                       0.5 μl   

SalI                                           0.5 μl                     -                            0.5 μl 

Water                                        16 μl                    16 μl                     15.5 μl 

 

 

Figure 14: CNPase-rtTA pUC57 confirmation digest  

 

37°C for 2 hours 

Double digestion with EcoRI and 

SalI yielded the expected 2.96kb 

CNP-rtTA-polyA band and the 

2.7kb vector backbone. 
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2) DN-ErbB4 

2.1) pTRE-Tight-Bi-AcGFP1-DnErbB4 construct development 

The pTRE-Tight-Bi-AcGFP1-DN-ErbB4 construct was generated in the lab prior to the 

commencement of this project. A construct containing DN-ErbB4 cloned into pcDNA3.1 

was digested with ApaI, blunt ended, and subsequently digested with NotI to excise out 

the DN-ErbB4 from pcDNA3.1. The pTRE-Tight-Bi-AcGFP1 vector[21] provided by 

Clontech was digested with NotI and EcoRV. The 5‟ NotI ends and the 3‟ blunt ends of 

the DN-ErbB4 fragment and the pTRE-Tight-Bi-AcGFP1 vector were cloned together.  

 

 

Figure 15: pTRE-Tight-Bi-AcGFP1-DN-ErbB4  cloning 

2.32 kb DN-ErbB4 

cloned into the MCS 
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The cloned product was sequenced using the primer, 3‟-dnErbB4 in TreTight GFP. 

Sequencing primer: 5’- CCA GAG GCA GGT AAC GAA AC - 3’ 

2.2) Tet-On regulated expression of DN-ErbB4 in Hek293T cells. 

Day1: Hek293T cells were seeded in a 6-well plate.  

Day2: 24 hours from seeding, the cells reached 70% confluence.  At this stage they were 

transiently transfected with CNPase-rtTA and DN-ErbB4 in a 1:1 ratio. 

Day3: The cells were treated with various concentrations of doxycycline: 

0, .01μg/ml, .05 μg/ml, 0.1 μg/ml, 0.5 μg/ml. 

Day5: Cells were harvested and DN-ErbB4 expression was analyzed by immunoblotting. 

2.2a) GFP expression  

 

 

Figure 16: GFP expression by the DN-ErbB4 construct 

0.01 dox 0 dox 0.05 dox 

0.1 dox 0.5 dox 
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Figure 16. 48 hours after drug treatment the GFP expression was observed at 40X 

magnification under an epifluorescence microscope. Shown above are the fluorescing 

cells at different doses of doxycycline (drug concentrations are in μg/ml). Cells that were 

not treated with doxycycline had minimal green fluorescence. 

 

2.2b) DN-ErbB4 expression 

Immunoblot analysis was carried out to determine the DN-ErbB4 expression level at 

different concentrations of doxycycline. On day 5 of the experiment the transfected and 

drug treated Hek293T cells were harvested and their lysates were prepared for 

immunoblot analysis. Samples were resolved by SDS-PAGE using a 7.5% acrylamide gel. 

Western blot was performed using a monoclonal antibody against the flag epitope present 

in the DN-ErbB4 construct. The monoclonal ANTI-FLAG antibody produced in mouse 

was purchased from Sigma Aldrich. Overnight incubation of the blot with the antibody 

(1:2000) at 4 degree Celsius followed by chemiluminescent detection yielded the 

following result.    

  

Figure 17A 

  

 NT      .5      .1     .05   .01    0 

Doxycycline (µg/ml) 

 
βactin 
 

 
130kDa 
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Figure 17b. 

Figure 17: Dn-ErbB4 immunoblot analysis 

 

Figure 17a shows the immunoblot analysis demonstrating an increase in the DN-ErbB4 

expression level with increasing concentrations of Dox. The cells that were not treated 

with Dox, did not express DN-ErbB4. The untreated cells served as the control for 

transfected cells, while, the non-transfected cells were a negative control and indicate the 

specificity of the antibody for detecting DN-ErbB4 (NT= non-transfected).  

Figure 17b shows the immunoblot quantitation of DN-ErbB4. Levels of DN-ErbB4 

expression were normalized to β-actin and expressed as percent control. The blot-area of 

the control group was assigned an arbitrary value of 1 since this group showed 

undetectable levels of DN-ErbB4. 

Summary: The immunoblot quantitation showed that DN-ErbB4 induction in the cells 

treated with 0.5μg/ml Dox displayed 6,753 fold induction of DN-ErbB4 when compared 

to the untreated cells. In the absence of Dox, basal expression was undetectable. Thus, the 

Data Table-1
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CNPase-rtTA; TRE-DN-ErbB4 bi-transgenic system works in a tight and highly 

inducible manner in Hek293T cells. 

  

2.3) Pronuclear microinjection & Analysis of transgenics 

2.3a) Pronuclear microinjection 

 CNPase-rtTA digestion: For pronuclear microinjection, CNPase-rtTA was excised out 

of the pUC57 vector backbone. 

Since CNPase-rtTA was cloned into pUC57 using EcoRI and SalI, these enzymes were 

used to excise out the insert from the vector (Refer Figure 14).  

As seen in figure 14, the 2.96 kb CNPase-rtTA insert is very close to the 2.7 kb vector 

backbone band, so it was necessary to further fragment the vector backbone band. 

