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ABSTRACT
This paper is concernedwith the finite-timeH∞ control problem for a chaotic finance system subject
to energy-bounded external disturbance via delayed feedback controller. Based on an augmented
Lyapunov-like functional, the Wirtinger-based inequality and the novel finite-time boundedness
analysis approach, a delay-dependent sufficient condition is proposed in terms of linear matrix
inequalities such that the closed-loop error system is finite-time boundedwith a prescribed H∞ per-
formance level. By simple modification, the sufficient condition based on the standard H∞ control
design is also obtained. Finally, simulation results are given to demonstrate the effectiveness and
advantages of our proposed results.
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1. Introduction

Over the past several decades, dynamical behaviours
for economic/financial systems have received consider-
able attention (Cesare & Sportelli, 2005; Chen, 2008a;
Chen, Liu, & Xu, 2014; Chen & Ma, 2001a, 2001b; Gao
& Ma, 2009; Stutzer, 1980; Yu, Cai, & Li, 2012). In par-
ticular, it has been identified that the chaotic behaviour
may be encountered in an economic/financial system.
Note that the financial crisis is essentially a kind of
chaotic phenomenon. Moreover, the existence of the
chaotic phenomenon in a real economic/financial sys-
tem will bring the inherent indefiniteness into the
macroeconomic operation. Therefore, various kinds of
control schemes have been proposed to control the
chaotic behaviour of economic/financial systems over
the past decade (e.g. Chen, 2008b; Chen & Chen, 2007;
Dadras & Momeni, 2010; Salarieh & Alasty, 2008; Son
& Park, 2011; Tacha et al., 2016; Wang, 2016; Wang,
Huang, & Shen, 2012; Xin & Zhang, 2015). For exam-
ple, the delayed feedback approach and the adaptive
algorithm have been used in Chen and Chen (2007)
to control the chaos in the Cournot-Puu model. In
Dadras and Momeni (2010) and Wang et al. (2012),
the sliding mode control schemes have been proposed
to stabilize fractional-order economic systems and, in
Wang (2016), adaptive fuzzy scheme has been used
to address the control problem for a class of uncer-
tain fractional-order finance systems subject to input
saturations.

CONTACT Yonggang Chen happycygzmd@tom.com

In the above-mentioned literature, it is noted that
the external disturbances have been ignored. In reality,
finance systems should be inevitably influenced by
external disturbances stemmed fromenvironmental inter-
ference (Zhao & Wang, 2014). More importantly, the
occurrence of external disturbances could lead to difficul-
ties in achieving desirable control performances and, in
theworst case, destabilize the closed-loop system. There-
fore, it is more imperative to address the control problem
of chaotic economic/financial systems in the presence
of external disturbances. Recently, the global H∞ con-
trol problem has been studied in Zhao and Wang (2014)
for a class of chaotic finance systems with external dis-
turbances. The main objective of the H∞ control dis-
cussed in Zhao and Wang (2014) is to ensure that the
L2 gain from external disturbance to the error between
the system state and the desirable orbit is less than a
prescribed positive scalar. However, it should be pointed
out that the global design in Zhao and Wang (2014) is
concerned with all unstable fixed points, which has the
more rigorous requirement on the finance system. There-
fore, the global control scheme might be ineffective or
cannot achieve the desirable performances. In addition,
it is worth mentioning that the analysis approach used
in Zhao and Wang (2014) is conservative, which might
lead to the failure in designing the delayed feedback
controller.

