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REGULAR ARTICLE

Representing absence of evidence: why algorithms and representations matter
in models of language and cognition
Franziska Bröker a,b and Michael Ramscar c

aDepartment for Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; bGatsby Computational
Neuroscience Unit, University College London, London, UK; cQuantitative Linguistics, University of Tübingen, Tübingen, Germany

ABSTRACT
Theories of language and cognition develop iteratively from ideas, experiments and models. The
abstract nature of “cognitive processes” means that computational models play a critical role in
this, yet bridging the gaps between models, data, and interpretations is challenging. While the
how and why computations are performed is often the primary research focus, the conclusions
drawn from models can be compromised by the representations chosen for them. To illustrate
this point, we revisit a set of empirical studies of language acquisition that appear to support
different models of learning from implicit negative evidence. We examine the degree to which
these conclusions were influenced by the representations chosen and show how a plausible
single mechanism account of the data can be formulated for representations that faithfully
capture the task design. The need for input representations to be incorporated into model
conceptualisations, evaluations, and comparisons is discussed.
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Introduction

Our understanding of the mind and brain advances
through an iterative process of developing theories
and then empirically testing their predictions. Models
play an integral part in this process, since (in principle
at least) they allow theoretical constructs to be formal-
ised and quantified. Accordingly, models ideally serve
to increase the clarity and specificity of the predictions
made by theories. The devil, however, is in the details.
As Goodman (1976) noted,1 models vary widely in
their specificity and purpose.

A great deal of thought has gone into the develop-
ment of models simulating how the brain computes
whatever it computes (algorithmically) as it solves what-
ever problems it solves (at what is sometimes called the
computational level). However, input representations –
specifically, the data structures that co-determine the
output or performance of computational mechanisms/
algorithms that will be the focus of this work – have gen-
erally received less attention. This is reflected in the
nature of the debates between cognitive modellers
themselves, which have tended to argue at length
about the merits of viewing cognitive processes as say,
generative grammars, connectionist architectures, or
forms of Bayesian inference, whilst implicitly agreeing
on the nature of inputs to these processes (see e.g.

Griffiths et al., 2010; McClelland et al., 2010). On one
hand, this is curious because all model predictions
depend to some extent on the representations that are
input into an algorithm (in the extreme case, any
model can be broken by choosing a “bad” input rep-
resentation, or “fixed” by hand tailoring a “good” input
representation), however detailed, empirically grounded
theories of how the brain encodes complex inputs are
rare in the literature. On the other hand, this is hardly
surprising when one considers that, for example, visual
inputs are first massively compressed as they pass
from retinal cells through to the lateral geniculate
nucleus and then massively expanded when they are
processed in V1 (DiCarlo et al., 2012; Stevens, 2001),
such that it seems that the actual input representations
to any neural or cognitive model (apart, perhaps, from
those dealing with sensory receptors) can never be pre-
cisely inferred by simply observing the physical proper-
ties of the environment. Accordingly, it follows that
the actual input representations implemented in all
such models are currently somewhat massively uncon-
strained and that from both a theoretical and empirical
perspective, the actual nature of neural and cognitive
representations must always be something of a “black
box”. These considerations raise in turn the question of
the degree to which the behaviour of any model
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developed to emulate a putative cognitive or neural
mechanism is in fact limited, or even determined, by
the intuitive and often unanalysed input representations
specified for it. Is it even possible to make claims about
empirical validity of the algorithmic or conceptual prop-
erties of a model, if any predictions derived from them
can be changed by the choice of input representation?

In this paper, we suggest that while this problem has
sometimes been acknowledged, the theoretical impact
of evaluating and comparing algorithms while ignoring
input representations (i.e. the data structures/knowledge
representations that serve as inputs to algorithms/infer-
ence mechanisms) may be greater than is generally
appreciated. To illustrate how interpretations of mechan-
isms interact with the choice of representation in amodel,
we will revisit a set of studies investigating language
acquisition in the face of implicit negative evidence
(Hsu & Griffiths, 2009, 2016). While the problem of select-
ing input representation is particularly relevant to the
domain of language acquisition, we suggest that the
issues highlighted by these analyses apply more broadly
across the brain and cognitive sciences.

Negative evidence in language learning: a case
study

As they learn their native languages, children somehow
master complex alternation patterns (e.g. of regular and
irregular inflection, or different verb argument struc-
tures) in spite of the fact that they never receive any
explicit instruction on their use, or even any explicit
feedback on the errors that they inevitably make in the
course of the learning process. Accordingly, explaining
how children manage to master the complexities of
language, and accounting for the specific developmen-
tal patterns that tend to accompany this, has emerged
as a central question in cognitive science, and also as
an area of considerable debate. For example, it has
been argued that given the evidence they have available
to them, children could never learn to make the tran-
sition to adult language based on experience alone,
and that learning even simple aspects of grammar is
logically impossible in the absence of innate constraints
on what is learned (see e.g. Johnson, 2004; Pinker, 1984,
1989). By contrast, although the information offered by
violations of expectation was often marginalised or
ignored in early discussions of language learning
(Brown & Hanlon, 1970; Pinker, 1984, 1989), the develop-
ment of computational models of learning (and in par-
ticular, error-driven models of learning) has led to a
rebirth of interest in the role that this kind of “indirect”
(or implicit) negative evidence plays in the process
(see Ramscar et al., 2013, for a review). To this end,

Hsu and Griffiths (2009, 2016) proposed that the
assumptions that children make about the way that
their linguistic experiences are sampled offer a source
of implicit evidence that can in turn help restrict the
kind of generalisation that they make. Hsu and Griffiths
suggest that learners might implicitly adopt one of
two approaches towards the samples that they are
exposed to. In the first of these approaches, they
propose that a learner might classify observed utter-
ances as being either grammatically correct or incorrect,
which involves learning a mapping from sentences to
grammaticality. (We note that the questions of
whether grammaticality is actually binary in this way,
see e.g. Gibson et al., 2013; Mahowald et al., 2016, or
whether explicit feedback is actually relevant to chil-
dren’s language learning, see e.g. Ramscar and Yarlett
(2007), are both subject to much debate; while acknowl-
edging these debates, for current purposes we will take
this starting assumption from Hsu and Griffiths as given.)
Since this does not involve any assumptions about the
distribution from which utterances are sampled (which
Hsu and Griffiths describe as a discriminative or weak
sampling approach to learning), the absence of sen-
tences from a language does not provide information
about their grammaticality. In the alternative approach,
they propose that a learner might acquire the prob-
ability distribution over valid utterances assuming lin-
guistic input is sampled from the true language
distribution (which Hsu and Griffiths describe as a gen-
erative or strong sampling approach to learning; these
different learning/sampling strategies will be discussed
in greater detail below). Hsu and Griffiths suggest that
it is only this latter case that allows implicit evidence
to be harnessed in support of learning.

To explore this proposal, the authors present evi-
dence from a series of computational simulations, and
a set of studies that test model predictions against
empirical data from an artificial grammar learning task.
Crucially, the experiments manipulated training pro-
cedures to examine the impact that the order in which
information was presented had on participants’ ability
to make use of implicit negative evidence. The authors
hypothesised that these different training procedures
would prompt subjects to adopt different learning
approaches that would either be sensitive to the distri-
bution of grammatical sentences or not. The results
appeared to confirm their predictions, showing that
the two experimental groups did indeed seem to
respond differently to the absence of observations in
both learning conditions, with their behaviour matching
the predictions of the two models. The authors conclude
that the learnability of correct linguistic generalisations/
exceptions may thus depend on the sampling
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assumptions made by learners. They argue that, if a
strong sampling assumption is made, implicit negative
evidence can be exploited, which could prove critical
to language learnability. Notably, these findings also
complement results from studies of category learning
where similar distinctions between discriminative and
generative models have been explored in relation to
different training procedures which are often referred
to as classification versus inference/observation learning
(e.g. Hsu & Griffiths, 2010; Levering & Kurtz, 2015; Love
et al., 2015).

In what follows we revisit the studies reported by Hsu
and Griffiths in order to provide a case study of the way
that the choice of input representations can be of critical
relevance when it comes to the interpretation of model
performance, and in turn to establishing the degree to
which empirical results can be taken as support for the
formal predictions of models. In particular, we shall
examine whether the results observed necessarily stem
from the sampling assumptions associated with
different learning strategies/mechanisms or whether
the representations chosen determined the predictions
that the models made.

In the first part of this case study, we shall analyse the
models proposed by Hsu and Griffiths (2009, 2016). We
will highlight the way that the representations
employed in developing these models embody assump-
tions about the representations available to learners.
When made explicit, these assumptions bring into ques-
tion the degree to which these models can be taken to
support the idea that distinct learning mechanisms are
required in this instance. We then show how by starting
with a simple algorithm and an alternative input represen-
tation that can be reasonably derived from the task struc-
ture one can derive a straight-forward model based on
general learning principles that offers a very different
account of the experimental data. We demonstrate that
the behavioural differences between the experimental
conditions can be modelled as emerging from a single
learning mechanism given task-informed representations
as opposed to a dual strategy perspective.

For present purposes, it is important to note that the
issue here is not one of establishing that this single
mechanism model is right or that the models put
forward by Hsu and Griffiths (2009, 2016) are wrong.
Rather, the comparisons and contrasts of all of the
models reported in the case study below are intended
to emphasise that how a model computes and what it
computes over are of equal importance, such that an
algorithm cannot be evaluated independently of the
representations it is provided with. Accordingly, any
inferences about how and what an empirical system,
like the brain, computes must necessarily be constrained

by similar factors. In the light of this, we then discuss
how a more rigorous consideration of both mechanisms
and input representations to models can help improve
their contribution to our understanding of the mind/
brain and discuss how these issues can be addressed
in future work.

Case study

We begin our case study by describing in more detail the
experimental design employed in Hsu & Griffiths’ work,
before introducing the models that were intended to
predict subjects’ performance in these experiments.
We then summarise the empirical and simulation
results. Finally, we analyse the representational choices
in these models and discuss how such choices can
serve to influence the behaviour of, and resulting predic-
tions from, models (and indeed the structure of a model
itself), and examine the degree to which these represen-
tational choices can in turn serve to influence sub-
sequent interpretations of behavioural data.

