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Abstract 
 
 
 The atypical antipsychotics are a group of second generation drugs used for 

the treatment of schizophrenia, schizoaffective disorder, as well as some forms of 

bipolar and major depressive disorder. First generation or the “typical antipsychotics” 

are an older group of drugs whose first member, chlorpromazine was developed in the 

early 1950’s. The typical antipsychotics have a higher propensity to induce 

extrapyramidal side effects (EPS), and elevate prolactin levels. The introduction to 

this thesis begins with the history of the typical antipsychotics; particularly the 

introduction of chlorpromazine, up to the introduction of clozapine a compound 

which revolutionized the treatment of schizophrenia.  Then the five subsequently 

approved atypical antipsychotic drugs are discussed.  The introduction of clozapine 

soon revealed agranuocytosis as a relatively frequent side effect, and  made it clear 

that a need remains for antipsychotics that are equally or more efficacious without 

deadly leukocytopenic side effects. While the atypical antipsychotics are often 

lumped into one category, they are diverse compounds with different EPS liabilities, 

side effects, and pharmacodynamic properties. Thus, the pharmacology of the 

atypical antipsychotics and the most interesting set of side effects, the extrapyramidal 

side effects are reviewed. Extrapyramidal side effects include akathisia, 

parkinsonism, dystonia, and tardive dyskinesia, and are complex motor side effects 

with mental components. This set of troublesome side effects often result in 

compliance issues particularly with the typical antipsychotics. Dopamine D2 receptor 

antagonism in the nigrostriatal pathways of the brain is believed to be the primary 



 
 
 

iv 

cause of extrapyramidal side effects. Dopamine D2 receptor antagonism in the 

mesolimbic dopamine pathway is thought to result in the antipsychotic affect, and 

compounds that target this pathway selectively are hypothesized to have lower EPS 

liabilities. Although the atypical antipsychotics are a diverse group of drugs they have 

some common features including lower extrapyramidal side effect liabilities, and 

minimal or no prolactin elevation. Within this context two major hypothesis’ of 

atypicality will be reviewed, the fast-dissociation hypothesis and 5-HT2A/D2 affinity 

ratio hypothesis. Orolingual components of extrapyramidal side effects will be 

reviewed as well as neural control of the tongue by the hypoglossal nucleus, 

hypoglossal nucleus organization, and tongue anatomy, and physiology.   Relevant 

preclinical behavioral research of both typical and atypical antipsychotics will be 

reviewed.  The research presented here is concerned with both the acute and 

subchronic effects of the atypical antipsychotic on orolingual function in rats as a 

model of EPS.  Licking behavior in rats is believed to be controlled by central pattern 

generators in the brainstem, and the rhythm (Hz) of licking, peak force, and the 

number of licks will be quantitatively analyzed and compared. Tolerance and 

sensitization will be assessed using a subchronic dosing regimen. These data will then 

be discussed in the context of past studies concerning licking dynamics with 

haloperidol and clozapine, and to a lesser extent risperidone.



1 

 

Introduction 
 

In the early 1950’s the drug chlorpromazine was introduced and was 

originally used for preoperative anxiety (1). A series of animal studies and clinical 

observations built a foundation of knowledge about chlorpromazine, which lead to it 

being the first antipsychotic drug used for the treatment of schizophrenia. In 1950, 

Courvoisier and colleagues observed that chlorpromazine had pronounced effects on 

the central nervous system, including the prolongation of sleep induced by 

barbiturates in rodents, the prevention of apomorphine-induced emesis in canines, and 

the inhibition of the conditioned avoidance-escape behavioral response in mice (3). In 

1951, Laborit and Huguenard observed that surgical patients could be induced into a 

state of "artificial hibernation" by a "lytic cocktail" of chlorpromazine, promethazine 

when administered in combination with an analgesic.  It was also observed that 

patients treated with this cocktail required lower doses of anesthetisia and were more 

capable of coping with the stress of surgical trauma. (3,4,5).  Based on these 

observations of the CNS effects of chlorpromazine, Laborit and Huguenard provided 

chlorpromazine to two groups of psychiatrists. Chlorpromazine was given to Hamon, 

Paraire, and Velluz at the Central Military Hospital, in Paris (5) and Delay, Deniker, 

and Harl at the psychiatric clinic of Sainte Anne Hospital in Paris (3,6,7) .  The first 

reported chlorpromazine-treated case was a 57-year-old laborer who was admitted to 

the Central Military Hospital because of erratic, uncontrollable behavior (25, 26). 

Shortly after the administration of chlorpromazine his symptoms were improved, 
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chlorpromazine was recognized for its effects on the mentally ill, and a clinical 

breakthrough had occurred. 

The clinical success of chlorpromazine stimulated research, which led to 

many other drugs that were marketed for the treatment of schizophrenia, such as 

thioridazine, fluphenazine, and haloperidol. However, in 1954, two years after 

chlorpromazine first came into clinical use, extrapyramidal side effects (EPS) 

including Parkinsonism, dystonias, and akathisia began to be described and 

recognized as side effects of chlorpromazine (8).  A 1961 study reported the 

prevalence of EPS in patients treated with typical antipsychotic drugs was estimated 

at 38.9% (9). The majority of clinicians and pharmacologists became convinced that 

EPS was associated with the clinical effectiveness of antipsychotic drugs (10,11). 

This attitude was reinforced by introduction of haloperidol in 1958 by Haase and 

Janssen, a drug that is both effective in the treatment of schizophrenia but also 

frequently induced EPS (10,11).  

In the early 1960’s German psychiatrists working with G. Stille at Wander 

Pharmaceuticals in Bern, Switzerland, were able to refute the concept that EPS was 

required for the efficacy of antipsychotic drugs through the development of clozapine 

(12).  Clozapine, a second generation antipsychotic is only minimally associated with 

EPS (13). Clozapine was briefly marketed and quickly withdrawn (13), because it 

lacked the propensity to induce EPS believed necessary for therapeutic efficacy. 

Clozapine use was further limited by the purchase of Wander Pharmaceuticals by 

Sandoz Pharmaceuticals (14) and, most significantly, reports from Finland that life-
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threatening incidents of agranulocytosis associated with clozapine treatment (15).  

However, enthusiasm for the drug was maintained by a few clinical investigators, 

notably G. Honigfeld at Sandoz, who observed that clozapine was remarkably 

effective in treatment-resistant schizophrenic patients. This observation led to the 

landmark double-blind clinical study of clozapine using a well defined group of 

treatment-resistant patients whose blood cell counts were closely monitored during 

treatment, (16) and ultimately to its introduction to the US market in 1990.  

Clozapines’ success stimulated the development of other second generation 

antipsychotic drugs with similar efficacy with the idea of eliminating leukocytopenic 

side effects. The first of these, risperidone, was approved in 1994, (17) olanzapine 

followed in 1996, (18) quetiapine in 1997 (19), ziprasidone in 2001 (56), and 

aripiprazole in 2002 (55). All subsequently released atypical antipsychotic drugs have 

yet to prove that they are as effective as clozapine, which is still considered the most 

efficacious drug for the treatment of schizophrenia. (13). 

 

Pharmacology of Antipsychotic Drugs 

 

 The antagonism of dopamine D2 receptors is believed to be the most important 

pharmacodynamic attribute of both the typical and atypical antipsychotics.  

Antagonism of D2 receptors affects three main dopaminerigic pathways in the brain: 

the mesolimbic, nigostriatal, and tuberoinfudibular (79). The mesolimbic tract 

originates in the A10 area and innervates both cortical and limbic structures. 
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Mesolimbic dopaminerigic projections appear to be important in arousal, memory, 

stimulus processing, locomotor activity and motivational behavior.  The positive 

symptoms of schizophrenia (hallucinations and delusions) are believed to be 

associated with hyperdopaminergic activity in the limbic system, thus it is likely that 

D2 antagonism in the mesolimbic tract alleviates theses symptoms by reducing its 

dopaminerigic tone (79).  

