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ABSTRACT
In this paper, a new robust suboptimal controller is designed to stabilize a class of uncertainnonlinear
time-varying systems with slowly varying parameters. In the design procedure of the proposed con-
troller, first a suboptimal control law is designed for thenominal systembasedonconsidering agiven
cost function and an appropriate Slowly Varying Control Lyapunov Function (SVCLF). After that, a
robustifying term is added to the nominal controller in order to vanish the effects of model uncer-
tainties and/or external disturbances in a finite time. For this purpose, a special sliding surface, which
is a combination of terminal and integral sliding surfaces, is used. This surface has the advantages
of both of terminal and integral surfaces. Due to the structure of this surface, the actual trajectories
track the desired one in the finite time. The other innovation of the proposed approach is accessing
a chattering-free Controller. Finally, in order to confirm the applicability of the proposed controller
and verify the theoretical results, it is applied on a practical benchmark system (a time-varying inertia
pendulum). Computer simulations show the efficiency of the proposed controller.
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1. Introduction

The time-varying systems are an important class of
dynamical systems, which have various applications in
physics and control engineering. Since the time-varying
systems include time-varying parameters, the control
design methods reported in the literature for these sys-
tems are more complicated in comparison with the time-
invariant ones.

One of the major categories of the time-varying
systems is systems with slowly varying parameters
(called slowly varying systems) (Khalil, 2002). The slowly
varying systems have various applications such as air
vehicles cranes, underwater vehicles, satellites and so
on (Binazadeh & Shafiei, 2013a; Feintuch, 2012; Liu,
Haraguchi, & Hu, 2009; Shafiei & Yazdanpanah, 2010).
Using the control algorithms of time-invariant systems
to control the slowly varying systems may cause instabil-
ity and bad performance (Feintuch, 2012). On the other
hand, the given methods in the literature for the stabi-
lization of the time-varying systems lead to complicated
and conservative control laws for slowly varying systems
(Feintuch, 2012).

The controller design for linear slowly varying sys-
tems has been presented in many articles (Amato, Celen-
tano, & Garofalo, 1993; Desoer, 1969; Feintuch, 2012;
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Fung, Chen, & Grimble, 1984; Ilchmann, Owens, & Prätzel-
Wolters, 1987; Liu et al., 2009; Rosenbrock, 1963; Zhang,
1993). However, very few articles have been studied the
problem of control design for the nonlinear slowly vary-
ing systems (Binazadeh & Shafiei, 2013b, 2014; Shafiei &
Yazdanpanah, 2010).

Control Lyapunov Function (CLF) is one of the stabiliz-
ing controlmethods for nonlinear time-invariant systems.
Shafiei and Yazdanpanah (2010) developed a CLF-based
control technique called SVCLF controller for the non-
linear slowly varying systems. After that, Binazadeh and
Shafiei (2013b) extended the SVCLF technique for sys-
temswith a vector of the slowly varying parameter. More-
over, they showed that the resulted control law is a
suboptimal solution of Hamilton–Jacobi–Bellman (HJB)
equation.

Despite the advantages of the SVCLF method, it has
not considered the external disturbances and/or model
uncertainties which are the integral parts in modelling of
the practical systems. Therefore, the design of the robust
controller is necessary to guarantee the asymptotical sta-
bility of the closed-loop slowly varying systems in the
presence of model uncertainties and/or external distur-
bances. Binazadeh and Shafiei (2014) proposed a robust
stabilizing controller for uncertain nonlinear slowly vary-

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/21642583.2018.1526135&domain=pdf
mailto:binazadeh@sutech.ac.ir
http://creativecommons.org/licenses/by/4.0/


422 F. PISHKARI AND T. BINAZADEH

ing systems by adding an additional term to the SVCLF
controller. This additional term was designed based on
the Lyapunov redesign method.

