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ABSTRACT
Controller design for a riderless bicycle is a difficult task due to its non-holonomic constraint and its
complex dynamic. The problem will be more complex, when path tracking and stabilizing the roll
angle of the bicycle are considered simultaneously. This paper proposes an analytical approach to
stabilize the roll angle of an unmanned bicycle, in the meanwhile a desirable path is tracked by the
bicycle. These two objectives are achieved due to the existing relation between the roll angle and
the steering variable of the bicycle. In this paper, amulti-loop control structure is proposed to track a
predetermined path. In the inner loop, the roll angle tracks a time-varying reference signal using the
back-stepping method. This reference signal is manipulated in the outer loops to track the desired
path. Moreover, the robustness of the systemwith respect to external disturbances is guaranteed by
the Lyapunov redesignmethod. Finally, the efficiency of the proposedmethod is illustrated through
computer simulations.
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1. Introduction

Modelling and control of unmanned bicycles as clean
transportation vehicles are still of interest for researchers
(Arora, Diba, & Esmailzadeh, 2017; Chu & Chen, 2018). The
goal is to track a predetermined path by manipulating
the steering angle, pedal speed as well as the roll angle
of the bicycle. The complexity of bicycle’s dynamics and
the lack of bicyclist’s weight for stabilization have caused
less attention to this topic in the literature. For simplicity,
in some references, only control of the roll angle and bal-
ancing the bicycle have been considered. In this regard,
feedback linearization methods and a variety of sliding
mode and back-stepping approaches have been imple-
mented to balance bicycles (Dao & Chen, 2011; Guo, Wei,
& Huang, 2010; He, Zhao, & Stasinopoulos, 2015; Hwang,
Wu, & Shih, 2011; Kawamura &Murakami, 2012; Yu & Yeh,
2011). The main problem of these methods is that after
stabilizing the bicycle, there is no way to control its path;
since control variables of the system (especially steering
angle) have been used for stabilization and no effective
control variable is left for tracking the path.

In some papers, the roll angle of the bicycle is used to
make it to track a desirable path. For example, in Getz and
Marsden (1995) with emphasis on the complexity of the
controller design with non-holonomic constraints, a lin-
ear PID controller has been designed such that the bicy-
cle tracks a specified path. Also in Tanaka and Murakami
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(2009), with the assumption that the value of roll angle
is small, a simple model has been derived and a linear
PID controller has been designed such that the bicycle
could track a predetermined path. Since linear controllers
havemany limitations and are not robust, in Mathieu and
Hedrick (2010), path tracking of bicycles has been stud-
ied with twomethods namely feedback linearization and
sliding mode. Moreover, it has been shown that the slid-
ingmode controller has a better performance and ismore
robust relative to feedback linearization. Also in Tagne,
Talj, and Charara (2015), the control of intelligent vehicles
has been done. However, in Mathieu and Hedrick (2010)
and Tagne et al. (2015), roll angle and stability are not
considered, and it is assumed that roll angle is always
zero. As said before, ignoring the stability of roll angle
may cause the bicycle to fall down before tracking the
desired path. In some references such as Lee and Ham
(2002), the unmanned bicycle has been stabilized using
an extra weight instead of bicyclist’s weight. However,
this approach leads to mechanical complexities and an
expensive product.

Proposednonlinear controllers to control the roll angle
and path tracking of the bicycle, simultaneously, could
be categorized as intelligent and classic methods. Gen-
erally speaking, intelligent controllers use non-analytical
approaches for this simultaneous control (Chen & Dao,
2005, 2007). Although non-analytical approaches may
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work well in the simulations, the performance of the con-
trol system could not be guaranteed for all situations.
In Defoort and Murakami (2009), as the only paper that
covers simultaneous nonlinear control of roll angle and
path tracking, first using a second-order sliding mode
controller, bicycles are controlled such that besides keep-
ing the balance, the roll angle and longitudinal speed
of the bicycle follow desired values. Then, by manipu-
lating these values, tracking of a predetermined path is
performed. However, in its control structure, two dynam-
ics have been added to the closed-loop system, one is
related to the roll angle estimator with a complicated
equation and the other is a disturbance observer. Adding
these two dynamics increases the order of the closed-
loop system and consequently enhances the complex-
ity of the controller and reduces the reliability of the
system.

