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ABSTRACT
In order to more accurately recognize and understand the working condition of sucker-rod pump-
ing wells so as tomaximally reduce the cost and increase the profit, a large amount of data has been
collected during oil production with sucker-rod pumping wells. In view of the sucker-rod pumping
production system in big data and IOT (Internet of things) of oil-gas production, to solve the limi-
tations in the existing working condition recognition research and further improve the recognition
accuracy and practicality with fewer labelled working condition samples by utilizing the measured
parameters from multiple information sources effectively, in this paper, a novel working condition
recognition method based on Hessian-regularized weighted multi-view canonical correlation anal-
ysis is proposed. Firstly, the features of the measured ground dynamometer cards, electrical power,
wellhead temperature andwellheadpressuredata are extracted as four different feature viewsbased
on the prior information, empirical knowledge and mechanism analysis. Then a model based on
Hessian-regularized weighted multi-view canonical correlation analysis and cosine nearest neigh-
bourmulti-classification algorithm is established. Theproposedmethod is applied to the recognition
of eleven kinds of working conditions from sixty sucker-rod pumping wells in a certain block in
Shengli Oilfield, China. In the case where there are small number of labelled training samples, based
on cosine nearest neighbour classificationmethod, the recognition rates are increased by 3.44% and
1.5% compared with traditional recognition methods based on measured ground dynamometer
cards and electrical power data, respectively. In contrast to methods based on traditional multi-
sources of feature connection, multi-view canonical correlation analysis as well as the unweighted
Hessian-regularizedmulti-view canonical correlation analysis, the recognition rates are increased by
4.46%, 2.21% and 1.62%, respectively.
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1. Introduction

In the oil exploitation and production, the sucker-rod
pumping system has been in a dominant position for a
long time. But affected for years by many factors, such as
unpredicted geological structure and facilities used, etc.,
the working condition of sucker-rod pumping system is
usually complicated and unstable, thus causing the oil
well fault frequently and a large drop of the output and
profit. Therefore, recognizing the working condition of
sucker-rodpumpingwells accurately and timely has great
significance for improving the efficiency and productivity
of the oil wells.

At present, the working condition recognition meth-
ods based on dynamometer cards are relatively popu-
lar and widely employed by combining indirect mea-
sured dynamometer cards (Zhang & Tang, 2008), pump
dynamometer cards (Li, Gao, Tian, & Qiu, 2013; Liu, Luo,
Lu, Fan, & Liu, 2013) and measured ground dynamome-
ter cards (Wu, Sun, & Wei, 2011; Xu, Xu, & Yin, 2007) with
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artificial intelligence algorithms, respectively. The recog-
nitionmethods based on electrical parameters aremainly
featured by measured electrical parameters or electric
power cards (Chen, 2016; Sun, 2011). In addition, the
methods based onmulti-source data are rarely employed
and mainly featured by utilizing pump dynamometer
cards together with some production information, such
as liquid-producing capacity, well condition data, etc. (Liu
et al., 2011;Wang, 2010). However, the above research still
shows some limitations as follows: first, most of working
condition recognition methods only utilize single infor-
mation source, in which false alarms may be easily trig-
gered. For example, working condition characteristics of
assist-blowing and rod cutting are similar in dynamome-
ter cards (Hu, Yi, & Tian, 2008), while working condition
characteristics of valve leakage and valve failure are sim-
ilar in electric power cards (Sun, 2011). Therefore, it is
difficult to identify these working conditions accurately
through dynamometer cards or electric power cards
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only. Second, the existing working condition recognition
methods based on multi-source information need to be
further improved in recognition performance and model
robustness. On one hand, the methods based on tradi-
tional multi-feature connectionmode, such as traditional
SVM (Support VectorMachine), neural network, etc., have
limitations to achieve further improvements (Wang, Liu,
Xiong, & Tang, 2011). On the other hand, due to the unre-
liable initial collecting data from multiple information
sources, such as production and statistics data, etc., the
existing working condition recognitionmodel is prone to
instability. Third, most of the working condition recogni-
tion methods require a large number of labelled training
samples. In real projects, the labelled working condition
samples are difficult to obtain and the cost is very high,
while the recognition methods based on the unlabelled
training samples are usually not ideal in recognition accu-
racy (Li, Gao, Zhou, & Han, 2015; Liang, 2015). Fourth,
affected by damping coefficient and ‘division by zero’,
the working condition recognition methods with pump
dynamometer cards or electric power cards often pro-
duce errors when calculating the features (Liang, 2015;
Sun, 2011). In addition, some feature extraction meth-
ods for identifying the working condition require a lot of
complicated calculations (He et al., 2008; Reges, Schnit-
man, Reis, & Mota, 2015). All the above problems limit
thepractical applicationof theexistingworking condition
recognition methods.

With the development of big data and IOT of oil
and gas production, massive real-time multi-source data,
such as measured ground dynamometer cards, electri-
cal power, wellhead temperature and wellhead pressure
data etc., have been collected and stored in the oil recov-
ery and production system of sucker-rod pumping wells.
In order to overcome the above limitations in the existing
working condition recognition research, to explore how
to effectively utilize the abovemultiplemeasured param-
eters and sufficiently fuse the features of these multiple
information sources and further improve the recognition
accuracy and practicality by employing limited precious
known working condition resources has important scien-
tific and application value.

