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ABSTRACT
In recent years, urban rail transit has been developing rapidly, which provides great convenience for
passengers. Consequentlymore andmorewireless hot spots are set up along the track. In our paper,
the advantages of wireless positioning in urban rail transit are discussed firstly. Then a fingerprinting
train positioning algorithm for metro based on deep learning is proposed. Themodel of fingerprint-
ing positioning and the simulation environment are established to verify the effectiveness of the
algorithm. Finally, the results satisfy the accuracy requirements for train positioning in the research
on the energy-efficient operation of metro train and it can be used to provide position information
for the energy-saving analysis.
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1. Introduction

In recent years, urban rail transit has been developing
rapidly, which provides great convenience for passen-
gers. Nevertheless, it consumes vast amounts of energy.
Accordingly, the energy-efficient operation of metro
trains is an essential energy-saving technology. And it
needs the data of train operation energy consumption
with a unified time and space scale as the basis for anal-
ysis. However, among the required data, the train posi-
tion cannot be directly measured and is difficult to be
acquired from other systems, such as the train-borne sig-
nalling equipment. Therefore, a relatively independent
train positioning method should be designed. Consider-
ing the particular operation environment of metro train,
the positioning method needs to avoid interference with
the safety of train operation and be suitable for both
ground and underground. Besides, it also should be low-
cost and accurate enough for energy-saving analysis.

As shown in Table 1, different train positioning meth-
ods have different advantages and disadvantages. In the
urban rail transit system, train position can be calculated
with the train-borne equipment and updated with way-
side equipment, which makes the railway system safety
and efficiency. However, too many hardware devices,
higher costs, and unmaintainable features also make the
‘train-borne+wayside’ positioningmethodunsuitable for
our energy-saving research.

CONTACT Jing Xun jxun@bjtu.edu.cn

Currently, the Communication Based Train Control
system, and the Passenger Information System, etc.,
which are commonly used in urban rail transit sys-
tems, arrange a large number of wireless Access Points
(APs) along the track to be the information transmis-
sionmedium (Gao, 2018). Therefore, the application of RF
(Radio Frequency)-basedwireless positioning technology
in urban rail transit has unique advantages in hardware
facilities, which can meet the positioning requirements
under complex environments such as underground and
ground, and can reduce hardware costs too.

Therefore, in our paper, we will explore how wireless
positioning technology is applied to train positioning in
urban rail transit.

2. Literature review

In the field of rail transit, real-time train position plays an
extremely important role in ensuring railway transporta-
tion safety and efficiency. Different from traditional train
positioningmethods such as track circuit and balise, wire-
less network-based positioning method has the advan-
tages of low cost and easy maintenance. Therefore, in
the scenario where the applications are non-safe and the
demand for positioning accuracy is low,wireless position-
ing gradually becomes a new way to provide location
information for trains.

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
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Table 1. Comparison of train positioning methods.