In this paper, an analytical approach is proposed to sta-
bilize the roll angle of an unmanned bicycle and in the
meanwhile to track a desirable path using a comprehen-
sive model which considers the uncertainties. First, using
the back-stepping approach the roll angle of the bicycle
is forced to track a desired time-varying reference. Using
this internal loop and the simulated data, a relationship
between the desirable roll angle and the steering vari-
able is estimated. The resulting relation is a polynomial
which is a static equation and can be implemented easily.
In the final stage, the path tracking controller is designed.
To make the proposed method robust against external
disturbances, the Lyapunov redesign method is used to
avoid implementation of a disturbance observer. Com-
puter simulations show the efficiency of the proposed
method.

The rest of this paper is organized as follows: in Section
2, the considered model of the bicycle is reviewed. In
Section 3, the proposed controlmethodwill be presented
and finally, in Section 4, simulation results will show the
performance of the proposed controller.

2. Bicycle model

The model of a bicycle can be divided into two parts:
kinematics and dynamics. In this section, first the param-
eters of a bicycle are introduced and then kinematic and
dynamic models of a bicycle are presented.

2.1. Parameters of an unmanned bicycle

A bicycle consists of three parts: front wheel, back wheel
and the body. In analytical methods, a bicycle is consid-
ered as a pointmassm that is located at its centre ofmass.
Bicycle moves forward by moving its pedal with speed
equal to v and changes its path by rotating its steering

Figure 1. Side view of a bicycle and its parameters (Defoort &
Murakami, 2009).

handlebar to right or left. Figure 1 shows a bicycle view
and its parameters.

In Figure 1, G is the bicycle’s centre of mass, H is the
distance between the ground and the centre of mass, b
is the distance between the centre of mass and the back
wheel, and the variables L,η,�,ϕ, θ andβ are respectively
the wheel base, castle angle, bicycle trail, steering angle,
roll angle and the angle of front wheel rotation, and also
ψ is the angle of the bicycle relative to the horizontal axis.

Castle angle (η) and bicycle trail (�) are the manipu-
lating variables for the geometric stability of the system
(Figure 1). These parameters introduce the effect of the
steering angle at low speeds into the system geometry
(Limebeer & Sharp, 2006). If the direction of steering han-
dlebars changes the value of ϕ, front wheel will change
the value of β accordingly (Figure 1). Equation (1) shows
the relationship between these two angles.

tanβ cos θ = tanϕ sin η. (1)

Castle angle (η) is usually constant. For simplifying the
dynamicmodel of thebicycle, this angle is set to 90° andϕ
is considered almost equal to β . This assumption induces
an uncertainty into the model of the system.

Bicycle tyres are assumed to have no width. When the
bicycle is tracking an inclined path, the tangential force
between the tyre and road exposes the torque Tδ on the
steering axis. This torque causes the bicycle body tomove
sidewise. In this case, the deviation angle of the body,
which is named as δ, is estimated as (Astrom, Klein, &
Lennartsson, 2005)

δ = � sin η
L

β . (2)
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As a result, Tδ is obtained by Equation (3)

Tδ = −bδmg cos θ , (3)

where g is the acceleration of gravity and δ is calculated
from (2).

Besides that, in rotationalmovements inertiamoments
should be evaluated. Inertia moments of the bicycle are
considered as Ih and Ix .

2.2. Kinematic model

The kinematicmodel of a bicycle includes non-holonomic
constraint of the system that should be considered in
path tracking. This constraint causes that the bicycle can’t
have a sidewise movement. Regarding this constraint
kinematic model of the bicycle is obtained as follows:⎧⎪⎪⎨

⎪⎪⎩
ẋ = v cos ψ ,

ẏ = v sin ψ ,

ψ̇ = vσ ,

(4)

where σ is the steering variable and is defined as
σ = (tanβ/L).

2.3. Dynamicmodel

The dynamic model consists of two parts: steering and
roll dynamics. In order to be more realistic, both dynamic
models are considered in this paper.