Multi-view canonical correlation analysis (MCCA) (Ket-
tenring, 1971; Vía, Santamaría, & Pérez, 2007; Wang,
Zhou, Liu, & Zhang, 2017) is one of the most attractive
paradigms for multi-view feature extraction and fusion
learning. The key idea of MCCA is to find a common
subspace in which the correlation between the low-
dimensional embeddings of any two views is maximized.
MCCA learningmethod canmake full use of the extracted
features of an object with multiple views effectively. The
features of different views can be fully mixed by max-
imizing the correlation between any two views, thus

improving the accuracy of those methods based on sin-
gle view feature learning and traditional multi-source
data processing. Research showed that learning meth-
ods based on the combination ofmulti-view features and
manifold information can further improve the recogni-
tion effect (Iosifidis, Tefas, & Pitas, 2013; Liu, Li, Lin, Tao,
& Wang, 2014; Liu, Liu, Tao, Wang, & Lu, 2015). Espe-
cially the learning method based on the combination of
Hessian regularization from manifold regularization and
multi-view canonical correlation analysis can significantly
improve classification results with fewer labelled samples
(Liu, Yang, Tao, Cheng, & Tang, 2018). And furthermore,
research showed that the recognition learning methods
based on multi-view canonical correlation analysis can
further promote classification effects by addingweighted
technology to multiple views (Cai, Wang, Peng, & Qiao,
2014; Eleftheriadis, Rudovic, & Pantic, 2015).

Based on the discussion above, in this paper, a
novel working condition recognition method based on
Hessian-regularized weighted multi-view canonical cor-
relation analysis is proposed. First, the measured ground
dynamometer cards, electrical power, wellhead temper-
ature and wellhead pressure signals are chosen as four
different feature views and the features of each view
are extracted according to the mechanism analysis, prior
information and empirical knowledge. Then, a work-
ing condition recognition model of sucker-rod pump-
ing wells is established by Hessian-regularized weighted
multi-view canonical correlation analysis algorithm and
cosine nearest neighbour multi-classification algorithm.
Finally, the proposed method is applied to recognize 11
kinds of typical working conditions of a certain block
in Shengli Oilfield, China. Experimental results show
that the proposed method has better recognition accu-
racy in the cases of fewer labelled training samples
(e.g. in 15% below), thus it has better popularization
application.

2. Hessian-regularized weightedmulti-view
canonical correlation analysis algorithm

2.1. Hessian regularization

In nonlinear manifold regularizations, Hessian regulariza-
tion (Liu & Tao, 2013; Tao, Jin, Liu, & Li, 2013) can reflect
higher-order information ofmanifold distribution of sam-
ple data and exploit the local distribution geometry of
the underlying data manifold more accurately. Thus Hes-
sian regularization can better match the data inside train-
ing examples, and predict the data outside the training
examples more effectively.

Suppose M is a v-dimensional data manifold in
Euclidean space, and C∞(M) represents the set of smooth
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functions onM. The Hessian regularizer is formulated as:

SHess(f ) =
∫
M

V∑
r,s=1

(
∂2f

∂xr∂xs

)2

dV(x)

where dV(x) represents the natural volume element, f :M
→ R with f ∈ C∞(M), and S: C∞(M) → R denotes the
regularization function.

Obviously, the Hessian regularizer can conduct sec-
ond covariant derivative on f. According to the proved
proposition (Eells & Lemaire, 1983), the null space of Hes-
sian regularizer is linear functions with constant varia-
tion with regard to the geodesic distance. Owing to the
richer null space, Hessian regularizer can better keep the
local structure of the manifold and demonstrate superior
extrapolating performance.

2.2. Hessian-regularizedweightedmulti-view
canonical correlation analysis algorithm

Before describing the Hessian-regularized weighted
multi-view canonical correlation analysis algorithm, in
what follows, we will introduce the calculation of the
Hessian matrix and the covariance matrix of the Hessian-
regularized canonical correlation analysis briefly, respec-
tively.

The calculation of the covariance matrix of Hessian-
regularized canonical correlation analysis is described as
follow. Suppose H is the whole Hessian that can repre-
sent themanifold structure of the dataset {x1, x2, · · · , xn},
Hk is the Hessian of the tangent space formed by the
p-neighbourhood of the kth example, then the exam-
ple xp within the neighbourhood can be denoted by
the linear combination of the p-nearest neighbours i.e.
xp = Xp∼kHT

kp, where p ∼ k represents the example xp in
the neighbourhood of xk , Xp∼k means the example data
matrix in the neighbourhood of xk and HT

kp is the p
th col-

umn of HT
k . Therefore, the covariance relation between

examples in the neighbourhood of the kth example can
be written as follows:

SHp∼k =
∑
i,j∼k

(xi − xj)(xi − xj)
T

= Xp∼kHT
kHkXT

p∼k
= Xp∼kHkXT

p∼k

Then, the whole covariance matrix SH between the N
examples can take the following expression by
accumulating in the neighbourhood of each example

SH =
N∑

n=1

∑
i,j∼k

(xi − xj)(xi − xj)
T

=
N∑

n=1
Xp∼kHkXT

p∼k

= XHXT

The Hessian-regularized weighted multi-view canon-
ical correlation analysis algorithm is the extension to
Hessian-regularized canonical correlation analysis algori-
thm for three ormore views, the calculation of the covari-
ance matrix is similar.