Experimental design

The work described in our case study sought to test the
hypothesis that the assumptions made by learners
regarding the way in which linguistic observations are
sampled can yield dissociable end states when it comes
to language learning (Hsu & Griffiths, 2009, 2016). To
empirically test this idea, three experiments were con-
ducted in which students learned to classify sentences
from artificial languages as being grammatical or ungram-
matical. Whether a sentence was correct or incorrect
depended on properties of its structure that were initially
unknown to subjects and thus had to be learned.

In Experiments 1 and 2, the training materials that
were presented to subjects in order to facilitate this
learning comprised a set of three-word sentences, in
which some sentences would be grammatical and
some ungrammatical. Each sentence consisted of two
nouns and one verb and expressed a directed action
between subject (first noun occurring) and object
(second noun occurring) of the sentence. Nouns were
drawn from a set of three pseudo-words while the set
of verbs comprised four pseudo-words (Experiment 1)
or five pseudo-words (Experiment 2). The grammaticality
of each possible sequencing of nouns and verbs
(noun-noun-verb, noun-verb-noun, verb-noun-noun)
depended solely on the combination of individual
verbs and their position in the sentence (i.e. one verb
might only be grammatically correct if used in the begin-
ning of a sentence, whereas another might be used in
the beginning as well as the end of a sentence).
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Experiment 3 was designed to provide an example of
learning to contract nouns and subsequent modifiers.
Grammaticality of a contraction depended on the
specific modifier and its positioning after either the
subject or object of the sentence. Grammaticality and
number of training sentences presented to models and
subjects are displayed in Table 1.

All of the behavioural experiments in our case study
started with a pre-training session in which subjects
acquired the meaning of the pseudo-words (e.g.
blergen is lion, semz is explode) by means of visual and
auditory presentation of the stimuli. In the subsequent
training session, subjects were told that they would be
required to learn the grammaticality of sentences pre-
sented to them. During training subjects were exposed
to both grammatical and ungrammatical sentences.
After the training session, participants were asked to
produce grammaticality ratings and then complete a
sentence production task. Crucially, one critical test sen-
tence was always withheld during training.

To predict subjects’ behaviour in the experiments
reported in our case study, two computational models
were presented (described in more detail below).
These models made different predictions about the
grammaticality of the withheld test sentence as a func-
tion of the way that they learned. According to Hsu
and Griffiths, these differences resulted from the fact
that one model was sensitive to implicit negative evi-
dence while the other model was not. To empirically
capture the differences in the way that the two models
learned and test these predictions, two training pro-
cedures were devised. In the behavioural experiments,
two groups of subjects were presented with exactly
the same sentences and given exactly the same infor-
mation about their grammaticality during the exper-
iment. Where the two behavioural conditions differed
was in the temporal order in which sentence and gram-
maticality information were presented. The order in

which this information was presented was reversed
between the two conditions.

The sentence first group was trained as follows: on
each trial subjects were presented with a visual scene
and an accompanying sentence on the screen, which
was also read out by an adult voice. Subsequently, sub-
jects were asked to guess the sentence’s grammaticality
and received immediate feedback on their response. In
contrast, the grammaticality first group was informed
prior to training that sentences produced by an adult’s
voice would always be grammatical, whereas those pro-
duced in a child’s voice would always be ungrammatical.
Training in the grammaticality first group thus differed
from that in the sentence first group in that the sentences
were spoken either by adults or children, no explicit
responses were required, and the ordering of grammati-
cality information and sentence presentation was
reversed.

An important point to note about these different pro-
cedures is that the presentation of sentence and gram-
maticality information is different. The sentence first
group received information about grammaticality after
encountering the entire sentence whereas the gramma-
ticality first group was provided with information about
the grammaticality before and while encountering the
sentence, i.e. the temporal structure of grammaticality
and sentence was reversed. Hsu and Griffiths (2009,
2016) assumed that these two training procedures
would lead subjects to adopt different assumptions
regarding the way that the sentences were sampled:
Either subjects could assume that sentences were
sampled from the true language distribution which is
beneficial to learning from the absence of observations;
Or they could make no such assumption and would then
be unable to harness such information. Accordingly, in
the behavioural experiment, the critical test sentences
served to test whether subjects were able to learn
from implicit negative evidence or not.

Table 1. The grammaticality of sentences in Experiments 1–3.

(a) Sentence structure (b) Sentence structure (c) Position

Verb C1 C2 C3 Verb C1 C2 C3 Modifier P1 P2

V1 +(9) +(9) −(6) V1 +(12) +(12) −(8) M1 +(16) +(16)
V2 −(3) +(18) −(3) V2 +(12) +(12) −(8) M2 −(16) +(16)
V3 +(18) −(3) −(3) V3 −(4) +(24) −(4) M3 +(16) −(16)
V4 +(18) ?(0) −(6) V4 +(24) −(4) −(4) M4 +(32) ?(0)

V5 +(24) ?(0) −(8)

Notes: + and − indicate grammatical and ungrammatical usage, respectively. The number in parentheses denotes the number of times with which models
were trained on a sentence, and the number of times with which subjects were exposed to a sentence during the experiment, respectively. ? indicates that
the grammaticality is not determined by the data, i.e. the respective sentence was not presented to models and subjects. These critical test sentences were
unseen in training and used to evaluate model predictions by comparing the model’s grammaticality judgements to subjects’ actual responses. (a) Gram-
maticality of the four verbs used in Experiment 1 depended on the context in which they appeared (C1: noun-noun-verb, C2: noun-verb-noun, C3: verb-noun-
noun). Verb V4 was never shown in sentence structure C2. (b) Grammaticality of the five verbs used in experiment 2. Verb V5 was never shown in sentence
structure C2. (c) Grammaticality of contractions in Experiment 3 depended on the four modifiers and their position after the subject (P1) or object (P2) of the
sentence. Modifier M4 was never presented after the object of a sentence (P2).
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Modelling sampling assumptions

To simulate and predict subjects’ behaviour on this task,
Hsu and Griffiths (2009) developed two models that
were in turn designed to exemplify two different
approaches to classification that have long been distin-
guished in machine learning (usually referred to as discri-
minative and generative classifiers; Ng & Jordan, 2002).
Discriminative classifiers learn a direct mapping
between some input X and a set of outputs (or labels)
Y, i.e. p(Y | X). From this perspective, discriminative
models assume that learners acquire the distribution
of labels given an input (in this context, the probability
of grammaticality given a particular sentence). By con-
trast, generative classifiers take a more indirect
approach, in which the joint probability of p(X , Y)
becomes available through learning, and then Bayesian
inference is used to calculate the posterior p(Y | X). From
a model capturing the joint distribution, observations
can be sampled (in this context, sampling grammatical
and ungrammatical sentences) (Figure 1). This formal
engineering distinction has prompted various research-
ers to speculate as to whether a similar dichotomy
might apply in human learning, and under which con-
ditions different learning strategies that parallel the dis-
criminative and generative distinction might be
observable (Levering & Kurtz, 2015; Love et al., 2015).

Sentence first model (discriminative, weak
sampling model)
For the discriminative model, Hsu and Griffiths (2009)
employed a standard logistic regression model. This
model learned the probability of a given sentence
being grammatical or ungrammatical. The sentences pre-
sented to subjects served as inputs and grammaticality as
output to themodel. Sentenceswere representedby a set
of binary variables encoding (a) the identity of the verb,
(b) its position in the sentence, and (c) the interaction
of both (e.g. in Experiment 1, V1-noun-noun was
encoded as 1000|100|100000000000, and noun-noun-
V2 was encoded as 0100|001|000001000000; Figure 2).
These variables predicted the binary outcome of gram-
maticality. After fitting the model on the sentences
shown to subjects in the experiment, its predictions on
all possible sentences were used to predict the gramma-
ticality judgements of the sentence first group during test.
In a series of follow-up studies (Hsu & Griffiths, 2016), the
logistic regression model was reformulated within the
Bayesian framework by placing priors over the regression
coefficients, i.e. the model learned a joint distribution
over grammaticality and model parameters conditioned
on sentences (Figure 1). In these later studies, Hsu and
Griffiths refer to this form of learning as “weak sampling”

(i.e. weak sampling is used here to refer to models that
learn to classify observations by assuming that the
process that generated observations – in this case sen-
tences – is independent of their classification labels – in
this case grammaticality; Xu and Tenenbaum (2007)).
However, in all important respects, the discriminative
and weak sampling models are the same.

Grammaticality first model (generative, strong
sampling model)
To account for the behaviour of the grammaticality first
group, Hsu and Griffiths (2009) employed a hierarchical
Bayesian model, the Dirichlet-Multinomial model. The
model was trained on vectors of counts representing
how often each verb was encountered in a grammati-
cally correct sentence structure (e.g. the information
handed to the model in experiment 1 was (9 9 0) for
V1, and (0 18 0) for V2, Figure 2). Note that in contrast
to the discriminative model, this model was only
trained on the grammatical sentences; this is an impor-
tant representational choice and will be discussed in
greater detail below. Accordingly, the model learned
a joint distribution over the grammatical sentences
and model parameters (not a joint distribution over
grammaticality and sentences as may be expected).
After training, a threshold was applied to model predic-
tions which converted the probabilities of verb occur-
rence into a one or zero prediction of grammaticality.
These values were used to account for the grammati-
cality judgements of the grammaticality first group. In
the later studies, Hsu and Griffiths re-describe this as
a “strong sampling” model (i.e. strong sampling is
thus used to refer to models that learn to classify obser-
vations by assuming that observations – in this case
sentences – are generated from a distribution associ-
ated with the label – in this case grammaticality –
being learned).