2.3.1. Roll angle dynamicmodel
The dynamic model of the roll angle channel is derived
from Lagrange equations. This model brings about the
most complexity in the bicycles model. Linear equations
of this model have been presented in Sharp (1971). Based
on these equations, Getz has proposed a model for the
bicycle using the definition of generalized coordinates of
the bicycle (Getz, 1995). This model has been called ‘Getz
model’. InDefoort andMurakami (2009), amore complete
model has been presented, by taking into account the
uncertainties that exist in a bicycle and solving Lagrange
equations. Equation (5) shows this model:

θ̈ = A

(
g sin θ − (1 − hσ sin θ)σv2 cos θ

+ B Tδ − bvσ θ̇ sin θ − Dv

cos2 ϕ
ϕ̇

)
, (5)

where

A = mh

Ix + mh2
, B = 1

mh
,D = b sin η

L
.

By considering that ϕ ∈ (−π
2 ,

π
2 ), therefore in (5),

cos2ϕ �= 0.

2.3.2. Steering angle dynamicmodel
Many physical phenomena like wind, unevenness of road
surface, and gyroscopic forces, affect the bicycle. To con-
sider these effects, the model of steering dynamics is
considered as

Ihϕ̈ = τmotor − τdist, (6)

where τmotor is the resulting torque of the motor to con-
trol the steering angle of unmanned bicycle and τdist is
the torque due to disturbing forces.

3. Controller design

In this section, first the roll angle is controlled using the
back-stepping approach. Then, the path tracking prob-
lem will be studied. Finally, the designed controller is
made robust by applying the Lyapunov redesignmethod.

3.1. Control of roll angle

In the first stage, the derivative of the roll angle is con-
sidered as a virtual input of the system and by choos-
ing an appropriate Lyapunov function, this virtual input
is designed such that as well as ensuring the stability
of the system and roll angle, a proper time-varying ref-
erence signal to be tracked. In the second stage, ϕ̈ is
designed such that the designed derivative of steering
angle obtained in the previous stage is followed. After the
second stage, the control law (with the assumption of no
disturbance) is designed.

Now, according to (5) and (6) and considering the state
variable as X = (θ , θ̇ ,ϕ, ϕ̇), the control law is designed as
shown below.

In the first stage, it is assumed that ϕ̇ in (5) is the virtual
input of the system. If the signal θd(t) is assumed as the
desirable value of the roll angle, an appropriate Lyapunov
function may be considered as follows:

V1 = 0.5 ((θ̇ − θ̇d)
2 + k (θ − θd)

2), (7)

where k is an arbitrary positive constant. This form of Lya-
punov function has been chosen to converge the variable
θ(t) to the signal θd(t). Indeed, when V1 is guaranteed to
converge to zero, the terms θ and θ̇ will converge to θd
and θ̇d , respectively.

Then, by differentiating V1 along the system (5), one
has

V̇1 =
(
A

(
g sin θ − (1 − hσ sin θ)σv2 cos θ

+ BTσ − bvσ θ̇ sin θ − Dv

cos2 ϕ
ϕ̇

)

− θ̈d + k(θ − θd)

)
(θ̇ − θ̇d). (8)
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The selected virtual input in (8) must be designed to
ensure negative definiteness of the derivative of the Lya-
punov function. The virtual input is designed as

ϕ̇ = cos2 ϕ
DAv

(A(g sin θ − (1 − hσ sin θ)σv2

× cos θ + BTδ − bvσ θ̇ sin θ)

− θ̈d + k(θ − θd)+ k1(θ̇ − θ̇d)), (9)

where k1 is an arbitrary positive constant too. Then,

V̇1 = −k1(θ̇ − θ̇d)
2 ≤ 0. (10)

It is evident that the derivative of the Lyapunov func-
tion is negative semi-definite, thus only the stability of
the closed-loop system with the designed control input
can be guaranteed. However, Equation (10) leads to
inequality of V1(t) ≤ V1(0) at t ≥ 0 and consequently V1

is bounded. The boundedness of V1 leads to the bound-
edness of its expressions ((θ − θd)and(θ̇ − θ̇d)). Accord-
ing to Barbalat’s lemma (Khalil, 2002) and differentiating
Equation (10) again along the system (5) with the control
law (9), one has

V̈1 = 2k1(θ̇ − θ̇d)[k(θ − θd)+ k1(θ̇ − θ̇d)]. (11)

Since (θ − θd) and (θ̇ − θ̇d) are bounded, for V̈1 it is
also the case. Boundedness of V̈1 ensures the uniform
continuity of V̇1. Thus the derivative of Lyapunov func-
tion tends to zero at infinity (V̇1 → 0 if t → ∞). Therefore,
(θ̇ − θ̇d) converges to zero.