The Hessian matrix calculation is summarized as fol-
low. According to themanifold assumption that the close
points in the intrinsic geometry will share the similar
conditional distribution, so we construct the Hessian by
considering the nearest neighbourhood within the same
class.

For the υth view examples, we identify the indices
corresponding to the p-nearest neighbours of each
example x(υ)

n in the same class ln. And then we con-
struct a matrix D(υ)

n to express the neighbourhood of
x(υ)
n . Based on singular value decomposition on D(υ)

n ,
we get the base vectors of the tangent coordinates
U = [U1,U2, · · · ,Ul] ∈ Rp×l of the neighbourhood of x(υ)

n .
Then, we can develop a Hessian matrix H(υ)

n by perform-
ing theGram-Schmidt orthonormalization process on the
matrix G = [1,U1, · · · ,Ul ,U11, · · · ,Ull] and taking the last
l(l + 1)/2 columns. The last l(l + 1)/2 columns of G stand
for the squares and cross products of those l columns of
U, e.g., U11 = U1 ° U1, and the symbol ° stands for the
element-wise product. And at last, we obtain a symmetric
Hessian matrix H(υ) within the υth view by accumulating
the H(υ)

n .
After the calculationof the above twokeymatrices, the

Hessian-regularized weighted multi-view canonical cor-
relation analysis algorithm can be summarized as follows.

Assume a multiview dataset of N examples with V
view representations from c classes, i.e. s = {x(1)

n , x(2)
n , · · · ,

x(V)
n , ln}Nn=1, where xn is the nth example, x(υ)

n ∈ Rdυ is the
υth view expression of the nth example, dυ is the dimen-
sion of the υth view feature, X(υ) = [x(υ)

1 , x(υ)
2 , · · · , x(υ)

N ] ∈
Rdυ×N is the υth view data matrix,W(υ) ∈ Rdυ×N,W > 0 is
the υth view weighted data matrix, H(υ) ∈ Rdυ×N stands
for the υth view Hessian matrix and ln ∈ {1, 2, · · · , c} rep-
resents the class label of the nth example. The examples
are drawn from a probility P that varies smoothly along
the geodesics in the intrinsic geometry of a compact
manifoldM.

The Hessian-regularized weighted multi-view canon-
ical correlation analysis algorithm aims to find a set of
linear projections {y(υ) = αT

υW
(v)X(υ)}Vv=1 and discover

thenonlinear correlations ofmultiviewexamples through
the combination of Hessian regularization and multiview
weight, thus preserves the locality of datamanifold better
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andmaximizes the sumof pair-wise correlations between
the projected variables {y(υ)}Vυ=1. The proposed Hessian-
regularized weighted multi-view canonical correlation
analysis algorithm can finally be taken as the following
problem:

max ρ(α̃) =
V∑
i=1

V∑
j=1

αT
i S

WH
ij αj

s.t. αT
i S

WH
ii αi = 1, i = 1, 2, · · · , V

(1)

where SWH
ij = 1

N2 (W(i)X(i))H(ij)(W(j)TX(j)T ) is the within-
view (i = j) or between-view (i �= j) covariance matrix,
H(ij) = H(i) ° H(j) is the between-view Hessian matrix,
symbol ° stands for the element-wise product. Similarly,
H(ii) = H(i) ° H(i) is the within-view Hessian matrix.

The solution to problem (1) provides the first project
directions of the V views i.e. α̃T

1 = (αT
11,α

T
21, · · · ,αT

V1). For
the remaining project directions, we can solve the follow-
ing problem (2) iteratively:

max ρ(α̃) =
V∑
i=1

V∑
j=1

αT
i S

WH
ij αj

s.t. αT
i S

WH
ii αi = 1, i = 1, 2, · · · , V

αT
itS

W
ii αi = 0, t = 1, 2, · · · , k − 1 (2)

where k ⊆ [2,min(d1, d2, · · · , dV)].
The optimization of the problem (1) and (2) belongs to

amultivariate eigenvalue problem (MEP) and has no ana-
lytical solutions. There are a number of methods devel-
oped to solve the MEP problems, however, there is no
rigorous evidence to prove the global converges of the
current solutions especially for the general multiview
case (Chu & Watterson, 1993). In our work, we realize an
approximate optimizationby relaxing the constraints and
rewriting the problem (2) as follows:

maxρ(α̃) =
V∑
i=1

V∑
j=1

αT
i S

WH
ij αj

s.t.
V∑
i=1

αT
i S

WH
ii αi = 1

(3)

The solution to problem (3) is given by Lagrange mul-
tiplier technique.

2.3. Algorithm solution

Assume λ as the Lagrange multiplier, the Lagrangian
function of problem (3) can be written as

F(α̃, λ) =
V∑
i=1

V∑
j=1

αT
i S

WH
ij αj − λ

(
V∑
i=1

αT
i S

WH
ii αi − 1

)
(4)

In problem (4), the partial derivative of F(α̃, λ) with
regard to αi has the following form

∂F

∂αi
= 2

V∑
j=1

SWH
ij αi − 2λSWH

ii αi, i = 1, 2, . . . , V (5)

Set ∂F/∂αi = 0 in the problem (5), we have

V∑
j=1

SWH
ij αi = λSWH

ii αi, i = 1, 2, . . . , V (6)

The V equations of (6) can be finally reformulated as

SWHα̃ = λSWH
D α̃

where SWH is a block matrix with block-element SWH
ij , i.e.