Train positioning
methods Advantages Disadvantages

Speed measuring
based

Simple principle Large accumulated error

Balise based High positioning
accuracy

Cannot be positioned
continuously

Track circuit based Simple to implement,
low cost

Low positioning accuracy

Inductive loop
based

Non-contact,
continuous
positioning

Susceptible to elec-
tromagnetic
interference

Satellite based Less equipment for
easy maintenance

Not suitable for Non-Line of
Sight (NLOS) environment

Xiong, Zhu, and Tan (2004) introduced the applica-
tion and development trend of wireless positioning in
railway transit. Lee and Tsang (2008) has installed Radio
Frequency Identification (RFID) in Hong Kong’s light rail
for train identification and positioning. When the sig-
nal receiving terminal receives the information of fixed
RFID, it can be considered that the train is located in
the RFID coverage area. Lin, Ye, and Wang (2010) pro-
posed a wireless positioning method for urban rail traffic
based on Ultra Wideband, Multi-sensors and WiFi-Mesh
networks. In this paper, the idea is pointed out that the
system can not only provide location information for
train control, but also can serve other equipment or per-
sonnel who need location information in case of acci-
dent. Weber, Mademann, Micnler, and Zeisberg (2012)
considered localization techniques based on WSN (wire-
less sensor networks). They estimated train position in
WSNs based on distance measuring by means of TOF
(time-of-flight) ranging techniques. The positioning accu-
racy is limited because of occlusion and reflection. But it
can be integrated into other Inertial Measurement Unit
(IMU) systems to improve positioning accuracy. Vijayaku-
mar, Zhang, Huang, and Javed (2013) proposed a train
positioning method based on received signal strength
(RSS) and particle filtering. The error caused by the sig-
nal strength noise of wireless devices is analysed in this
research, and the particle filter preprocessing is per-
formed on the received signal strength. Javed, Zhang,
Huang, andDeng (2014) considered the issues of wireless
signal transmission delay and sensor power consump-
tion, and proposed a beacon-driven wake-up scheme
for wireless train localization. He, Luo, and Zheng (2014)
proposed a wireless positioning method used inside
the depot based on RFID and wireless network. In this
method, theRFID sensors need tobe arrangedat different
locations in the depot. The train transmits the collected
RFID data to the data centre through the router to cal-
culate the train position. This method is suitable for the
place where vehicles are centralized parked and repaired
such as vehicle depots, which can reduce the occurrence

of safety hazards. A notable feature of train positioning is
that the train is moving. Therefore, the influence of trans-
missiondelaymust be considered. Li, Xie, andYang (2015)
considered the impact of wireless signal transmission
delay on positioning accuracy, and proposed an Angle
Offset-Assisted Positioning system. Experiments show
that the system has higher positioning accuracy than a
system that does not consider transmission delay. Miguel
et al. (2017) used theWireless Communications Technolo-
gies which includes Global System for Mobile commu-
nications and Universal Mobile Telecommunications Sys-
tem as a complementary positioning method for Global
Navigation Satellite System to solve the problem that
satellite signal is weakness when train running in occlu-
sion area.

Wireless positioning techniques can bemainly divided
into range-free and range-based. If in determining the
positionof anRFdevice, themeasurements are employed
to somehow relate the position of the device to some
metric such as distance, and then the position is esti-
mated, these techniques are referred to as range-based
techniques. However, in range-free techniques, the mea-
surements are not converted to range (Tahat, Kaddoum,
Yousefi, Valaee, &Gagnon, 2017). All of the abovewireless
positioning methods are range-based, and need extra
hardwares and much more cost. However, the finger-
printing positioning method is range-free, low-cost and
non-interference, it is better to combine the fingerprint-
ing positioning method with some artificial intelligence
algorithms in some accuracy-insensitive and safety-non-
involve applications. In our paper, a fingerprinting train
positioning algorithm for metro based on deep learning
will be explored.

3. A fingerprinting train positioning algorithm
for metro based on deep learning

The fingerprinting positioning method includes two
phases: offline training phase and online positioning
phase. Offline training phase uses the fingerprinting
database, which concludes the Received Signal Strength
Indication (RSSI) and its associated position, to obtain a
mapping relationship between RSSI and train position.
Online positioning phase takes real-time RSSI as input
and calculates train position based on the trained map-
ping relationship. In recent years, the rapid developing
deep learning algorithms (DLAs) which belong to a kind
of multi-layer unsupervised neural network methods are
capable of learning data characteristics. Besides, DLAs are
good at dealingwith the big data as well as some approx-
imation problems with complex functions. Therefore, in
our paper, deep neural networks (DNN), one of the deep
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learning structures, will be used to explore the relation-
ship between RSSI of wireless train-ground communica-
tion devices and train position.

3.1. Related deep learning theory

DNN is a variant of traditional neural networks. Its dif-
ferences from traditional neural networks are reflected
in two aspects. First, structurally, DNN has more hidden
layers than traditional neural networks, and each layer
has more neurons; second, in terms of training meth-
ods, DNN training usually includes pre-training phase and
fine-tuning phase.

