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ABSTRACT
In this paper, the base-scale entropy and root mean square energy analysis method are combined
to present a simple and quick strategy to extract the features of the gas–liquid two-phase flow
and to characterize the different flow patterns. In order to verify the effectiveness of the extracted
features, we calculate their separabilitymeasure values. The experimental results show that the com-
bined strategy proposed in this paper can not only distinguish the different flow patterns but also
complement each other.
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1. Introduction

The gas–liquid two-phase flow (Li, 1991; Tan & Dong,
2013) is a typical nonlinear system,which iswidely existed
in industrial fields. The flow pattern, which is the dis-
tribution of the flowing medium between two-phase
flow phases, plays a very important role in the study
of two-phase flow parameters. It can greatly affect the
two-phase flow pressure gradient and heat and mass
transfer rate and other characteristics, and also the mea-
surement accuracy of flow process parameters and other
relevant characteristics. Although various methods have
been applied to the research of the two-phase flow pat-
terns, the complexity of flow dynamics needs to be fur-
ther investigated.

In recent years, the concept and research method
of nonlinear analysis is widely applied in the study of
chaotic signals, one of the most representative methods
is the entropy method (Li, Li, & Zhang, 2017; Liu & Shang,
2018). Entropymethodwith the advantages of simplicity,
extremely fast calculation and anti-noise characteristics
is convenient for detecting useful information of time
series. Li, Zhou, Ren, and Yang (2012) used the symbolic
dynamics Shannon entropymethod to study the conduc-
tance signals of the gas–liquid two-phase flow, and the
results indicated that it is an effectivemethod for the anal-
ysis of two-phase flow conductance signals, different flow
patterns can be distinguished and the evolution charac-
teristics of different flow patterns can be identified. Zhou,
Yin, and Ding (2016) used a multi-scale entropy analysis
to study time series of pressure difference signals of the
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gas–liquid two-phase flow in the 7× 7 rod bundled chan-
nel under 104 different flow conditions. Results showed
that the change rate ofmulti-scale entropy in small scales
(no more than 8) can accurately distinguish four flow
regimes in the rod bundled channel, whereas the trend-
ing of large scale sample entropy could disclose dynamic
characteristics of each flow regime. Jin et al (Fan, Jin,
Chen, Dou, & Gao, 2015) used the multi-scale complexity
entropy causality plane (MS-CECP) method to investigate
typical chaotic time series and to process the conduc-
tance fluctuating signals of three typical gas–liquid flow
patterns. The results indicated that the single-scale CECP
can discriminate the different flow patterns linearly, and
MS-CECP can describe the continuous information loss of
flow structures with the increase of scale, which reflects
the dynamical stability and complexity of gas–liquid two-
phase flow system.

The entropic methods discussed above can be used
to characterize two-phase flow patterns, but they have a
higher demand on the amount of data points. Recently,
Li et al. (Li & Liu, 2012; Liu, Yao, Ning, Ni, & Wang, 2013)
presented the basic-scale entropy (BE) method which
can be used to distinguish different heart rate variabil-
ity signals clearly. This method needs less data and cal-
culates quickly, also it has the great anti-interference
ability. In addition, the energy analysis method has
been broadly utilized for system performance evaluation.
Hüseyin Göksu (2018) used the log energy entropy with
wavelet packet decomposition method to analyse BCI-
oriented EEG, and the experimental results demonstrated

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/21642583.2018.1547884&domain=pdf
mailto:peakfan@163.com
http://creativecommons.org/licenses/by/4.0/


SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL 263

that this method was effective. Hu, Mu, and Xiao (2008)
extracted the features of different EEG signals by the
energy entropy method, and classified the EEG signals
based on the features. The results showed that classifi-
cation accuracy can exceed 90%. The root mean square
(RMS) method, as a simple energy analysis method, has
been broadly utilized for research of the bearing fault
diagnosis (Wu, Wu, Wu, & Wang, 2013).

In this paper, we use the basic-scale entropy and
energy analysis method to analyse the characteristics of
flow patterns and to achieve a good result. The method
proposed in this paper needs less data and calculates
quickly and can characterize the complexity of different
patterns for gas–liquid two-phase flow significantly.