Now, if the error variable z1 is defined as z1 = θ̇ − θ̇d ,
the dynamic of this variable according to (5), (9) will be as

ż1 = −k(θ − θd)− k1z1. (12)

Differentiating Equation (12) leads to

z̈1 = (−k + k21)(θ̇ − θ̇d)+ k1k(θ − θd). (13)

The boundedness of (θ − θd) and (θ̇ − θ̇d), according to
(13), leads to the boundedness of the second deriva-
tive of z1. Thus ż1 is uniformly continuous and according
to Barbalat’s lemma, ż1 tends to zero at infinity. Thus,
according to (12), in order that the derivative of error vari-
able tends to zero at infinity, (θ − θd) must tend to zero
as well. In this way, asymptotic stability of the system
is shown.

Thedesigned control law (9) cannotbedirectly applied
to the variable ϕ̇, since it is a virtual input. Thus the
designed control law (9) is considered as the desirable
value of ϕ̇ (i.e. ϕ̇d), then, the error variable z2, is defined
as z2 = ϕ̇ − ϕ̇d . In the second stage, a new Lyapunov

function is considered as

V2 = V1 + 0.5z22. (14)

The derivation of V2 along the system (6) with the
substitution of ϕ̇ = z2 + ϕ̇d will be as follows:

V̇2 = −k1(θ̇ − θ̇d)
2 − ADv(θ̇ − θ̇d)

2

cos2 ϕ
z2 + z2(ϕ̈ − ϕ̈d).

(15)
The virtual input in the second stage is considered as

ϕ̈, which can be designed as

ϕ̈ = ADv(θ̇ − θ̇d)
2

cos2 ϕ
+ ϕ̈d − k2z2. (16)

In this case, the derivative of the Lyapunov function
turns out to be as

V̇2 = −k1(θ̇ − θ̇d)
2 − k2z

2
2 ≤ 0. (17)

Now, similar to the previous case, using the Barbalat’s
lemma, asymptotic stability of the systemwill be assured.
But the physical input of the unmanned bicycle is the
torque of the motor and, without considering input dis-
turbances, one has

ϕ̈ = τmotor

Ih
. (18)

Thus the actual control input is given by

τmotor = Ih(
ADv(θ̇ − θ̇d)

2

cos2 ϕ
+ ϕ̈d − k2z2). (19)

This control law is related to the nominal case (without
considering disturbances). In the following section, the
control law is developed to make the closed-loop system
robust against τdis.

3.2. Robust controller

According to (6), disturbing input affects the steering vari-
able. In this section, to make the designed control law (9)
robust against external disturbances, Lyapunov redesign
method is utilized.

As shown in the previous stage, the Lyapunov func-
tion (20) makes the nominal system asymptotically
stable:

V = 0.5 ((θ̇ − θ̇d)
2 + k (θ − θd)

2 + (ϕ̇ − ϕ̇d)
2). (20)

A new control input to overcome the external dis-
turbances is defined as u′ = τmotor + υ (τmotor is the
designed control law without considering disturbances).
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On the other hand, the unmanned bicycle has the
following form:

ẋ = f (t, x)+ G(t, x)[u′ + δ(t, x)]. (21)

The instantaneous value of additive disturbances is
unknown, however, it is assumed that the upper bound
of its norm is available as

||δ|| = ||τdist|| ≤ 0.5. (22)

Now, if the controlled input u′ is applied to the system
(21), the closed-loop system will be as

ẋ = f (t, x)+ G(t, x)τmotor + G(t, x)[υ + δ(t, x, u′)]. (23)

Then, the derivative of a Lyapunov function V along
the system (23) will be as follows:

V̇ = ∂V

∂x
(f + Gτmotor)+ ∂V

∂x
G(υ + δ). (24)

As it is seen, V̇ consists of two expressions. The first
one is due to the nominal system and the designed con-
troller u, and the second expression is the result of distur-
bance δ and the added term υ . The first expression was
shown to be negative in the previous design. Now,we are
going to examine the second expression. By calling ωT =
(∂V/∂x)G, the virtual controller υ using the Lyapunov
redesign control approach can bewritten as (Khalil, 2002)

υ =

⎧⎪⎪⎨
⎪⎪⎩

−η(t, x)
(

�

||� ||2

)
η(t, x)||� ||2 ≥ ε,

−η2(t, x)
(�
ε

)
η(t, x)||� ||2 < ε,

(25)

where ε is the small positive value and η(t, x)may be any
function greater than the upper bound of δ (i.e. 0.5).