(1) DNN structure
DNN generally consists of an input layer, some hid-
den layers, and an output layer, which is shown in
Figure 1. For ease of description below, any symbols
in this chapter that are not explained can be found
explanation in Table 2.
TheDNN input layer directly interfaceswith the input
data. In order to make the network converge faster
and have higher accuracy, the input data is usually
normalized.
Each neuron in the input layer is connected to each
neuron in the hidden layer, and its number should
be consistent with the dimensions of the actual input
data. As shown in Equation 1, the output of the last
layer in the network is used as the input of the next
layer.

a[i] = g[i](W[i]a[i−1] + b[i]) (1)

Where g[i] is the activation function, such as
sigmoid, relu, tanh and so on.

Figure 1. Structure of DNN.

Table 2. Illustration of parameters in DNN.

Variable
name Explanation Type Dimensions

Ii the ith neuron of the input layer symbol –
h[i]j the jth neuron of the ith hidden

layer
symbol –

Oi the ith neuron of the output layer symbol –
l number of DNN layers, excluding

the input layer
integer –

n[i] number of neurons in the ith layer integer –
N number of input layer neurons,

equal to n[0]
integer –

K number of output layer neurons,
equal to n[l]

integer –

M number of samples integer –
X the input sample set matrix N × M
W[i] the weight of the ith layer matrix n[i] × n[i−1]

b[i] the bias of the ith layer matrix n[i] × 1
Z[i] the linear output of the ith layer matrix n[i] × M
a[i] the output of the ith layer matrix n[i] × M
ŷ the output of the output layer,

equal to a[l]
matrix K × M

y the label set corresponding to
sample set

matrix K × M

g[i](x) the activation function of the ith
layer

function –

In the output layer, the softmax activation is used
to solve multiple classifications problem. This paper
describes an activation function that applies to mul-
tiple classifications, which is activation function type
softmax.

(2) Pre-training phase
In deep learning, unsupervised learning is usually
used to assist the next phase of supervised learn-
ing. In our paper, the Denoising Autoencoder (DA)
is used to pre-train DNN layer by layer. This train-
ing method is called Stacked Denoising Autoen-
coder (SDA) pre-training (Vincent, Larochelle, Bengio,
& Manzagol, 2008).
SDA is a stack ofDA structures, and thebasic principle
is shown in Figure 2. Eachneuronof the original input
X is set to zero with specific probability to obtain X ′,
then F′ can be calculated as in Equation 2. The opti-
mization algorithm (e.g. gradient descent algorithm)
continuously updates theweight tominimize the dif-
ference l between X and the output F obtained by
F′, to obtain data features and minimize the effects
of noise, thus the network has strong generaliza-
tion capabilities. The calculation of l is as shown in
Equation 4. In general, W ′ is initialized to the trans-
pose ofW.

F′ = g(WX ′ + b), (2)

F = g(W ′F′ + b′), (3)

l = ‖X − F‖2, (4)

where F is the DA reconstruction input, and F′ is the
output of the pre-training layer.
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Figure 2. Schematic of DA.

The data features extracted from the last layer net-
work are stacked as the input of the next layer net-
work. Each layer is unsupervised pre-trained by min-
imizing its reconstruction input errors until all layers
are trained. This is the basic of SDA structure.
The pre-training phase does not need to train all the
DNN layers. The number of pre-trained layers is usu-
ally less than the number of layers of the entire DNN.
When the pre-training phase is completed, ie, the
weights of all pre-training layers are initialized, the
next phase of DNN training can be performed, which
is the fine-tuning phase.

(3) Fine-tuning phase
The fine-tuning phase is a process of minimizing the
difference between the output of the DNN and the
actual label by adjusting the weights of the entire
network. This phase is a supervised training process.
For the entire training set, thedifferencebetween the
output of the DNN and the label is the average value
of all sample differences. In our paper, the gradient
descent algorithm is used to calculate the gradient
of the cost function, then the BP (back propagation)
algorithm is used toupdate all theweights andbiases
of the DNN to improve the accuracy of the network
prediction.
With all the parameters are updated, a DNN train-
ing process is finished. Ideally, the cost function
will gradually converge to its global optimum after
training for a long time. However, due to the huge
amount of parameters, complex network structure
with many layers, it does not converge to the global
optimum along the gradient descending direction as
expected, which may cause a longer training time
and suboptimal results. To solve this problem, Adam
(Adaptive Moment estimation) (Kingma & Ba, 2014)

optimization algorithm is used. This algorithm has
strong applicability and can effectively speed up
convergence.