Therefore, apart from EcoRI and SalI, BglI and ScaI were used to digest the CNPase-

rtTA-pUC57 plasmid. The reaction was carried out in buffer D at 37°C overnight. Since 

the BglI and ScaI sites are present in the pUC57 vector backbone, the previously 

mentioned digestion was able to fragment the 2.7 kb vector backbone band to yield the 

following result: 
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Figure 18: CNPase-rtTA digestion for pronuclear microinjection     

The 2.9 kb CNPase-rtTA insert was gel purified and given to the Transgenic and 

Knockout Mouse Laboratory at the University of Kansas (TKMKU) for pronuclear 

microinjection. 

TREtight-DN-ErbB4 digestion: TREtight-DN-ErbB4 was excised out of the pTRE-

Tight-AcGFP1 vector backbone for pronuclear microinjection. 

2.96 Kb CNPase-
rtTA insert 

1.8 Kb  

900 bp 
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Figure 19: PvuI and PciI sites on the pTRE-Tight-AcGFP1 vector    

  

    

 

Figure 20: pTRE-Tight-AcGFP1-DN-ErbB4 plasmid digestion for pronuclear 

microinjection 

PvuI 

(1984) 

PciI (721) 

Figure 19 shows the PvuI and PciI sites present in the 

pTRE-Tight-AcGFP1 vector. The pTRE-Tight-

AcGFP1-DN-ErbB4 plasmid was digested with these 

two enzymes to yield the following result (Figure 20) 
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                       As shown in figure 20, the 4.5 kb band includes the DN-ErbB4 insert, 

wherein the 1.2 kb band is the vector backbone sequence between the PvuI and PciI sites. 

The 4.5 kb band was gel purified and given to TMKU for pronuclear microinjection. 

                       Once the transgenic mice are born after the pronuclear microinjection of 

CNPase-rtTA and TREtight-DN-ErbB4, they need to be tested for the presence of the 

transgenes. In order to do so, primers were designed against the two transgenes and their 

respective PCR conditions were standardized. 

2.3b) Standardizing the PCR conditions for CNPase-rtTA  

200 ng of the CNPase-rtTA plasmid DNA was used for PCR amplification. Reaction 

conditions were as follows: 

 

 

 

Components                                                              Volume                      

10X Thermopol buffer (NEB)   2 μl 

10mM dNTP                                                              1 μl 

CNPase-rtTA plasmid                                                    200ng 

20μM 5‟ CNPase promoter primer                           0.5 μl 

20μM 3‟ rtTA advanced primer                                0.5 μl     

Deep vent taq polymerase                                         0.2 μl 

Water                                                                         14.8 μl 

PCR program: 

95°C - 5 minutes 

95°C - 30 seconds 

58°C - 30 seconds 
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72°C - 30 seconds 

34 cycles repeat 

72°C – 5 minutes  

4°C - hold 

5’ CNPase promoter primer sequence:  5‟- TGA AAG CCG GGA GAG TAA GA- 3‟ 

3’ rtTA Advanced primer sequence: 5‟- CTT GTT CTT CAC GTG CCA GT- 3‟ 

 

A temperature gradient was set up in order to determine the optimum primer annealing 

temperature. The amplified products were run on a 1% agarose gel to resolve the required 

450 bp amplicon.  

 

Figure 21: CNPase-rtTA PCR 
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Figure 21 shows the 450 bp CNPase-rtTA amplicon. The amplification worked at all the 

temperatures.  

                        On pronuclear microinjection, the transgene randomly integrates into the 

genomic DNA of the mouse. PCR is used to amplify this integrated transgene in order to 

identify the transgenics in the litter. Since 200 ng of the CNPase-rtTA plasmid served as 

the template for the above mentioned PCR, it is important to ensure that these conditions 

are also optimum for the amplification of low amounts of the transgene construct (in 

picograms) diluted in genomic DNA.  

Calculation of Copy Number Standards: 

Assumption: The haploid content of a mammalian genome is 3x10
9
 bp 

Since the transgenic founder mice are hemizygous, the mass of transgene to be diluted in 

1 μg of genomic DNA in order to make 1 copy standard equals: 

 

Mass of transgene DNA =       bp transgene DNA      x    1 μg genomic  

                                               3x10
9
 bp genomic DNA            DNA     

 

CNPase-rtTA transgene length = 5660 bp 

Therefore, mass of transgene =  5660 x 1μg genomic DNA     = 1.88 picograms in 1 μg 

to make 1 copy                                                                              genomic DNA 

                                                     3x10
9
 bp genomic DNA 

 

0.1 copy = 0.0376 picograms of transgene diluted in 200 ng of genomic DNA 

1 copy = 0.376 picograms of transgene diluted in 200 ng of genomic DNA 

10 copy = 3.76 picograms of transgene diluted in 200 ng of genomic DNA 

50 copy = 18.8 picograms of transgene diluted in 200 ng of genomic DNA 

100 copy = 37.6 picograms of transgene diluted in 200 ng of genomic DNA 
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The transgene plasmid was diluted into the genomic DNA extracted from a mouse ear 

piece to yield the above mentioned copy numbers. The PCR conditions standardized for 

200 ng of CNPase-rtTA plasmid DNA were used to amplify the dilutions, keeping the 

primer annealing temperature at 58°C. The PCR products were run on a 1% agarose gel 

along with a 1kb plus ladder. 

 

 

Figure 22: CNPase-rtTA vector dilution PCR 

Figure 22 shows the amplification of different copy numbers of the transgene.  