Variable structure controllers (like sliding mode con-
trollers) are powerful robust control methods which have
effective performance in practical engineering problems
(Hu, Wang, Gao, & Stergioulas, 2012; Hu, Wang, & Gao,
2011). The basis of this control method is the design of
appropriate sliding surfaces (to achieve the control objec-
tives) and switching control laws so that the system tra-
jectories reach to the desired sliding surface in finite time
and stay on it for all future times (Boum, Djidjio Keubeng,
& Bitjoka, 2017; Chenarani & Binazadeh, 2017; Su, Liu,
Shi, & Song, 2018). Eksin, Tokat, Güzelkaya, and Söylemez
(2003) proposed a time-varying sliding surfaces in order
to minimize the settling time for second-order systems.
Optimal linear sliding surfaces for underactuated nonlin-
ear systems were studied by Nikkhah, Ashrafiuon, and
Muske (2006). Designing a sliding surface which results in
the optimality of the closed-loop systemwas investigated
by Janardhanan and Kariwala (2008). The optimal sliding
mode with fuzzy approach was studied by Li, Wang, Wu,
Lam, and Gao (2018). This technique was also studied for
the control of nonlinear vehicle active suspension system
(Chen, Wang, Yao, & Kim, 2017) and spacecraft position
and attitude manoeuvres (Pukdeboon & Kumam, 2015).

In this paper, a variable structure controller is designed
for a class of uncertain nonlinear slowly varying sys-
tems with a new approach. The main advantage of the
proposed robust method is in the elimination of the
effects of the model uncertainties and/or external distur-
bances, in a finite time. This control law is designed in
two phases. First, the nominal part of the proposed con-
troller is designed for thenominal system (by ignoring the
model uncertainties and/or external disturbances) based
on the SVCLF method with an optimal approach related
to a given cost function. Then, the robustifying term,
which is the main contribution of this paper, is added to
the nominal controller to overcome themodel uncertain-
ties and/or external disturbances. The additional control
term is a variable structure controller with a special slid-
ing surface. This surface is created by the combination
of two surfaces included terminal and integral ones. Due
to the integral structure of this surface, the actual trajec-
tories track the desired one in the finite time. The other
innovation is accessing a specific type of chattering-free
second-order sliding mode controller by the combina-
tion of the integral and terminal structures in the sliding
surface. In this regard, a theorem is given which guaran-
tees vanishing the effect of model uncertainties and/or
external disturbances in a finite time and also the asymp-
totic stability of the uncertain closed-loop system. Finally,
this proposed controller is applied to the time-varying

inertia pendulum system and its efficiency is affirmed by
simulation results.

2. Problem definition

Consider the following time-varying system:

ẋ = f (x, θ(t))+ h(x, θ(t))(u + d(x, t)), (1)

where x ∈ Rn is the state vector, u ∈ R is the control input,
θ(t) ∈ � ⊂ Rp is the vector of slowly varying parameters
and the unknown nonlinear function d(x, t) is due to the
external disturbances and/or model uncertainties. More-
over, f (0, θ(t)) = 0, ∀t ≥ 0. The task is to design a robust
control law as follows:

u(t) = u1(t)+ u2(t), (2)

where u1(t) is the nominal term and u2(t) is the robusti-
fying term of the control law. The nominal model of the
system (1) can be described as follows:

ẋ = f (x, θ(t))+ h(x, θ(t))u1(t). (3)

Furthermore, the cost function J is chosen as follows:

J =
∫ ∞

0
(l(x(τ ), θ(τ ))+ u1(τ )

2)dτ , (4)

where l(x(t), θ(t)) is a positive-definite functionwhichhas
influences on the transient responses of state variables
and may be chosen by the designer after some trial and
errors.