These two models thus make different predictions
about the way that implicit negative evidence will
affect learning: Since the discriminative model is
indifferent to the distribution of observed sentences,
it cannot exploit information provided by their
absence. The absence of a sentence provides no
added value to the model. By contrast, learning in the
generative model involves estimating the distribution
of grammatical sentences. In this case, the absence of
a sentence provides weak evidence against its gramma-
ticality, because the generative model implicitly
assumes that all sentences that are part of the language
will be sampled in the long run. Hence, the two models
make diverging predictions about the evidence emer-
ging from absent observations.
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Figure 1. Schematic illustration of the models presented in Hsu and Griffiths (2009, 2016) (a–c), and the sequential Delta-rule model
developed here (d). (a) In a standard Bayesian approach to modelling the task, a discriminative (or weak sampling) and generative (or
strong sampling) model would operate on variables representing sentences s and grammaticality g. To model the sentence first group,
a discriminative/weak sampling model would only learn the conditional distribution over g. In contrast, to model the grammaticality
first group, at least the conditional distribution over s given g would be learned (strong sampling model) or even the full joint dis-
tribution (generative model). Note that in either case, the standard approach would capture both grammatical and ungrammatical
utterances in the probabilistic model. Models could potentially have priors over their parameters μ, however, this factor is not usually
considered to be relevant to whether a given model is classified as generative or discriminative. (b) The discriminative (sentence first)
and generative (grammaticality first) models implemented by Hsu and Griffiths (2009). It is important to note that Hsu and Griffiths’
generative model was not modelling the joint distribution of s and g, but rather this model was only trained on grammatical sen-
tences. (c) Hsu and Griffiths (2016) modified the discriminative model by incorporating a prior over μ (and now referred to the sentence
firstmodel as a weak sampling model and the grammaticality first as a strong sampling model). (d) The sequential Delta-rule model for
the sentence first condition predicts g from s, while the grammaticality first model predicts the bigram at time step t+1 (bt+1) from g
and bt .

Figure 2. Representations of the sentence and grammaticality variables in Experiment 1. Importantly, the representation of the sen-
tence variable differed between the two models. In Hsu and Griffiths’ sentence first models the presence of a particular verb (e.g. V1),
sentence structure (e.g. C2) and their interaction (e.g. V1C2) were represented by binary variables. In contrast, the grammaticality first
models represented sentences as counts of interactions between verb and sentence structure only. Because the grammaticality first
model was only trained on grammatical sentences, it followed that grammatical and ungrammatical information were only rep-
resented in the sentence first model. The sequential Delta-rule sentence first model was trained on a sentence representation
similar to that in Hsu and Griffiths’ sentence first model, but with additional input cues representing the nouns in the sentences.
The sequential Delta-rule grammaticality first model represented sentences as sets of bigrams. Both grammaticality and ungrammati-
cality information was represented in the sequential Delta-rule models. Representations for the other experiments were chosen in an
analogous fashion.
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Results

As we described earlier, the human subjects in our case
study learned about the grammaticality of the sentences
in the artificial language, with their training differing in
whether they were presented with a sentence before
receiving information about its grammaticality, or vice
versa. The results of these studies showed that the two
experimental groups did indeed judge the grammatical-
ity of novel sentence structures differently. The group
that received feedback after presentation of sentences
was more likely to judge the critical test sentences to
be grammatical than the group that was presented the
sentences by adults and children (Figures 3(a), 4(a), 5
(a)). Crucially, these differences were consistent with
the qualitative predictions of Hsu & Griffiths’ models.
Accordingly, the authors concluded that the way that
participants had learned in the experiments was in
turn consistent with the way that the two models
learned. That is, that the different training procedures
had led subjects to adopt either a strong or weak
sampling assumption about the sentences in the exper-
iment and that this had thenmade learning from implicit
negative evidence either possible or impossible. Accord-
ingly, the authors conclude that these results support
their hypothesis (i.e. that humans use information
about the sampling of their linguistic observations to
guide their learning).

How does the choice of representations affect
model outcome?

Having described the models, the behavioural task, and
the subjects’ subsequent performance, we now turn
our attention to the way that representational choices
made at the modelling stage might influence the
degree to which the former can be taken as predictors
of the latter. Because the two models made different
predictions from one another, and because the two
groups of subjects performed differently from one
another in much the same way, Hsu & Griffiths’ con-
cluded that their subjects’ performance reflected the
different learning strategies that they took their
models to embody. The reasoning underlying this con-
clusion neatly exemplifies the way in which the theor-
etical output of computational research ultimately
relies on analogies between the workings of models
and the processes modelled. In this case, because the
behavioural differences observed appear to parallel
the different predictions of the models, it seems only
natural to conclude by analogy that learning in the
models and participants was subject to the same
underlying constraints.

However, this raises a question. Since this analogy is
driven by the performance of the subjects and its
relationship to the performance of the models, it
seems worth asking what, exactly, is driving the perform-
ance of the models. Because algorithms and input rep-
resentations always interact in computational
processes it follows that a model’s performance (and
hence any predictions drawn from it) can not be solely
attributed to one or the other of them. It thus follows
that when two models make different predictions,
while these might reflect differences in their underlying
computations, they might also reflect differences their
representations. Since it is unclear precisely how the
brain represents information in any particular context,
such as an experimental task, the choice of a particular
input representation is potentially a strong determinant
of a model’s performance.

With regards to our case study, the two models that
were supposed to predict empirical performance in the
behavioural studies were trained on two rather
different input representations, whereas it seems
unclear that any analogous differences were actually
present in the training given to subjects in the behav-
ioural studies themselves (Figure 4). With regards to
the models, the grammaticality first model was trained
only on grammatical sentences, whereas the sentence
first model was also trained on ungrammatical sen-
tences. Moreover, the grammaticality first model was
operating on a different representation of sentences.
By contrast, as we noted above, in the empirical study,
all of the subjects were exposed to identical sets of sen-
tences and information about their grammaticality.
Accordingly, it follows that the differences in the
models’ predictions on the critical test sentences
might actually have resulted from the different represen-
tations chosen (in which case any conclusions about
different sampling assumptions resulting in the differ-
ences in their subjects’ behaviour may be unwarranted).
These considerations thus raise two questions: How did
training the grammaticality first model on only a subset
of the data (the grammatical sentences) impact its pre-
dictions? How did the different representation of sen-
tences impact model predictions? We next address
these questions in turn.

Training on different subsets of data

As we highlighted above, while the subjects in our
case study received the same information during
training, the models used to predict their perform-
ance did not. The sentence first model was trained
on grammatical and ungrammatical sentences, while
the grammaticality first model was trained on
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grammatical sentences alone. Hsu and Griffiths justify
these representational choices by noting that because
some of the subjects trained in this condition later
reported that they had ignored the ungrammatical
utterances from children, it made sense to train the
grammaticality first model on only the grammatical
sentences. In this regard, it is important to note for
current purposes that Hsu and Griffiths (2016) con-
ducted a follow-up experiment where the grammati-
cality first training condition contained only
grammatical sentences. In this follow-up experiment,
the significant differences that were observed when

the grammaticality first training condition did
contain ungrammatical sentences did not replicate
(see Hsu & Griffiths, 2016, supplementary material).
Given this, it seems reasonable to conclude that the
learning of the subjects in both conditions of the
experimental study in our test case was in fact
influenced by the ungrammatical sentences. Accord-
ingly, it seems far from clear whether the model of
the grammaticality first training proposed in this
case does in fact adequately reflect the information
presented to subjects in the task, or the way it
appears to have influenced their behaviour.

Figure 3. Results for Experiment 1. (a) Human judgement of grammaticality. (b) Model predictions by Hsu and Griffiths (2009). (c)
Model predictions by Hsu and Griffiths (2016). (d) Predictions from the sequential Delta-rule model. (Figures (a) and (c) were
adapted from Hsu and Griffiths (2016); figure (b) adapted from Hsu and Griffiths (2009))

Figure 4. Results for Experiment 2. (a) Human judgement of grammaticality (figure was adapted from Hsu and Griffiths (2016), model
predictions were not provided by the authors). (b) Predictions from the sequential Delta-rule model.
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A point that seems particularly relevant in this regard
is the role of implicit evidence in learning. Depending on
the structure of the learning task, the absence of obser-
vations can not only be seen to offer implicit negative
evidence (as it seems the authors of our case study
intended) but also implicit positive evidence. To return
to the case study, the fact that the “grammatical” adult
speaker never produced the critical test sentence
during training provided subjects with weak evidence
in favour of its being ungrammatical (negative evi-
dence). However, as a necessary corollary, the absence
of the critical test sentence from the utterances of the
“ungrammatical” child speaker provided weak evidence
in favour of its being grammatical (positive evidence).
Given that the investigation in our case study was
intended to examine the effects of implicit evidence
on language learning, it seems reasonable to suppose
that an ideal model of the learning task under consider-
ation ought to have included all of the implicit infor-
mation available to the learner: positive and negative.
Since it seems in this case that the information available
to subjects was not fully represented in the grammatical-
ity first model, it also seems to follow that the models
implemented in our case study fall short of this ideal.
Understanding the impact of representational choices
on a model’s performance is a critical part of under-
standing any predictions derived from its behaviour,
and in turn its relationship to the empirical behaviour
observed in studies testing these predictions. Accord-
ingly, in our case study, if the predictions of the
models on the critical test sentences turn out to be

less distinct when both of the models are trained on
the same data, this would clearly raise questions about
the degree to which they actually shed light on subjects’
learning in this instance. Accordingly, we next turn our
attention to the relationship between the workings of
the grammaticality first model and its input data.

As we have sought to highlight so far, the implemen-
tation of the grammaticality firstmodel in our case study
only allocated significant probability mass to observed
grammatical observations. It thus follows that in this
model the absence of a sentence implies none, or
minimal, probability mass such that it is deemed
ungrammatical (i.e. the model predicts that human sub-
jects will rate unobserved sentences as being ungram-
matical). However, when a full generative model over
sentences and grammaticality is employed this predic-
tion will change significantly.2 While the probability of
the critical test sentence being grammatical would
remain low under the full model, the probability of the
critical test sentence being ungrammatical would now
also be low under the full model. In a case where the
same number of grammatical and ungrammatical sen-
tences were seen in training, the model would judge
the test sentence to be equally grammatical or ungram-
matical, and thus would predict that subjects would
judge its grammaticality around chance level on
average. This is because in the full model, implicit posi-
tive and negative evidence would compete. Accordingly
and critically, it turns out that in this regard, the predic-
tions of the strong sampling model (i.e. the full gramma-
ticality first model trained on all of the data) would now

Figure 5. Results for Experiment 3. (a) Human judgement of grammaticality. (b) Model predictions by Hsu and Griffiths (2016). (c)
Predictions from the sequential Delta-rule model. (Figures (a) and (b) were adapted from Hsu and Griffiths (2016)).
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be very similar to those made by the weak sampling
model (i.e. the full sentence first model trained on all of
the data). This is because in the full grammaticality first
model implicit negative evidence will only overpower
implicit positive evidence if grammatical observations
are more frequent in training. To return to the case
study, while subjects were exposed to more grammatical
than ungrammatical sentences in the behavioural exper-
iments, it appears that the differences predicted by a full
generative model would in fact be far less pronounced
than those made by the model presented, that was
trained on only a subset of the data.