2.3c) Standardizing the PCR conditions for pTRE-Tight-Bi-AcGFP1-DN-ErbB4 

200 ng of the pTRE-Tight-Bi-AcGFP1-DN-ErbB4 plasmid DNA was used for PCR 

amplification. Reactions were carried out at different concentrations of Mg
2+

 ion (2mM-

7mM). The primer annealing temperature was kept constant at 58°C for all reactions. 

Reaction conditions were as follows: 
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Components                                                              Volume                      

10X Ex Taq buffer (Mg
2+

 free; TaKaRa)            5 μl 

10mM dNTP                                                              4 μl 

DN-ErbB4 containing plasmid                                 200ng 

20μM 5‟ Tre-Tight GFP primer                                0.5 μl 

20μM 3‟ dn-ErbB4 in TreTight GFP primer            0.5 μl     

Ex taq                                                                        0.25 μl 

Magnesium  ion                                                  2mM-7mM final concentration 

Water                                                                 Total volume made up to 50 μl 

PCR program: 

95°C - 5 minutes 

95°C - 30 seconds 

58°C - 30 seconds 

72°C - 30 seconds 

34 cycles repeat 

72°C – 5 minutes  

4°C - hold 

5’ Tre-Tight GFP primer sequence:            5‟-AAG TCG TGC TGC TTC ATG TG-3‟ 

3’dn-ErbB4 in TreTight GFP primer sequence: 5‟-CCA GAG GCA GGTAACGAAAC -3‟ 
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Figure 23: pTRE-Tight-Bi-AcGFP1-DN-ErbB4 PCR 

The PCR products were run on a 1% agarose gel along with a 1kb plus DNA ladder. 

Figure 23 shows that 200 ng of the transgene plasmid amplified best when the reaction 

contained 4mM to 7mM Mg
2+

 ion. 

The next step was to check if the above mentioned PCR conditions are optimal for 

amplifying the transgene plasmid diluted in genomic DNA. 

Calculation of Copy Number Standards: 

Assumption: The haploid content of a mouse mammalian genome is 3X10
9
 bp 

Since the transgenic founder mice are hemizygous, the mass of transgene to be diluted in 

1 μg of genomic DNA in order to make 1 copy standard equals: 

 

Mass of transgene DNA =       bp transgene DNA          x    1 μg genomic  

                                               3x10
9
 bp genomic DNA            DNA     

 

CNPase-rtTA transgene length = 5820 bp 

Therefore, mass of transgene =  5820 x 1μg genomic DNA     = 1.94 picograms in 1 μg 

to make 1 copy                                                                               genomic DNA 

                                                     3x10
9
 bp genomic DNA 
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0.1 copy = 0.0388 picograms of transgene diluted in 200 ng of genomic DNA 

1 copy = 0.388 picograms of transgene diluted in 200 ng of genomic DNA 

10 copy = 3.88 picograms of transgene diluted in 200 ng of genomic DNA 

50 copy = 19.4 picograms of transgene diluted in 200 ng of genomic DNA 

100 copy = 38.8 picograms of transgene diluted in 200 ng of genomic DNA 

 

The transgene plasmid was diluted into the genomic DNA extracted from a mouse ear 

piece to yield the above mentioned copy numbers. The PCR conditions standardized for 

200 ng of pTRE-Tight-Bi-AcGFP1-DN-ErbB4 plasmid DNA were used to amplify the 

dilutions, keeping the primer annealing temperature at 58°C and using 5mM Mg
2+

 in the 

reaction mix. The PCR products were run on a 1% agarose gel along with a 1kb plus 

ladder. 

 

 

Figure 24: pTRE-Tight-Bi-AcGFP1-DN-ErbB4 vector dilution PCR 
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3) dnUbc9 

3.1) pTRE-Tight-Bi-AcGFP1-dn-Ubc9 construct development 

The plasmid, p3259 pCMV hUbc9 mt HA was purchased from Addgene, Inc. Figure 25 

shows the map of this plasmid.  

 

Figure 25: p3259 pCMV hUbc9 mt HA  vector map 

 

Plasmid details: 

Vector backbone: pCMV4 

Backbone size: 4900 bp 

Gene/Insert: Ubc9 C93S-HA 

Insert size: 500 bp 
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Species of gene: H.sapiens 

Cloning site at 5‟ end: BglII 

3‟ cloning site: BglII (site destroyed during cloning) 

dn-Ubc9-HA description: A fragment containing the full coding region of dn-Ubc9 

cDNA along with the influenza virus hemagglutinin 1 epitope (HA) sequence 

(YPYDVPDYA) at the 3′-end was produced with appropriate synthetic oligonucleotides 

using PCR, by Yasugi et al[85]. The fragment was then cloned into the pCMV4 vector at 

the BglII site[85].  

 

Figure 26: pCMV4 vector map 

In order to develop the pTRE-Tight-Bi-AcGFP1-dnUbc9 construct, the 500 bp Ubc9mt-

HA insert had to be excised from the pCMV4 vector backbone and cloned into the pTRE-

Tight-Bi-AcGFP1 vector. Figure 26 shows the pCMV4 vector map. The Ubc9 mutant 

BglII 

& ClaI 
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was cloned into the BglII site of this vector, which is 20 bp upstream of a ClaI site. In 

order to excise the insert, the p3259 pCMV dnUbc9 HA plasmid was digested with BglII 

at the 5‟ end and ClaI at the 3‟ end. Digestion conditions were as follows: 

 

 

 

Components                  Amount 

 

BufferD:                          2 μl 

BSA:                             0.5 μl 

DNA:                               2 μg 

BglII:                               1 μl 

ClaI:                              1.5 μl 

Water:                         13.7 μl 

 

 

 

 

Figure 27: p3259 pCMV dnUbc9 HA plasmid digestion 

Digested at 37°C 

for 2 hours. 
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Figure 27 shows the digestion of the p3259 pCMV dnUbc9 HA plasmid with BglII and 

ClaI. The first lane shows the 1kb plus DNA ladder, lane 2 shows the plasmid linearized 

with ClaI and lane 3 shows the plasmid double digested with BglII and ClaI to yield the 

520 bp fragment.  