According to Binazadeh and Shafiei (2013b), if the
changes of θ(t) be slow enough such that ||θ̇ (t)|| satis-
fies the following conditions (where α ∈ (0, 1) is selected
such that the infimum is made positive)

sup
t

||θ̇ (t)|| ≤

inf
θ∈�,x∈D

√
a2(x, θ(t))+ l(x, θ(t))b2(x, θ(t))− αγ (‖x‖)∥∥ ∂V

∂θ

∥∥
(5)

then the following suboptimal controller guarantees the
asymptotic stability of the closed-loop system (3).

u1(t) = k(x, θ(t))

=

⎧⎪⎪⎨
⎪⎪⎩

−b(x, θ(t))
a(x,θ(t))+

√
a2(x,θ(t))+l(x,θ(t))b2(x,θ(t))

b2(x,θ(t))

where b 
= 0

0 where b = 0
(6)

where

a(x, θ(t)) = (∂V(x, θ(t))/∂x)f (x, θ(t)),

b(x, θ(t)) = (∂V(x, θ(t))/∂x)h(x, θ(t)).

Moreover, l(x, θ(t)) is given in the cost function (4) and
effects on the characteristics of the transient responses,
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γ (‖x‖) is a class K function and V(x, θ(t)) : D ×� → R is
an SVCLF that satisfies the following conditions:

α1(‖x‖) ≤ V(x, θ(t)) ≤ α2(‖x‖),∀(x, θ(t)) ∈ D ×� (7a)

a(x, θ(t)) ≤ −γ (‖x‖), ∀(x, θ(t)) ∈ D ×�

where b(x, θ(t)) = 0 (7b)

∥∥∥∥∂V∂θ
∥∥∥∥ < ∞ (x, θ(t)) ∈ D ×� (7c)

where α1(.) and α2(.) are class K functions. The closed-
loop system with the controller (6) is as follows:

ẋ = f (x, θ(t))+ h(x, θ(t))k(x, θ(t)). (8)

The time derivative ofV(x, θ(t)) along the system’s trajec-
tories of the above closed-loop system with considering
the controller (6) is

V̇(x, θ(t)) = ∂V

∂θ
θ̇(t)+ ∂V

∂x
(f + hk)

= ∂V

∂θ
θ̇(t)+ a + bk

=

⎧⎪⎪⎨
⎪⎪⎩

−√
a2 + lb2

+ ∂V
∂θ
θ̇ (t), where b(x, θ(t)) 
= 0,

a + ∂V
∂θ
θ̇ (t), where b(x, θ(t)) = 0.

(9)

In the regionwhere b(x, θ(t)) 
= 0, according to (9) and
considering (5), one has

V̇(x, θ(t)) = −
√
a2 + lb2 + ∂V

∂θ
θ̇

≤ −
√
a2 + lb2 +

∥∥∥∥∂V∂θ
∥∥∥∥ ||θ̇ ||

≤ −
√
a2 + lb2 +

∥∥∥∥∂V∂θ
∥∥∥∥

√
a2 + lb2 − αγ (‖x‖)∥∥∥ ∂V∂θ

∥∥∥
= −αγ (‖x‖).

In the region where b(x, θ(t)) = 0, according to (9), one
has

V̇(x, θ(t)) = a(x, θ)+ ∂V

∂θ
θ̇

≤ a(x, θ)+
∥∥∥∥∂V∂θ

∥∥∥∥ ||θ̇ ||.

Since, where b(x, θ(t)) = 0, then a(x, θ(t)) is negative

(refer to (7b)), thus
√
a2 + lb2

∣∣∣
b=0

is equal to −a. Thus

considering the relation (5) in this case one has

V̇(x, θ(t)) ≤a(x, θ(t))+
∥∥∥∥∂V∂θ

∥∥∥∥ −a(x, θ(t))− αγ (‖x‖)∥∥∥ ∂V∂θ
∥∥∥

≤ − αγ (‖x‖).

Thus V̇(x, θ(t)) ≤ −αγ (‖x‖) in both cases (i.e. for b = 0
and b 
= 0) and therefore, the closed-loop system (8) is
asymptotically stable.

The nominal control law (6) is a suboptimal controller
with respect to the cost function (4) and the following
related Hamilton–Jacobi–Bellman equation:

V∗
t + l(x, θ(t))+ V∗

x f (x, θ(t))

− 1
4
V∗
x h(x, θ(t))h(x, θ(t))

TV∗
x
T = 0,

where

V∗ = min
u(.)