To summarise, while the grammaticality firstmodel in
our case study was trained on only grammatical sen-
tences, this representational choice was in fact unsup-
ported given other data reported. Further, as we have
explained above, the degree to which the two models
make different predictions is highly sensitive to the rep-
resentation of the task and the training set. While it
remains the case that only the generative model could
learn from implicit evidence from sentences, the
factors we have highlighted clearly raise questions
about the degree to which the model does indeed
predict the behaviour observed in the empirical study,
or indeed supports the idea that this behaviour reflects
a different sampling assumption that is made by sub-
jects during their training.

Training on different sentence representations

So far we have concentrated on the training sets that
were used to model the learning of human subjects in
the experiment. As we have sought to highlight, not
only were the models presented with different training
data, but also sentences themselves were represented
differently in the two training sets. On one hand, the sen-
tence firstmodel represented sentences as a set of binary
variables encoding verb, verb position and their inter-
action. On the other hand, the grammaticality first
model only received information about verb position
interactions. This representational choice further compli-
cates any interpretation of the relationship between the
model predictions and the actual behaviour observed,
since it potentially offers an alternative reason for the
models’ different predictions. To help make this point
clear, we next focus on how it was that the sentence
first model came to make its predictions in more detail.

In the logistic regression model, the contribution of
the verb and position variables are determined by
whether they were presented on more grammatical or
more ungrammatical trials (e.g. since V4 and C2 in Exper-
iment 1 were part of more grammatical than ungramma-
tical sentences, V4 and C2, by themselves, predict a

sentence to be grammatical, while C3 alone predicts
ungrammaticality). The contributions of the interaction
variables are then added on top of these individual pre-
dictions. It is important to note here that the contri-
bution of the interaction variable representing the
verb-sentence combination in the critical test sentence
is (near) zero which means that in the critical test sen-
tence this variable barely contributes to the prediction
at all.

Accordingly, when the sentence first model predicts
that the critical test sentences are grammatical above
chance level, this prediction is driven by the verb and
its position. These two variables make positive contri-
butions towards grammaticality predictions, while the
interaction variable has very little impact on the
model’s behaviour and hence its predictions. By con-
trast, the grammaticality first model is only trained on
these interaction terms (represented as counts of
which verbs occur in which sentence structures during
training). The representation that this model is trained
on does not directly encode how often a particular
verb, or its position, is grammatical.

Given these representational choices, it was imposs-
ible for the grammaticality firstmodel to account for evi-
dence that some verbs were more likely to occur in
grammatical sentences than others, and the model
only indirectly captured that some positions of verbs
were more likely to be grammatical than others
through the estimation of hyperparameters. Accord-
ingly, when it comes to the critical test sentences, the
model actually learned very little about their grammati-
cality. This is because (a) the critical verb-sentence inter-
action did not occur in training, meaning that the model
assigns near zero probability mass to it, and (b) verb and
position were given no, or little weight, in the model,
which means that their individual contributions in
favour of grammaticality were not fully exploited. It is
these factors that ultimately cause the model to classify
the critical test sentences as ungrammatical.

Had the evidence from the verbs and their positions
been incorporated more explicitly in the representations
of the grammaticality first model, it might have had a
considerable impact on its predictions. Indeed, it
appears likely that the incorporation of this evidence
would weaken and even overwhelm the influence of
implicit negative evidence on the predictions made by
the model. As a consequence, it seems that training
the grammaticality first and sentence first on the same
sentence representations could result in their making
similar predictions about the critical test sentences.
These considerations raise further questions about the
degree to which the different predictions of the
models support the conclusion that the subjects in the
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behavioural experiment actually employed different
learning strategies. Accordingly, we next turn our atten-
tion to this last question, and examine whether the
differences observed in the behavioural data can be cap-
tured by a single mechanism learning from represen-
tations that more faithfully capture the task structure
of the empirical studies.

We begin by introducing a simple, widely used learn-
ing algorithm, which we train on representations directly
derived from the temporal structure of the task. We
show that providing an accurate account of the behav-
ioural results described in the case study does not
require different learning strategies but rather can be
given in terms of a single algorithm applied to
different representations that capture the order of infor-
mation presented to subjects. This in turn suggests that
these factors alone may have given rise to the differ-
ences observed in the empirical studies. The goal of
this exercise is not to provide a solution to the
problem of language acquisition, nor is it to advocate
that the model we describe is the “correct” one for this
task. Rather, its purpose will be to illustrate and
explore the importance of representational choice to
computational modelling and to underscore how rep-
resentations are as important as mechanisms when it
comes to model interpretation.

Alternative modelling approach: sequential
delta-rule model

It has long been established that the temporal structure
of learning tasks can influence what is learned, as well as
how quickly learning progresses (e.g. Anderson et al.,
2002; Ashby et al., 2002; Levering & Kurtz, 2015;
Ramscar et al., 2010; Reips & Waldmann, 2008; Yamauchi
& Markman, 1998, also referred to as classification versus
inference/observation learning in categorisation tasks).
For instance, Ramscar et al. (2010) showed that, as a con-
sequence of the information structure of the task, chil-
dren are better at learning colour words if the colour
word follows the noun it describes, as opposed to pre-
ceding it. This finding, and many others like it, indicate
that learning outcomes can often depend on the tem-
poral order in which learners encounter information.

It has also long been known that simple error-driven
learning models are particularly sensitive to these kinds
of temporal order effects (see e.g. Rescorla, 1988;
Widrow & Hoff, 1960). In error-driven learning, inputs
(typically taken to represent cues or features in the
environment) are forced to compete for predictive
value over a set of outputs (typically taken to represent
outcomes to be predicted, e.g. events in the environ-
ment), with the value of individual inputs being

reinforced when they contribute to successful predic-
tions, and decremented when they contribute to predic-
tion errors. As a result of this process of competition,
these models learn to assign high weights to diagnostic
inputs, and low or even negative weights to non-
diagnostic inputs. This process – which causes inputs
to compete for value – is, however, sensitive to the
order and the structure of sets of inputs and outcomes.
If, for example, the outcomes and inputs in a labelling
model are reversed, so that only a single input (e.g. a
label) now predicts a multitude of outcomes (e.g. fea-
tures), no competition can takes place, and rather than
learning about any diagnostic features, a model confi-
gured like this will now simply learn the correlations
between the label and features (Ramscar et al., 2011).
Importantly, these different predictions about how
learning unfolds are fully characterised by the prediction
errors and the input output sequence, i.e. the model
makes no explicit distributional assumptions about the
data.

The simplest error-driven learning rule is the Delta
rule (Widrow & Hoff, 1960) which implements gradient
decent learning, solving a multiple linear regression
problem (Stone, 1986). This learning rule has been
widely employed to model performance in human learn-
ing tasks, such as in artificial grammar learning (Dienes,
1992) and it has often been used to model children’s use
of implicit negative evidence in language learning in the
past (e.g. Ramscar et al., 2013; Ramscar & Yarlett, 2007).

Given that Delta rule learning models can account (at
least in principle) for some of the important character-
istics associated with the effects of sequencing on train-
ing, we sought to re-evaluate the task demands
associated with the empirical results of the case study
in order to examine whether the different behaviour
observed could be captured by this single, well-estab-
lished mechanism (which we will refer to as the sequen-
tial Delta-rule model).

The sequential Delta-rule model of the sentence first
group in Experiment 1 and 2 employs a representation
analogous to the one chosen by Hsu and Griffiths
(2016). This included binary inputs encoding the verb,
its position, and the interaction of both. Additionally,
two invariant and constantly present inputs were used
to represent the presence of nouns in each sentence
(e.g. input set (N1,N2,V1,C1,V1C1) for sentence noun-
noun-V1, Figure 2). The nouns in the model function as
a bias term, allowing it to account for the fact that
more trials contained grammatical than ungrammatical
sentences, such that subjects could be expected to
have a bias towards judging sentences grammatically
correct. In this model, grammaticality at the output
was represented as binary variables. This choice of the
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input and outcome is very similar to that of Hsu &
Griffiths’ sentence first model and straightforwardly cap-
tures the temporal sequencing of the information in the
task. The sentence representations used to simulate
Experiment 3 were analogous to the ones used to
model the training set in Experiments 1 and 2, except
that instead of verbs they encoded modifiers, their pos-
itions and interactions as binary inputs with additional
inputs for nouns, in keeping with the stimuli employed
in the empirical study.

In these empirical studies, the subjects in the gram-
maticality first group were presented with a very
different learning problem to those in the sentence first
group. Grammaticality information was present from
the beginning of each trial, which enabled subjects in
this condition to continually predict the next words in
the sentence and receive error feedback sequentially,
in real time, as the speaker uttered each of the words
in the sentence. To capture the availability of this evi-
dence to learners in the task structure, we divided sen-
tences into word bigrams, each sentence starting and
ending with a null symbol (e.g. noun-V1-noun was
split into a set of inputs (#N1,N1V1,V1N2,N2#), Figure
2). Each trial was then modelled by multiple model
updates for all individual bigrams. In each update one
bigram cue and the cue indicating the grammaticality
of the sentence predicted the next bigram (Figure 1).

We optimised a single learning rate α on qualitative fit
for each of the two groups for both the training and the
critical test sentences (sentence-first: a = 0.2; grammati-
cality-first: a = 0.03) which was identical across all three
experiments. All input-output pairs were randomised
during training and 1000 simulations run to obtain
average predictions. The models were trained using a
version of the Delta rule implemented in the ndl
package in R (Shaoul et al., 2013).

To derive predictions about subjects’ response pro-
pensities, the differences in activation measures
between grammaticality and ungrammaticality after
training were calculated. To simulate learning in the sen-
tence first group sentences were presented to the model
as inputs, and then the activation difference between
grammatical and ungrammatical outputs were retrieved
and averaged across the simulations. These averages
across sentences were then scaled between 0 and 1 to
predict the probability of subjects’ grammaticality judg-
ment. To simulate learning in the grammaticality first
group the model was presented with all of the sentence
bigrams in sequence, together with the relevant gram-
maticality input. The activation of all the predicted
bigrams was then summed at the output. This served
as a measure of sentence predictability under either
the assumption of it being grammatically correct or

incorrect. Again the differences between these acti-
vations were averaged over all simulations and scaled.