Subsequently, the 520 bp insert was gel purified (with the Marligen gel purification kit) 

in order to be cloned into the pTRE-Tight-Bi-AcGFP1 vector. The vector was digested 

with BamHI at the 5‟ end and ClaI at the 3‟ end (Figure 27). The digestion conditions 

were as follows: 

Components             Amount 

NEB Buffer 4:            3μl 

BSA:                          1 μl 

DNA:                         1 μg 

ClaI:                         0.8 μl 

BamHI:                    0.5 μl 

Water:                    21.7 μl 

 

The digested product was resolved on a 1% agarose gel and the band was gel purified 

using the Marligen gel purification kit. The 5‟ BglII end of the insert was subcloned into 

the 5‟ BamHI end of the vector, wherein, the 3‟ ClaI ends of both the vector and the 

insert were ligated using the quick ligation kit provided by NEB.  

 

Figure 28: pTRE-Tight-Bi-AcGFP1-dnUbc9 cloning 

hUBC9mt HA cloned 
between BamHI and 
ClaI 

Digested at 37°C for 

2 hours. 
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Figure 28 shows the hUBC9mt HA cloned between the BamHI and ClaI site present in 

the MCS of the pTRE-Tight-Bi-AcGFP1 vector.  

                        DH10B E.coli bacterial strain was transformed with the ligation product. 

Plasmid extracted from the transformed bacterial colonies were subjected to restriction 

digestion. Since the BamHI cloning site was destroyed during cloning, SmaI and ClaI 

were used to pop-out the dnUbc9 insert from the vector (Figure 29).  

 

 

  

Figure 29: pTRE-Tight-Bi-AcGFP1-dnUbc9 digestion to confirm presence of insert 

Figure 29 shows the digest confirming the presence of dn-Ubc9 HA in the pTRE-Tight-

Bi-AcGFP1 vector. 

The clone was sequenced using the primer; 5‟TRE-Tight GFP  

5’ Sequencing primer: 5’- AAG TCG TGC TGC TTC ATG TG-3’ 
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3.2) Tet-On regulated expression of dn-Ubc9 in Hek293T cells. 

Day1: Hek293T cells were seeded in a 6-well plate. 

Day2: 24 hours from seeding, the cells reached 70% confluence.  At this stage they were 

transiently transfected with CNPase-rtTA and dnUbc9 in a 1:1 ratio. 

Day3: The cells were treated with various concentrations of doxycycline: 

0, .01μg/ml, .05 μg/ml, 0.1 μg/ml, 0.5 μg/ml. 

Day5: Cells were harvested and dn-Ubc9 expression was analyzed by immunoblotting. 

 

3.2a) GFP Expression 

 

Figure 30: GFP expression by the dnUbc9 construct 

0 dox .01 dox .05 dox 

.1 dox .5 dox 

Figure 34. 
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Figure 30. 48 hours after drug treatment the GFP expression was observed at 40X 

magnification under an epifluorescence microscope. Shown above are the fluorescing 

cells at different doses of doxycycline (drug concentrations are in μg/ml). Cells that were 

not treated with doxycycline had minimal green fluorescence. 

 

3.2b) dnUbc9 expression  

Immunoblot analysis was carried out to determine the dnUbc9 expression level at 

different concentrations of doxycycline. On day 5 of the experiment the transfected and 

drug treated Hek293T cells were harvested and their lysates were prepared for 

immunoblot analysis. Samples were resolved by SDS-PAGE using a 15% acrylamide gel. 

Western blot was performed using a monoclonal antibody against the HA tag present in 

the dnUbc9 construct. The mouse monoclonal antibody against HA was purchased from 

Covance. Overnight incubation of the blot with the antibody (1:1000) at 4°C followed by 

chemiluminescent detection yielded the following result.    

 

Figure 31a. 

 

 

 

 

Doxycycline (µg/ml) 

NT .5 .01 .1 .05 0 

18 kDA 

β- actin  
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Figures 31b. 

Figure 31: dnUbc9 immunoblot analysis 

Figure 31a shows the immunoblot analysis demonstrating an increase in the dnUbc9 

expression level with increasing concentrations of doxycycline. The cells that were not 

treated with doxycycline had minimal dnUbc9 expression. The untreated cells served as 

the control for transfected cells, while, the non-transfected cells were a negative control 

and indicate the specificity of the antibody for detecting dnUbc9. (NT= non-transfected) 

Figure 31b shows the immunoblot quantitation of dnUbc9 by densitometry with the aid 

of the ImageJ software. Levels of dnUbc9 expression were normalized to β-actin and 

expressed as a percent of control.  
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Summary: The immunoblot quantitation showed that dnUbc9 induction in the cells 

treated with 0.5μg/ml Dox displayed a 47 fold induction of dnUbc9 when compared to 

the untreated cells. In the absence of Dox, basal expression was minimal. Thus, the 

CNPase-rtTA; TRE-dnUbc9 bi-transgenic system works in a tight and highly inducible 

manner in Hek293T cells.  