On the other hand, it is noted thatmost existing results
are concerned with the behaviour of economic/financial
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systems over an infinite-time horizon. However, in many
practical applications, our main attention may be the
finite-time behaviour of a control system. Based on
such a requirement, the concept of finite-time stabil-
ity/boundedness has been proposed in Amato, Ariola,
and Dorato (2001). The finite-time boundedness intro-
duced in Amato et al. (2001) means that once we fix a
time interval, the system state does not exceed a certain
bound within the prescribed time interval for given ini-
tial conditions and external disturbances. Over the past
years, the finite-time control and state estimation prob-
lems have been widely investigated for various kinds
of control systems (e.g. Ali, Saravanan, & Arik, 2016;
Amato, Ariola, & Dorato, 2005; Ma, Wang, & Lu, 2012;
Niamsupa & Phat, 2016; Shen, Park, & Wu, 2014; Shen,
Park, Wu, & Zhang, 2015; Song & He, 2015; Wang, Wang,
Wei, & Alsaadi, 2018; Zhao, Shen, Li, & Wang, 2013). For
example, in Zhao et al. (2013), the finite-time H∞ con-
trol problem has been addressed for a class of delayed
Markovian jump systemswith input constraints and, in Ali
et al. (2016), the problem of finite-time H∞ state estima-
tion has been investigated for a class of delayed switched
neural networks.

Up to now, despite the significant advances made
on the finite-time analysis and control problems, it is
worth mentioning that the existing results cannot be
applied to nonlinear finance systems. The main reason
is that the existing results cannot deal with the non-
linear characteristic occurred in finance systems effec-
tively. In addition, it should be pointed out that the exist-
ing finite-time boundedness analysis approaches in Ali
et al. (2016), Ma et al. (2012), Niamsupa and Phat (2016),
Song and He (2015) and Zhao et al. (2013) might be con-
servative for systems with time delays to some extent,
since the information of time delays has been not suffi-
ciently explored.

Motivated by the above discussions, the main objec-
tive of this work is to investigate the finite-time H∞ con-
trol problem for a class of finance systems via delayed
feedback controller. Using an augmented Lyapunov-like
functional, the Wirtinger-based inequality and the novel
finite-time boundedness analysis approach, a sufficient
condition is obtained by means of linear matrix inequal-
ities (LMIs), which can guarantee that the closed-loop
system is finite-time bounded with a prescribed H∞ per-
formance level. As the by-product, the condition of H∞
control design over the infinite-time horizon is also pro-
posed. Finally, simulations results show that our pro-
posed conditions are not only effective but also less
conservative.

The main contributions of this paper are summarized as
follows: (1) the finite-time H∞ control problem is con-
sidered, for the first time, for a chaotic finance system

and corresponding condition is established; (2) by incor-
porating the time-delay information sufficiently, a novel
finite-time boundedness analysis approach is proposed
for time-delay systems; and (3) an improved condition of
designing standard H∞ controller is also obtained for a
chaotic finance system.

Notation. The superscript ‘T ’ denotes the transpose of
a matrix. L2[0,∞) is the space of square integrable vector
functions over an interval [0,∞). P>0 means that P is a
real symmetric and positive definite matrix. ‖ · ‖ denote
the 2-norm of a vector. λ(·)M and λ(·)m refer to the min-
imum and the maximum eigenvalue value of a matrix,
respectively. I denotes an identity matrix with proper
dimension. The symmetric terms in a symmetric matrix
are denoted by *.

2. Problem formulation

Let us consider the dynamical model of financial system
proposed in Chen and Ma (2001a, 2001b). The model
consists of four sub-blocks, i.e. production, money, stock
and labour force, and can be described by the following
ordinary differential equations:

ẋ1(t) = x3(t) + (x2(t) − a)x1(t),

ẋ2(t) = 1 − bx2(t) − x21(t),

ẋ3(t) = −x1(t) − cx3(t)

(1)

where the state variables x1(t), x2(t) and x3(t) denote the
interest rate, the investment demand and the price index,
respectively; the scalars a>0, b>0 and c>0 represent
the saving amount, the cost per investment and the
demand elasticity of commercial markets, respectively.