SWH =

⎡
⎢⎣

SWH
11 · · · SWH

1V
...

. . .
...

SWH
V1 · · · SWH

VV

⎤
⎥⎦ ∈ Rd×d , d =

V∑
υ=1

dυ

and SWH
D is a block diagonalmatrixwith diagonal-element

SWH
ii , i.e.

SWH
D = diag(SWH

11 , SWH
22 , · · · , SWH

VV )

=

⎡
⎢⎢⎢⎣
SWH
11

SWH
22

0

0
. . .

SWH
VV

⎤
⎥⎥⎥⎦

The solution toproblem (7) canbe viewedas ageneral-
ized eigenvalue decomposition. In this paper, we perform
the regularization operation to SWH

D i.e. replace the SWH
D

by using SWH
D ← SWH

D + σ I, where σ is a small positive
scalar and I ∈ Rd×d is the identity matrix. Therefore, the
problem (7) can always be regarded as a standard eigen-
value decomposition of SWH−1

D SWH and be implemented
by using a paralleled methods (Liu, Zhang, Tao, Wang, &
Lu, 2016).

Based on the solution of problem (7), we obtain the
multiple h-dimensional feature vectors for each exam-
ple. Then we concatenate the multiview representations
to shape a whole vector for each example to carry out
recognition tasks.

3. The working condition recognitionmodel
based on Hessian-regularized weighted
multi-view canonical correlation analysis and
cosine nearest neighbour algorithm

3.1. View selection

In a large amount of existing real-timemulti-source infor-
mation measured from the oil recovery and produc-
tion system of sucker-rod pumping wells, the ground
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dynamometer cards mainly reflect the condition from
wellbore and stratum (Hu et al., 2008), while the elec-
trical power signal reflects the condition from ground
and stratum (Chen, 2016; Sun, 2011). These two types of
information canmore comprehensively and timely reflect
the working condition of sucker-rod pumping wells. But
due to the similarity in the dynamometer card shape and
electrical power card feature, a few working conditions,
such as working conditions between the assist-blowing
and the severe bottom leakage in tubing, between gas
disturbing and lack of supply liquid, can be recognized
accurately by wellhead temperature or wellhead pres-
sure signal. Therefore, the above four information sources
are selected and taken as feature views in the proposed
approach.

3.2. View feature extraction

In view of the existing working condition recognition
research limitations in feature extraction and to further
improve the recognition accuracy, the features of each
view are extracted based on mechanism analysis via
the theoretical dynamometer card, prior information and
expert knowledge.

3.2.1. Theoretical dynamometer card under static
load
The illustration of the theoretical dynamometer card
under static load is shown in Figure 1.

As can be seen in Figure 1, the horizontal ordinate rep-
resents displacement of polish rod, which is expressed by
S, and the vertical ordinate represents load on polish rod,
which is expressed by P. Sr is the stroke of polish rod, Sp
is the stroke of piston (i.e. effective stroke), Sl is the stroke
loss of loading, Su is the stroke loss of unloading, Pl is the
weight of liquid column on piston. Point A(E) is the clos-
ingpoint of travelling valve, i.e. bottomdead centre. Point

Figure 1. Theoretical dynamometer card under static load.

B is the opening point of standing valve, point C(F) is the
closing point of standing valve, i.e. top dead centre. Point
D is the opening point of travelling valve. A(E)→B→C(F)
represents upward stroke stage, which is the process of
loading and working, C(F)→D→A(E) represents down
stroke stage, which is the process of unloading andwork-
ing, A(E)→B→C(F)→D→A(E) represents a stroke, i.e. a
work cycle of oil well pump.

3.2.2. Feature extraction
The feature data of measured ground dynamometer
cards can be extracted by a work cycle variation of eight
key factors, including area of dynamometer card, pump
speed, load, weight of liquid column on piston (Pl), stroke
(Sr), effective stroke (Sp), stroke loss (Sl and Su) and vary-
ing positions of key points during loading and unloading
process.

Twelve features are extracted from the measured
ground dynamometer cards. That is, stroke, pump speed,
the actual area of dynamometer card, maximal load, min-
imal load, the maximum and minimal load ratio, the
weight of liquid column on piston, the effective stroke,
the stroke loss of loading, the stroke loss of unloading,
the advanced loading position and the advanced unload-
ing position. Of all the above 12 feature parameters,
stroke, pump speed, maximal load and minimal load can
be directly obtained from measured dynamometer card
data. The actual area of dynamometer card is the area of
closed curve encircled by the collection points of mea-
sured ground dynamometer cards. The maximum and
minimal load ratio is equal to the ratio of the maximum
load to the minimal load. The weight of liquid column
on piston is equal to the difference between the max-
imum load and the minimal load. The effective stroke
is equal to the displacement difference between travel-
ling valve opening and closing point. The stroke loss of
loading is equal to the displacement difference between
standing valve opening point and travelling valve clos-
ing point. The stroke loss of unloading is equal to the
displacement difference between standing valve closing
point and travelling valve opening point. The advanced
loading position is equal to the displacement of the first
point in reverseof positive andnegativedirectionof slope
from travelling valve closing point to opening point. The
advanced unloading position is equal to the displace-
ment of the first point in reverse of positive and negative
direction of slope from standing valve closing point to
opening point.