∫ ∞

0
(l(x(τ ), θ(τ ))+ u21(τ ))dτ

s.t. ẋ = f (x, θ(t))+ h(x, θ(t))u(t)

x(0) = x0.

Remark 1: It is worth noting that θ(t) is belonging to
the known region for the considered problem and its sup
estimation is related to physical aspects of the problem.
Indeed, what is evaluated in (5) is the admissible upper
bound of sup ||θ̇ (t)|| that depends on the selected SVCLF.
If one can find the SVCLF that is independent of θ(t), there
is not any limiting bound on ||θ̇ (t)|| (Binazadeh & Shafiei,
2013b).

Remark 2: In order to decrease the value of the cost
function as far as possible, it is better to put some free
parameters in the chosen SVCLF. Then, some acceptable
ranges are obtained for these free parameters due to sat-
isfying the conditions (7.a), (7.b) and (7.c). Finally, using a
computer program, the best parameters that lead to the
less cost function are obtained. In this way, the nominal
control law (6) is a very good suboptimal controller and
the nominal system response is very close to an optimal
solution which is resulted from the related time-varying
HJB equation (Binazadeh & Shafiei, 2015).

3. Design of the robustifying term of the control
law

In this section, the additional state feedback term (i.e.
u2(t)) will be designed such that the whole controller (i.e.
u(t) = u1(t)+ u2(t)) guarantees the asymptotic stability
of the uncertain closed-loop slowly varying system (1)
and leads to vanishing the effect of model uncertainties
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and/or external disturbances in a finite time. Consider the
following integral sliding surface:

s(t) = E

⎡
⎢⎢⎢⎣x(t)−

∫ t

0
(f + hu1)︸ ︷︷ ︸
xnom(t)

dt

⎤
⎥⎥⎥⎦ , (10)

where E = [
E1 . . . En

]
is a row vector of the design

parameter which is chosen such that Eh(x, θ(t)) 
= 0.
Moreover, xnom(t) is the state vector which is resulted
fromthenominal closed-loop system (3)with thenominal
controller (6) and x(t) is the actual one related to sys-
tem (1). The difference between x(t) and xnom(t) occurs
due to external disturbances and/or model uncertain-
ties. The main characteristics of the surface (10) are that
sliding motion on this surface (i.e. s(t) = 0) leads to the
nullification of the difference between the actual states
of the uncertain system and the desired states of the
nominal closed-loop system. This results in performance
recovery in the uncertain system and forces the uncertain
system to follow the nominal closed-loop system. Using
an appropriate control action, this difference can be nul-
lified and the actual trajectory tracks the required one
(Castaños & Fridman, 2006).

The time derivative of s(t) is as follows:

ṡ(t) = E[ẋ(t)− ẋnom(t)]. (11)

Using Equations (1), (2) and (3), the following relations
are obtained as

ṡ(t) = E[f (x, θ(t))+ h(x, θ(t))(u1(t)+ u2(t))

+ h(x, θ(t))d(x, t)− f (x, θ(t))− h(x, θ(t))u1(t)]

= E[h(x, θ(t))u2(t)+ h(x, θ(t))d(x, t)].
(12)

In the conventional sliding mode, the switching control
law u2(t) is designed such that the reaching law (i.e.
s(t)ṡ(t) < −ρ|s(t)|where ρ > 0) is satisfied where its sat-
isfaction guarantees that the system trajectories reach to
the surface in a finite timeand stay on it for all future times
(Khalil, 2002). This law results in appearing the sign func-
tion in the control law and therefore leads to chattering
phenomena.

Now consider the following sliding surface:

σ(t) = s(t)+ ψ ṡ(t)n/m, (13)

where ψ > 0 is the switching gain and the odd numbers
n andm are selected such that they satisfy the following
condition:

1 <
n

m
< 2. (14)

The advantages of choosing a fractional order slid-
ing surface (13) are the combination of the structure of

terminal and integral surfaces which leads to accessing
a specific type of chattering-free second-order sliding
mode controller which nullify the difference of x(t) and
xnom(t)in a finite time. More discussion in this regard is
given in the proof of the following theorem.