Since we employed the Delta rule with an additional
step to map predictions of this model to probability esti-
mates, our models for the two groups can be seen as an
approximation to two different (multinomial) logistic
regression models (Figure 1): the sentence first model
that predicts grammaticality from sentences (like the
logistic regression model employed by Hsu & Griffiths),
and the grammaticality first model that predicts the
next bigram from the current bigram and
grammaticality.

As we noted at the outset, the goal of these simu-
lations was to provide a formal illustration of the impor-
tance of considering all of the components of a model’s
implementation in relating it to an underlying theory.
We next compare the predictions of our models
against the data, and show that they also provide a
plausible and accurate account of the empirical results
observed in the case study, and thus can be seen as
serving to underline the importance of this point.

Model comparison

A comparison of the grammaticality judgements made
by subjects in the case study to the predictions made
by the sequential Delta-rule model revealed a close
qualitative match across the three experiments
(Figures 3–5). The models successfully accounted for
the differences seen in the response propensities on
unobserved sentences between the two experimental
groups, with the magnitudes of the predicted response
differences matching those in the different experiments.
Thus, the models also appear to successfully capture the
effects that emerge from the interplay of explicit, as well
as implicit, positive and negative evidence under the
different temporal task structures.

In the case study, Hsu & Griffiths focussed their dis-
cussion on accounting for the difference of the critical
test sentences, however as a further test of our model
we examined its ability to fit the empirical data Hsu
and Griffiths collected from subjects grammaticality jud-
gements on the sentences that were observed during
training. This allowed us to make a fuller evaluation of
the performance of the various models described
above and provided a richer test set for comparing
between them, since obviously an evaluation of these
models on a single data point (the critical test sentence)
will, by necessity, be very limited in its scope. Evaluation
of the models’ performance on this data revealed that,
the sequential Delta-rule model and the logistic
regression model fitted subject performance on the
trained sentences equally well (as might be expected
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given the similarity between the implementations of the
two sentence first models).

With regards to the grammaticality first group, the
sequential Delta-rule model provided a better account
of the qualitative features of subjects’ performance
than the strong sampling model in the case study. For
example, the proportions of grammaticality judgements
for sentences that were explicitly taught as grammatical
ranges more strongly in the grammaticality first group
than in the sentence first group. This pattern can also
be captured by the sequential Delta-rule model which
mimics the tendency for grammaticality first training to
result in sentences being classified as grammatical at a
higher probability than after sentence first training. By
contrast, the strong sampling model predicts perfect
performance under the same circumstances (this is
because in this model, all probability values above a
specified threshold were taken to predict perfect
performance).

Even though the sequential Delta-rule model is more
successful at capturing the overall patterns of the behav-
iour of the subjects in the case study, some mismatches
can still be observed (while these discrepancies may
reflect deficiencies in these models as well, it is also of
course possible that they reflect deficiencies in the
degree to which the experimental design actually suc-
ceeded in testing the hypotheses it was supposed to
test). A formal model comparison would allow a more
detailed analysis of the models than the one presented
thus far. However, because we were unable to access
Hsu and Griffiths’ original data, and because our goal
here is not to advocate that the sequential Delta-rule
model is the correct model for this task, or even to
enter into a debate about whether the idea of there
being “correct” models is a good one in the first place,
we will not concern ourselves with this possibility here.

Rather, since our aim is to examine how and why it
is that the representations and algorithms/mechan-
isms chosen by modellers can result in different
models that provide equally plausible fits of the
same data, and thereby support very different con-
clusions about any underlying processes, we shall
focus on these points. For this purpose, it is
sufficient that Hsu & Griffiths’ models and the sequen-
tial Delta-rule models can all account for the main
qualitative aspects of the data, such that although it
is clear that the two sets of models make use of
input representations that ultimately make different
assumptions about the information necessary to cap-
turing the constraints on learning that were relevant
to this task, it could be argued that either serves to
offer a plausible explanation of the data when con-
sidered in isolation.

Given that the sequential Delta-rule models appear to
offer a different perspective into human processing than
those proposed in the case study, it is worth examining
in more detail how these models differ from Hsu &
Griffiths’ models. In doing so, we shall seek to better
understand exactly why it is that they support different
conclusions about the mechanisms that gave rise to
the data that they are fitting, and to highlight the critical
role that the conceptualisation and treatment of rep-
resentational entities in experimental tasks can play in
the modelling of behaviour.

Model interpretation

We begin our detailed discussion of the way that the
representational and algorithmic choices embodied in
the different models under discussion served to shape
the conclusions about learning processes drawn from
them by first comparing the workings of the sequential
Delta-rule model to those of Hsu & Griffiths’ models. We
then discuss how Hsu & Griffiths’ conceptualisation of
the task variables generates different hypotheses
about the underlying learning strategies. We then
explain why it is that the sequential Delta-rule model
indicates that a single mechanism is sufficient to
explain the data.

Dual mechanism interpretation

In their models, Hsu and Griffiths make a clear concep-
tual distinction between what they consider to be the
output that is to be predicted (grammaticality) and
what they consider to be the input (sentences). This
classification of what counts as output and input is fun-
damental to the way that the models are then classified
as either being strong sampling (generative) or weak
sampling (discriminative). Although both models
learned probability distributions over some variables,
the question of whether or not they captured a distri-
bution over input (sentences) determined their classifi-
cation into the two model classes.

To further explain this point, it is important to note
that technically the logistic regression (sentence first)
model is as much a strong sampling model as is the
Dirichlet-Multinomial (grammaticality first) model. The
former serves to capture a distribution over grammati-
cality (strong sampling assumption on grammaticality)
while the latter serves to capture a distribution over sen-
tences (strong sampling assumption on sentences). Hsu
and Griffiths’ classification of these two approaches into
weak and strong sampling models only emerges under a
particular conceptualisation – and hence representation
– of the task. It was because the sentences were always
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conceptualised as input that the models ended up as
being described as either weak sampling or strong
sampling, simply because the classification of the
models was determined by the way that they captured
a distribution over the sentence variable. However,
there is in principle no reason why both models
should not be described as strong sampling models,
albeit expressing strong sampling assumptions about
different variables.

These considerations appear to shed some light on
the origins of the hypotheses that were originally exam-
ined in our case study. Hsu and Griffiths’ original hypoth-
eses seem to have been inspired by the distinction
between generative and discriminative models that is
commonly made by engineers (Ng & Jordan, 2002),
which has also prompted other researchers to examine
whether analogous differences in learning can be
found in humans. In this vein, empirical studies have
offered evidence that seems to suggest that discrimina-
tive models (i.e. models with weak sampling assump-
tions on training items) might better fit training where
an explicit label or response feedback follows presen-
tation of an item, and that generative models (i.e.
models with strong sampling assumptions on items)
better fit training where a label precedes or accompa-
nies the presentations of an item (e.g. Levering &
Kurtz, 2015). By analogy, Hsu & Griffiths assumed that
their two experimental training procedures would have
the same effect on the sampling assumptions made by
the learners in their task. Accordingly, in their design,
in one condition, subjects observed an item, made a
response, and received feedback in terms of the item
being labelled as grammatical or not. In the other con-
dition, subjects were first given a grammaticality label
and where then presented with an item. However, it is
far from clear that this simple manipulation is sufficient
to cause learners to make different assumptions about
the way that the input they are exposed to is being
sampled. Indeed, it is equally unclear why this manipu-
lation should preclude learners from building a genera-
tive model over the sentences in both conditions, just as
it is equally unclear exactly what kind of manipulation
would prompt subjects to employ one or the other of
these statistical sampling assumptions in a task.

In other words, notwithstanding the analogy to the
distinction between generative (strong sampling) and
discriminative (weak sampling) models that is routinely
made in machine classification, a priori there is no prin-
cipled distinction to be drawn between the structure of
the models employed by Hsu and Griffiths and no prin-
cipled link to be drawn between the manipulation in the
task structure of their training experiment and the dis-
tinction between the sampling assumptions that it was

supposed to invoke. That is, it is unclear that the task
design explains the structure of the models, just as is is
unclear that the structure of the models explains the
task design. Instead, it seems that the technical differ-
ences in the models are offered as a candidate expla-
nation of what gave rise to subjects’ different
behaviour as a kind of analogy.

Thus to summarise, both of the models proposed by
Hsu and Griffiths (2016) can be validly described as
strong sampling models with respect to some of their
variables. It is only in relation to the way that the sen-
tences used in training are represented in the models
– in both of the models the sentences were invariably
conceptualised as “inputs” – that the models fall into
the classes of weak sampling (discriminative) versus
strong sampling (generative). Accordingly, to the
extent that these models add support to the idea that
subjects’ in the experiments were using different learn-
ing strategies, this support relies on an analogy
between what the models learned and what subjects’
learned. Yet the distinction that this analogy hinges on
results entirely from the way that conceptual choices
made by the modellers caused the models to be
classified.

Single mechanism interpretation

In building the sequential Delta-rule model, we sought
to take a less top-down approach to the conceptualis-
ation – and representation – of the task structure, and
in particular, to take advantage of differences that
were clearly – and objectively – present in the two
training regimes. Rather than predetermining what
counted as input or output in the representation of
the training set, the sequential Delta-rule model rep-
resents task variables as either inputs or outputs
depending on when, exactly, the sentential or gramma-
tical information conveyed by the various stimuli
occurred in time. Given that the models in the case
study embodied the assumption that two learning
strategies were required to account for the empirical
data, we were particularly interested to examine
whether this data could be accounted for by a single
learning mechanism trained on representations
derived from the temporal structure of the task. By
linking the model structure more tightly to the task
structure, we sought to examine whether the different
ordering of inputs and outputs in the two experimental
conditions was, by itself, sufficient to provide a plaus-
ible account of the data.

Because subjects were presented with grammaticality
information after the sentences were presented in the
sentence first condition, it follows that this information
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could not have been used to inform subjects’ learning as
the sentences unfolded in time. By contrast, learners in
the grammaticality first condition were informed in
advance as to whether the sentence they went on to
hear were grammatical or not. Accordingly, learners in
this condition would have been able to take advantage
of any sequential differences that exist between gram-
matical and non-grammatical sentences as they
occurred in time. Thus, while the representation of the
sentence variable in the sentence first condition in the
sequential Delta-rule model largely corresponds to that
employed by Hsu and Griffiths in the case study, the rep-
resentation of the grammaticality first condition was re-
constructed so as to better capture the temporal
impact of the grammaticality variable in this training
condition.