2. Base-scale entropy

2.1. The basic-scale entropy theory

For a given time series y of N points {y(i) : 1 ≤ i ≤ N},
we choose continuous m data points to construct an
m-dimensional space

Y(i) = [y(i), y(i + 1), · · · , y(i + (m − 1))] (1)

wherem is the embeddingdimension. There areN − m +
1m-dimensional vectors. For eachm-dimensional vector,
the base scale λ(i) is defined as the root mean square of
differences between every two continuous data points in
them-dimensional vector, and the equation is

λ(i) =

√√√√√
m−1∑
j=1

[y(i + j) − y(i + j − 1)]2

m − 1
,

i = 1, 2 · · · ,N − m + 1. (2)

According to λ(i), every m-dimensional vector can
be transformed into a symbolic sequence Si(Y(i)) =
{s(i), s(i + 1), · · · , s(i + m − 1)}, s(i) ∈ A (A = 0, 1, 2, 3).
The set A is just for count probability, and its values have
no practical meanings.

Si(Y(i)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, yi+k ≤ ȳi − αλ(i)

1, ȳi − αλ(i) < yi+k ≤ ȳi

2, ȳi < yi+k ≤ ȳi + αλ(i)

3, yi+k > ȳi + αλ(i)

(3)

where i = 1, 2, 3 · · · ,N − m + 1, k = 0, 1, 2, · · · ,m − 1, ȳi
is the mean of the ith m-dimensional vector, λ(i) is the
base scale and is also the standard for dividing symbols,
and α is a special parameter. If α is too large, then the
detailed informationwill be lost, and ifα is too small, then
the dynamic information of time series cannot be caught.

To calculate the value of the base-scale entropy, we
study the distributing probability p(Si) about the sym-
bolic sequence Si of the ith m-dimensional vector. The
symbolic sequence Si is made up of four symbols (0, 1,
2, 3), which has 4m different type states π . For N − m + 1
m-dimensional vectors, the relative probability is given as

p(π) = # {t|(yt , · · · , yt+m−1) has type π}
N − m + 1

(4)

where 1 ≤ t ≤ N − m + 1, and # means the number hav-
ing different type states, and π means different type
states.

The base-scale entropy (Fan, Haojie, & Yinghui, 2015;
Yan & Zhao, 2011) ofm-dimensional vector is defined as

H(m) = −
∑

p(π)log2p(π) (5)

where 3 ≤ m ≤ 7, N ≥ 4m.
H(m) describes the information contained in m con-

secutive values of the time series. The larger the entropy,
the more complex and random the sequence; the lower
the entropy, the sequence ismore regular andmore close
to the deterministic signal, so it is easier to predict.

2.2. The basic-scale entropy of typical signal

We analyse the basic-scale entropy of typical signals to
verify its applicability and effectiveness. Figure 1 shows
the base-scale entropy under the different data points of
several typical signals. The production conditions of the
typical signals are as follows:

(1) Sinusoidal signal: y = sin
( 2π
600x

)
.

(2) Lorenz chaotic system:

⎧⎪⎨
⎪⎩

dx
dt = 16(y − x)
dy
dt = (45.92x − y − xz)
dz
dt = (xy − 4z)

⎫⎪⎬
⎪⎭,

and the initial condition is

⎧⎨
⎩
x0 = −1
y0 = 0
z0 = 1

⎫⎬
⎭. In this paper

we analyse the data points in the x-direction.
(3) The Chen chaotic system is described as⎧⎪⎪⎨

⎪⎪⎩
dx
dt = a(y − x)
dy
dt = (c − a)x − xz + cy
dz
dt = xy − bz

, where a = 35, b =

3,
c = 28, and the initial point is (−1, 0, 1).

(4) Henonmapping:

{
x(n + 1) = 1 − a ∗ x(n)2 + y(n)

y(n + 1) = b ∗ x(n)
when a = 1.4, b = 0.3, x0 = y0 = 0.4, the system is a
chaotic system.

(5) Gaussian noise: it is a group of pseudo-random
numbers, which is produced by the WGN function in
MATLAB.
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Figure 1. The base-scale entropy under the different data points
of several typical signals.