The feature data of measured electrical power signal
can be extracted by ‘power feature’ and ‘AUC (Area under
curve) feature’ (Chen, 2016; Sun, 2011). The position of
top dead centre and bottom dead centre can be directly
obtained from measured dynamometer card data. Top
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dead centre is the maximum point of the displacement,
and bottom dead centre is the minimum point of the dis-
placement, i.e. the initial point of dynamometer card data
(except the drifting data).

Seven features are extracted in measured electrical
power signal, including uplink power, downward power,
period power, uplink area, downward area, period area
and the balance rate. Uplink power is equal to the sum
of power during the up stroke stage. Downward power is
equal to the sum of power during the down stroke stage.
Period power is equal to the sum of uplink power and
downward power. Uplink area is equal to the area encir-
cled by electric power signal curve during the up stroke
stage andhorizontal axis basedon time series. Downward
area is equal to the area encircled by electric power signal
curve during the down stroke stage and horizontal axis
based on time series. Period area is equal to the sum of
uplink area and downward area. The balance rate is equal
to the ratio of uplink power to downward power.

Affected by accuracy of data acquisition and environ-
ment factors from ground and stratum, the wellhead
temperature data collected from oil production site can
not strictly follow the characteristics of the correspond-
ing working condition, but it can essentially reflect heat
energy loss of the corresponding working condition in
each stroke.

Three features are extracted from the measured well-
head temperature signal, including uplink heat energy
(temperature) loss, downward heat energy (tempera-
ture) loss and period heat energy (temperature) loss.
The number of real-time collection points from mea-
sured wellhead temperature is usually less than the num-
ber of real-time collection points from measured ground
dynamometer cards in a stroke. Through using the inter-
polation fitting method, the number of real-time collec-
tion points from the two above measured parameters
can be synchronized. In addition, the data of top dead
centre and bottom dead centre can be obtained by the
measured ground dynamometer card data. Uplink heat
energy (temperature) loss is equal to the sum of heat
energy (temperature) loss during the up stroke stage.
Downward heat energy (temperature) loss is equal to the
sum of heat energy (temperature) loss during the down
stroke stage. Period heat energy (temperature) loss is
equal to the sumof uplink heat energy (temperature) loss
and downward heat energy (temperature) loss.

The research status of the measured wellhead pres-
sure signal on feature extraction is similar to the mea-
sured wellhead temperature signal. Affected by the stra-
tum environment factor and data collection accuracy, the
wellhead pressure data collected from oil production site
can not strictly follow the characteristics of the corre-
sponding working condition, but it can essentially reflect

energy loss of the corresponding working condition in
each stroke.

Three features are extracted from the measured well-
head pressure signal, including uplink energy (pressure)
loss, downward energy (pressure) loss and period energy
(pressure) loss. Similarly, the number of real-time collec-
tion points from measured wellhead pressure is usually
less than the number of real-time collection points from
measured ground dynamometer cards in a stroke. So, the
number of real-time collection points between the two
measured parameters can be synchronized by the inter-
polation fitting method, and the data of top dead centre
and bottom dead centre can be gained by the measured
grounddynamometer carddata. Uplink energy (pressure)
loss is equal to the sum of energy (pressure) loss dur-
ing the up stroke stage. Downward energy (pressure) loss
is equal to the sum of energy (pressure) loss during the
down stroke stage. Period energy (pressure) loss is equal
to the sumofuplink energy (pressure) loss anddownward
energy (pressure) loss.

3.3. Modeling for the working condition recognition

The modelling process of working condition recognition
of sucker-rod pumping wells is shown in Figure 2.

Thekey toestablish themodel for identifying thework-
ing condition of sucker-rod pumping wells by Hessian-
regularized weighted multi-view canonical correlation
analysis and cosine nearest neighbour algorithm is how
to select neighbour number of Hessian construction,
dimension of common subspace, weight of multiple
views and the number of samples in classification. In view
of the correctness, generalization, time complexity and
practicability of the algorithm, the neighbour number
of Hessian is defined as the number of training samples
minus 1; the dimension of common subspace is selected
by the minimum dimension among multiple views, the
feature data from the measured wellhead temperature
and wellhead pressure signal can be integrated together
in this paper, thus the dimension of common subspace is
set to 6; the multi-view weight can be obtained by tun-
ing according to increasing themultiple of each view, the
multiple of view with the low effect is larger than that of
the high effect; the recognition effects based on different
comparedmethods in this paper aremostly at or near the
peak in the case that the number of training samples is
15% of the number of samples in each category, thus the
number of training samples is far less than the number
of test samples and is selected by 5–15% of the number
of samples in each category. In addition, the number of
samples from each view is identical.

The concrete recognition process for the working con-
dition is described as follows:
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Figure 2. The modelling process of working condition recognition based on Hessian-regularized weighted multi-view canonical corre-
lation analysis and cosine nearest neighbour algorithm.

First, the features of original working condition data
from the above four views are extracted respectively, the
features of themeasuredwellhead temperature andwell-
head pressure signal are merged by the concatenated
mode, thus the working condition feature data set which
contains three feature sets from three views is established
and the training data set and test data set are gener-
ated as well. Then after defining the number of train-
ing samples and the neighbour number of Hessian, the
training data set is established the Hessian matrix. Next,
proper the common subspace dimension and the multi-
view weight are selected and the training data is trained
and obtained the solution with the maximum correlation
coefficient sum between views. Finally, after reduced the
dimensionby the above solution, the reconstructed train-
ing data set and test data set are gained, theworking con-
ditions are classified and recognized by the cosine near-
est neighbour algorithm together with the reconstructed
training data set and test data set.