3.3) Pronuclear microinjection & Analysis of transgenics 

3.3a) Pronuclear microinjection 

dnUbc9 was excised out of the pTRE-Tight-AcGFP1 vector backbone for pronuclear 

microinjection. 

  

Figure 32: BssSI sites in the pTRE-Tight-AcGFP1 vector  

Figure 32 shows the two BssSI sites present in the pTRE-Tight-AcGFP1 vector. The 

pTRE-Tight-AcGFP1-dnUbc9 plasmid was digested with this enzyme to yield the 

following result (Figure 33; Lane1) 

BssSI 

(2278) 

BssSI 

(894) 
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Figure 33: pTRE-Tight-AcGFP1-dnUbc9 plasmid digested for pronuclear 

microinjection 

As shown in figure 33, the 2.7 kb band includes the dnUbc9 insert, wherein the 1.4 kb 

band is the vector backbone sequence between the BssSI sites. The 2.7 kb band was gel 

purified and given to TMKU for pronuclear microinjection. 

                       Once the transgenic mice are born after the pronuclear microinjection of 

CNPase-rtTA and TREtight-dnUbc9, they need to be tested for the presence of the 

transgenes. In order to do so, primers were designed against the dnUbc9 containing 

transgene to standardize the PCR conditions. 

3.3b) Standardizing the PCR conditions for pTRE-Tight-Bi-AcGFP1-Ubc9-DN 

200 ng of the pTRE-Tight-Bi-AcGFP1-dnUbc9 plasmid DNA was used for PCR 

amplification. Reactions were carried out at different concentrations of Mg
2+

 ion (2mM-

7mM). The primer annealing temperature was kept constant for all reactions (58°C). 

Reaction conditions were as follows: 
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Components                                                              Volume                      

10X Ex Taq buffer (Mg
2+

 free; TaKaRa)            5 μl 

10mM dNTP                                                              4 μl 

Ubc9-DN containing plasmid                                 200ng 

20μM 5‟ Tre-Tight GFP primer                                0.5 μl 

20μM 3‟ Ubc9-DN in TreTight GFP primer            0.5 μl     

Ex taq DNA polymerase                                         0.25 μl 

Magnesium ion                                                  2mM-7mM final concentration 

Water                                                                 Total volume made up to 50 μl 

 

PCR program: 

95°C - 5 minutes 

95°C - 30 seconds 

58°C - 30 seconds 

72°C - 30 seconds 

34 cycles repeat 

72°C – 5 minutes  

4°C - hold 

 

5’ Tre-Tight GFP primer sequence:            5‟-AAG TCG TGC TGC TTC ATG TG-3‟ 

3’Ubc9-DN in TreTight GFP primer sequence: 5‟-ATG AGG TTC ATC GTG CCA TC-3‟ 
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Figure 34: pTRE-Tight-AcGFP1-dnUbc9 PCR 

The PCR products were run on a 1% agarose gel along with a 1kb plus DNA ladder. 

Figure 34 shows that the transgene plasmid amplified best when the reaction contained 

4mM to 7mM Mg
2+

 ion. 

The next step was to check if the above mentioned PCR conditions are optimal for 

amplifying the transgene plasmid diluted in genomic DNA. 

Calculation of Copy Number Standards: 

Assumption: The haploid content of a mouse mammalian genome is 3X10
9
 bp 

Since the transgenic founder mice are hemizygous, the mass of transgene to be diluted in 

1 μg of genomic DNA in order to make 1 copy standard equals: 

 

Mass of transgene DNA =      bp transgene DNA           x    1 μg genomic  

                                               3x10
9
 bp genomic DNA            DNA     

 

Ubc9-DN containing plasmid‟s length = 4020 bp 

Therefore, mass of transgene =  4020 x 1μg genomic DNA     = 1.34 picograms in 1 μg 

to make 1 copy                                                                               genomic DNA 

                                                     3x10
9
 bp genomic DNA 
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0.1 copy = 0.027 picograms of transgene diluted in 200 ng of genomic DNA 

1 copy = 0.27 picograms of transgene diluted in 200 ng of genomic DNA 

10 copy = 2.7 picograms of transgene diluted in 200 ng of genomic DNA 

50 copy = 13.5 picograms of transgene diluted in 200 ng of genomic DNA 

100 copy = 27.0 picograms of transgene diluted in 200 ng of genomic DNA 

                       The transgene plasmid was diluted into the genomic DNA extracted from a 

mouse ear piece to yield the above mentioned copy numbers. The PCR conditions 

standardized for 200 ng of pTRE-Tight-Bi-AcGFP1-dnUbc9 plasmid DNA were used to 

amplify the dilutions, keeping the primer annealing temperature at 58°C and using 4mM 

Mg
2+

 in the reaction mix. The PCR products were run on a 1% agarose gel along with a 

1kb plus ladder. 

 

Figure 35: pTRE-Tight-AcGFP1-dnUbc9 vector dilution PCR 
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4) Cre 

4.1) pTRE-Tight-Cre construct development  

The plasmid, pBS595 tet-hCMV-EGFPcre was purchased from Addgene, Inc. 