3.2. Fingerprinting train positioningmodel

Fading is caused when electromagnetic propagating in
space. Theoretically, the farther away from the transmit-
ting terminal, the lower the RSSI received by the receiv-
ing terminal. This phenomenon also exists in the urban
rail transit environment where using WLAN for commu-
nication. Besides, the position of every AP box will not
change after the design of signalling system has been
completed. Therefore, each AP has different RSSI at dif-
ferent positions, but there is also some complex relation-
ship between RSSI and position. Next, we will model the
complex relationship and find it out.

The total number of APs on both sides of the route isN,
and the RSSI of all the APs collected by receiving terminal
on the train at time t is matrix Xt = [xt1, xt2, , xtN]T , where
xti represents the RSSI of the ith AP at time t. We divide
the track into several discrete sections with equal length
and represent train position with the section where the
train belongs to. In this way, the discrete train sections
can be considered as the output of DNN in classification.
Besides, in the research on the energy-efficient operation
ofmetro train, knowingwhich stations the train is located
in is sufficient. So the discrete sections can meet the
above requirement. Another point, we can conveniently
try different section length to improve the positioning
accuracy gradually. So in our model, the track is divided
into K sections with equal length L. At this time, the
train position pt can be represented by the section Bi(i =
1, 2, . . . , K) where the train belongs to. Then the relation-
ship between train position pt and RSSI at time t can
be expressed as pt = f (Xt). Here, pt and Bi both indicate
the train position. Their relationship can be expressed as
pt ∈ B, B = {B1, B2, . . . , BK}. The f (x) is related to channel
fading model, train position, AP position and so on, it is
difficult to find the exact expression of f (x). But through
deep learning, we can use DNN to gradually approach
f (x). The process of approximation is actually the offline
training phase of DNN as shown in Figure 3. The process
of feeding the real-time RSSI into the well-trained DNN to
output the train position is called the online positioning
phase.

In theoffline trainingphase, the fingerprintingdatabase
is constructed by the RSSI matrices and its correspond-
ing positions. These corresponding positions are called
labels. The RSSI matrices and the corresponding posi-
tions are respectively input matrices and labels of the
proposed DNN model. Combined with the introduction
to DNN in the previous section, the input matrix of DNN
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Figure 3. Schematic diagram of offline training and online positioning.

in ourmodel isXt = [xt1, xt2, . . . , xtN]T , the number of neu-
rons in input layer is equal toN. The output layer gives the
probability of the train in different sections, which can be
expressed as Equation 5.

ŷ = [P(B1|Xt), P(B2|Xt), . . . , P(BK |Xt)]T , (5)

where P(Bi|Xt) is the probability that the train is located in
section Bi when the RSSI matrices are Xt .

The number of neurons in output layer is equal to K.
The section with maximum probability is selected as the
predictive value of the final train position by Equation 6.

pt = argmax
(
P(Bi|Xt)

)
i ∈ [1, K], (6)

where argmax(xi) returns i that makes the xi maximum
value

Each training set corresponds to one label. In our
model, the label is the serial number of the section. When
the number of training set isM, the label matrices can be
denoted as label = [p1, p2, . . . , pM]. In order to match the
label directly with the DNN output, we need to process
the label with One Hot Encoding.

In addition to the input and output layers of the DNN,
it is also necessary to specify the parameters of the hid-
den layers. In our model, the entire neural network have
five layers (excluding the input layer) and the number
of hidden layers is four. The number of neurons in each
hidden layer is [200, 200, 400, 400]. The first two hidden
layers, h[1] and h[2], are set as pre-training layers. The acti-
vation function of the hidden layers adopts relu (Glo-
rot, Bordes, & Bengio, 2011) activation function, which is
shown in Equation 7, and in order to get a multi-category

result, the softmax function is used in output layer, which
is shown in Equation 8. The Equation 9 means that the
sum of the probabilities of all categories is 1. The SDA
algorithm is used to initialize parameters of hidden lay-
ers h[1] and h[2]. Then the Adam optimization algorithm
and the gradient descent algorithm are used to fine tune
the entire DNNparameters. The cost function is the cross-
entropy cost function, which is shown in Equation 10.
When the error of the DNN output meets expectations or
no longer changes, the training phase can be considered
to be ended. Thenwe can get a set of trainedDNNparam-
eters which can approximately describe the f (Xt) so that
the RSSI can be associated with train position. The DNN
structure and training process are shown in Figure 4.