 The nigrostriatal pathway originates in area A9 (zona compacta) and projects 

through the basal ganglia, and the blockade of D2 receptors in this pathway is 

believed to be primarily responsible for Parkinsonism and other extrapyramidal side 

effects. The basal ganglia of the nigrostriatal pathway are thought to be involved in 

motor learning and movement sequencing.   The tuberoinfudibular tract has its cell 

bodies in the hypothalamus and projects to the pituitary gland where it regulates the 

release of prolactin. Lactotrophs of anterior pituitary posses D2 receptors that when 

stimulated by dopaminerigic projections inhibit prolactin secretion. Antagonism of 

the D2 receptors of pituitary lactotrophs interferes with the dopaminerigic stimulation 

from tuberoinfudibular tract neurons and disinhibits the regulation of lactrotrophs 

resulting in the elevation of prolactin secretions (79). Prolactin elevation is a 

prominent side effect of the typical antipsychotics and to a much lesser extent the 

atypical antipsychotics.   

Antagonism of cortical 5-HT2 receptors in the cortex is believed to release 

tonic inhibition of dopaminerigic neurons and improve the hypodopaminergic frontal 

cortex found in schizophrenic patients (79). This mechanism may contribute to the 
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improved negative and cognitive symptoms of schizophrenic patients using the 

atypical antipsychotics.   

 

Theories of Atypicality 

 

 Dopamine D2 receptor blockade is a pharmacodynamic property of all 

antipsychotics, both typical and atypical, with the exception of aripiprazole, which is 

a D2 receptor partial agonist (27). While the definition of atypical antipsychotics has 

not been solidified and is generally used as a blanket term to describe second 

generation antipsychotics, there are differences that distinguish the typical from 

atypical. The most obvious include lower EPS liability, none to minimal prolactin 

elevation, and a higher affinity for 5-HT2A receptors than D2 receptors. However, 

these parameters vary greatly among the atypical antipsychotics and provide only a 

loose definition. Several individuals have attempted to define the atypical nature of 

these second generation antipsychotics, and this work has led to two major 

hypotheses.   

The two hypotheses that have been put forth in attempt to define atypicality 

are the fast dissociation hypothesis and the 5-HT2A/D2 affinity ratio hypothesis. The 

fast dissociation hypothesis is based of the fact that all antipsychotics antagonize D2 

receptors but that the atypicals dissociate more quickly from the receptors than the 

typicals. This hypothesis states that rapid dissociation of atypicals from D2 receptors 

is the property that results in lower EPS liabilities and minimal prolactin elevation 
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and is the key pharmacodynamic property of atypicality (57). Photon emission 

tomography studies have shown that the threshold for inducing EPS is at about 80% 

nigrostriatal D2 receptor occupancy in the, while antipsychotic activity only requires 

around 65% D2 occupancy (58). Faster dissociation would result in a lower 

occupancy percentage at any given moment, and a lower incidence of EPS, as well as 

lower percentage occupancy producing the desired therapeutic results. One of the 

major weaknesses of this hypothesis is that it only takes into account D2 receptor 

interactions yet all the atypicals have complex binding profiles and affect multiple 

neurotransmitter systems, which may contribute to their low propensity to induce 

EPS. On the other hand, no successful antipsychotic drugs have been made that are 

effective with out either D2 antagonism or partial agonism in the case of aripiprazole, 

suggesting that D2 receptor interaction is most important for antipsychotic treatment. 

 An experiment comparing pKi values of 13 typical and 7 atypical 

antipsychotic showed that atypical could be distinguished from typical drugs based on 

a lower affinity for the D2 receptor and higher affinity for 5-HT2 receptors (59). That 

is typical and atypical drugs formed into group based off their 5-HT2/D2 affinity 

ratios. This 1989 study included clozapine, and several drugs that to this date are not 

approved for the treatment of schizophrenia in the United States, such as ritanserin, 

SCH 23390, and zotepine (59).  Interestingly, all subsequently approved atypical 

antipsychotics have a higher affinity for 5-HT2A than D2 receptors. This hypothesis is 

based on a correlation found in this receptor affinity study, namely that compounds 

found to have higher affinities for the 5-HT2 receptor than D2 tend not to induce EPS 
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in humans and animals. To the best of my knowledge no direct and solid evidence has 

conclusively demonstrated an interaction of antipsychotics with serotonin receptors is 

the only property of the atypicals that reduces the likelihood of EPS. Furthermore, 

anticholinergics compounds, such as Trihexyphenidyl, have been used with some 

success to treat EPS suggesting that EPS involve multiple neurotransmitter systems. 

Clozapine and olanzapine have substantial muscarnic antagonist activity, yet research 

I have done has shown that olanzapine frequently induces catalepsy, which is a 

laboratory model of EPS. Since atypicals interact at a number of other receptor sites 

that may help reduce EPS liability, the definition of atypicality remains the term used 

to group clinically similar yet chemically diverse group of compounds.  Since the 

initial publication of this report in 1989 (59), it has been discovered that there are 

several 5-HT2 receptor subtypes, and isoforms of the D2 receptor raising questions 

about the validity of the 1989 results, because of the discovery of increased neuro-

complexity.   

 

Atypical Antipsychotics Pharmacology 

 

Clozapine is the only drug that is currently approved for treatment resistant 

schizophrenia, yet it is not clear what pharmacological properties are responsible for 

its superior efficacy. Clozapine, a dibenzodiazepine, is a mixed guanine nucleotide 

binding protein coupled receptor (GPCR) antagonist that binds to many 

dopaminergic, serotonergic, adrenergic, and muscarinic acetylcholine receptors. 
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Clozapines’ major metabolite N-desmethylclozapine is pharmacologically active with 

antipsychotic efficacy (80). Clozapine like all of the FDA approved atypical 

antipsychotics has a high 5HT2A/D2 binding affinity ratio, but also binds a number of 

other receptors including 5HT2C, D1, D3, and D4 receptors.  The search for the reasons 

why clozapine has superior efficacy had led researchers to look at individual receptor 

pharmacology in attempt to pinpoint both therapeutic effects as well as side effects. 

Clozapine has a higher affinity for the D1 receptor than D2 receptors (28), D1 

receptors are the main dopamine receptors in the prefrontal cortex and antagonism of 

these receptors is believed to be involved in improving negative (29) and cognitive 

(30) symptoms of schizophrenia. Interestingly, other atypical antipsychotics lack an 

appreciable affinity for D1 receptor, making D1 receptor antagonism a possible source 

of clozapine’s superior efficacy (31), yet selective D1 receptor antagonists lack 

antipsychotic properties (32,33). Clozapine also has a higher affinity for D4 receptors 

than D2, and antagonism of D4 receptors results in increased dopamine release in the 

basal ganglia and prefrontal cortex that may in part explain clozapine’s low 

propensity to induce EPS and the improved capacity to treat cognitive symptoms 

(34). Interestingly, D4 receptors are also overexpressed in the schizophrenia patient 

(35,36), yet selective D4 antagonists have had had little success as antipsychotics 

(37). 

Risperidone, a benisoxazole derivative was the first atypical antipsychotic 

marketed after clozapine. The major metabolite of risperidone is 9-OH- risperidone is 

an active metabolite with similar efficacy to the parent drug (79).  Risperidone also 
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bind 5HT2A and D2 receptors with high affinity, but has very little cholinergic 

blockade (38,39). Risperidone also antagonizes α1 and α2 adrenergic receptors, but 

with low affinity (79).  Risperidone is also a low affinity H1 receptor antagonist (79). 

Olanzapine, a thienobenzodiazepine, has a binding profile similar to clozapine 

although the affinities of olanzapine at its receptors sites are different from those of 

clozapine. For example, olazapine has a higher affinity at D1 and D2 receptors , while 

clozapine has a slightly higher affinity at D4 receptors (20). Olanzapine has a high 

binding affinity at  D1, D2, D4, D3, 5-HT2A, 5HT2C,  H1, α1 adrenergic, muscarinic M1-

5 receptors, and low affinity at α2, GABAA, and 5HT1 and β adrenergic receptors (20). 