 

 

 

 

 

                        

 

 

 Figure 36: pBS597 vector map 

Figure 36 shows the map of the pBS597 plasmid. pBS595 differs from pBS597 in having 

the GCSF A(n) instead of the MT-I A(n). pBS597 carries the EGFPcre fusion gene under 

the control of a synthetic promoter that can be regulated by a synthetic tet 

repressor/activator protein. In the presence of doxycycline expression is dramatically 

turned on to high levels. The GFP moiety of the fusion gene carries the S65T mutation 

for enhanced fluorescence and is codon-optimised for higher level expression. 

pBS595 details: 

Gene/Insert: EGFP-cre 

Insert size: 1800 bp 

Species of gene: bacteriophage P1 
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The pBS595 plasmid was linearized with XhoI, ClaI, and double digested with these 

enzymes using NEB buffer 4. The following was obtained: 

 

 

Figure 37: pBS595 plasmid confirmation digest 

Figure 37 suggests that the linearized plasmid is around 5.7Kb. The restriction digestion 

with XhoI, MluI, and KpnI suggested a KpnI site 1800 bp upstream of the MluI site. 

Double digestion of the pBS595 plasmid with KpnI and MluI gave out the 1.8 Kb EGFP-

Cre fusion fragment. This fragment was gel purified and was ready to be cloned into the 

pTRE-Tight vector provided by Clontech. The vector was digested with KpnI and MluI 

using buffer B at 37°C for 1 hour. The digested product was run on a 1% agarose gel and 

the required fragment was gel purified. The 5‟ KpnI ends and the 3‟ MluI ends of the 

vector and the insert were cloned together. The clone thus obtained was digested with 
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KpnI and MluI to confirm the presence of the 1.8 kb EGFP-Cre fusion gene. Figure 39 

shows the gel picture of this digest. 

 

Figure 38: shows the 1.8 kb fragment between the KpnI and MluI site. 
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Figure 39: pTRE-Tight-Cre digestion to confirm presence of EGFP-Cre 
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Figure 40: pTRE-Tight-EGFP-Cre cloning 

Figure 40. shows the multiple cloning site of the pTRE-Tight vector into which the 

EGFP-Cre fusion gene has been cloned.  

 

The clone was sequenced using the primer: 

5’-AGG CGT ATC ACG AGG CCC TTT CGT-3’ 

Sequencing result: 

TTAGTTCTCCTATAGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGATGTC

GAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTA

TGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGTTTATCCCTATCAGTGATAGAGAAC

GTATGTCGAGTTTACTCCCTATCAGTGATAGAGAACGTATGTCGAGGTAGGCGTGTACGGTGGGAGGC

CTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGC 

[CTGGAGAATTCGAGCTCGGTACCCGGGTCGAGGTAGGCGTGTACGGTGGGAGGC 
      EcoRI        KpnI       

EGFP-Cre fusion gene 
cloned between KpnI & 
MluI site of the vector 
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CTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACC

TCCAT 

                                      

AGAAGACACCGGGACCGATCCAGCCTCCGCGGCCCCGAATTCGAGCTCGGTACCCGGGGATCTGCAC
CGGTCGCCACC]                         EcoRI 

ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGA

CGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCT

ACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCC

ACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACAT

GAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCA

TCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGAC

ACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCT

GGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGC

AGAAGAACGGCATCAAGGTGAACTTC 

 

 

 

 

 

Figure 41: pTRE-Tight-Cre sequencing result 

In Figure 41, the sequence shown in green is part of the tet-hCMV from the pBS595 

plasmid. This sequence was excised out using EcoRI. This resulted in the final product: 

pTRE-Tight-Cre 

4.2) Tet-On regulated expression of pTRE-Tight-Cre in Hek293T cells. 

Day1: Hek293T cells were seeded in a 6-well plate. 

Day2: 24 hours from seeding, the cells reached 70% confluence.  At this stage they were 

transiently transfected with CNPase-rtTA and TRE-Cre in a 1:1 ratio. 

Day3: The cells were treated with various concentrations of doxycycline: 

0, .01μg/ml, .05 μg/ml, 0.1 μg/ml, 0.5 μg/ml. 

Day5: Cells were harvested and protein samples were analyzed by immunoblotting. 

TREmod (Ptight 

promoter 

region) 

Pmin CMV 
Part of tet-hCMV 

sequence from the 

pBS595 plasmid 

(Refer figure 39) 

KpnI site (5‟ 

cloning site) 

First 498 bases of 

EGFP Color codes 
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4.2b) GFP Expression 

 

Figure 42: GFP expression by pTRE-Tight-Cre 

48 hours after drug treatment the GFP expression was observed at 40X magnification 

under an epifluorescence microscope. Shown above are the fluorescing cells at different 

doses of doxycycline (drug concentrations are in μg/ml). Unlike the dominant negative 

constructs mentioned in the previous sections, the cells transfected with pTRE-Tight-Cre 

fluoresced in the absence of Doxycycline.  

4.2b) pTRE-Tight-Cre expression 

Immunoblot analysis was carried out to determine the pTRE-Tight-Cre expression level 

at different concentrations of doxycycline. On day 5 of the experiment the transfected and 

drug treated Hek293T cells were harvested and their lysates were prepared for 

 

0 dox .01 dox .05 dox 

.1 dox .5 dox 

Figure 42. 
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immunoblot analysis. Samples were resolved by SDS-PAGE using a 10% acrylamide gel. 

Western blot was performed using a monoclonal antibody against Cre. The mouse 

monoclonal antibody against Cre was purchased from Abcam. Overnight incubation of 

the blot with the antibody (1:1000) at 4°C followed by chemiluminescent detection 

yielded the following result.    