Thus the virtual control input to eliminate the effect of
τdisis as

υ =

⎧⎪⎨
⎪⎩

−0.6
ϕ̇ − ϕ̇d

|ϕ̇ − ϕ̇d|
0.6|ϕ̇ − ϕ̇d| ≥ Ihε,

−0.36(ϕ̇ − ϕ̇d)/(Ihε) 0.6|ϕ̇ − ϕ̇d| < Ihε
(26)

and the robust control law is as follows:

u′ = Ih

(
ADv(θ̇ − θ̇d)

2

cos2 ϕ
+ ϕ̈d − k2z2

)
+ υ . (27)

3.3. Path tracking

When the bicycle is going to change its path, the steer-
ing handlebar should be rotated. However, in the previ-
ous section, the steering input was used to stabilize the
roll angle of the bicycle. This input has been designed
such that the roll angle follows a desirable value. Since

Figure 2. Block diagram of the internal loop (control of the roll
angle).

the steering input changes the roll angle, the bicycle can
be forced to follow a desirable predetermined path, by
adjusting the proper roll angle. However, there is no strict
relation between the track path and the roll angle. To
obtain an appropriate relation, the internal loop shown in
Figure2hasbeen simulated for various valuesof θd, and in
each case, the resulting steady-state value of the steering
variable will be recorded. Then, an appropriate relation (a
polynomial) can be fitted on the resulting data (between
the variables θd and σ ).

In this paper, the relation between desirable roll angle
and the steering variable has been fittedwith a fifth-order
polynomial as

θd = a5σ
5
d + a4σ

4
d + a3σ

3
d + a2σ

2
d + a1σd . (28)

However, it is observed that the coefficients of the
derived equations intensely dependon the velocity of the
bicycle. Therefore, the fitting process will be repeated for
various velocities of the bicycle and the coefficients of
Equation (28) will be velocity dependent as below:

a1 = 0.0981v2 + 0.025v,

a2 = −0.0004v4 − 0.0005v3 − 0.0033v2 + 0.0027v,

a3 = −0.036v4 + 0.1512v3 − 0.291v2 + 0.1693v,

a4 = 0.0225v5 − 0.154v4 + 0.4531v3

− 0.5731v2 + 0.2383v,

a5 = 0.0258v5 + 0.2177v4 − 0.6854v3

+ 0.8959v2 − 0.381v.

Equation (28) only shows the relation between steer-
ing variable and the roll angle. However, to track a prede-
termined path the relation between favourable steering
variable and the desirable pathmust be calculated. To do
this, first it is assumed that the bicycle is oriented in the
direction shown in Figure 3 (a vector with the angle ofψ )
and tends to follow a predetermined angle (α). Accord-
ing to the third term of (4), if the value of the desirable
steering variable is selected as

σd = −k3
(ψ − α)

v
, (29)

where k3 may be any positive constant.
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Figure 3. Real (ψ ) and desired (α) directions of the bicycle.

Then, the desirable derivative of ψ angle will be as
follows:

ψ̇d = −k3(ψ − α). (30)

By choosing the Lyapunov function as V = 0.5
(ψ − α)2, it can be proved that a proper value of k3 >
0 causes that the angle ψ tends to the angle α. There-
fore, suitable steering variable for changing tracking path
angle can be calculated from Equation (29). In order
that bicycle can track a time-varying path, this proper
angle should vary proportional to tracking path at each
moment. Thus, according to Figure 4, if at each time
instant thebicyclewhich is locatedat apositionA is forced
to go to point Ar on the desirable path, it should move
with α angle to follow the reference path. In this case, the

Figure 4. The position of the bicycle and the desirable path.

angle α at each moment is equal to

α = tan−1
(

−y − yr
xr − x

)
= tan−1

(
yr − y

xr − x

)
, (31)

where (x, y) is the position of the bicycle and (xr , yr) is
the position of the virtual reference bicycle producing the
reference path. By substituting Equation (31) in (29), the
equation for desirable steering angle is derived, i.e.