In placebo-controlled studies, clinically significant alanine transferase (ALT) 

elevation of greater than three times the upper limit of the normal range was observed 

in 2% of patients taking olanzapine. Also, during pre-marketing studies, the incidence 

of ALT elevations was 2%, but this was not associated with jaundice or other 

symptoms attributable to liver impairment. Transient increases may be seen but 

usually normalize with olanzapine continuation (23). 
Ziprasidone has a binding affinity ratio of 11:1 for 5-HT2A/D2. Ziprasidone 

also binds with relatively high affinity for 5-HT2C, 5-HT1D, α1 adrenergic and D1 

receptors (21).  Ziprasidone has the highest 5-HT2A/D2 affinity ratio, and the highest 

5-HT2C/D2 ratio of all of the atypicals (71).  Due to high affinity for 5-HT2C receptors 

low does of ziprasidone result in substantial 5-HT2C antagonism without appreciable 

D2 antagonism that can result in dysphoria, hypomania, and panic without 

antipsychotic action (71).  These effects have been made apparent by the tendency of 
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clinicians to prescribe doses too small for effective treatment. Ziprasidone is also 

unique because it has the highest 5HT1A/D2 affinity ratio, and occupies this receptor 

to a greater extent than any approved antipsychotic drug.  Another unique feature of 

ziprasidone is its potent 5-HT1D antagonism , and it has been suggested that this 

action helps improve the mood of the schizophrenic patient because blockade of this 

receptor disinhibts serotonin release.  In addition ziprasidone is a reuptake inhibitor of 

serotonin, dopamine and norepinephrine.  Ziprasidone lacks M1, α1, and H1 activity 

seen in several other atypical antipsychotics such as clozapine and olanzapine.   

Quetiapine is dibenzothiazepine derivative with very little tendency to induce 

EPS (93). Quetiapine has high affinity for 5-HT2A receptors and lower affinity for D2 

and D1 receptors. This drug has some affinity for α1, α2, and H1 receptors, and very 

little for muscarinic receptors (22, 93). Quetiapines’ EPS liability is similar to that of 

clozapine, but does have the tendency to induce tachycardia, orthostatic hypotension, 

and sedation. One reason why quetiapine has a low propensity to induce EPS is 

probably because it is selective for mesolimbic D2 receptors rather than nigrostriatal 

D2 receptors (93).   

 Aripiprazole was discovered in the early 1980s as an attempt to find an 

antipsychotic that would function both as an antagonist and an agonist at the D2 

receptor. Hence, aripiprazole is the first potent D2 partial agonist for the treatment of 

schizophrenia. In a hyperdopaminergic state, aripiprazole functions as an antagonist, 

while under conditions of hypodopaminergic activity, it functions more like an 

agonist. This novel mechanism of aripiprazole has earned it the title of dopamine 
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stabilizer. Interestingly aripiprazole occupies 95% of striatal D2-like receptors yet the 

incidence of EPS was no greater than placebo in clinical trials. Aripiprazole has a 

high affinity for D2, D3, and 5-HT2A (Ki values of 0.34, 1.7 and 3.4 nM respectively), 

moderate affinity for D4, 5-HT2C, 5-HT7, α1, and H1 receptors ( Ki of 44, 15, 39,57 

and 62 nM respectively) and also has a moderate affinity for the serotonin reuptake 

site. Aripiprazole also has high affinity for D3 receptors. It is a partial agonist at 5-

HT1A receptors and an antagonist at 5-HT2A receptors. Aripiprazole has a moderate 

affinity for α1 and H1 receptors with no appreciable affinity for the M1 receptor (23).  

 

Extrapyramidal Side Effects (EPS) 

 

Extrapyramidal side effects (EPS), including akathisia, dystonia, tardive 

dyskinesia, and pseudoparkinsonism, are the major adverse effects associated with 

traditional antipsychotic therapy, and are associated to a lesser extent with the second 

generation antipsychotics. These side effects are widely believed to be the result of 

dopamine antagonism in the nigrostriatal pathways. Akathisia is the most frequently 

occurring of these adverse effects. Approximately 50% of patients treated with 

traditional antipsychotics will experience a subjective feeling of mental restlessness 

accompanied by motor symptoms. Akathisia causes intense anxiety, an inability to 

relax, and motor symptoms such as pacing, rocking while sitting, marching in place, 

constant fidgeting, and purposeless stereotypic movements (53). 

Dystonia is an early onset EPS that includes involuntary contractions in 
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opposing flexor and extensor muscles resulting in abnormal postures. Symptoms of 

dystonia include tongue protrusion, laryngeal-pharyngeal constriction, oculogyric 

crises, torticollis, and strange positioning of limb and torso (53). Of these tongue 

protrusion and laryngeal-pharyngeal constriction may have effects on the rhythmic 

licking behavior of rats, providing one reason that licking dynamics should be 

examined as a model of EPS.  

 Tardive dyskinesia (TD) is a movement disorder characterized by abnormal 

choreiform (observable, rapid, purposeless, irregular and spontaneous movement) and 

athetoid (slow and irregular) movements occurring late in onset in relation to 

initiation of antipsychotic therapy. This adverse effect usually develops over several 

months or years but usually requires at least three months of neuroleptic treatment. 

Patients showing symptoms of TD often display hyperkinetic movements of the limbs 

and trunks, and orofacial movement disorder.  Orofacial motor side effects consist of 

repetitive hyperkinetic movements including chewing, protrusion of the tongue, 

vermicular movements of the tongue, side to side or rotary jaw movements, and lip 

smacking (54). Even though TD is a late onset symptom of antipsychotic treatment 

and atypicals rarely produce TD, sensitization to licking variables in rats may prove 

as a predictor of atypical induced TD, or other subtle late onset movement disorders 

not heretofore fully characterized. The estimated average prevalence is 20% with a 

range of 13-36%. The incidence of new cases per treatment year with conventional 

antipsychotics is approximately 5% (24).  

Neuroleptic induced Parkinsonism is named as such because of its similarities 
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to Parkinson’s disease. This is an early onset side effect that can occur shortly after 

administration. The motor symptoms of drug induced Parkinsonism include tremor, 

rigidity, and bradykinesia. Patients exhibiting Parkinsonism often have expression 

less face, decreased arm movements during walking, and impaired ability to initiate 

movement, and small handwriting.   

Clozapine is associated with little to no EPS and quetiapine has been found to 

have no greater rates of EPS than placebo. Olanzapine and risperidone can cause EPS 

in a dose related fashion, but less frequently than traditional antipsychotics. 

Risperidone treatment is associated with Parkinsonism rates similar to placebo in 

doses under 6mg/day. Doses higher than 6mg/day are associated with EPS rates of 

20% or greater. Parkinsonism with olanzapine is similar to placebo with doses up to 

10 mg/day. At higher doses the rates increases to 20%. Akathisia with olanzapine is 

significantly higher than placebo at doses greater than 10mg/day.  

 

The Hypoglossal Nucleus and Neural Control of the Tongue 

 

 Neural control of the tongue enables a range of oropharyngeal behaviors, 

including licking, mastication, swallowing, vocalization, breathing, and coughing. 

Several of these behaviors, including licking, are controlled by central pattern 

generators (CPG's) located in the medulla and pons of the brainstem. These pattern 

generators transform ascending and descending signals into rhythmic and patterned 

behaviors. Disease states such as SIDS, and sleep apnea, and drugs have motor effects 
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on the tongue, making the study of the hypoglossal nucleus and licking dynamics a 

clinically relevant pursuit.  

 The tongue is composed of eight uncompartmentalized interdigitated muscles 

capable of meeting the motor demands of a multitude of complex orolingual 

behaviors. The tongue has four extrinsic muscles the syloglossus, hypoglossus, 

genioglossus, and geniohyoid, and four intrinsic muscles the longitudinal, transverse, 

vertical, and superior. The  intrinsic muscles determine the shape of the tongue  and 

have no bony attachments, and extrinsic muscle have bony attachments capable of 

directing tongue protrusion and retrusion. The genioglossus and the geniohyoid are 

tongue protrusor muscles, and the syloglossus and hypoglossus are the tongue 

retrusor muscles (43,44). However, current knowledge states that co-contraction of 

both intrinsic and extrinsic muscle simultaneously results in tongue movements 

(40,41,42).  Tongue protrusion is predominantly mediated by the activity of the 

genioglossus in combination with the intrinsic vertical and transverse tongue muscles. 