Thus, in this model sentences were re-represented as
sequences of bigrams that served as outcomes of pre-
ceding bigrams and then as inputs for following
bigrams. It is perhaps worth pointing out that these
differences in the representations of the two grammati-
cality firstmodels further serve to illustrate the challenge
modellers face when translating experimental variables
into model variables because representational choices
will rarely be either obvious or clearly objective.

It is further worth noting that the kind of represen-
tation employed in the sequential Delta-rule model
could easily be transferred to a probabilistic model of
the kind favoured by Hsu and Griffiths, where it could
be expected to yield similar predictions. From this per-
spective, one could think of the sequential Delta-rule
model as a non-probabilistic approximation to two con-
ditional distributions, for which the nature of the distri-
butions now entirely emerges from the
characterisation of the time structure of the problem,
rather than being an ad-hoc decision of the exper-
imenter as to what is an output and what is an input
(Figure 1).

Another point worth noting that emerges from these
considerations is that explicitly probabilistic models are
not the only learning algorithms capable of exploiting
implicit evidence. That is, the explicit sampling assump-
tions embodied in generative models may be sufficient
for learning from the absence of observations, but
they are not necessary for this purpose. Any algorithm
that represents expectations of the presence of obser-
vations (for example, a Delta rule model) is capable of
learning from their absence, which means that it is
also capable of learning from implicit negative evidence
(see also Ramscar et al., 2013).

In summary, we have described two sets of models
which make very different assumptions, both about
the learning process and, perhaps as a consequence,

the information that was considered relevant to model-
ling it in the conditions reported in the case study, and
the information that was included in the input represen-
tations to the models. Nevertheless, as formulated, both
of these sets of models appear to be able to provide
plausible accounts of the empirical results observed (at
least insofar as grammaticality judgments can be taken
as evidence of the subjects’ actual learning in the exper-
iment). We have also shown in detail how ultimately the
performance of these models depends not only on their
different learning assumption but also on the way that
the task structure and task information was represented
within them.

The dual mechanism account emerges from a top-
down conceptualisation of the variables in the task as
being either input or output regardless of the actual
structure of the training condition. In the case study,
this then led to the classification of two models as
either being weak or strong sampling, and by analogy
this was then offered as an account of the empirical
data. By contrast, we have shown that when the tem-
poral order of information is allowed to determine the
representations in models of these training conditions,
then the behaviour that was interpreted as providing
evidence for two distinct learning strategies can be
seen to be the product of a single learning mechanism.
These various models thus serve to reveal how different
conceptualisations of a task (which given the intimate
relationship between data structures and algorithms
we noted at the outset, can be expected to influence
almost every aspect of a model’s implementation) can
in turn lead to very different conceptions of the under-
lying representations and mechanisms that give rise to
human behaviour. These considerations thus also raise
questions about how models that operate on different
representations and algorithms are to be compared. In
the discussion that follows, we will not try to answer
these questions but we will at least try to sketch some
of the considerations that any answers will have to
address.

Discussion

The production of models of ever-increasing detail and
specificity is a basic goal of the scientific process.
While verbal models, for example, are remarkably
flexible, they are also inevitably imprecise. From this per-
spective, the benefits provided by computational
models are obvious: they force researchers to commit
to concrete algorithms and input representations, and
in return allow them to make quantitative, rather than
merely qualitative, predictions and statements.
However, although mathematical models offer the
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promise of precision, delivering on that promise hinges
to a large degree on our understanding of the models
themselves, and the relations between models and the
systems that they are taken to exemplify. In this
regard, it is notable that although much attention in
the language and brain sciences is paid to how and
why the brain computes, answers to these questions
cannot be developed independently of the represen-
tations that are the subject of these computations. This
consideration is particularly important in relation to
the concrete implementations of computational
models, and the way that they are interpreted and
compared.

For example, models of a learning process can make
different assumptions about the distribution from
which a target variable is being sampled. These assump-
tions may either be strong or weak and might roughly
relate to the distinction made between generative and
discriminative classifiers in the domain of machine learn-
ing, such that models from one domain can end up
serving as analogical models in another domain, compu-
tational cognitive science. This seems to have been the
strategy that Hsu and Griffiths (2009, 2016) adopted in
modelling the artificial grammar learning task in the
case study discussed above. However, as we have
sought to show in our analysis of these models, the
relationships between models and the phenomena
they seek to capture at these various levels of abstrac-
tion inevitably hinge on analogies, such that caching
out the promise of specificity in computational model-
ling inevitably hinges on the accuracy of these analogies.
Do the correspondences and relations posited stand
scrutiny and to what degree?

In analysing these models against the conclusions
drawn from them, we have sought to illustrate how a
degree of slippage will inevitably arise even in compu-
tational models because when it comes to modelling
the “same” task using different paradigms, the nature
of the relationship between processes and represen-
tations that serve as their inputs means that it is unlikely
that two different models will represent the same task in
its entirety in exactly the same way.

We illustrated this point by showing how two empiri-
cal patterns previously associated with different learning
strategies, which might in turn be taken to reveal
different learning mechanisms, could be equally plausi-
bly explained within a single learning framework.
Indeed, we might even suggest that this latter model
offers a simpler and more economical explanation to
that originally proposed in the case study, and also,
because the algorithm we used in the sequential
Delta-rule models appears to be broadly compatible
with the neural structures involved in learning in the

brain (see e.g. O’Doherty et al., 2003; Schultz, 2006), it
may provide a better analogy to the processes actually
involved in language learning.

Having said this, however, it is worth reflecting on
some of the limitations of all of the models described
above in this regard. The models in the case study and
the sequential Delta-rule models both treat “grammar
learning” as a process of learning how to combine dis-
crete form elements into larger messages, yet it is far
from clear how well this conception of the task reflects
what children actually do. While adult speech pro-
duction and comprehension can be described in combi-
natorial terms, the processes that best characterise
children’s communicative learning are discriminative
(rather than combinatoric or compositional), because
in order for a child to interpret speech as sequences of
discrete forms (at various levels of description), they
must first learn to discriminate those forms from a
more or less continuous input in which the mappings
between the forms and physical signals (i.e. sound
waves) are far from straightforward (in listening to
speech, language users not only routinely use context
to infer – and “hear” – form elements that are not
present in the signal, but also, again depending on
context, routinely interpret the same physical signals
as representing different forms; Ramscar and Port
(2016)). It is thus far from clear that the alphabetic/com-
binatoric characterisation of language used in these
models is at all a reflection of the true nature of the
task faced by language learners.

What is important to note for current purposes is that
there are other models one might conceive of here, such
that there may in fact be better ways of modelling and
interpreting the same empirical phenomena and data.
The results from the sequential Delta-rule model serve
to underline this point by showing how it is possible
for a single learning mechanism to give rise to two
different learning outcomes. In doing so, it illustrates
an obvious yet easily overlooked fact: It does not
follow that because a model can capture some of the
observed performance that results from an underlying
process that the model actually capture the underlying
process itself.

Accordingly, we do not intend to suggest that our
analyses offer proof of a single mechanism theory of
learning in this task. Nor do we necessarily disagree
with many of the abstract descriptions of the learning
process that the original models described in our case
study here sought to capture. For example, it is clear
that expectations, and violations of these, in the form
of implicit negative evidence, are very valuable aspects
of learning. Indeed, as we noted above, in this regard
– at an abstract level – the sequential Delta-rule model
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is similar to the models originally proposed by Hsu and
Griffiths (2009, 2016) in the case study.

Further, just as we have shown that the predictions of
those original models depended to a large extent on the
input representations they employed, the predictions of
the sequential Delta-rule models are also sensitive to the
representations chosen and would necessarily change if
different choices were made. The important point here is
that these choices need to be made explicit, they need
to be justified, and the plausibility of these justifications
needs to be examined. Because different models can
behave similarly, while the interpretations of these
models can differ widely, the process of drawing con-
clusions from models of cognitive/neural processes will
inevitably depend on details that are devilishly difficult
to ascertain, and this problem is exacerbated when
these details are taken for granted or left implicit, as is
often the case with input representations in cognitive
models.

It is to these details that we will now turn our atten-
tion. It seems clear that theories of language and cogni-
tion need to pay as much attention to input
representations as they do to model architectures. It
also seems clear that great care should be taken when
applying tools from machine learning to problems in
biological learning, not least because machine learning
models are typically applied to pre-defined represen-
tations which currently have no clear analogues in the
brain. We will expand on these points below.

Representation, algorithm, and abstract model

As we have noted throughout this paper, a model’s pre-
dictions can never be arrived at independently of the
input representations that are chosen for it. Our results
provide one example of how the interactions that
necessarily occur between representations and the
mechanisms operating on them can lead to situations
where the exact same behavioural data can be explained
by very different models. In doing so we have sought to
emphasise how important choice of representation is to
modelling, and we have also sought to highlight how
representational choices tend to be ignored when mod-
ellers of cognitive and neural processes theorise about
the relative contributions of algorithms, computations,
etc. to the more abstract processes they seek to
understand.

One reason for this may be the many and varied uses
to which the word representation is put in the brain and
cognitive sciences. We have focussed here on just one of
these uses: the strictly computational notion of a rep-
resentation as an input to an algorithm. We noted a
different conception of this word above when discussing

how the task of language learning is to be conceptual-
ised: one might represent the task facing children in
purely combinatoric terms, or one might also represent
this task in a way that also incorporates the discrimi-
nations that lead to the elements that need to be com-
bined in the first place. (Adding to the confusion, this use
of representation to capture a high-level conceptualis-
ation of the process under consideration is often
referred to as characterising it at the computational
level.) Then again, representation is also used as being
the end of an investigation itself, when researchers
seek to characterise the intermediate, internal represen-
tations that are thought to mediate between higher and
lower-level cognitive processes. For example, in the cat-
egorisation literature, there has been much debate on
whether ‘concepts’ are internally represented as proto-
types or exemplars. What is interesting about this
debate for current purposes is that advocates for the-
ories on either side of it tend to assume the same
input representations to their models of the categoris-
ation process, such that from the current perspective,
this debate is not so much about input representations
as it is about the best algorithms for capturing human
performance in categorisation tasks (Love, 2003). Given
the promiscuous uses to which the word is put in the
field, it is perhaps hardly surprising that as one switches
between literatures, it is not always clear what is meant
by representation or that different aspects of the ideas
that relate to it are often lost in the mix.