As can be seen in Figure 1, the data length has lit-
tle effect on the basic-scale entropy of typical signals.
Therefore, when calculating the basic-scale entropy val-
ues, we can select fewer points, which can improve the
computing speed. In addition, the Gaussian noise has a
maximum base-scale entropy value, which means that
the Gaussian noise is more complex and random. The
base-scale entropy values of the sinusoidal signal are
minimum, which illustrates that the sinusoidal signal has
periodic properties. The base-scale entropy values of the
Henonmappingare abit lower than thoseof theGaussian
noise, which shows that the Henon mapping signal also
has the higher complexity. Moreover, the Lorenz chaotic
system and the Chen chaotic system have the similarity
distributions of base-scale entropy values; therefore, they
have the similar complexity. The results show that the
base-scale entropymethod can discriminate the different
typical signals and can be used to analyse the complexity
of time series. Moreover, it also can be used to study the
deterministic of complex sequences.

3. Root mean square (RMS)

Different signals have different energies, and the value
of energy can also reflect the characteristics of the sig-
nal. For the gas–liquid two-phase flow, the information
of different flow patterns has different energy due to the
acquisition manners. Therefore, the two-phase flow can
be characterized from the energy point of view. In this
paper, the energy value of the signal is extracted, and
it is used as a characteristic parameter to identify and
distinguish the two-phase flow.

There are many methods for extracting energy char-
acteristics, and the root mean square (RMS) value (Wu
et al., 2013) is a traditional and simple method to mea-
sure the signal’s energy statistically. The RMS value repre-
sents the different characteristics of the signal. The higher
RMS value of the signal shows that its energy is stronger

and it is more periodic, while the lower RMS value shows
that its energy is weaker and it is more random. There-
fore, the RMS energy method can be used as the index
for analysing the characteristics of gas–liquid two-phase
flow patterns.

For a randomsequence x = {xi, i = 1, 2, . . . ,N}, its RMS
is defined as

xRMS =
√√√√ 1

N

N∑
i=1

x2i =
√
x21 + x22 + . . . + x2N

N
(6)

where N is the number of data points for the sequence.

4. Analysis of the characteristics of two-phase
flow pattern

In this paper, we aim to study a type of simple and quick
analysismethod to identify flow regimesof thegas–liquid
two-phase flow. Because the base-scale entropy needs
less data and calculates quickly and the RMS method is
a simple energy analysis method, we extract the features
of the bubble flow, the slug flow and the churn flow by
using these two methods, and then we characterize the
complexity of the gas–liquid two-phase flow by the two
features. The acquisition process of conductance fluctu-
ating signals of three typical flow patterns refers to Zhai
& Jin, 2016. The conductance fluctuating signals of the
three typical flow patterns under the different gas flow
rate conditions are shown in Figure 2when thewater flow
rate is 8m3/h, where Qw is the flow rate of liquid phase
(m3/h) and Qg is the flow rate of gas phase (m3/h).

The bubble flowusually occurs in the lower speed case
of the gas stream, the trajectory of air bubble is random
and complex, it rises with the liquid flow in the tube, and
the signal is similar to the random signal. As we can see,
the fluctuating signals of the bubble flow are rather ran-
dom and can be characterized with very low amplitude.
With the increase of gas velocity, the gas plugs and liq-
uid plugs change regularly. Due to the destabilization of
the liquid flow, the conductance fluctuating signals of
the two-phase flow have the intermittent peak value and
high amplitude. As to the churn flow, when the gas plugs
and liquid plugs rise in the tube, because of the gravity,
the liquid plugs fall down and collide with the incoming
flows of the next moment. It vibrates alternately upward
and downward in the pipe, exhibiting the irregularity and
chaotic characteristics of conductance signals, which are
similar to bubble flow patterns. However, the churn flow
has the higher amplitude and weaker randomness than
the bubble flow.
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Figure 2. Conductance fluctuating signals of three typical flow patterns when Qw = 8m3/h.

4.1. The BE analysis of two-phase flow pattern

In this paper we research the base-scale entropy of
conductance fluctuating signals of three typical flow
patterns, and choose m = 4,α = 0.2, N = 500 referring
to (Zhai & Jin, 2016). Figure 3 depicts the base-scale
entropy distribution with liquid flow rates including 1,
2, 4, 6, 8, 12m3/h and gas flow rates change from 0.2
to 140m3/h. From the base-scale entropy distribution
shown in Figure 3, the slug flow has the smaller base-
scale entropy values, which range from 2.67 to 2.83, and
those of the churn flow range from 2.80 to 2.97. But
the bubble flow has the larger base-scale entropy values
and they lie between 2.93 and 3.05. The results suggest
that the motions of the bubble flow and the churn flow

Figure 3. Base-scale entropy distribution of the gas–liquid two-
phase flow.

are random; however, randomness of the churn flow is
weaker than that of the bubble flow. As to the slug flow, it
presents deterministic features and it has lower complex-
ity. The BE, as the feature of the characterization of the
gas–liquid two-phase flow, can distinguish the different
flowpatterns. In theBEanalysis there are twopointspartly
overlappedbetween the churn flowand the slug flowdue
to the measured process. The overlapping points should
be the flow transition phase by the analysis.