Theorem 1: Consider the uncertain nonlinear slowly var-
ying system (1). The control law u(t) = u1(t)+ u2(t) (where
u1(t) and u2(t) are proposed in (6) and (15)) guarantees
vanishing the effect of model uncertainties and/or external
disturbances in a finite time and also the asymptotic stabil-
ity of the closed-loop system (1) in the presence of model
uncertainties and/or external disturbances.

u2(t) = −
∫ t

0

1
Eh

[
m

ψn
ṡ(t)2−(n/m) + Eḣu2 + β(x)sgn(σ )

]
dτ ,

(15)

where β(x) is the design parameter function which is
defined in the proof.

Proof: Considering (13), the time derivative of σ̇ is as
follows:

σ̇ = ṡ(t)+ ψ
n

m
(ṡ(t))(n/m)−1s̈(t)

= ψ
n

m
(ṡ(t))(n/m)−1

(
m

ψn
(ṡ(t))2−(n/m) + s̈(t)

)
. (16)

Since, the design parameters n and m satisfy condition
(14), it can be shown if ṡ(t) 
= 0, then ṡ(t)(n/m)−1 > 0 (it
is because that n − m is an even integer number). Conse-
quently, the termψ n

m (ṡ(t))
(n/m)−1 of Equation (16) canbe

substituted with the positive function η(t) > 0 and (16)
can be written as follows:

σ̇ = η(t)

(
m

ψn
(ṡ(t))2−(n/m) + s̈(t)

)
. (17)

Let define:

η̄ = inf
t≥0

(
ψ

n

m
ṡ(t)(n/m)−1

)
. (18)

Moreover, according to (12), one has

s̈(t) = E[hu̇2(t)+ ḣu2(t)+ hḋ + ḣd]. (19)

Therefore, σ̇ is

σ̇ = η(t)

(
m

ψn
ṡ(t)2−(n/m) + E[hu̇2(t)+ ḣu2(t)+ hḋ + ḣd]

)
.

(20)

Suppose

hu̇2(t) = −1
E

[
m

ψn
ṡ(t)2−(n/m) + Eḣ(x, θ(t))u2(t)− υ(t)

]
,

(21)
where υ(t) is an additional discontinuous component
which is added to cancel the effects of unknown terms.
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Therefore, u2(t) is as follows:

u2(t) = −
∫ t

0

1
Eh(x, θ(t))[

m

ψn
ṡ(t)2−(n/m) + Eḣ(x, θ(t))u2(t)− υ(t)

]
dτ .

(22)

Substituting (21) into (20) yields

σ̇ = η(t)(υ(t)+ E(ḣd + hḋ)). (23)

Now, consider the upper bound of the following un-
known term is known and

|E(ḣd + hḋ)| ≤ ϕ(x), (24)

where ϕ(x) ≥ 0 is a known positive continuous function.
Therefore, considering (23), the additional term υ(t) can
be designed to force σ(0) toward the surfaceσ(t) = 0.
For this purpose, utilize V(t) = 0.5σ 2(t) as a Lyapunov
function candidate for (23), thus

V̇(t) = σ(t)σ̇ (t)

= σ(t)η(t)υ(t)+ σ(t)η(t)(E(ḣd + hḋ))

≤ σ(t)η(t)υ(t)+ |σ |η(t)ϕ(x).
(25)

Take

υ(t) = −β(x(t))sgn(σ (t)), (26)

where β(x) ≥ ϕ(x)+ β0 and β0 > 0. Then

V̇(t) = σ(t)σ̇ (t)

≤ (−β(x)+ ϕ(x))η(t)|σ(t)|
≤ (−β0 − ϕ(x)+ ϕ(x))η(t)|σ(t)|
≤ −β0η(t)|σ(t)|
≤ −β0η̄|σ(t)|.