To explain why the contributions of representations,
algorithms, and computations will only rarely manifest
themselves in fully independent ways (as suggested by
Marr, 1982), it is important to recognise that in practice,
models in the brain and cognitive sciences are typically
presented in one of two distinct ways: either as abstract
model descriptions, or as implementedmodels.3 Abstract
model descriptions typically comprise symbolic (i.e.
verbal or algebraic) descriptions of the relationships
between what are typically quite loosely defined quan-
tities or entities. Accordingly, while abstract models
can appear to be more or less “formal”, they typically
fail to fully specify representations (what exactly will
be counted and in which format) and typically fail to
fully specify the algorithms that will transform these rep-
resentations into predictions (Figure 6). It is in fact only
when these latter steps are made, and an abstract
model is actually implemented, that it can be considered
formal in any meaningful sense.

Further, because abstract models are almost always
conceived of within theoretical frameworks that in the
brain and cognitive sciences inevitably embrace a par-
ticular computational metaphor, and because these fra-
meworks shape the way problems and solutions are
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conceptualised and interpreted, it follows that the mod-
elling process can only really bring forth the clarity it
promises if all the decisions embodied in an
implemented model are properly described, analysed
and discussed before any theoretical conclusions are
drawn.

In this regard, it is notable that the problem of specify-
ing input representations for models of neural/cognitive
function appears to apply more generally to many
different fields of research. For instance, recent work in
category learning (Roark et al., 2020), perceptual learning
(Zaman et al., 2020) and visual memory (Schurgin et al.,
2020) supports amoregeneral case thatmanywell-estab-
lished theories about underlying processes have made
assumptions about the representation of physical stimu-
lus properties as inputs that on examination are proble-
matic. Firstly, it has been noted that assumptions made
in one stimulus domain (e.g. visual) can fail to generalise
to another (e.g. auditory), such that previous models fall
short of explaining more general phenomena, and sec-
ondly, it has been noted that when representations that
reflect parts of the brain’s transformation of the physical
input are incorporated intomodels, be it on a group-level
or even in individual subjects, this can drastically change
their predictions and hence the interpretations about
mechanism that they support.

This is a basic problem, and the difficulties it presents
inevitably increase whenever there is disagreement
about the actual function of cognitive mechanisms
themselves. To return to the models in our case study
and our reformulation of them, the important differ-
ences between them ultimately extend far beyond
their technical implementations, because ultimately
these models embody different metaphors of how

cognition works. All of the major theoretical frameworks
in the brain and cognitive sciences embrace compu-
tational metaphors, and it follows from this that all
abstract models will tend to be biased towards particular
conceptualisations of problems that are shaped by par-
ticular algorithms and particular kinds of represen-
tational choices, which lead in turn to particular kinds
of interpretations of findings (Figure 6). For example,
Rescorla and Wagner introduced their take on the
Delta rule as an elementary model of learning in which
inputs and outcomes are associated. The representation
of these inputs and outputs were defined by the exper-
imenter based on their intuitive understanding of the
features of the environment available to a learner.
While this model could explain many learning phenom-
ena in animals, there are results that the model cannot
account for and more complex algorithms have been
proposed to account for these in turn. For example,
one finding that appeared to speak against the
Rescorla-Wagner rule is retrospective revaluation (e.g.
backward blocking). While other algorithms to account
for this finding have been proposed within the elemen-
tary representational framework, Ghirlanda (2005) has
shown that this problem can be resolved by a Delta
rule model simply by changing the representation, and
assuming that the brain never represents input cues as
fully separate entities (a representational format that
elemental models, by definition, tend to assume). In
the same vein, Ramscar et al. (2010, 2013) have argued
that because all Delta rule models implement a form
of discriminative learning, it makes little sense to
assume elemental representations in error-driven learn-
ing models, and that representation in these models
should be conceptualised in abstract terms, based on
the dimensions of the environment that a learner
needs to discriminate, as opposed to the supposed “fea-
tures” it contains.

In summary, implementing a model necessarily
involves a commitment to a specific model architecture
and a specific representation of the task. While these
choices are influenced by the theory, they are rarely, if
ever, governed by it. This inevitably leaves even
implemented models open to interpretation, and
when it comes to these interpretations any part of the
model – input representation, algorithm, etc. – is as rel-
evant as any other.

Input versus label

As we noted above, theorising in the brain and cognitive
sciences leans heavily on computational metaphors. This
is particularly apparent in relation to learning, where the
study of biological learning increasingly borrows from

Figure 6. An implemented model can only make predictions
from concrete representations and algorithms. The choice of
these is shaped by the theory or framework in which the
model is conceived of and interpreted, along with any exper-
iments to test its predictions, etc. Critically, in practice, these
choices are rarely fully specified by the theory or the abstract
model. Understanding the resultant influence of these choices
is critical to understanding the actual theoretical contribution
of any implemented model.
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machine learning. The problems this can bring were
illustrated in the original models discussed in our case
study, where a commitment to characterising human
learning in the generative/discriminative terms
employed in machine classification appears to have led
to the concomitant adoption of a somewhat restrictive
view of what counted as being input or a label in the
learning task, which inevitably led to a particular set of
conclusions. In standard machine classification, this
issue does not arise. The goal of machine classification
is the labelling of inputs, such that what counts as an
input and what counts as a label is never in question.
As we have sought to show, once machine classification
is related by analogy to human learning the question of
what exactly is an input or an output becomes more
complicated.

To return to the models of Hsu and Griffiths, it is far
from clear exactly which events count as labels to the
brain, i.e. which events are in fact targets to predict,
just as it is far from clear which events offer support
for these predictions, i.e. act as input. That is, as we
noted above, there is no a priori reason to suppose the
brain would represent the grammaticality or sentence
information in the learning tasks in the case study by
analogising them to the various parts of machine learn-
ing models. Accordingly, it follows that when engineer-
ing methods are applied by analogy to less well
circumscribed domains like human learning, researchers
must be careful to mind the gap.

This is not to say that probabilistic models and other
techniques frommachine learning are not useful tools to
be applied to understanding language and language
learning. Rather, it is to emphasise a point that we
have sought to highlight throughout. As we noted
above, all models are metaphors, and their scientific
utility ultimately stands or falls in their value as ana-
logues of the phenomena they sought to capture. In a
similar vein, techniques from machine learning can
only be applied to phenomena in human learning by
analogy, and thus the value of these analogies ultimately
depends on the degrees of correspondence that can be
established between the two. When it comes to the rep-
resentation of human learning in models, establishing
these correspondences is a difficult and subtle task.

Crafting representations

These considerations point in turn to yet another differ-
ence between machine and human learning models. In
machine learning, numerous techniques have been
developed for efficiently analysing data and optimising
the prediction of future data points. For the purposes
of engineering, the usefulness of a model can be

defined straightforwardly. All that matters is its perform-
ance on a particular problem, and many engineering
choices, such as the selection of an appropriate algor-
ithm, can be made on a fairly objective basis, depending
on the data and domain structure in question (Figure 7).
For this reason, in machine learning, the pre-processing
of data, hand-crafting of features, or automating feature
selection in the algorithm itself, can all be entirely legit-
imate steps. This is because in engineering, if Model A
can perform a well-defined task faster, more accurately,
or more efficiently than Model B, then A is a better
model than B.

By contrast, the goals of any cognitive/neural model
are inevitably far less well defined. Rather, because the
goal of these models is to act as analogues for poorly
understood processes, it follows that in an ideal world
every aspect of a model should stand on as sound a
theoretical basis as is possible. That is, given the under-
specified nature of the problem being fitted – human
learning and behaviour in all its complexity – tweaking
input representations and algorithms to improve the
“performance” of a specific model without considering
all of the myriad ways in which underspecification
necessarily compromises cognitive modelling, might
not only be unwarranted, it may risk derailing the
whole enterprise altogether.

To return to the subject of our case study, language –
and in particular the idea of what is to be considered an
input in language learning – is a particularly interesting
domain to think about in this regard. Much of linguistics
is occupied with the characterisation of its structure and
the nature of linguistic representations at various levels
of abstraction. While linguistic abstractions can be
described at syntactic, morphological, phonemic levels
etc., it is far from clear that any of these notional rep-
resentations exactly capture human communicative pro-
cessing at an actual “functional” level. Rather, all of the
information these abstractions seek to characterise
seem to be processed by the brain in an almost holistic
fashion, and it is far from clear that these traditional
levels of linguistic description are as separable in
reality as they might appear in theories. From a compu-
tational perspective, this poses enormous challenges. As
we have noted throughout, representational choices are
critical to the understanding of computational models
yet when it comes to language, we are faced by an
apparently hierarchically organised structure that simul-
taneously provides no obvious entry point from a rep-
resentational perspective. For example, most modellers
may be familiar with the idea that “words” and “mean-
ings” are hard to define, but in fact this problem
applies at every conceptual level of description, from
high-level “grammatical regularities” to low-level
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“phonetic features” (Ramscar & Port, 2016; Samuel,
2020). Such is the nature of human communicative
codes that it is impossible to fix upon a given represen-
tational level or to define representational units, without
making simplifying assumptions that can do more to
determine the contribution of a given model than any
other subsequent, seemingly “formal”, choice (Figure
7). Moreover, as we have sought to illustrate in the con-
crete modelling examples discussed above, these are
not just philosophical problems, but rather it is likely
that these issues affect most modelling in the brain
and cognitive sciences most of the time.