Retrusion is mediated predominantly by contraction of the styloglossus and 

hypoglossus and intrinsic longitudinal muscles.  The diversity of tongue movements 

required for the continuum of oropharyngeal behaviors is reflected by the myotopic 

organization of hypoglossal (XII) motor nucleus. The extrinsic and intrinsic tongue 

muscles are innervated by the medial branch of the XII nerve, and the somata of 

protrusor motor neurons are located in the ventral compartment of the hypoglossal 

nucleus. In contrast the extrinsic and intrinsic retrusors are innervated by the lateral 

branch of the XII nerve and the cell bodies are located in the dorsal compartment of 
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the nucleus. In addition, a small population of interneurons are intermingled among 

the XII motorneurons providing more complexity to the hypoglossal nucleus. These 

intrannuclear interneurons make up about 5% of the neurons of the hypoglossal 

nucleus, and are mainly located in the dorsolateral, lateral, and ventral margins. The 

genioglossus muscle is believed to control airway patency and is the main tongue 

protrusor muscle that is innervated by the motor neurons of the hypoglossal nucleus. 

The motorneurons here are believed to be stimulated at least in part by serotonin (81, 

82) and norepinephrine (83,84). Receptor localization studies have shown the 

presence of high numbers of 5-HT2A receptors on hypoglossal motor neurons 

(85,86,87), further supporting this receptors role in the control of hypoglossal motor 

neurons.  

Therefore, I hypothesize that compounds with α1, α2, and 5-HT2A antagonism 

will substantially reduce licking rhythm and D2 antagonism will reduced motivational 

behavior (defined as engaging in licking). Furthermore, a neuroleptic influenced 

reduction in the number of licks is reflective potential catalepsy, a model of EPS, 

based of the fact that several olazapine injections induces catalepsy, an others resulted 

in two minute sessions with minimal number of licks. 

 

Pre-Clinical Behavioral Analysis and Neuroleptic Drugs  

 

Despite its tendency to induce agranulocytosis (75), clozapine is an effective 

drug for treatment-resistant schizophrenic patients (60); moreover, clozapine has a 
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low EPS liability (61, 62). The therapeutic success of clozapine has stimulated the 

search for clozapine-like drugs without leukocytopenic side effects. Preclinical 

behavioral research has had a prominent role in this effort (63, 64, 65, 66, 67, 68, 69, 

70), and the identification of behavioral bio-markers can aid in the identification of 

clozapine-like drugs. Within this context it has been reported that the dominant 

rhythm of oscillations in rats’ forelimb force was slowed by clozapine but not by 

haloperidol (76), a behavioral property distinguishing clozapine from the typical 

antipsychotic haloperidol. In a separate study, it was observed that another rhythmic 

behavior of rats, tongue movements made while licking water from a force sensing 

disc, was only slightly affected by haloperidol ( 77,78). Another study showed that 

only a chronic haloperidol regimen was capable of reducing  licking rhythm (74). 

Other research has shown that risperidone also slows licking rhythm in a similar 

fashion to clozapine (73). On the other hand, acute clozapine treatment was 

previously shown to induce a dose dependent reduction in licking rhythm (72). The 

data presented in this thesis, in addition to previous studies, show that clozapine has 

significant effects on several variables of tongue dynamics including peak force, 

number of licks, and rhythm.  

In addition to testing the above mentioned hypothesis this work had several 

other purposes, including comparison among the atypicals, and a comparison to 

similar research done with the typical neuroleptic haloperidol. One purpose of the 

present work was to compare the effects of clozapine on licking behavior to 

risperidone, olanzapine, aripiprazole, quetiapine fumarate, and olanzapine, and to 
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compare the effects of oral clozapine to previous reports. Accordingly rats were 

administered three or four acute doses of each of the atypical antipsychotic drugs 

(AADs) listed above, and the effects on licking behavior were characterized by 

measuring the rhythm of tongue (with Fourier methods), the peak force, and number 

of licks. A second purpose was to assess compare the potency of AAD induced motor 

effects and to compare them to previous data collected for haloperidol. A third 

purpose of this work  was to search for putative behavioral markers of atypicality 

using clozapine as a standard on the basis that clozapine is a drug of choice in 

treatment resistance schizophrenic patients. A fourth purpose was to assess the 

tolerance and/or sensitivity to the behavioral effects using a subchronic dosing 

regimen in order to assess any tolerance or sensitization effects that could be used to 

distinguish among AADs. Tolerance to such motor side effects could suggest a more 

effective drug particularly with respect to patient compliance.   Sensitization may be 

useful in predicting if a drug will be likely to induce worsening side effects.   

 

Material and Methods 

Acute regimen 

Nine male, Sprauge-Dawley rats (Harlan, Indianapolis, Ind.) served as 

subjects. Rats were maintained on a water restriction regimen of 10-15 minutes 

access 30 minutes after the 2 minute experimental session. This water restriction 

regimen allowed for adequate hydration as rats steadily gained 5-6 grams per week.  

The purpose of the water restriction was to obtain maximal motivation to lick water 
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during the 2 minute test period. Measurement of licking dynamics occurred between 

12 and 2 pm daily during the light portion of the light-dark cycle in the vivarium 

(lights on from 6 a.m. to 6 p.m.). At the time of experimental evaluation of the drugs 

effects on licking dynamics, rats averaged 225 grams in body weight and were about 

3 months old.   

 

Sub-chronic regimen 

 

Thirty four male, Sprauge-Dawley (Harlan, Indianapolis, Ind.) rats served as 

subjects. Rats were maintained on a water restriction regimen of 10-15 minutes 

access 30 minutes after the 2 minute experimental session for the same reasons 

described above for the acute experiments. Recording times, light cycle were the 

same as in the acute experiments. At the time of the evaluation of the drugs effects on 

licking dynamics, rats averaged 247 grams and were about three and a half months 

old. 

 

Apparatus 

 

The licking recording chamber has been described elsewhere in detail (78). A 

rodent operant chamber was modified so that the panel in which the lever was 

mounted was replaced with another panel containing a 6 cm x 6 cm opening at flour 

level. Covering this opening from the outside was a 3 cm deep transparent plastic 
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enclosure with a 12 mm diameter hole on the bottom of its surface. Lick force-time 

wave plots were recorded by attaching an 18 mm diameter lick disc to the shaft of a 

force transducer (Sensotec model 31a) (Figure 1). The surface of the lick disc was 

placed 1mm below the 12 mm diameter hole through which the rat extended its 

tongue. The plastic material through which the hole was cut was 1 mm thick making 

the lick disc 2 mm from the rats’ mouth. The larger the distance between the rats’ 

mouth and the force transducer, the lower the number of licks, the peak force, as well 

as the lick rhythm (figure 2). The force transducer was calibrated to measure force in 

units of 0.2 gram equivalent weight. A Labmaster interface recorded the force-time 

wave data at a sample rate of 100 per second via a 386 based computer.  Water (0.055 

ml) was delivered onto the lick disc by 5 gauge stainless steel tubing when the 

computer activated peristaltic pump connecting the water reservoir and the tubing to 

the lick disc. The computer program measured the number of licks and continuous 

force transducer output in real time. The force threshold for lick detection was 1.0 

gram, and the force criterion for programmed consequences was 4.0 g. The entire 2-

min session was stored in RAM and transferred to a hard disc at the end of each 

session for Fourier analysis, and other analyses. 

 

Procedure 

 

The rat training procedure was previously described (78). Water (0.100 ml), 

was placed onto the lick disc and naive rats were placed into the chamber for two 
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minutes until rats licked at least 400 times in a two minuet session three days in a 

row.  The emission of 12, 4 g licks resulted in the delivery of 0.055 ml of tap water 

onto the disk. Recording sessions lasted 120.32 seconds or about 2 min. Observation 

of the effects of acute oral clozapine (10.0 mg/kg, 5.0 mg/kg, 20.0 mg/kg), acute oral 

aripiprazole (6.0 mg/kg, 12.0 mg/kg, 18.0 mg/kg), acute oral risperidone (0.50 mg/kg 

0.25 mg/kg, 1.0 mg/kg, 2.0 mg/kg), acute oral ziprasidone (1.0 mg/kg, 0.50 mg/kg, 

2.0 mg/kg, 4,0 mg/kg) acute oral quetiapine fumarate (10.0 mg/kg, 5.0 mg/kg, 20.0 

mg/kg), and acute oral olanzapine (2.0 mg/kg, 1.0 mg/kg, 4.0 mg/kg) were 

administered in the dose order indicated in the parenthesis three days apart.  After two 

days of licking and no drug or vehicle treatment each rat served as its own control and 

received vehicle (Carboxymethylcellulose sodium salt) at 5 ml/kg the day before drug 

treatment. The additional doses of risperidone (2.0 mg/kg), and ziprasidone (4.0 

mg/kg) were added because the effects of these drugs on licking dynamics were 

present but small in the series of lower doses.  