 

 

                  Figure 43. 

As seen in the above immunoblot, the transgene pTRE-Tight-EGFP-Cre is induced even 

in the absence of Doxycycline. Such leaky expression could hamper the temporal 

regulation of the transgene expression. Hence, in order to reduce the leaky expression, the 

transfection ratio of the CNPase-rtTA transgene to the pTRE-Tight-EGFP-Cre transgene 

was varied; Cre transgene : rtTA transgene            1:3, 1:10, 1:20. The following 

immunoblot was obtained using the above transfection ratios: 

 

  

68 kDa 

β-actin 

0 dox .01 dox .05 dox .1 dox .5 dox NT 

Doxycycline (μg/ml) 
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                              Figure 43a. 

 

 

Figure 43b. 

Figure 43: pTRE-Tight-Cre immunoblot analysis 

Figure 43a shows the immunoblot obtained on transfecting the cells with greater 

amounts of the rtTA transgene compared to the Cre containing transgene. Since the 

purpose of this experiment was to reduce the residual Cre expression (in the absence of 

Dox), only two treatments were incorporated: 0 Dox and 0.5 µg/ml Dox. Figure 43b 

shows the immunoblot quantitation, wherein the pTRE-Tight-EGFP-CRE expression 

68 kDa 

β- actin 

0          0.5            0            0.5          0             0.5  Doxycycline (μg/ml) 

Transfection ratio 
Cre:rtTA 

           1:3                        1:10                       1:20 
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levels were normalized to β-actin and plotted in the form of bar graphs. As seen in the 

graph, the basal Cre expression in the absence of Dox decreases, when transfected with 

lesser amounts of the Cre transgene.  

Summary: The Cre expression is dependent on the transfection ratio of the CNPase-

rtTA : Cre transgene, wherein least amount of basal Cre expression was observed in the 

cells transfected in a 1:20 ratio. The cells transfected in the ratio of 1:3 had 7 fold greater 

residual Cre expression when compared to the cells transfected in the ratio of 1:20. 

Though the residual expression reduced considerably using 1:20 transfection ratio, the 

induction in the 0.5 μg/ml Dox treated cells was much lesser when compared to the cells 

transfected in a 1:3 ratio. 

 

III) DISCUSSION 

                       Segmental demyelination is one of the basic patterns observed in the 

pathology of DPN. Demyelinating neuropathies primarily affect SCs and these 

myelinating cells undergo substantial degeneration in diabetic neuropathy.  Hence, it is of 

pertinence to investigate possible mechanisms which may contribute to the demyelination 

of SCs and the progression of DPN.  

                        Transgenic technologies have had a tremendous impact on biomedical 

research and human welfare[3]. Transgenic mice provide valuable experimental models 

to analyze gene function and regulation, and have emerged as one of the best overall gene 

function assay systems as the analysis is carried out on the whole organism. The study of 

gene function in such complex genetic environments would greatly profit from systems 

that would allow stringent control over the transgene expression. Integrating the 
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conventional transgene technology with the inducible expression systems would help 

exert a temporal and spatial control over the transgene expression. Therefore, this project 

generated three different Tet-On system based bi-transgenic vectors for use in generating 

novel mouse models for DPN research.  

CNPase-rtTA; Ptight -DN-ErbB4:  We used the dominant negative ErbB4 construct  

which blocks neuregulin signaling by binding NRG ligands and preventing them from 

binding to endogenous ErbB3, and ErbB4[73]. The rtTA was placed under the control of 

the SC-specific CNPase promoter in order to ensure the DN-ErbB4 expression in these 

myelinating cells. 

                      One limitation in the use of mouse models of DPN is that, this species does 

not develop segmental demyelination which is a hallmark of the human disease. This may 

be due to the activation of NRG signaling promoting the myelinated phenotype.   

Therefore, the DN-ErbB4 bi-transgenic system has been developed in this project to 

investigate whether the transgene induction would help promote a diabetes-induced 

demyelination, since endogenous NRG signaling would be blocked.  

                       Transgenic mice have been generated that express dominant negative 

ErbB4 receptor (DN-erbB4) under the control of the CNPase promoter [74], however, 

this animal model is limited by its reliance on the endogenous regulation of CNPase 

promoter activity. Our constructs would permit a temporal and spatial control over the 

transgene expression since it would be induced in the mice only in the presence of Dox. 

Thus, Dox would induce DN-ErbB4, which would block NRG signaling, resulting in a 

demyelinating phenotype in these mouse models of DPN. Removal of Dox from the diet 

of these mice might restore the NRG signaling, which could result in remyelination. In 
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light of the above and the evidence suggesting that reduction in the NRG1-ErbB 

signaling may be involved in the pathogenesis of peripheral neuropathies with 

hypomyelination, the DN-ErbB4 bi-transgenic system developed in this project would 

help further elucidate the role of ErbB receptor signaling, in myelinating SCs, with 

respect to DPN.  

CNPase-rtTA; Ptight -dnUbc9: Evidence from studies underscore the therapeutic 

potential of heat shock proteins for demyelinating neuropathies[105]. It has been reported 

that EC137, a small-molecule inhibitor of HSP90, effectively enhances chaperone levels 

(HSP27, HSP70 and αB-crystallin) and improves myelination by SCs from neuropathic 

mice[105]. However, the precise molecular mechanism by which inhibition of HSP90 

aids myelin formation remains unclear[105].  