(27)

For σ(0) > 0, the inequality (27) leads to σ̇ (t) < −β0η̄
and for σ(0) < 0 it leads to σ̇ (t) > +β0η̄ and conse-
quently, in both cases, it is guaranteed σ(t) becomes zero
in the finite time tr where tr ≤ |σ(0)|

β0η̄
. Therefore, the tra-

jectories starting off the sliding manifolds σ(t) = 0 reach
them in a finite time. In thisway, it is proved that σ(0) 
= 0
reaches σ(t) = 0 in the finite time and stays on it. Now,
considering Equation (13), one has

σ(t) = 0 ⇒ 1
ψm/n s

m/n(t) = −ṡ(t) ⇒ (28)

1
ψm/ndt = − ds

sm/n(t)
; ∀t ≥ tr .

Integrating (28), in the time interval [tr , t] results in
∫ t

tr
dt = −ψm/n

∫ s(t)

s(tr)

ds
sm/n

⇒

t − tr = − n

n − m
ψm/n[s(t)(n−m)/n − s(tr)

(n−m)/n]

⇒ s(t)(n−m)/n = − n − m

nψm/n (t − tr)+ s(tr)
(n−m)/n.

(29)

According to (29), s(t) will be decreasing and at t = ts,
s(ts) is zero where

ts = tr + n

n − m
ψm/ns(tr)

(n−m)/n. (30)

Since n andm are odd numbers, n−m is an even number
and for all s(t) 
= 0, the term s(t)(n−m)/n is positive. Conse-
quently, it is proved that the integral sliding surface s(t)
converges to zero in a finite time. Therefore, the differ-
ence between x(t) and xnom(t) is nullified and the actual
trajectory tracks the required one in the finite time. In the
other words, the effect of external disturbances and/or
model uncertainties vanishes in the finite time and since
xnom(t)has the desirable behaviour (the asymptotical sta-
ble behaviour, Binazadeh & Shafiei, 2013b), therefore the
control law u(t) = u1(t)+ u2(t) guarantees the asymp-
totic stability of the uncertain closed-loop slowly -varying
system (1). �

Remark 3: The controller (15) is a variable structure con-
troller (because of existence the sign function), however,
main advantages for the proposed robust control law
in comparison with the existing literature are that the
sign function is appeared inside the integral, thus the
controller u2(t) is smooth and the resulted robust con-
troller u(t) = u1(t)+ u2(t) is chattering free. On the other
hand, the proposed controller leads to the closed-loop
actual uncertain system tracks the nominal one (or the
desired one) in the finite time. Consequently, the opti-
mality approach in the design of the nominal control law
(refer to Remark 2) leads to the suboptimal design of the
robust control law, indirectly.

4. Design example (the time-varying inertia
pendulum)

In order to show the applicability of the proposed con-
troller, it is applied to a famous benchmark system: the
nonlinear inertia pendulum. The nonlinear inertia pen-
dulum that is used in this paper is time-varying one. It
consists of a plate, a beam and a travelling mass (which
moves along the beam) which is shown in Figure 1.
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Figure 1. The time-varying inertia pendulum.

4.1. Time-varying inertia pendulummodelling

The following mathematical equation describes the
motions of the time-varying inertia pendulum:

(I0 + mmy
2(t))λ̈(t)+ (cv + 2mmy(t)ẏ(t))λ̇(t)

+ (P0 + mmg0y(t)) sin(λ(t)) = τ(t), (31)

where

I0 = 1
12

mP(a
2
P + b2P)+ mPd

2
P + 1

12
mbL

2
b

+ mbd
2
b + 1

2
mmr

2
m,

P0 = mPg0dP + mbg0db,

(32)

andmp,mb,mm, cv and τ(t) are the plate mass, the beam
mass, the travellingmass, the viscousdampingcoefficient
and the applied torque to the pendulum, respectively
(and the gravity acceleration is considered as g0 = 9.8).
y(t) is the slowly varying parameter which shows the dis-
tance of the travelling mass from the point O (Figure 1)
and it slowly changes in the range of 0.1 ≤ y(t) ≤ 1. The
other parameters are available in Table 1.