In the subchronic  studies 10 rats were given vehicle (5 ml/kg), 8 rats were 

given oral clozapine (20.0 mg/kg), 8 rats were given oral risperidone (2.0 mg/kg), and 

8 rats were given oral olanzapine (4.0 mg/kg) twice a day 12 hours apart. Drugs were 

administered at 12 noon and 12 midnight seven days a week, and the experimental 

session was between 12-2 pm seven days a week.   

 

Drugs 
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All drugs were obtained in tablet form from the pharmaceutical companies 

listed below and were crushed and placed in a constantly stirred suspension of 

carboxymethylcellulose sodium salt immediately prior to administration. Clozapine 

25 mg (TEVA), aripiprazole 30 mg (Bristol-Myers Suibb), risperidone 2mg and 4 mg 

(Janssen), ziprasidone 20 mg (Pfizer), quetiapine fumarate 25 mg (AstraZeneca), and 

Olanzapine 10 mg (Eli Lilly).  Vehicle and drug were administrated at approximately 

equal volumes. Oral administration of each drug or vehicle was given 45 min before 

the beginning of each 2 min session. 

 

Dependent Variables 

 

As rats lick the force transducing lick disc, force measurements are recorded 

in real time by a computer for subsequent quantitative analysis. Shown below is an 

example force-time wave plot (Figure-3) depicting variables generated by the lick-

force-rhythm test for quantitative analysis. The number of licks is a behavioral 

variable that can provide insight into the effects of AADs on motivation that should 

be maximal due to the water restriction regimen. Peak force can reveal the effects of 

atypical antipsychotics on the neuromuscular control of tongue and the effects of 

AADs on hypoglossal motor neuron output. The lick rhythm reveals the effects of 

AADs on the established dominate rhythmic frequency of licking in Sprague Dawley 

rats of 6 Hz.  Lick duration, inter-lick, and period are other variables available for 

analysis from the lick-force-rhythm test for analysis. The duration of the lick is the 
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width of the peak generated by the force of one lick and the inter-lick interval is the 

time elapsed between licks. The period is defined as the sum of the lick duration and 

inter-lick interval and provides complimentary data to the lick rhythm. 

 

Quantitative Analysis 

 

The effects of acute and subchronic doses were measured in terms of the 

number of licks in 2 minutes and the dominant rhythm of licking was measured in Hz 

(cycles/sec) by Fourier spectral analysis techniques described previously (77, 78). 

The dominant rhythm of lick oscillation was taken as the spectral peak in the 3.5-6.5-

Hz region of the spectrum computed by Fourier methods for each rat each session. 

With these methods the dominant lick rhythm is a measure of periodic tendency of 

the licking behavior; therefore, the rhythm of the oscillatory process of licking can be 

largely independent of the number of licks. For example, two rats could have nearly 

the same dominant licking rhythms, even though one of them stops licking halfway 

through the session and thus emits 50% fewer licks than the other rat. Dose effect 

one-way analyses of variance (ANOVAs) were used for all acute dosing experiments 

and linear trend tests were used to analyze subchronic data. Data were expressed as a 

proportion of vehicle control, where the vehicle performance was for each subject an 

average of vehicle sessions.   
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Results 

 

In Figure-4 is a sample of an actual force-time wave plots for the same rat 

when given saline vehicle (top two rows) and an acute oral dose of 20.0 mg/kg of 

clozapine (bottom two rows).  All data discussed is either directly obtained from 

force-time wave plots or derived from force-time wave plots, in the case of lick 

rhythm by Fourier analysis.  All of the six atypical antipsychotic drugs approved for 

the treatment of schizophrenia with the exception of aripiprazole had marked effects 

on licking dynamics when compared to vehicle controls.  The effects of Aripiprazole 

on licking dynamics were either statistically insignificant or slight. This is probably 

due to Aripiprazole’s partial agonism of D2 receptors and its dopamine stabilizing 

activity, which is unique among the compounds studied. In the acute studies each rat 

served as its own control and was administered saline vehicle the day before drug 

administration. The data from the vehicle days were averaged for comparison to data 

from days in which drugs were administered, and all data was analyzed by one way 

ANOVA.  All mean, SEM, and one way ANOVA data of acute oral AAD 

administration for the peak force of licking, the number of licks, and lick rhythm are 

presented in tables 1, 2, and 3. Clozapine dose dependently reduced the peak force, 

the number of licks, and lick rhythm in a two minute session.  Aripiprazole showed 

no statistically significant effect on the average number of licks, but had slight 

statistically significant effects on the peak force, and lick rhythm.  Aripiprazole was 

the only compound studied that had no significant effect on the number of licks. 
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Clozapine risperidone, ziprasidone, quetiapine fumarate, and olanzapine, all 

significantly reduced the number of licks in the two minute experimental session 

(figure-3, and figure -6, tables 1-3).  

 With respect to licking rhythm, all six AADs had a significant effect. Data 

collected on days when no vehicle or drug was administered showed that the 

dominant lick rhythm for Sprague Dawley rats is about 6.0 Hz with no statistically 

significant variation (data not shown), and all vehicle data are consistent with that 

finding. The 20.0 mg/kg dose of clozapine had the largest effect on lick rhythm of all 

compound and doses in this study. The effects of aripiprazole on lick rhythm were 

significant from vehicle but each increasing the dose had no additional significant 

decrease of rhythm. Risperidone was the most potent, affecting lick rhythm at doses 

substantially lower that all drugs studied. Risperidone effect on rhythm at 2.0 mg/kg 

was close to the effects of clozapine at 20.0 mg/kg. Ziprasidone also has a very potent 

effect on lick rhythm at low doses. Olanzapine at 4.0 mg/kg was comparable to 20.0 

mg/kg of clozapine but was much more potent in causing an effect. Aripiprazole had 

only minor effects on licking rhythm, as each dose of aripiprazole was statistically 

significant from vehicle, but no dose (6.0 mg/kg, 12.0 mg/kg, or 18.0 mg/kg) was 

significant from each other. That is no dose response was observed, possibly due to 

its low affinity for the α1 adrenergic receptor, and low occupancy at 5-HT2A seen at 

therapeutically relevant doses of aripiprazole (23), antagonism of which is believed to 

slow hypoglossal motor neuron basal activity (86). Risperidone the most likely of the 

atypicals to induce extrapyramidal symptoms was most potent at all motor-behavioral 
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variables analyzed (89,90). 

 All six AADs had significant effects on the peak force of licking with varying 

degrees of potency. The highest dose of clozapine had a large effect on the peak force 

of licking but the potency of the effect was low at 20.0 mg/kg clozapine produced an 

effect similar to 2.0 mg/kg of risperidone, 4.0 mg/kg of ziprasidone, and 4.0 mg/kg of 

olanzapine.  Again, the effects of aripiprazole were slight compared to most 

compounds tested. Risperidone was the most potent at reducing the peak force of 

licking producing a large effect at just 2.0 mg/kg. Ziprasidone also had a very potent 

effect on the peak force. Quetiapine had a significant but not very potent dose 

dependent reduction of the peak force. Olanzapine, risperidone, and ziprasidone 

making up the high potency group at all acute licking variables analyzed.  Data for all 

six drugs are shown as proportion of control as well as in graphs not including the 

control values for better visualization (figure 3-6). In order to allow for potency 

comparison of the effects of all six AADs on licking dynamics all drugs were placed 

on the same graph by using a Log10 of dose scale. 

 Subchronic experiments were done using clozapine, risperidone, olanzapine in 

order to assess whether tolerance or sensitization to effects of AADs could be 

detected. Altered lick dynamics can be viewed from several different perspectives. It 

can be viewed as a model of EPS, a bio-behavioral marker for clozapine-like drugs or 

as a side effect of atypical antipsychotic drugs. Tolerance to the effects of AADs on 

licking dynamics can be viewed as a predictor to whether or not orolingual side 

effects will ease with time. The pharmacology of clozapine is so complicated that the 
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Lick-force-rhythm test could serve as an early screen for putative antipsychotic drugs. 

As a model of EPS it may be predictive of orolingual effects of neuroleptic 

Parkinsonism, or in the case of sensitization of orolingual motors effect associated 

with late onset EPS such as Tardive Dyskinesia.  