For the model (1), it can be verified that, if the con-
dition c − b − abc � � < 0 holds, there exists a unique
fixed point (0, 1/b, 0). However, under the condition c −
b − abc � � > 0, the system (1) has the following three
fixed points:

(0, 1/b, 0), (±
√

�/c, (ac + 1)/c,∓
√

�/c3). (2)

In addition, it has been shown that the dynamic beha-
viours of the system (1) are seriously affected by the
parameters a, b and c. For many cases, the system (1)
cannot maintain its stability at the fixed points (Chen,
2008b; Zhao & Wang, 2014). For example, when param-
eters are chosen as a=3, b=0.1 and c=1 or a=2.5,
b=0.2, c=1.2, the system (1) will demonstrate the
chaotic behaviour. Therefore, how to control the finance
system (1) has become an interesting research topic dur-
ing the past decade.
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On the other hand, it should be pointed out that the
finance systems may be inevitably influenced by exter-
nal disturbances stemmed from environmental interfer-
ence (Zhao &Wang, 2014). Therefore, the external distur-
bances should be incorporated in the finance system (1)
to reflect the real commercial market.

Denoting that x(t) = [x1(t) x2(t) x3(t)]T,

A =
⎡
⎣−a 0 1

0 −b 0
−1 0 −c

⎤
⎦ , f (x(t)) =

⎡
⎣x1(t)x2(t)1 − x21(t)

0

⎤
⎦ .

and adding both the disturbance term and the control
term to (1), the finance system (1) can be modified as
follows:

ẋ(t) = Ax(t) + f (x(t)) + Bω(t) + u(t) (3)

whereω(t)denote the disturbance belonging to L2[0,∞)

and B is a matrix with compatible dimension.
In this paper, we adopt the following delayed con-

troller:

u(t) = K1(x(t) − x∗) + K2(x(t − τ) − x∗) (4)

where K1 and K2 are controller gains, τ ≥ 0 denote the
time delay and x∗ is an unstable fixed point.

Remark 2.1: The delayed controller (4) has been used in
most existing literature (Zhao et al., 2013; Zhao & Wang,
2014). If we set K1 = −K2 � K , the feedback controller (4)
become the case u(t) = K(x(t) − x(t − τ)) that has been
recognized to be effective in controlling the chaotic
finance system (Chen, 2008b; Chen & Chen, 2007; Son
& Park, 2011). If one sets K1 = 0, the feedback con-
troller (4) become the completely delayed case u(t) =
K2(x(t − τ) − x∗).

For the fixed point x∗ = [x∗
1 x∗

2 x∗
3]

T, it is clear that

Ax∗ + f (x∗) = 0. (5)

Letting r(t) � x(t) − x∗ and applying the Equations (3)–
(5), we have the following closed-loop error system:

ṙ(t) = (A + K1)r(t) + K2r(t − τ)

+ f (x(t)) − f (x∗) + Bω(t). (6)

Using Taylor expansion, it is seen that

f (x(t)) = f (x∗) + Fr(t) + [H.O.T .] (7)

where [H.O.T .] is the higher order term in r(t) and

F �
[
∂f (x)

∂x

]
x=x∗

=
⎡
⎣ x∗

2 x∗
1 0

−2x∗
1 0 0

0 0 0

⎤
⎦ .

Then, we can obtain the following linearized model:

ṙ(t) = (A + F + K1)r(t) + K2r(t − τ) + Bω(t). (8)

We now introduce the following lemma and definitions,
which are indispensable in obtaining the results of this
paper.

Lemma 2.1 (Seuret & Gouaisbaut, 2013; Sun, Liu,
& Chen, 2009): Let an n × n symmetric matrix Z > 0, two
scalars a and b satisfying b>a and a vector function ρ(t) ∈
R
n be given. If the integrations concerned are well defined,

then the following three integral inequalities hold:

(1) (b − a)
∫ b

a
ρT(s)Zρ(s)ds

≥
(∫ b

a
ρ(s)ds

)T

Z

(∫ b

a
ρ(s)ds

)
+ 3�TZ�,

(2) (b − a)
∫ b

a
ρT(s)Zρ(s)ds

≥
(∫ b

a
ρ(s)ds

)T

Z

(∫ b

a
ρ(s)ds

)
,

(3)
(b2 − a2)

2

∫ −a

−b

∫ t

t+θ

ρT(s)Zρ(s)dsdθ

≥
(∫ −a

−b

∫ t

t+θ

ρ(s)dsdθ

)T

Z

×
(∫ −a

−b

∫ t

t+θ

ρ(s)dsdθ

)
(b > a ≥ 0)

where

� =
∫ b

a
ρ(s)ds − 2

b − a

∫ b

a

∫ b

θ

ρ(s)dsdθ .