In order to analyse the changes of complexity bet-
ter under different gas–liquid two-phase flow conditions,
distribution graphs of base-scale entropy were obtained
when the water flow was 2, 4, 6, 8, 12m3/h as shown in
Figure 4.

Figure 4 shows that with the increase of the gas flow
rate, the base-scale entropy values become smaller when
the bubble flow is transformed to the slug flow, this
shows that the certainty of the two-phase flow system
is enhanced. When the slug flow is transformed to the
churn flow, the base-scale entropy values become larger,
this shows that the motion behaviour of the two-phase
flow system becomes random. Moreover, the base-scale
entropy of the bubble flow is larger than that of the churn
flow, which is also consistent with the previous analysis.

4.2. The RMS analysis of two-phase flow pattern

The RMS is the simple energy analysis method of extract-
ing feature and is used to have a complement with the BE
in this paper. The RMS values represent the energy distri-
bution of signals. The RMS values of conductance fluctu-
ating signals of three typical flow patterns are shown in
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Figure 4. Base-scale entropy distribution under different gas-phase flow conditions.

Figure 5. From Figure 5, we can see that the slug flow has
the largest RMS values, which shows that the energy of
the slug flow is strongest and it is more periodic. While
the RMS values of the churn flow and the bubble flow are
smaller, which indicate that their energy is weaker and
their motions are random; however, randomness of the

churn flow is weaker than that of the bubble flow. Con-
sequently, the RMS can also be regarded as a feature to
analyse the characteristics of the gas–liquid two-phase
flow, and it can identify the flow patterns. Similarly, in
the RMS analysis there are the same overlapped points
as the BE analysis due to the measured process. Next, the
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Figure 5. RMS distribution of the gas–liquid two-phase flow.

distribution graphs of the RMS were obtained when the
water flowwere 1, 2, 4, 6, 8, 12m3/h as shown in Figure 6.

Figure 6 shows that with the increase of the gas flow
rate, the RMS values become largerwhen the bubble flow
transforms to the slug flow, which shows the certainty of
the two-phase flow system is enhanced. While the slug
flow transforms to the churn flow, theRMSvaluesbecome
smaller which indicates themotion behaviour of the two-
phase flow system becomes random.

5. Separability measure analysis of the
extracted features

In order to verify the effectiveness of the extracted fea-
tures, we analyse the separability measure of the BE and
the RMS.

The feature set A = { ai, i = 1,2, . . . ,ka} is constituted by
the same characteristics of the signal. The within-class
distance is one of the important indices to measure the
mode separability (Zhou, Sun, & Li, 2010). The square
of the within-class distance is defined as the root mean
square value of distance of feature vectors in the set:

L2({ai}, {aj}) = 1
ka(ka − 1)

ka∑
i=1

ka∑
j=1

d2(ai, aj) (7)

where d2(ai, aj) = (ai − aj)2, i = j = 1, 2, · · · ka.
For the features sets A = { ai, i = 1,2, · · · ,ka} and B =

{bj, j = 1,2, · · · ,kb}, the square of the between-class
distance is defined as

L2({ai}, {bj}) = 1
kakb

ka∑
i=1

kb∑
j=1

d2(ai, bj) (8)

whered2(ai, bj) = (ai − bj)2, i = 1, 2, · · · ka; j= 1, 2, · · · kb.

If the approach of feature extractionmakes thewithin-
class distance smaller, and the distance between-class
larger, then we can state that this approach of feature
extraction is good. According to these two distances, sep-
arability measure JA,B is defined as

JA,B = L2({ai}, {bj})
L2({ai}, {ai}) + L2({bj}, {bj}) (9)

where L2({ai}, {bj}) is the square of the between-class dis-
tance of A and B, L2({ai}, {ai}) and L2({bj}, {bj})are the
squares of the within-class distances of the feature sets
A and B, respectively.