 Clozapine [F(1,13)= 39.775, p< 0.0001] significantly reduced the number of 

licks each of the ten days with no trend towards tolerance or sensitivity as determined 

by polynomial test of order 1 [F(1,13)= 0.876, p<0.366]. Risperidone also reduced the 

number of licks each of the ten days [F(1,14)= 21.877, p< 0.0001], again with no 

trend toward tolerance or sensitization [F(1,14)= 0.717, p<0.411]. Olanzapine also 

significantly reduced the number of licks [F(1,10)= 45.438, p< 0.0001] and displayed 

a sensitization effect [F(1,10)= 4.112, p<0.0001]. Olanzapine frequently induced a 

cataleptic state in which animals did not lick or move during their two minute session. 

Cataleptic episodes increased later in the ten day dosing regimen.  

 Clozapine reduced the lick rhythm each of the tend days [F(1,13)= 8.886, p< 

0.012] with no trend toward tolerance or sensitization [F(1,13)= 0.081, p<0.780]   

Risperidone reduced the lick rhythm each of the ten day [F(1,14)= 15.965, p< 0.0001] 

with no trend towards tolerance or sensitization [F(1,14)= 0.475, p<0.503]. 

Olanzapine reduced the licking rhythm each of the ten days [F(1,9)= 19.220, p< 

0.002] and showed no significant trend towards sensitization [F(1,9)= .089, p< 

0.769].  

 Clozapine effected the peak force of licking each of the ten days 

[F(1,13)=12.337, p<0.003] with no significant trend toward tolerance or sensitization 
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[F(1,13)=0.321, p<0.579].  Risperidone has a significant effect on the peak force of 

licking [F(1,14)=10.558, p<0.005] with a significant trend towards sensitization 

[F(1,14)=5.334, p<0.034]. Olanzapine had a significant effect on the peak force of 

licking [F(1,9)=8.219, p<0.011] with no significant trend towards tolerance or 

sensitization [F(1,9)=2.424, p<0.139]. Risperidone displayed a trend towards 

sensitization of peak force of licking suggesting its potential for orofacial EPS that 

may worsen with a more chronic dosing regimen.   

 

Conclusion and Discussion  

 

 Licking dynamics serves as a model for EPS induced by atypical 

antipsychotics. Both tardive dyskinesia, dystonias and neuroleptic induced 

Parkinsonism have orofacial and tongue motor side effects, thus irregularities in 

tongue movements can be used to model the likelihood of neuroleptic agents to 

induce EPS. Tardive dyskinesia is a late onset side effect, whereas dystonias, and 

Parkinsonism is an early onset side effect. The acute and subchronic alterations in 

licking dynamics described here may be more suggestive of Parkinsonism and early 

onset EPS than Tardive dyskinesia and later onset EPS.  

Previous work with the effects of clozapine on licking dynamics showed 

similar dose dependent decreases in licking rhythm and number of licks with acute 

dosing regimens (72). Subchronic investigations revealed a tolerance to the disruptive 

effects on the number of licks but not to clozapines’ rhythm slowing effects (72). The 
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current study differed in that no tolerance to clozapines’ disruptive effects on number 

of licks was observed. This discrepancy could have been due to the fact that oral 

doses were administered in this study instead of the intraperitoneal route of 

administration in the previous study, or due to differences in doses. Subchronic 

intraperitoneal doses in the previous study were administered at 1.5, 4.5, and 6.0 

mg/kg once a day, whereas subchronic doses in this experiment were given orally at 

20.0 mg/kg twice daily and this may account for observed differences. Thus, it is 

possible that even after first pass metabolism rats in this study were exposed to more 

drug (particularly with the two doses per day), and tolerance to the disruption of the 

number of licks may have developed if the experiment had included more days. Both 

studies confirmed that no tolerance to the rhythm slowing effects of clozapine.  Other 

work has demonstrated that risperidone also dose dependently reduced the lick 

rhythm in a similar fashion to clozapine (91).     

Olanzapine has also been shown to have clozapine-like effect on the peak 

force, rhythm and number of licks (92). An in depth analysis and comparison of the 

effects of all six atypical antipsychotics on licking dynamics has not been done, and 

this research allowed a comparison of available AADs with clozapine. Clozapine is 

viewed  as a reference compound in which to compare the rest of the AADs, because 

its effectiveness has yet to be surpassed and is the only AAD currently indicated for 

the treatment of refractory schizophrenic patients. Similarities with clozapine may 

predict which new agents will be clozapine-like, and effective antipsychotic 

compounds warranting future investigation. The high potency group contained the 
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most likely AADs (risperidone, olanzapine) to induce EPS, whereas the low potency 

group contained those least likely to induce EPS (clozapine, quetiapine, and 

aripiprazole) (89).  In this way the lick-force-rhythm test appeared to identify 

clozapine like drugs with respect to the potential to induce EPS, and may be useful as 

a bio-behavioral screen for putative clozapine-like antipsychotics.   

Upon comparison of the number of licks, peak force and rhythm of the six 

atypical antipsychotics after acute exposure, it becomes apparent that there are at least 

two potency groups. Risperidone, ziprasidone, and olanzapine make up an easily 

distinguishable high potency group in which low doses have large effects on all three 

variables. Clozapine, aripiprazole, and quetiapine fumarate make up a low potency 

group, but even at these higher doses only clozapine produced effects comparable to 

the maximal effects observed with risperidone, ziprasidone, and olanzapine. 

Aripiprazoles’ effects were particularly slight with no effect on the number of licks 

and only a slight effect on the peak force and lick rhythm. Aripiprazole has dopamine 

stabilizing activity functioning as an agonist in a hypodopaminergic state and an 

antagonist in a hyperdopaminergic state (23), and this may explain its only slight 

effects on licking dynamics. While quetiapines’ effects were statistically significant 

for all three variables, the effects were not large, which is consistent with its low 

propensity to induce EPS (93).    

 Subchronic dosing regimens were administered in order to determine if 

tolerance or sensitization to these disruptive effects on licking dynamics occurred 

over time. Clozapine, olanzapine, and risperidone were selected for subchronic 
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studies for several reasons. One reason is that risperidone has very high affinity for 5-

HT2A receptors, olanzapine has intermediate affinity, and clozapine has a lower 

affinity for this receptor.  This would allow for the investigation of a range affinities 

for 5-HT2A receptors which are hypothesized to slow hypoglossal motor neuron 

control of the genioglossus muscle. Also these drugs represented a low (clozapine), 

medium (olanzapine) and high potency (risperidone) sample of the six drugs tested 

acutely. Additionally, the maximum effects of these compounds on licking dynamics 

were large allowing lots of room for quantifiable tolerance even though no tolerance 

was observed. All three compounds had a significant effect on the number of licks, 

peak force, and lick rhythm with no trend towards tolerance or sensitization with two 

exceptions. First, olazapine showed sensitization to the disruptive effects to the 

number of licks. The number of lick diminished over ten days, in fact, several rats did 

not lick and appeared cataleptic. Upon experimentation with olanzapine it was 

observed that rats given higher doses of olanzapine assumed hunched postures, with 

an inability to control their front limbs enough for simple movement, and were 

generally flaccid when held. Furthermore, rats became unresponsive to stimuli and 

ceased engagement in the learned task of licking from the lick disc. This type of 

cataleptic behavior is suggestive of olanzapine induced EPS-like syndrome only 

observed with olanzapine in these studies.   All olanzapine rats that did not lick at all 

were excluded from the data analysis to prevent skewing data concerning peak force 

and rhythm, and had they been included the trend towards sensitization to the 

disruptive effect to the number of licks would have been more marked. Second, the 
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peak force of licking for the rats administered risperidone showed sensitization, that 

is a trend over the ten days to a lower peak force of licking. Risperidone and 

olanzapine have  been shown have a higher EPS liability than other AADs and these 

results towards sensitization agree with that. 