Remark 2.2: In Lemma 2.1, the inequality (1) is referred
to as the Wirtinger-based inequality and the inequality
(2) is the Jensen inequality. Noting that 3�TZ� ≥ 0, it is
clear that theWirtinger-based inequality provides amore
accurate estimate of the term (b − a)

∫ b
a ρT(s)Zρ(s)ds

than the Jensen inequality. Of course, when using the
Wirtinger-based inequality, the selected Lyapunov func-
tional should contain the augmented term

∫ b
a ρ(s)ds

(Seuret & Gouaisbaut, 2013). Otherwise, the Wirtinger-
based inequality cannot demonstrate its superiority.

Definition 2.2 (Amato et al., 2001; Zhao et al., 2013):
Let the scalars c2 > c1 ≥ 0, δ > 0 and T >0 be given.
The error system (8) is said to be finite-time bounded
with respect to (c1, c2, δ, T) if, for any ω(t) satisfying∫ T
0 ωT(s)ω(s)ds ≤ δ, the following relationship holds:

sup
−τ≤s≤0

{‖r(s)‖, ‖ṙ(s)‖} ≤ c1 ⇒ ‖r(t)‖ ≤ c2, ∀ t ∈ [0, T].
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Definition2.3 (Zhaoet al., 2013): The error system (8) is
said to be finite-time bounded with an H∞ performance
level γ > 0 if the error system (8) is finite-time bounded
with respect to (c1, c2, δ, T) and, under the zero-initial con-
dition (r(t) = 0, t ∈ [−τ , 0]), the error system (8) satisfies
the following constraint:∫ T

0
rT(s)Sr(s)ds < γ 2

∫ T

0
ωT(s)ω(s)ds

for all nonzero ω(t) ∈ L2[0,∞), where S>0.

In this paper, our main objective is to design the time-
delayed feedback controller (4) such that the error sys-
tem (8) is finite-time bounded with an H∞ performance
level γ .

3. Main results

Theorem 3.1: Let the scalars c2 > c1 ≥ 0, δ > 0, T > 0,
τ > 0, α > 0, γ > 0 and ε �= 0 be given. The error system
(8) is finite-time bounded with an H∞ performance level

γ ∗ = eαT/2γ if, there existmatrices P =
[
P11 P12
PT12 P22

]
> 0,Q >

0, Z > 0, R > 0, J1 > 0, J2 > 0, X, Y1, Y2, and scalars λi > 0
(i = 1, 2, . . . , 5) such that the following LMIs hold:⎡

⎢⎢⎢⎢⎣
�11 �12 �13 XB �15

∗ �22 �23 0 εYT2
∗ ∗ �33 0 PT12
∗ ∗ ∗ −I εBTXT

∗ ∗ ∗ ∗ �55

⎤
⎥⎥⎥⎥⎦ < 0, (9)

[
�11 P12 − 2Z
∗ �22

]
≥ 0, (10)

P ≤ diag{J1, J2}, (11)

J1 ≤ λ1I, J2 ≤ λ2I, Q ≤ λ3I, Z ≤ λ4I, R ≥ λ5I, (12)

[(λ1 + τ 2λ2 + τ eατ λ3 + 0.5τ 3λ4)c21 + δ] eαT ≤ λ5c
2
2
(13)

where

�11 = X(A + F) + (A + F)TXT + Y1 + YT1

+ P12 + PT12 + Q + S/γ 2 − 4Z − αP11,

�12 = Y2 − P12 − 2Z, �13 = P22 + 6Z/τ − αP12,

�15 = −X + ε(A + F)TXT + εYT1 + P11,

�22 = −eατQ − 4Z, �23 = −P22 + 6Z/τ ,

�33 = −12Z/τ 2 − αP22, �55 = τ 2Z − ε(X + X)T,

�11 = P11 + 2τZ − R, �22 = P22 + Q/τ + 2Z/τ .