relu(x) = max(0, x), (7)

ŷj = ez
[l−1]
j

∑K
k=1 e

z[
l−1]
jk

, (8)

K∑
k=1

ŷjk = 1, (9)

J(ŷ, y) = − 1
m

m∑
j=1

K∑
k=1

(
yjk ln ŷjk + (1 − yjk)(1 − ln ŷjk)

)
,

(10)

In the online positioning phase, the real-time RSSI col-
lected by the receiving terminal is feed to the trained
DNN, then the DNN can output the predictive current
train position.
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Figure 4. DNN training process.

3.3. Simulation verification

The simulation environment for urban rail transit is shown
in Figure 5. The track is a straight line with no gradient
and is 1000 metres long. For simulating the actual envi-
ronment, every AP box has 2 APs inside and the spacing
of adjacent AP box is 200 metres. In our scene, transmis-
sion delay between AP (transmitting terminal) and train
(receiving terminal) can be calculated by d/c, where d is
the distance between AP and train, c is the speed of light.
Therefore, the transmission delay is so short that we can
ignore its effect on train position. But on the other hand,
the transmission delay is also one of the reasons thatmay
causemultipath (Moghaddam, Amindavar, & Kirlin, 2003).
In the NLOS environment, the multipath always exists
and makes the RSSI changing. So we cannot ignore the
effect of transmission delay on RSSI. In our model, after
considering the transmission delay, the RSSI at different
positions can be calculated by a NLOS-applicable path
loss model by Equation 11 (Tahat et al., 2017).

PL(d) = PL(d0) + 10n lg
(

d

d0

)
+ Xσ 2 , (11)

where Xσ 2 is a zero mean Gaussian random variable with
a variance of σ 2, d0(m) is a short reference distance, d(m)
is the distance from AP to train, and n is the path loss
exponent.

The path loss exponent n in the tunnel environment is
set to 2.073 in the near zone, 1.738 in the far zone (Wang,
Ning, Jiang, & Liu, 2013), and the turning point of the near
zone and the far zone is set to 100 metres. According to
this path lossmodel, RSS(d), the RSSI at distance d, can be
calculated by Equation 12.

RSS(d) = RSS(d0) − 10n lg
(

d

d0

)
+ Xσ 2 , (12)

The RSS(d0)which represents the RSSI at distance d0 from
AP can be calculated by the transmitting power of AP PAP
and the free space path loss model Equation (13).

Ls(d) = 32.45 + 20 lg f + 20 lg d, (13)

where f (MHz) is the electromagnetic wave frequency,
d(Km) is thedistance from transmitting terminal and Ls(d)

is the loss power at distance d in free space.
In our simulation, d0 is set to 10 metres, f is 2.4 Ghz,

and the transmitting power PAP is equal to 30mW, which

Figure 5. Schematic of simulation environment.
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Figure 6. Model accuracy with different section lengths.

is about 14.77 dBm. Therefore,

RSS(d0) = PAP − Ls(d0) = 14.77 − 60.05 = −45.28 dbm,
(14)

Now the only two unknown parameters in Equation 12
are d and Xσ 2 . In our simulation, the σ 2 is set to 5. So the
RSSI matrix can be calculated by giving the distance of
different APs. In our simulation, we take 1 metre as the
sampling interval, one simulation of the train operation
canget 1001RSSImatrices at differentpositions. Theposi-
tion of the receiving terminal is located at the front of the
train and its position is regarded as the position of the
train. It should be noted thatwhen the RSSI of someAPs is
less than −70 dBm (based on the AP coverage), the AP is
considered out of the coverage of receiving terminal and
its RSSI at this time is fixed at −70 dBm.