4. Experiment results and discussions

To evaluate the validity and practicability of the pro-
posed method and model, we conduct experiments
on one working condition data set derived from sixty
sucker-rod pumping wells in a typical high-pressure low-
permeability thin oil block in Shengli Oil Field, China.
The working condition samples of sucker-rod pump-
ing wells are selected closely according to the opera-
tion record of oil well. Each sample of measured ground
dynamometer card, electrical power, wellhead temper-
ature and wellhead pressure signal in a working condi-
tion sample is composed of the collected points from
the real-time oil well production sites according to the

coincident acquisition time. The working condition data
set of sucker-rod pumping wells is established by the
accumulated samples from sixty sucker-rod pumping
wells through three years, which contains 11 categories
of typical working condition (i.e. normal, lack of supply
liquid, rod cutting, assist-blowing, stuck pump, travel-
ling valve failing,waxprecipitation, tubing leakage, pump
leakage, travelling valve leakage, standing valve leakage),
150 samples in each category and 1650 samples in total in
the working condition data set.

4.1. Comparison results by different views
recognitionmethods based on fewer different
marked training samples

The working condition data set including 1650 samples
is uniformly divided into four groups before test, i.e. the
training set is formed by 5%, 7%, 10% and 15% of the
number of samples in each category respectively, the test
set is formed by the rest corresponding proportion sam-
ples in each category respectively. Thus the number of
samples in the training set and the test set is identified
as N={88,121,165,253} and T={1562,1529,1485,1397}
by four groups proportion respectively. The training set
and the test set in each group contain 11 categories of
working condition, each category of working condition
contains the same number of samples, and the number
of the training samples in each category is identified as
n={8,11,15,23} according to the above four groups pro-
portion. Cosine nearest neighbour (COSNN) classifier is
employed and the dimension of the common subspace
is set to 6. The recognition accuracy can be obtained by
the ratio of correct classified samples to total samples in
the test set.



222 B. ZHOU ET AL.

Table 1. Contrast results of working condition recognition of sucker-rod pumping wells compared with different views recognition
methods based on fewer different marked training samples.

5%marked
(n = 8)

7%marked
(n = 11)

10%marked
(n = 15)

15%marked
(n = 23)View

number View Different methods % % % %

1 Ground dynamometer cards COSNN 94.48 94.50 94.95 97.57
1 Electric power COSNN 96.89 96.83 96.88 98.64
1 Ground dynamometer cards HesCOSNN 94.48 94.50 94.95 97.57
1 Electric power HesCOSNN 96.89 96.83 96.88 98.64
2 Ground dynamometer cards and

electric power
MC-COSNN 97.59 97.62 97.71 99.86

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

MC-COSNN 91.89 92.91 95.39 97.20

2 Ground dynamometer cards and
electric power

Hes-Wei CCA-COSNN 98.27 98.20 98.75 99.87

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

Hes-Wei MCCA-COSNN 98.28 98.34 98.75 99.87

Then the proposed method based on Hessian-
regularized weighted multi-view canonical correlation
analysis and cosine nearest neighbour (i.e. Hes-Wei
MCCA-COSNN) is compared with single information
source recognition methods, such as traditional cosine
nearest neighbour (i.e. COSNN), Hessian-regularized
cosine nearest neighbour (i.e. HesCOSNN), traditional
multi-sources of feature connection recognition method
based on cosine nearest neighbour (i.e. mC-COSNN)
and Hessian-regularized weighted canonical correlation
analysis recognition method based on cosine nearest
neighbour (i.e. Hes-Wei CCA-COSNN) by four groups of
fewer differentmarked training samples respectively. The
experiment is repeated for five times in each group and
different training set and test set are employed every
time. The comparison results can be obtained by the
average of five results respectively as shown in Table 1.

From Table 1, it can be seen that in the cases of four
groups based on fewer different marked training sam-
ples, Hes-Wei MCCA-COSNN (the proposed method) can
obtain better recognition effect than the other recogni-
tion methods with different views. Compared by meth-
ods with ground dynamometer cards view only, Hes-Wei
MCCA-COSNN improves the working condition average
recognition rate by about 3.44% relative to COSNN and
HesCOSNN. Similarly, compared by methods with elec-
tric power signal view only, Hes-Wei MCCA-COSNN can
improve the average recognition rate by about 1.5% rel-
ative to COSNN and HesCOSNN; Compared by methods
with ground dynamometer cards and electric power sig-
nal two views, Hes-Wei MCCA-COSNN can improve the
average recognition rate respectively by about 0.62%
and 0.04% relative to MC-COSNN and Hes-Wei CCA-
COSNN respectively; Compared by method with ground
dynamometer cards, electric power, the combination

of wellhead temperature and wellhead pressure three
views, Hes-Wei MCCA-COSNN can improve the average
recognition rate by about 4.46% relative to MC-COSNN.