σd = −k3

(
ψ − tan−1

(
yr−y
xr−x

))
v

. (32)

When these two points (Ar and A) get close to each
other, the argument of tan−1 in (31) tends toward 0/0
therefore the precision may be decreased. In order to
reduce error, the following coefficient may be used:

k3 = KR, (33)

where R is the distance between the two points and is
defined as R =

√
(xr − x)2 + (yr − y)2 and K is a positive

constant.
Thus by calculating the desirable steering variable to

track the specified path (σd) and considering Equation
(28), an appropriate roll angle (θd) will be applied to the
internal loop. Figure 5 shows the corresponding block
diagram.

Remark 1: The parameters which should be tuned in
the proposed method are k, k1, k2 and K . Theoretically,
these parameters only should be positive; however, they
affect the transient response of the closed-loop system.
For instance, increasing the values of k, k1, leads to the
fast convergence of θ to θd, while decreasing the value
of k leads to a smoother response. Moreover, the value
of k2 affects on the convergence of the error variable z2.
Finally, increasing the value of K leads to a tight (but very
sensitive) tracking.

4. Simulation

In order to check the designed controller, the obtained
results have been simulated in Matlab software. Table

Figure 5. The proposed block diagram to track a reference path.
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Table 1. Physical parameters of the simulated
unmanned bicycle.

m(kg) 31.4
g(m/s2) 9.8
L(m) 1.2
b(m) 0.45
h(m) 0.85
�(m) 0.07
η(rad) 1.22
Ih(kgm2) 0.46
Ix(kgm2) 2

1 shows the values of nominal parameters of the
unmanned bicycle that were used in the simulation.

To generate a desired path, a reference virtual bicycle
has been used to generate the reference path. Equations
of this reference bicycle are as follows:⎧⎪⎪⎨

⎪⎪⎩
ẋr = vr cos ψr ,

ẏr = vr sin ψr ,

ψ̇r = vrσr .

(34)

In the simulation, it is assumed that the reference path is
going to be tracked with an arbitrary but constant speed.
Table 2 shows the initial values used in the simulation at
a constant speed of 2 metres per second.

Table 2. Initial conditions of the unmanned and
reference bicycles.

θ0(rad) −0.2
ϕ0(rad) 0
x0(m) −0.5
y0(m) 1
ψ0(rad) −0.39
xr0(m) 0
yr0(m) 0
ψr0(rad) 1.57

Table 3. Coefficients of the controller in the simulation.

k k1 k2 K ε

85 5 15 0.2 0.001

Figure 6. Desirable and real values of the roll angle at v = 2m/s.

Table 3 shows the applied control parameters in the
simulation.

In Figure 6, thedesirable roll angle and its real value are
compared, and also Figure 7 shows the value of control
signal.

As is evident, the roll angle has reached its desirable
value in less than8 seconds. In Figure 8, thedesirable path
and the path tracked by the bicycle are shown.

In Figure 9, the resulting steering angle to track the
corresponding path by the bicycle is shown.

Figure 7. Time history of the control signal.

Figure 8. Desirable and real paths tracked by the bicycle in the
coordinate plane.

Figure 9. The resulting steering angle of the bicycle.
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Simulation results show that the proposed algorithm
is able to track a predetermined path as well as keeping
the balance of the bicycle.

5. Conclusion

In this paper, control and path tracking of an unmanned
bicycle using a back-stepping approach were studied.
The designed controller wasmade the roll angle to follow
an arbitrary time-varying signal with guaranteed asymp-
totic stability. In the model of bicycle, the effects of dis-
turbing forces were modelled as an additive term in the
channel of the torque of the motor. The designed con-
troller was made robust relative to external disturbances,
by applying the Lyapunov redesign method. First, it was
shown that the roll angle of the bicycle could track the
arbitrary time-varying signal by manipulating the steer-
ing variable (this formed an internal loop). Moreover,
using the resulting closed-loop system (the internal loop)
a nonlinear relation between desirable roll angle and
the steering variable was extracted using a fifth-degree
polynomial with speed-dependent coefficients. Finally,
it was shown that a successful path tracking could be
done using the set point of the internal loop. The pre-
sented simulation results showed that, by applying the
proposed approach, the unmanned bicycle could track
a predetermined path as well as keeping its balance
properly.
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