The goal is designing τ(t) in a way that λ(t) regu-
lates to π . Thus choosing the state variables as x1 = λ−
π(rad), x2 = λ̇(rad/s) and the control input u(t) = τ(t),
the state–space equations can be written as follows:
[
ẋ1
ẋ2

]
=

[
x2

−ξ1(y) sin(x1 + π)− ξ2(y, ẏ)x2

]
+

[
0

ξ3(y)

]
u,

(33)

Table 1. The time-varying inertia pendulum components.

Component Mass (kg) Sizes (m)

Centre of mass
distance from O

(m)

Plate mP = 0.0713 aP = 0.044, bP = 0.063 dP = 0.01
Beam mb = 0.29 Lb = 1 db = 0.5
Travelling mass mm = 0.5025 rm = 0.05 y(t)

where ξ1, ξ2 and ξ3are as follows:

ξ1(y) = P0 + mmg0y(t)

I0 + mmy2(t)
,

ξ2(y, ẏ) = cv + 2mmy(t)ẏ(t)

I0 + mmy2(t)
,

ξ3(y) = 1
I0 + mmy2(t)

.

(34)

Suppose ξ2 has uncertainties due to the unknown
parameter cv and inaccuratemeasurement of ẏ(t). There-
fore, ξ2 can be written as follows:

ξ2(y, ẏ) = ξ3(y)(cv + 2mmyẏ)

= ξ̂2(y, ẏ)+ ξ3(y)δ,
(35)

where ξ̂2 is the known nominal part. Considering 0 ≤
cv ≤ 1 and the maximum error 0.5(rad/s)in the estima-
tion of ẏ, one has |δ| ≤ 1.

Considering θ(t) = y(t) as the slowly varying parame-
ter, Equation (33) has the similar structure of (1) and it can
be rewritten as follows:

[
ẋ1
ẋ2

]
=

[
x2

ξ1(θ) sin(x1)− ξ̂2(θ , θ̇ )x2

]
︸ ︷︷ ︸

f (x,θ(t))

+
[

0
ξ3(θ)

]
︸ ︷︷ ︸
h(x,θ(t))

(u + d(x, θ(t))), (36)

where d(x, θ(t)) = −δx2. Therefore, one has |d| ≤ |x2|.
The goal is designing a robust stabilizing controller for

the system (36) in the set of D = {x ∈ R2 : |x1| ≤ π&|x2|
≤ 1} by considering the following given cost function:

J =
∫ ∞

0
(10(x21 + x22)︸ ︷︷ ︸

l(x,θ(t))

+u1(t)
2)dt. (37)

4.2. Controller design for the nonlinear
time-varying inertia pendulum

In this section, the robust control law is designed for
the time-varying inertia pendulum according to the
proposed method. First, assume the nominal form of
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Equation (36) (i.e. consider d = 0) and consider the fol-
lowing parametric Lyapunov function as

V = 1
2
xT

[
P1 P3
P3 P2

]
︸ ︷︷ ︸

P

x,

where Pis are free parameters. Since P should be
a positive-definite matrix, the parameters P1, P2 and
P1P2 − (P3)2 should be positive. The proposed function
is independent of the slowly varying parameter (refer to
Remark 1) and therefore, condition (9) is satisfied. More-
over, according to Remark 2, some acceptable ranges
may be obtained for the free parameters Pis by sat-
isfying the conditions on (7a), (7b) and (7c). In this
way that, by defining α1(‖x‖) = λmin(P)‖x‖2, α2(‖x‖) =
λmax(P)‖x‖2, condition (7a) is satisfied. Also,

a(x, θ(t)) = Vxf = (P1 − P2ξ̂2)x1x2 + (P2 − P3ξ̂2)x
2
2

+ P3ξ1x2 sin x1 + P2ξ1x1 sin x1

b(x, θ(t)) = Vxg = ξ3(P3x2 + P2x1).