By selecting appropriate feature data, Hes-Wei MCCA-
COSNN can further enhance the average recognition
accuracy by adding new feature data, but MC-COSNN
drops. In addition, based on different views, such as
ground dynamometer cards, electric power, the com-
bination of ground dynamometer cards and electric
power, the combination of ground dynamometer cards,
electric power and merged wellhead temperature and
wellhead pressure, different working condition recog-
nition methods (except MC-COSNN in three views) can
obtain better recognition effect respectively in this
paper.

4.2. Comparison results by various canonical
correlation analysis recognitionmethods based on
fewer differentmarked training samples

In this part, the proposedmethodHes-WeiMCCA-COSNN
is compared with traditional canonical correlation anal-
ysis recognition method (i.e. CCA-COSNN), weighted
canonical correlation analysis recognition method (i.e.
WeiCCA-COSNN), Hessian-regularized canonical correla-
tion analysis recognition method (i.e. HesCCA-COSNN),
Hessian-regularized weighted canonical correlation anal-
ysis recognition method (i.e. Hes-Wei CCA-COSNN), tra-
ditional multi-view canonical correlation analysis recog-
nition method (i.e. MCCA-COSNN), weighted multi-view
canonical correlation analysis recognition method (i.e.
WeiMCCA-COSNN) and Hessian-regularized multi-view
canonical correlation analysis recognition method (i.e.
HesMCCA-COSNN) by four groups of fewer different
marked training samples respectively. The experiment
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Table 2. Contrast results of working condition recognition of sucker-rod pumping wells compared with various canonical correlation
analysis recognition methods based on fewer different marked training samples.

View
number View Different methods

5%marked
(n = 8)

%

7%marked
(n = 11)

%

10%marked
(n = 15)

%

15%marked
(n = 23)

%

2 Ground dynamometer cards and
electric power

CCA-COSNN 94.35 96.73 97.57 99.69

2 Ground dynamometer cards and
electric power

WeiCCA-COSNN 95.86 96.60 97.75 99.69

2 Ground dynamometer cards and
electric power

HesCCA-COSNN 98.19 97.93 98.79 99.86

2 Ground dynamometer cards and
electric power

Hes-Wei CCA-COSNN 98.27 98.20 98.75 99.87

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

MCCA-COSNN 94.91 95.92 96.65 98.93

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

WeiMCCA-COSNN 96.74 97.13 97.58 99.63

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

HesMCCA-COSNN 97.13 95.49 97.58 98.55

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

Hes-Wei MCCA-COSNN 98.28 98.34 98.75 99.87

is repeated for five times in each group and different
training set and test set are employed every time. The
comparison results can be obtainedby the average of five
results respectively as shown in Table 2.

It can be seen from Table 2, in the cases of four groups
based on fewer different marked training samples, Hes-
Wei MCCA-COSNN can obtain better recognition effect
than the other recognition methods with canonical cor-
relation analysis. Compared by methods with ground
dynamometer cards and electric power signal two views,
Hes-WeiMCCA-COSNN can improve the average recogni-
tion rate respectively by about 1.73%, 1.34%, 0.12% and
0.04% relative to CCA-COSNN, WeiCCA-COSNN, HesCCA-
COSNNandHes-WeiCCA-COSNNrespectively. Compared
by methods with ground dynamometer cards, electric
power, the combination of wellhead temperature and
wellhead pressure three views, Hes-Wei MCCA-COSNN
can improve theaverage recognition ratebyabout 2.21%,
1.04% and 1.62% relative to MCCA-COSNN, WeiMCCA-
COSNN and HesMCCA-COSNN respectively.

Through ground dynamometer cards and electric
power two views, the working condition recognition
methods based on canonical correlation analysis can
obtain better recognition effect by Hessian regulariza-
tion and weighted technology in this paper, and accord-
ing to the descending order of the average recogni-
tion rate, the sort of the compared methods is Hes-
Wei MCCA-COSNN (the proposed method), Hes-Wei
CCA-COSNN, HesCCA-COSNN, WeiCCA-COSNN and CCA-
COSNN. Similarly, through ground dynamometer cards,

electric power, the combination of wellhead temperature
andwellheadpressure three views, theworking condition
recognition methods based on canonical correlation
analysis can also obtain better recognition effect by
Hessian regularization and weighted technology in this
paper, the sort of the compared methods is Hes-
Wei MCCA-COSNN (the proposed method), WeiMCCA-
COSNN, HesMCCA-COSNN and MCCA-COSNN by the
descending order of the average recognition rate.

4.3. Comparison results by traditional multi-source
feature extractionmethods based on fewer different
marked training samples

In this part, the proposed method (i.e. Hes-Wei MCCA-
COSNN) is compared with traditional multi-feature con-
nection recognition methods based on two views and
three views respectively (i.e. MC-COSNN), traditional prin-
cipal component analysis (PCA) recognition methods
based on 95% and 99% of the contribution respec-
tively (i.e. PCA-COSNN), traditional kernel principal com-
ponent analysis (KPCA) recognition methods based on
RBF kernel, 95% and 99% of the contribution respec-
tively (i.e. KPCA-COSNN), traditional canonical correlation
analysis recognition method (i.e. CCA-COSNN) and tra-
ditional multi-view canonical correlation analysis recog-
nition method (i.e. MCCA-COSNN) by four groups of
fewer differentmarked training samples respectively. The
experiment is repeated for five times in each group and
different training set and test set are employed every
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Table 3. Contrast results of working condition recognition of sucker-rod pumping wells compared with traditional multi-source feature
extraction methods based on fewer different marked training samples.