JA,B is an index to measure the separability between
different classes. The separability between A andB is bet-
ter if JA,B is larger, while it is worse when JA,B is smaller.

The separability measures of the BE and the RMS are
calculated, and the results are listed in Table 1.

From Table 1, it can be seen that the distance data
(0.0016, 0.0059, 0.0041) and (0.0017, 0.0027, 0.0047) on
the main diagonal line are the within-class distances of
the same flow patterns for the BE and the RMS, respec-
tively. The other distance data (0.0692, 0.0088, 0.0365)
and (0.0581, 0.0420, 0.0051) are the between-class dis-
tances of different flow patterns for the BE and the RMS,
respectively. The separability measure JA,B has the same
distribution except for the main diagonal line.

According to the data in Table 1, we know that the
between-class distance of the bubble flow and the churn
flow for the BE is 0.0088, it is close to the within-class dis-
tances of the bubble flow (0.0016) and the churn flow
(0.0041), which shows that the bubble flow and the churn
flow are very similar. However, the between-class dis-
tance of the bubble flow and the churn flow for the RMS is
0.0420, it is far larger than the within-class distance of the
bubble flow (0.0017) and the churn flow (0.0047), which
indicates that the RMS is better than the BE in the distin-
guishing effects of the bubble flow and the churn flow. In
addition, we can see that the separability measure JA,B of
the bubble flow and the churn flow for the BE is 1.5439,
while the JA,B of the bubble flow and the churn flow for
the RMS is 6.5625, which also shows that the RMS is bet-
ter than the BE in the distinguishing effects of the bubble
flow and the churn flow. For the bubble flow and the slug
flow, the between-class distance for the BE is 0.0692, and
the between-class distance for the RMS is 0.0581. These
between-class distances are larger than the within-class
distances of the bubble flow (0.0016, 0.0017) and the slug
flow (0.0059, 0.0027). Moreover, the JA,B of the BE for the
bubble flow and the slug flow is 9.2267, while that of
the RMS is 13.2045, which indicates that the BE and the
RMS methods can distinguish the bubble flow and the
slug flow clearly, and the RMS method is superior to the
BE method. As to the churn flow and the slug flow, the
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Figure 6. RMS distribution under different gas-phase flow conditions.

between-class distance for the BE is 0.0365, and it is far
bigger than the between-class distance (0.0051) for the
RMS. In addition, the JA,B (3.6500) of the BE for the churn
flow and the slug flow is also far larger than that of RMS
(0.6892). The above analysis shows that the BE is better
than the RMS in the identification of the churn flow and

the slug flow. All the above analysis states that the BE
and the RMS energy method can identify the flow pat-
terns and complement each other when discriminating
the bubble flow and the slug flow, the churn flow and
the slug flow.Moreover, the analysis results are consistent
with the information given in Figures 3 and 5.
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Table 1. Comparison of measurement feasibility between BE and RMS.

Distance JA,B

Feature Flow pattern Bubble Slug Churn Bubble Slug Churn

BE Bubble 0.0016 0.0692 0.0088 0 9.2267 1.5439
Slug 0.0692 0.0059 0.0365 9.2267 0 3.6500
Churn 0.0088 0.0365 0.0041 1.5439 3.6500 0

RMS Bubble 0.0017 0.0581 0.0420 0 13.2045 6.5625
Slug 0.0581 0.0027 0.0051 13.2045 0 0.6892
Churn 0.0420 0.0051 0.0047 6.5625 0.6892 0

6. Conclusions

Considering the conductance fluctuating signals of the
gas–liquid two-phase flow have nonlinear and nonsta-
tionary properties, we present a simple and quick strat-
egy, which combines the BE method and RMS energy
method, to extract the features of the gas–liquid two-
phase flow, and to characterize the complexity of the
gas–liquid two-phase flow patterns. We employ the
separability measure to verify the effectiveness of the
extracted features. The results show that the proposed
strategy can identify different flow patterns, and the RMS
method is superior to the BE method between the bub-
ble flow and the slug flow in the distinction effect, while
for the churn flow and the slug flow, the BE method is
better than the RMS method. According to the analysis,
we know that the combined strategy presented in this
paper can not only distinguish the different flow patterns
quickly but also complement each other. This paper pro-
vides a simple strategy to identify the flow patterns of
the two-phase flow and new vision on the flow pattern
characteristics analysis of the gas–liquid two-phase flow.
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