                        Preliminary data suggests that sumoylation may be a critical component in 

mediating the heat shock response. In light of the above evidence suggesting that the 

pharmacological induction of heat shock proteins improves myelination in neuropathic 

models, it has been hypothesized that sumoylation could be involved in the progression 

of DPN. Moreover, recent studies have indicated that the mitochondrial fission protein 

Drp1 may be a central regulator of neuropathies and that Drp1 undergoes sumoylation. 

These evidence corroborate the hypothesis that sumoylation could play a pivotal role in 

the pathogenesis of DPN. 

                           Ubc9 is the sole E2 conjugating enzyme required for protein 

sumoylation[95], hence, inhibition of Ubc9 would throw light on sumoylation. Ubc9‟s 

involvement in regulating several critical pathways hampers researchers from knocking 

down this gene in order to study its functions. In C.elegans the Ubc9 knockdown proved 
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to be lethal. Additionally, Ubc9 deficient mice generated using the flox-and-invert 

strategy also had the embryonic lethal phenotype. On the whole, in yeast and higher 

eukaryotic cells, gene disruption of Ubc9 has been reported to be lethal[101-102]. This 

deficiency can be obviated by using a dominant negative form of Ubc9 under the control 

of the Tet-On regulatory system. 

                      We used a substitution mutant of Ubc9 (C93S), which exhibits a dominant 

inhibitory effect on the endogenous Ubc9. The bi-transgenic system, Cnpase-rtTA; Ptight -

dnUbc9, would permit a temporal and spatial control over the transgene expression since 

it would be induced in the mice only in the presence of Dox. As the rtTA is placed under 

the control of the SC-specific CNPase promoter, the dnUbc9 would express in SCs which 

would interfere with sumoylation and permit us to assess the role of this post-

translational modification in DPN.  

CNPase-rtTA; Ptight -Cre:    The Cre lox technology is often used in the generation of 

knockout and conditional knockout animals. Integrating this technology with the Tet-On 

system would help to have a temporal control over the deletion of the gene of interest. 

We developed the above mentioned transgenes in order to generate a bi-transgenic mouse 

which can be crossed with a mouse having the gene of interest flanked by loxP sites. 

Since rtTA is placed under the control of the CNPase promoter, Cre recombinase would 

be expressed in SCs, which would delete the gene of interest in these cells in the presence 

of Dox. Therefore, this model could be used for the conditional deletion of genes 

associated with DPN. Deletion of such genes specifically in myelinating SCs would help 

explore their role with respect to DPN.                         
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                        Placement of genes under the control of the rtTA- Ptight system has been 

shown to display excellent dose-response characteristics, which allows not only a 

qualitative off-on transition but also a fine tuning of gene expression and the study of 

quantitative aspects of gene activity. The transgenes constructed in this project were 

validated in Hek293T cells to ensure if they expressed in a tight and highly inducible 

manner. The transgene transfected cell lines when treated with Dox showed a dose-

dependent expression of the gene of interest. Maximum gene induction was observed 

when treated with 0.5μg/ml Dox, wherein, there was low or minimal basal expression in 

the absence of Dox was. Thus, consistent with results from previous studies using the 

Tet-On system, the bi-transgenic system developed in this project works in a tight and 

highly inducible manner in Hek293T cells. Though Dox induced high levels of transgene 

expression, it is yet to be seen if the induction is sufficient to display the desired function. 

Therefore, it is essential to perform assays to validate the functionality of this system.  

                        On testing the CNPase-rtTA and Ptight -Cre transgenes in Hek293T cells, it 

was found that there was basal level Cre expression in the absence of Dox. In order to 

circumvent this issue the transgenes were transfected in varying ratios.  Even though the 

basal expression of the Cre transgene was reduced when transfected in a 1:20 ratio (rtTA: 

Cre), the maximum induction by Dox was compromised too. Hence, it is necessary to 

ensure that lowering the Cre transfection ratio did not compromise the function of the 

recombinase. The following functional assay is currently being developed to validate the 

above. Cells have been stably transfected with the plox plasmid containing a floxed 

neomycin resistance gene. The cells will then be stably transfected with the CNPase-rtTA 

and Ptight-Cre transgenes, and treated with Dox. If the Cre recombinase is induced 
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sufficiently, then this recombinase would cleave the plox plasmid at the loxP sites, which 

in turn would delete the neomycin resistance gene. When maintained in a media 

containing Geneticin, these cells would die due to the lack of the neomycin resistance 

gene. Massive cell death would confirm that the recombinase is induced sufficiently by 

Dox. Absence of cell death in the untreated cells would confirm that the system has low 

or minimal residual expression.  

                      This project showed that the three Tet-On regulated bi-transgenic models of 

this study express the transgenes in a tight and highly induced manner in Hek293T cells. 

Future directions must include the development of assays in order to validate the 

functioning of the transgenes. Moreover, the CNPase promoter sequence used in this 

project, to drive the expression of rtTA, is yet to be tested for its specific expression in 

Schwann cells. The transgenes could be validated in isolated Schwann cells to confirm 

the same.  However, even if the transgenes function efficiently in vitro, the same can not 

be guaranteed in vivo. Therefore, the results of this project reflect that it might prove 

lucrative to pursue the development of bi-transgenic mice using these transgenes, 

however, conclusive deductions with respect to the functioning of these transgenes can 

only be drawn once the mice models are generated.  
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