Based on the above simulation, a sufficient fingerprint-
ing database can be established and the DNN network
canbe trainedwith the fingerprintingdatabase. The train-
ing data can be divided into training set (90% of the
database), validation set (5% of the database) and test set
(5% of the database). In order to improve training speed
and prevent overfitting, the training set is randomly dis-
rupted and divided into some mini bathes. Each mini
batch contains 2048 RSSI matrices.

After many attempts, the neurons in pre-training lay-
ers are randomly set to zero by the probability of 10%.
The number of pre-training times is 200, and the learning
rate is 0.001. The learning rate of the fine-tuning phase
is also set to 0.001. The hyper parameters β1, β2 and ε

in Adam optimization algorithm are respectively set to
0.9, 0.999, 10−8. After each training, we can get a series
of output of DNN. Then the corresponding labels in val-
idation set are used to calculate the model error rate.

When the error rate does not decrease for 50 consecu-
tive times, it is considered that the fine-tuning phase is
completed. Early stopping can save the training time and
avoid overfitting.

The DNN structure and training algorithm are imple-
mented with tensorflow, and CUDA GPU acceleration
technology is used to accelerate the training process. As
described above, if we choose a longer section length,
when the track length is fixed, we get fewer sections.
When section length approaches the track length, there
is only one section. In this situation, the output of DNN
will be always equal to the label, the train position can be
everywhere in the track. So there is a qualitative analysis:
when the section length is chosen to be longer, the num-
ber of sections is fewer, the accuracy of the DNNmodel is
higher and the position resolution is worse. So we com-
pare model results in different section length. When the
section length L is 5, 10, 20, 30, 40, 50 and 100m respec-
tively, the accuracy of themodel is shown in Figure 6. The
results can verify the qualitative analysis.

Because the train is moving in normal situations, we
also analyse themodel accuracy at different train velocity.
But system delay (the time of once signal scanning) exists
in practice. System delay is about 1 sec and its influence
on train position can be partially reduced by a position-
recursive method (Nguyen, Recalde, & Nashashibi, 2017).
In our research, the positioning method is range-free,
we cannot get the exact train position, so the recursion
is not feasible. Considering the energy-efficient opera-
tion research, knowing which two stations the train is
located between is enough. The 1 sec system delay can
hardly change the stations even if the train is moving
at maximum velocity. Therefore, we think that the train
position corresponding to the collected RSSI is the true
position of the train at the current time. For weakening
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Table 3. Model accuracy with different section lengths and
velocity.

L(m)

v(km/h) 20 30 40 50

40 79.38% 85.4% 88.5% 92.7%
50 82.8% 83.7% 89.4% 91.4%
60 79.7% 84.4% 89.4% 93.3%
70 76.4% 84.5% 90.3% 92.3%

the influence of section length on model accuracy, we
conduct experiment when section length is 20, 30, 40
and 50m respectively. When the train passes the whole
track at 40, 50, 60 and 70 km/h respectively, the accu-
racy of the model is shown in Table 3. The results show
that the model accuracy is slightly lower when velocity is
considered. Comparing the results at different situations,
we conclude that the section length is the main factor
affecting the model accuracy.

In the existing research, the evaluation of positioning
methods is to compare the positioning error at distance
scale. However, in our research, since the positioning
method is range-free, the quantitative representation of
the train position cannot be obtained, so the evaluation
is converted to section scale. The simulation results show
that we can easily adjust the section length to improve
the model accuracy and make it suitable for the research
on energy-efficient operation of metro train.

4. Conclusions and future work

In this paper, we explore how wireless positioning tech-
nology is applied to train positioning in urban rail tran-
sit, and propose a low-cost fingerprinting train position-
ing algorithm based on deep learning, which can be
used in both ground and underground. The simulation
results show that it can satisfy the research on energy-
efficient operation of metro train. And the model accu-
racy is mainly influenced by section length: the longer
the section length is, the higher accuracy the model can
achieve. Because the proposed positioning method is
range-free, the exact train position is not clear. In the
future, this method can be integrated with some other
positioning methods such as IMU positioning to reduce
cumulative error. Besides, with the development of deep
learning technologies, some other deep learning archi-
tectures can be used such as Recurrent Neural Network
to further improve the model accuracy.
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