Model comparison

To recapitulate: Representational choices can signifi-
cantly alter the performance of a model, the predictions
it makes and thus the way it is interpreted. Given that
these choices are invariably underdetermined in cogni-
tive/neural models this poses problems when it comes

to the evaluation and comparison of these particular
models. The problem is fairly easily stated: because rep-
resentational and algorithmic choices are invariably
underdetermined, it follows by necessity that models
can only be mapped onto theory by analogy, such that
in modelling the problem of mapping by analogy is
present at every formal level of description. As such, a
formal comparison of two models will never in fact rep-
resent a formal comparison of the actual abstract models
themselves, but rather a formal comparison of their
implementations, and because the relationship of
these implementations to underlying theory depends
on analogies that could conceivably be better or worse
at either the representational or algorithmic level, the
theoretical implications of better or worse fits in model
comparisons will inevitably be underdetermined. Is a
better performing implementation a better model in
this case? Ultimately, the answer to this question
depends on ones belief in the underlying analogies sup-
porting the various aspects of the implementation. For

Figure 7. Machine learning versus cognitive modelling. In machine learning, the data arrives in a pre-defined representation. The
challenge the field faces is that of finding a suitable abstract model and efficient algorithm to be able to make the best possible pre-
dictions on unseen data. Using these tools to account for learning in biological systems imposes additional challenges: (a) the actual
nature of the input representations to the learning mechanisms employed in the brain at the various stages of processing are
unknown (because sensory systems massively transform the raw input received from sensory receptors and there is no obvious rep-
resentational entry point). Thus the mapping between input and output of the biological and artificial learning system are an essential
part of the implemented model and typically influenced by the underlying theory, (b) the learning mechanism of the brain is unknown
and thus the goal of abstract and implemented models is no longer optimal data prediction, but rather to serve as analogues for
largely unobservable and underspecified processes in the brain.
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example, consider a hypothetical case where a formal
comparison of two implementations shows model A to
be better than model B (e.g. in terms of generalisation
performance). One can easily conceive of situations
where the algorithm implemented in model B is far
more biologically/psychologically plausible than that of
A, but where the representation used as the input to
the algorithm in model B was chosen poorly/specified
inaccurately, such that what is driving the difference in
performance of the models is not in fact the hypoth-
esised mechanisms themselves but merely the inputs
into them. Which is actually the better model? Given
the complexity of exactly determining the contributions
of different representations and algorithms, and of com-
paring these contributions between implementations, it
is clear that providing a definitive answer to this ques-
tion will be difficult, and may even be impossible. If it
really is the case that cognitive/neural models are ulti-
mately analogues, then this conclusion ought not to sur-
prise us, since formal model comparison in this instance
seems to equate to formal metaphor comparison, which
seems something of a contradiction in turn.

Because no formal solution to this problem currently
exists, or is even likely to exist, this points to an uncom-
fortable conclusion. Despite the apparent formality of
cognitive/neural models, it appears that where proces-
sing or representational assumptions differ significantly
(as for example, the two grammaticality first models in
our case study), the best we can currently hope to
achieve with model evaluations and comparisons will
have a qualitative rather than quantitative flavour; and
at worst, this might represent a necessary consequence
of the methods currently employed in the field. If we
accept this conclusion, and at present it seems we
must, it follows that despite their apparent formality,
cognitive/neural models should be presented in ways
that facilitate and help maximise the effectiveness of
qualitative comparisons. This means, for example, that
many of the choices that modellers currently make
and present implicitly need to be made more explicit.
In particular, it helps highlight the importance of justify-
ing representational choices, of considering alternate
representations, and of considering the impact of
specific representational choices on specific predictions.
In short, it highlights the need for modellers to be more
verbose about their representations when reporting on
models. Bringing input representations into the focus
of discussion will do more than merely help others
better understand the workings of models. Rather, it is
likely that it is only by including representations to
their considerations of other aspects of their models
that modellers will in fact be able to properly justify
any conclusions that they draw from them. Formulating

these kinds of exhaustive model descriptions will, admit-
tedly, be a challenging and time consuming task.
However, given the analogical role that models play in
this domain, eschewing this task will only result in con-
fusingly mixed metaphors.

This is not to say that formal methods for model
analysis and comparison have no part to play in this
process. Far from it. Models’ abilities when it comes to
fitting and predicting empirical data are clearly impor-
tant for the purposes of comparison and evaluation.
Indeed, as we noted above, in many cases, models will
share their basic computational and representational
assumptions, and existing methods for model compari-
son will often be sufficient for these purposes. Indeed,
given the way that science works in practice (most
actual work is done in support of pre-existing theories
and models, as supposed to proposing new theories
and models), it likely follows that most models in the lit-
erature share either their algorithms or their represen-
tational assumptions (or both), with other models.

However, in what we suspect will be the majority of
theoretically interesting examples of model comparison
– those cases where two models do not share their basic
computational and representational assumptions – tra-
ditional formal methods of analysis and comparison
will fall short for the reasons we have described above.
Other methods and approaches will be required. We
have already stressed the need for making modelling
and implementational decisions/descriptions (and the
theories that inform them) more explicit when models
are reported. One promising example of this approach
is where empirical information/processes are explicitly
used in the development of input representations them-
selves. For example, many models of spatial navigation
assume that different aspects of the environment are
represented by specialised cell types, a strategy that at
least allows for some representational assumptions to
be tested empirically (Barry et al., 2006; Hartley et al.,
2000). Another approach that seems promising in this
regard comes from machine learning, where tools are
being developed that allow researchers to infer their
input representations from and test them against large
datasets. For example, tools can allow for represen-
tations to be inferred (e.g. from behavioural data, or
the performance of DNNs) which can subsequently be
correlated against further test sets of brain and behav-
ioural data (Battleday et al., 2019; Houlsby et al., 2013;
Hsu et al., 2019; Ma & Peters, 2020; Sanders & Nosofsky,
2020; Schatz et al., 2019; Yamins et al., 2014; Zheng et al.,
2019). From the perspective described here, this appears
to be a promising direction of research, since it offers the
possibility of ultimately empirically constraining the
search space for representations, and might even lead
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to the development of tools for objectively testing some
representational choices, in some domains at least.

Conclusion

Computational models of cognitive and neural pro-
cesses occupy a curious intellectual niche because they
model unknown processes whose correspondences
even at an input and output level are typically weakly
constrained/largely underdetermined (how exactly do
the “categories” in a model of categorisation correspond
to anything in human thought processes?; what exactly
is ‘language’ in a model of language learning?). As a con-
sequence it follows that in most cases the correspon-
dences between virtually every aspect of these models
and the things that they stand for/represent can only be
inferred at best. On the whole, these models serve their
function more as metaphors than simulations, such that
it is less the case that computational models are fitted
to cognitive/neural processes than it is that these
models shape our understanding of what these processes
are. Accordingly, this means that these models are inevi-
tably developed within larger computational frameworks
which can shape and even determine the choices scien-
tists make when selecting the actual representations
and algorithms that they implement in their models.
Although both of these choices can have a strong
influence on a model’s performance and predictions, as
compared to the attention that algorithms and broader
frameworks have received in the literature, the represen-
tations that encode the inputs to these algorithms have
been curiously neglected. Typically, the inputs to pro-
cesses are simply taken for granted, such that the nature
and influence of their representations, and the degrees
of freedom associated with their choice, have been little
analysed or discussed in the literature. This has often led
to situations where algorithms have been either rejected
wholesale asmodels for a given functional process at one
extreme, with algorithmic features being reified
unnecessarily at the other (see e.g. Fodor & Pylyshyn,
1988).

At the outset of this paper, we noted that our goal
was not to try to formally establish whether or not one
of Hsu and Griffiths’ models or our own was correct. As
the forgoing hopefully makes clear, this is because to
the best of our knowledge there is no formal way of
establishing this, because the two sets of models embo-
died different representational and computational
choices, and no formal methods for capturing and quan-
tifying these differences exist. Instead, we have sought
to use a qualitative comparison of these models to high-
light the apparently unique problems that the inter-
actions between input representations and algorithms

pose in the brain and cognitive sciences, to describe
the problems that representational flexibility poses to
model evaluation and comparison, and to give one
example of what a more qualitative solution to this
problem might look like. The adage “All models are
wrong, but some are useful.” (Box, 1979) is well known
to modellers. In a similar vein, when it comes to the
mind and brain it is clear that all representations are
also wrong, and that establishing that a representation
is useful is a far harder task than many modellers
appear to appreciate.

Notes

1. “While scientists and philosophers have on the whole
taken diagrams for granted, they have been forced to
fret at some length about the nature and function of
models. Few terms are used in popular scientific dis-
course more promiscuously than ‘model’. A model is
something to be admired or emulated, a pattern, a
case in point, a prototype, a specimen, a mock up,
a mathematical description – almost anything from a
naked blonde to a quadratic equation – and may bear
to what it models almost any relation of symbolization.”
(Goodman, 1976, p. 171)

2. Note that the concrete choices and implementations of
the two models as exemplars to contrast generative and
discriminative model predictions in general is somewhat
misleading. This is because the models are imperfect
counterparts, a result of the fact that the generative
model was only conditioned on grammatical sentences.
In a more standard approach to modelling this task one
might think of a generative model over sentences and
grammaticality rather than generative with respect to
sentences and parameters (Figure 1). This point is
further blurred because Hsu and Griffiths suggest at
other times that it is only the difference in sampling
assumptions on sentences that they interpret to be
the cause of the different learning outcomes. These vari-
ations on their hypotheses notwithstanding, the con-
cerns we raise about the representations chosen for
the models apply regardless.

3. Although many researchers like to distinguish between
the “algorithmic” and “computational” levels in model-
ling neural and cognitive processes, it is far from clear
that this distinction can ever be perfect in practice.
The fact that computations are inevitably defined as
transformations of variables means that it is generally
impossible to describe a computation without commit-
ting to variables. While domains with clearly defined
variables may pose no problem in this regard (such as
mathematics, where real numbers can serve as well-
defined, discrete, variables such that a computation as
for example “addition” can be analysed independently
of the representation of the variables it transforms and
the precise algorithm used, c.f. Marr), when it comes to
the brain and cognitive sciences, the natures of the
units, concepts, etc. being transformed are unknown.
This means that in studies of the brain, the defining of
“computations” invariably requires researchers to
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commit to variables – representations – that are always
empirically and theoretically underdetermined. Accord-
ingly, the distinction between “algorithmic” and “com-
putational” level only “works” insofar as the problem
of defining variables – making representational choices
– is ignored. To some degree, this problem can be
fudged at an abstract level, but when computational
models are used as analogues to cognitive/neural pro-
cesses it will inevitably raise its head. All computational
models require the definition of a specific set of vari-
ables for the task to be modelled, and also a definition
of a precise encoding of these variables, and a precise
definition of the algorithm transforming them. Given
that any computational model is in fact a conjunction
of an input representation and an algorithm, and
given that the brain’s representations cannot be takes
as given – meaning that all of the definitions just men-
tioned will be massively underdetermined empirically
and theoretically – it is highly unlikely that the “compu-
tational” and “algorithmic” levels assumed by Marr can
ever be decoupled in practice in the way that research-
ers often appear to assume. Further, it seems likely that
the reason behind this important point being generally
overlooked in the brain and cognitive sciences is the
general myopia towards representational issues that
we have sought to highlight here.
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