Moreover, if feasible solutions exist, then the controller gain
matrices are given by K1 = X−1Y1 and K2 = X−1Y2.

Proof: Let a positive scalar α > 0 be given and choose
the following augmented Lyapunov-like functional:

V(t) = ηT(t)Pη(t) +
∫ t

t−τ

eα(t−s)rT(s)Qr(s)ds

+ τ

∫ 0

−τ

∫ t

t+θ

ṙT(s)Zṙ(s)dsdθ (14)

where η(t) = [rT(t)
∫ t
t−τ

rT(s)ds]T and P>0, Q>0, Z>0.
By direct calculations, it follows that

V̇(t) ≤ 2ηT(t)Pη̇(t) + rT(t)Qr(t) + τ 2 ṙT(t)Zṙ(t)

− eατ rT(t − τ)Qr(t − τ) − τ

∫ t

t−τ

ṙT(s)Zṙ(s)ds

+ α

∫ t

t−τ

eα(t−s)rT(s)Qr(s)ds. (15)

Using the first inequality of Lemma 1, we have

τ

∫ t

t−τ

ṙT(s)Zṙ(s)ds ≥
[
ϑ1(t)
ϑ2(t)

]T [
Z 0
0 3Z

] [
ϑ1(t)
ϑ2(t)

]
(16)

where

ϑ1(t) = r(t) − r(t − τ),

ϑ2(t) = r(t) + r(t − τ) − 2
τ

∫ t

t−τ

r(s)ds.

For a given non-zero scalar ε and any matrix X, it is
seen from the system (8) that the following equation is
ensured:

2[rT(t)X + ε ṙT(t)X][(A + F + K1)r(t) + K2r(t − τ)

+ Bω(t) − ṙ(t)] = 0. (17)

Adding the left side of (17) to V̇(t) and using (16), we have

V̇(t) ≤ ξT(t)�ξ(t) + αV(t)

− rT(t)(S/γ 2)r(t) + ωT(t)ω(t) (18)

where

ξ(t) =
[
rT(t)rT(t − τ)

∫ t

t−τ

rT(s)dsωT(t)ṙT(t)

]T
,

� =

⎡
⎢⎢⎢⎢⎣

�̃11 �̃12 �13 XB �̃15

∗ �22 �23 0 εKT2X
T

∗ ∗ �33 0 PT12
∗ ∗ ∗ −I εBTXT

∗ ∗ ∗ ∗ �55

⎤
⎥⎥⎥⎥⎦ ,

and�13,�22,�23,�33,�55 aredenoted in Theorem1and

�̃11 = X(A + F + K1) + (A + F + K1)
TXT

+ P12 + PT12 + Q + S/γ 2 − 4Z − αP11,

�̃12 = XK2 − P12 − 2Z,

�̃15 = −X + ε(A + F + K1)
TXT + P11.
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Denote that Y1 = XK1 and Y2 = XK2. Clearly, if LMI (9)
holds, we obtain� < 0.Moreover, we have from (18) that

V̇(t) ≤ αV(t) − rT(t)(S/γ 2)r(t) + ωT(t)ω(t). (19)

Integrating both sides of (19) from 0 to t yields that

V(t) ≤ eαtV(0) +
∫ t

0
eα(t−s)ωT(s) ω(s)ds

− 1
γ 2

∫ t

0
eα(t−s)rT(s)Sr(s)ds. (20)

Under the zero-initial condition, it is seen from (20) that∫ T

0
rT(s)Sr(s)ds < (γ ∗)2

∫ T

0
ωT(s)ω(s)ds (21)

where γ ∗ = eαT/2γ , whichmeans that the system (8) sat-
isfies the performance requirement for all nonzeroω(t) ∈
L2[0,∞).