Then, in the points where b(x, θ(t)) = 0 or x2 = −P2x1/
P3, one has

a(x, θ(t))|
x2=− P2

P3
x1

= − P2
(P3)2

[P1P2 − (P3)
2]

︸ ︷︷ ︸
ε

x21.

Since the matrix P is positive definite, the coefficient
P1P2 − (P3)2 is positive. In the above equation, it is evi-
dent that if P2 be also a positive value, the coefficient of
(−x21) is positive. Therefore, there is a positive constant ε,
such that a(x, θ(t))|x2=−P3x1/P2 ≤ −εx21. Now, if the class
K function γ is chosen as γ (‖x‖) = λ0(x21 + x22), λ0 > 0,
then in the points where b(x, θ(t)) = 0, it can be rewrit-

ten as γ (‖x‖)|x2=−P3x1/P2 = λ0

(
1 +

(
P3
P2

)2)
x21. There-

fore, by satisfying the inequality −εx21 ≤ −λ0(1 + (P2/
P3)2)x21 that leads to determine the admissible range of
λ0 (λ0 ≤ ε/(1 + (P2/P3)2)), condition (8) is also satisfied.

Now, using simple computer programming, the best
possible free parameter values are obtained to achieve
the minimum feasible cost value as P1 = 11.9, P2 =
0.3, P3 = 1. This value is substituted in a(x, θ(t)) and

Figure 2. Time response of state variables of the uncertain closed-loop system (36).
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Figure 3. Time response of the nominal and robust control inputs.

Figure 4. Time response of the cost function.

b(x, θ(t)) and then, the nominal control law (i.e. u1(t)) is
calculated according to (6).

After that, consider the system in the presence
of model uncertainties and/or external disturbances
(d(x, θ(t)) 
= 0). In a way that, the integral sliding surface
(10) is designed, the design parameter E = [

E1 E2
] =[

0.5 0.5
]
is chosen. Then, it is combined with the termi-

nal sliding surface as in (13) with the switching gain ψ =
0.005 and the parameters n = 9, m = 5. Considering the
upper bound (24) as |E(ḣd + hḋ)| ≤ 4.088 and choosing
the design parameter β(x) = 4.2, the robust term (u2(t))
is also designed.

4.3. Computer simulation

The computer simulation results are shown in Figures
2–4. As it is seen in Figure 2, by applying the pro-
posed controller u(t) = u1(t)+ u2(t), the state variables

converge to zero from their initial conditions and con-
sequently λ(t) is regulate to π ; however, the nomi-
nal controller (i.e. u1(t)) cannot tolerate the effects of
model uncertainties and/or the external disturbances
(the dotted lines). Also, some advantages of the proposed
method like the desired characteristics of the transient
responses are seen as well. Moreover, in Figure 3, the
effective elimination of the chattering in the proposed
control input is shown. The cost function value is also
shown in Figure 4. Therefore, as seen from the simula-
tion results, adding the robust term succeed in achieving
the robust and desired performance for the uncertain
closed-loop system.

5. Conclusion

In this paper, a new chattering-free stabilizing control
law was presented for uncertain nonlinear slowly varying
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systems. The proposed controller had a suboptimal fea-
ture in addition to its robust performance in presence
of model uncertainties and/or external disturbances. The
design of the proposed controller had two steps. The first
step was the design of the nominal part of the controller
which was designed based on the SVCLF method for the
nominal system by considering the given cost function.
The second step was the design of a robustifying term
to eliminate the effects of themodel uncertainties and/or
external disturbances such that the time response of the
actual system converged to the nominal system in a finite
time. For this purpose, a special sliding surface was pro-
vided by the combination of terminal and integral ones
and a theorem was given and proved. At the end of the
paper, the proposed controller was applied to a time-
varying inertia pendulum system and its efficiency was
confirmed. Further extension may be based on output
feedback instead of state feedback and extended the pro-
posed method for multi-input nonlinear slowly varying
systems.
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