 Previous work investigating the effects of haloperidol on licking dynamics 

showed that acute haloperidol did not have a significant effect on lick rhythm, but did 

have disruptive effects on the number of licks and peak force.  Therefore, it seems 

likely that compounds with α1, α2, and 5-HT2A antagonism will substantially reduce 

licking rhythm, and compounds with D2 antagonism will reduced the motivational 

behavior to lick.  The alteration of licking dynamics may serve as a useful model in 

the screening of clozapine-like drugs that could be potentially used as antipsychotic 

drugs. Furthermore, a neuroleptic influenced reduction in the number of licks is 

reflective of potential catalepsy, a model of EPS, based on the fact that several 

olazapine injections induced catalepsy, an other olanzapine injections resulted in two 

minute sessions with minimal number of licks (77, 92).  Thus, licking dynamics may 

be predictive of EPS liabilities of potential antipsychotic compounds.  
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The Effects of Acute AADS on the Peak Force of Licking (0.2 g) 
 
 
 
 
 
 
 
 
 
 

Drug 
 

Vehicle  Dose 1 Dose 2 Dose 3 Dose 4 One Way 
ANOVA 

5.0 
mg/kg 

10.0 
mg/kg 

20.0 
mg/kg 

Clozapine 
 

51.500 + 
1.829 

53.778 + 
4.421 

41.883 + 
3.745 

27.889 + 
2.220 

 [F(3,24)=16.838, 
p<0.001] 

6.0 
mg/kg 

12.0 
mg/kg 

18.0 
mg/kg 

Aripiprazole 
 

47.630 + 
2.975 

43.000 + 
3.636 

40.111 + 
3.745 

39.667 + 
3.100 

 [F(3,24)=4.183, 
p<0.016] 

0.25 
mg/kg 

0.5 
mg/kg 

1.0 
mg/kg 

2.0 
mg/kg 

Risperidone 
 

47.056 +  
3.666 

43.278 + 
4.242 

43.000 + 
2.769 

36.222 + 
3.459 

28.444 + 
2.698 

[F(4,32)=19.132, 
p<0.0001] 
 

0.5 
mg/kg 

1.0 
mg/kg 

2.0 
mg/kg 

4.0 
mg/kg 

Ziprasidone 
 

47.569 + 
3.836 

43.889 + 
2.685 

39.889 + 
3.490 

33.778 + 
2.886 

28.444 + 
2.352 

[F(4,32)=33.649, 
p<0.0001] 

5.0 
mg/kg 

10.0 
mg/kg 

20.0 
mg/kg 

Quetiapine 
 

42.185+ 
4.716 

39.111 + 
4.008 

38.889 + 
4.560 

32.333+ 
1.929 

 [F(3,24)=6.359, 
p<0.003] 

1.0 
mg/kg 

2.0 
mg/kg 

4.0 
mg/kg 

Olanzapine 
 

43.019+ 
3.343 

39.444 + 
3.583 

32.556 + 
2.678 

28.667 + 
2.427 

 [F(3,24)=27.117, 
p<0.0001] 

Table 1- Mean and standard error of the mean values (SEM) of the peak force of 
licking for acute oral dosing of clozapine, aripiprazole, risperidone, ziprasidone, 
quetiapine, and olanzapine. 
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The Effects of Acute AADS on the Number of Licks 
 
 
 
 
 
 
 
 
 

Drug 
 

Vehicle  Dose 1 Dose 2 Dose 3 Dose 4 One Way 
ANOVA 

5.0 
mg/kg 

10.0 
mg/kg 

20.0 
mg/kg 

Clozapine 
 

647.185 
+ 22.473 

667.111 
+ 15.515 

498.667 
+ 64.477 

438.000 
+ 40.744 

 [F(3,24)=6.715,  
p<0.002] 

6.0 
mg/kg 

12.0 
mg/kg 

18.0 
mg/kg 

Aripiprazole 
 

654.926  
+ 19.222 

667.111 
+ 15.515 

626.778 
+ 22.515 

608.333 
+ 17.494 

 [F(3,24)=1.954,  
p<0.148] 
 

0.25 
mg/kg 

0.5 
mg/kg 

1.0 
mg/kg 

2.0 
mg/kg 

Risperidone 
 

710.194  
+ 13.648 

692.333 
+ 10.919 

683.000 
+ 17.912 

656.333 
+ 18.575 

553.778 
+ 21.216 

[F(4,32)=19.860,  
p<0.0001] 

0.5 
mg/kg 

1.0 
mg/kg 

2.0 
mg/kg 

4.0 
mg/kg 

Ziprasidone 
 

714.278 
+ 13.133 

696.556  
+ 21.868 

688.111 
+ 16.248 

661.889 
+ 25.313 

559.778 
+ 28.638 

[F=(4,32)21.146,  
p<0.0001] 

5.0 
mg/kg 

10.0 
mg/kg 

20.0 
mg/kg 

Quetiapine 
 

726.185+ 
13.800 

711.222 
+ 14.016 

704.556 
+ 14.998 

667.444 
+ 22.703 

 [F=(3,24)14.204,  
p<0.0001] 

1.0 
mg/kg 

2.0 
mg/kg 

4.0 
mg/kg 

Olanzapine 
 

715.185 
+ 14.068 

712.889 
+ 13.752 

664.667 
+ 16.686 

437.556 
+ 64.437 

 [F(3,24)=14.286,  
p<0.0001] 

Table 2- Mean and standard error of the mean values (SEM) of the number of licks 
for acute oral dosing of clozapine, aripiprazole, risperidone, ziprasidone, quetiapine, 
and olanzapine. 

 

 

 

 

 



 
 
 

34 

 

 

The Effects of Acute AADS on the Lick Rhythm (Hz) 
 

Drug 
 

Vehicle  Dose 1 Dose 2 Dose 3 Dose 4 One Way 
ANOVA 

5.0 
mg/kg 

10.0 
mg/kg 

20.0 
mg/kg 

Clozapine 
 

5.925 + 
0.078 

5.815 + 
0.090 

5.632 + 
0.119 

5.135 + 
0.096 

 [F(3,24)=15.492,  
p<0.0001] 

6.0 
mg/kg 

12.0 
mg/kg 

18.0 
mg/kg 

Aripiprazole 
 

6.041 + 
0.084 

5.827 + 
0.054 

5.689 + 
0.109 

5.800 + 
0.096 

 [F(3.24)=12.664, 
p<0.0001] 

0.25 
mg/kg 

0.5 
mg/kg 

1.0 
mg/kg 

2.0 
mg/kg 

Risperidone 
 

6.086 + 
0.087 

5.962 
+0.089 

5.787 
+0.111 

5.735 + 
0.124 

5.418 + 
0.108 

[F(4,32)=32.643, 
p<0.0001] 

0.5 
mg/kg 

1.0 
mg/kg 

2.0 
mg/kg 

4.0 
mg/kg 

Ziprasidone 
 

6.116 + 
0.086 

5.972 + 
0.098 

5.895 + 
0.098 

5.871 + 
0.116 

5.635 + 
0.125 

[F(4,32)=12.470, 
p<0.0001] 

5.0 
mg/kg 

10.0 
mg/kg 

20.0 
mg/kg 

Quetiapine 
 

6.191+ 
0.084 

6.072+ 
0.087 

6.079 + 
0.080 

5.832+ 
0.144 

 [F(3,24)=10.403, 
p<0.0001] 

1.0 
mg/kg 

2.0 
mg/kg 

4.0 
mg/kg 

Olanzapine 
 

6.136+ 
0.086 

6.048+ 
.087 

5.95+ 
0.093 

5.337 + 
0.078 

 [F(3,24)=41.494, 
p<0.001] 

Table 3- Mean and standard error of the mean values (SEM) of the lick rhythm for 
acute oral dosing of clozapine, aripiprazole, risperidone, ziprasidone, quetiapine, and 
olanzapine. 
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Figure 1.  Photograph of a hardware ensemble for measuring tongue force during 
licking of liquids by rats or mice.  Liquids to be ingested are carried to the lick disk 
by a computer-controlled peristaltic pump. The lick disk through which the liquid 
emerges for consumption is 18 mm in diameter. Rats or mice access the disk by 
protruding their tongues through a 12-mm-diameter hole (88). 
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Figure 2.  Effects on lick measures for three different distances between the rats’ 
muzzles and the liquid orifice.    Mean peak force (expressed in gram-equivalent 
forces), lick  rhythm (Hz), and number of licks each significantly decreased as a 
function distance.  Data were taken from Table 2, pg 83 in Fowler, S.C., McKerchar, 
T.L., Zarcone, T.J. (2005). Response dynamics: Measurement of the force and rhythm 
of motor responses in laboratory animals. In M. LeDoux (Ed.) Animal models of 
movement disorders. San Diego, CA: Academic Press, 73-100. 
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Figure 3 Force Time wave plot- Each lick is represented by a peak whose peak 
force is its apex, the duration of the lick is the base of the peak for any given lick. The 
inter lick interval is the time between the licking peaks. The period is defined as the 
inter-lick interval summed with the duration of the lick.  Using Fourier methods 
licking rhythm (Hz) can be calculated. The dominant licking rhythm of a Sprague 
Dawley rat either untreated or treated with vehicle is approximately 6 Hz.  
 