View
number View Different methods

5%marked
(n = 8)

%

7%marked
(n = 11)

%

10%marked
(n = 15)

%

15%marked
(n = 23)

%

2 Ground dynamometer cards and
electric power

MC-COSNN 97.59 97.62 97.71 99.86

2 Ground dynamometer cards and
electric power

PCA-COSNN (contribution = 0.95) 96.03 95.95 96.16 98.20

2 Ground dynamometer cards and
electric power

PCA-COSNN (contribution = 0.99) 97.44 97.51 97.71 99.86

2 Ground dynamometer cards and
electric power

KPCA-COSNN (contribution = 0.95) 97.71 97.70 97.71 99.86

2 Ground dynamometer cards and
electric power

KPCA-COSNN (contribution = 0.99) 97.71 97.70 97.71 99.86

2 Ground dynamometer cards and
electric power

CCA-COSNN 94.35 96.73 97.57 99.69

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

MC-COSNN 91.89 92.91 95.39 97.20

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

PCA-COSNN (contribution = 0.95) 9.09 9.09 9.09 9.09

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

PCA-COSNN (contribution = 0.99) 53.51 51.88 53.71 52.76

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

KPCA-COSNN (contribution = 0.95) 93.04 94.18 96.16 97.38

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

KPCA-COSNN (contribution = 0.99) 93.04 94.18 96.16 97.38

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

MCCA-COSNN 94.91 95.92 96.65 98.93

3 Ground dynamometer cards,
electric power, wellhead
temperature and wellhead
pressure combination

Hes-Wei MCCA-COSNN 98.28 98.34 98.75 99.87

time. The comparison results can be obtained by the
average of five results respectively as shown in Table 3.

From Table 3, it can be seen that in the cases of four
groups based on fewer different marked training sam-
ples, Hes-Wei MCCA-COSNN (the proposed method) can
obtain better recognition effect than the other recogni-
tionmethodswith traditionalmulti-source feature extrac-
tion. Compared by methods with ground dynamome-
ter cards and electric power signal two views, Hes-Wei
MCCA-COSNN can improve the average recognition rate
respectively by about 1.73%, 0.62%, 2.23% or 0.68%,
0.57% or 0.57% relative to CCA-COSNN, MC-COSNN, PCA-
COSNN (contribution is 0.95 or 0.99), KPCA-COSNN (con-
tribution is 0.95 or 0.99) respectively. Compared bymeth-
ods with ground dynamometer cards, electric power,
the combination of wellhead temperature and wellhead
pressure three views,Hes-WeiMCCA-COSNNcan improve
the average recognition rate respectively by about 2.21%,
4.46%, 89.72% or 45.85%, 3.62% or 3.62% relative to

MCCA-COSNN, MC-COSNN, PCA-COSNN (contribution is
0.95 or 0.99), KPCA-COSNN (contribution is 0.95 or 0.99)
respectively.

With the two views of ground dynamometer cards and
electric power, the proposedmethod and the otherwork-
ing condition recognition methods based on traditional
multi-feature connection can obtain better recognition
effect in this paper. By combing ground dynamome-
ter cards and electric power with wellhead temperature
and wellhead pressure, except the proposed method,
the average recognition rate of all the other recogni-
tion methods drops, but the average recognition rate
of the traditional canonical correlation analysis recogni-
tion methods and the traditional kernel principal com-
ponent analysis recognition methods is higher than that
of the traditional multi-feature connection recognition
methods and the traditional principal component analy-
sis recognitionmethods, and theaverage recognition rate
of the proposed method is the highest.
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Conclusion

A novel method for working condition recognition of
sucker-rod pumping wells based on Hessian-regularized
weightedmulti-view canonical correlation analysis is pro-
posed in this paper. The proposed method can greatly
improve the generalization performance by integrat-
ing multi-view Hessian-regularized weighted learning
and multi-view canonical correlation analysis algorithm.
Experimental results show that the proposed method
can obtain higher recognition accuracy than traditional
methods based on single information source and multi-
sources of feature connection by effectively utilizing a
large amount of real-time multi-source information in
big data and IOT of oil and gas production, thus further
reduce fault alarm in working condition recognition of
sucker-rod pumping wells.

On the basis of previous research, measured ground
dynamometer cards, electric power, wellhead tempera-
ture and wellhead pressure signal are selected and the
features are extracted by the mechanism analysis, prior
information and empirical knowledge. Meanwhile, the
working condition recognition model is established by
Hessian-regularized weighted multi-view canonical cor-
relation analysis and cosine nearest neighbour algorithm,
thus further improve the model robustness and recog-
nition performance. The established model is applied to
recognize eleven kinds of typical working conditions of
a certain block in Shengli Oilfield, China. Experimental
results show that the proposedmethod has better recog-
nition performance in the cases of fewer differentmarked
training samples, therefore it is much more suitable for
engineering applicability.

The proposed method applies the manifold regular-
ization learning method and weighted technology to
the traditional multi-view canonical correlation analy-
sis method for identifying the working condition of
sucker-rod pumping wells, which may provide a bet-
ter solution to the common problem in fault diagno-
sis and recognition in which fault samples are diffi-
cult to obtain and afford a new thought to the multi-
source information fusion method and practicability,
thus suggesting a significant scientific and application
value.
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