 

 

 

 
 
 
 
 
 

Peak force 

Duration Period Force threshold 



 
 
 

38 

Saline injection, Rhythm=5.85 Hz

12 gram-force

1 s

Clozapine 20.0 mg/kg injection, Rhythm=5.53 Hz
 

 
 
 
Figure 4  Effects of saline (top two rows) and the atypical antipsychotic drug, 
clozapine (bottom two rows), on lick-force-time waveforms generated by a rat licking 
water from the disk shown in Fig. 1  Note the diminution in peak force in the lower 
set of graphs, as well as the appearance of long inter-lick intervals.  An illustrative 
example of a “notched” lick waveform induced by 20 mg/kg clozapine is indicated by 
the ellipse. The notched lick wave form represents a lack of control of the tongue 
under the influence of clozapine.  
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Figure 5- Shows the acute effects of AADs on the number of licks in a two min 
session. Risperidone in orange was the most potent at affecting the number of licks at 
the lowest doses (0.25 mg/kg, 0.5 mg/kg, 1.0 mg/kg, and 2.0 mg/kg) 
[F(4,32)=19.860,  p<0.0001]., and ziprasidone (purple, 0.5 mg/kg, 1.0 mg/kg, 2.0 
mg/kg, and 4.0 mg/kg) [F=(4,32)21.146,  p<0.0001], and olanzapine (black, 1.0 
mg/kg, 2.0 mg/kg, and 4.0 mg/kg) [F(3,24)=14.286,  p<0.0001], also showed high 
potency effects. The lower potency group consisting of clozapine (red 5.0 mg/kg, 
10.0 mg/kg, 20.0 mg/kg) [F(3,24)=6.715,  p<0.002], aripiprazole (blue, 6.0 mg/kg, 
12.0 mg/kg, and 18.0 mg/kg), which has no significant effects on the number of licks 
[F(3,24)=1.954,  p<0.148], and quetiapine fumarate (green, 5.0 mg/kg, 10.0 mg/kg, 
20.0 mg/kg) [F=(3,24)14.204,  p<0.0001],  displayed minimal effects or effects at 
much higher doses doses that risperidone, ziprasidone, and olanzapine. Higher doses, 
particularly of olanzapine and clozapine show the most variability from rat to rat as 
indicated by the SEM bars.  
 
 

 

 



 
 
 

40 

0.10 1.00 10.00 100.00
Log 10 of Dose

4.5

5.0

5.5

6.0

6.5
Li

ck
in

g 
R

hy
th

m
 (H

z)

 
 

Figure 6- Shows the acute  effects of AADs on lick rhythm during the two minute 
sessions. Risperidone again was the most potent at affecting licking rhythm. Lick 
rhythm was also more or less divided into low and high potency groups, once again 
risperidone (orange) [F(4,32)=32.643, p<0.0001] was the most potent at the slowing 
of the lick rhythm. Also in the high potency group was ziprasidone (purple) [F(4,32)= 
12.470, p<0.0001], and olanzapine (black) [F(3,24)=41.494, p<0.001]. The lower 
potency group is comprised of clozapine (red) [F(3,24)=15.492,  p<0.0001]., 
Aripiprazole ( blue) [F(3.24)=12.664, p<0.0001] , and quetiapine (in green) 
[F(3,24)=10.403, p<0.0001]. Compared to the rest of the compounds the effects of 
aripiprazole and quetiapine are small and not very potent.  
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Figure 7-Shows the effects of acute AAD doses on the peak force of licking. Potency 
was again divided into two groups, a high potency group consisting of risperidone 
(orange) [F(4,32)=19.132, p<0.0001], ziprasidone (purple) [F(4,32)=33.649, 
p<0.0001], and olanzapine (black) [F(3,24)=27.117, p<0.0001]. The low potency 
group consisted of clozapine (red) [F(3,24)=16.838, p<0.001], aripiprazole (blue) 
[F(3,24)=4.183, p<0.016], and quetiapine (green) [F(3,24)=6.359, p<0.003]. 
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Figure 8- The Acute effect of AADs on the number of licks, licking rhythm and peak 
force of licking represented as a proportion of control. Risperidone (orange), 
ziprasidone (purple), olanzapine (black),  clozapine (red), aripiprazole (blue), and 
quetiapine (green).       
 
 

 



 
 
 

43 

 
 
 

N
um

be
r o

f L
ic

ks

D a y

1 5 0

2 6 0

3 7 0

4 8 0

5 9 0

7 0 0

1 5 0

2 6 0

3 7 0

4 8 0

5 9 0

7 0 0

1 5 0

2 6 0

3 7 0

4 8 0

5 9 0

7 0 0

1 5 0

2 6 0

3 7 0

4 8 0

5 9 0

7 0 0

1 2 0

2 6 5

4 1 0

5 5 5

7 0 0

1 2 0

2 6 5

4 1 0

5 5 5

7 0 0

 
Figure-9 The effects of subchronic clozapine, risperidone, and olanzapine on the 
number of licks. Clozapine (red triangles, upper graph) given at 20.0 mg/kg twice 
daily had a significant effect on the number of licks each of the ten days [F(1,13)= 
39.775, p< 0.0001], and displayed no trend towards tolerance or sensitization 
[F(1,13)= 0.876, p<0.366] (vehicle controls blue circles, upper graph). Risperidone 
(orange triangles, middle graph) also had a significant effect on the number of lick 
each of the ten days  [F(1,14)= 21.877, p< 0.0001], with no significant trend towards 
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tolerance or sensitization [F(1,14)= 0.717, p<0.411] (vehicle controls blue circles, 
middle graph). Olanzapine (black triangles, lower graph)  had a significant effect on 
the number of licks each of the ten days[F(1,10)= 45.438, p< 0.0001], and resulted in 
sensitization or worsening of the disruption of licking induced by olanzapine 
[F(1,10)= 4.112, p<0.0001] (vehicle controls blue circles, lower graph). 
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Figure-10 The effects of subchronic clozapine (red triangles, upper graph), 
risperidone (red triangles, middle graph), and olanzapine (black triangles, lower 
graph)   on lick rhythm. All three compounds had a significant effect on lick rhythm 
each of the ten days, clozapine [F(1,13)= 8.886, p< 0.012], risperidone  [F(1,14)= 
15.965, p< 0.0001], and olanzapine [F(1,9)= 19.220, p< 0.002]. There was no trend 
towards tolerance or sensitization for clozapine [F(1,13)= 0.081, p<0.780], 
risperidone [F(1,14)= 0.475, p<0.503], or olanzapine [F(1,9)= .089, p< 0.769] 
(vehicle controls for each are blue circles). 
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Figure-11 The effects of subchronic clozapine, risperidone, and olanzapine on the 
peak force of licking. Clozapine (red triangles, upper graph) was administered at 20.0 
mg/kg twice daily once 45 minutes before the 3 minute licking session, and once 
twelve hours later. Clozapine significantly effected the peak force of licking each of 
the ten days [F(1,13)=12.337, p<0.003], with no trend towards tolerance or 
sensitization[F(1,13)=0.321, p<0.579], compared to vehicle controls (blue circles, 
upper graph). Risperidone (orange triangles, middle graph) was administered at 2.0 
mg/kg in the same time schedule as clozapine. Risperidone significantly affected the 
peak force of licking each of the ten days [F(1,14)=10.558, p<0.005] and displayed a 
trend towards sensitization [F(1,14)=5.334, p<0.034] (vehicle controls are blue circles 
in the middle graph). Olanzapine (black triangles lower graph) was given at 4.0 
mg/kg twice daily in the same time schedule for clozapine and risperidone. 
Olanzapine significantly effected the peak force of licking each of the ten days 
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[F(1,9)=8.219, p<0.011],  with no trend towards towards tolerance and sensitization 
[F(1,9)=2.424, p<0.139] (vehicle controls are blue circles in the lower graph). 
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