Next, it remains to prove that the closed-loop error sys-
tem (8) is finite-time boundedwith respect to (c1, c2, δ, T).

Using the inequalities (2)–(3) of Lemma 1, one obtains

V(t) ≥ ηT(t)Pη(t) + 1
τ

(∫ t

t−τ

r(s)ds
)T

Q

×
(∫ t

t−τ

r(s)ds
)

+ 2
τ

(∫ 0

−τ

∫ t

t+θ

ṙ(s)dsdθ

)T

× Z

(∫ 0

−τ

∫ t

t+θ

ṙ(s)dsdθ

)
= η(t)�η(t) (22)

where

� =
[
P11 + 2τZ P12 − 2Z

∗ P22 + Q/τ + 2Z/τ

]
.

From (10) and (22), it follows that

V(t) ≥ rT(t)Rr(t) ≥ λm(R)‖r(t)‖2. (23)

On the other hand, from (11), (12) and (20), we have

V(t) ≤
{
[λM(J1) + τ 2λM(J2) + τ eατ λM(Q)] sup

−τ≤s≤0
‖r(s)‖

+0.5τ 3λM(Z) sup
−τ≤s≤0

‖ṙ(s)‖ + δ

}
eαT (∀ t ≤ T)

≤ [(λ1 + τ 2λ2 + τ eατ λ3 + 0.5τ 3λ4)c21 + δ] eαT .
(24)

Noting that R ≥ λ5I in (12) and (13), it is clear from (23)
and (24) that the relationship ‖r(t)‖ ≤ c2 (∀ t ∈ [0, T])
is ensured for all initial conditions r(t) (−τ ≤ t ≤ 0)
satisfying sup

−τ≤s≤0
{‖r(s)‖, ‖ṙ(s)‖} ≤ c1. This completes the

proof. �

Remark 3.1: In Theorem 3.1, the parameters δ, τ , c1, c2, T
and γ play a vital role in the design of finite-timeH∞ con-
troller. Generally speaking, we can optimize one of such
parameters by fixing the values of other parameters in
designing the controller. For example, we can search the
maximum admissible c1 by fixing the values of δ, τ , c2, T
and γ . Of course, we can also minimize c2 for given δ, τ ,
c1, T and γ .

Corollary 3.2: For given scalars τ > 0, γ > 0 and ε �= 0,
the system (8) is asymptotically stable with an H∞ perfor-

mance levelγ if, there existmatricesP =
[
P11 P12
PT12 P22

]
> 0,Q >

0, Z > 0, X, Y1 and Y2 such that the following LMIs hold:⎡
⎢⎢⎢⎢⎢⎣

�̌11 �12 �̌13 XB �15

∗ �22 �23 0 εYT2
∗ ∗ �̌33 0 PT12
∗ ∗ ∗ −I εBTXT

∗ ∗ ∗ ∗ �55

⎤
⎥⎥⎥⎥⎥⎦ < 0 (25)

where �12, �15, �22, �23, �55 are denoted in Theorem 1
and

�̌11 = X(A + F) + (A + F)TXT + Y1 + YT1

+ P12 + PT12 + Q + S/γ 2 − 4Z,

�̌13 = P22 + 6Z/τ , �̌33 = −12Z/τ 2.

Moreover, if feasible solutions exist, then the controller gain
matrices are given by K1 = X−1Y1 and K2 = X−1Y2.

Remark 3.2: Recently, the global H∞ control problem
has been studied in Zhao andWang (2014) for the chaotic
finance system (3) via the delayed feedback controller (4).
It is noted that the global design is concerned with all
unstable fixed points. Thus, such a global scheme might
be ineffective in designing the delayed controller. Differ-
ent from the approach in Zhao andWang (2014), our pro-
posed results are local and each fixed points can have its
own controller. Moreover, the advanced Wirtinger-based
inequality is used in this paper to dealwith the timedelay.
Therefore, our obtained conditions will be more effective
than the result proposed in Zhao and Wang (2014).

Remark 3.3: Over the past a decade, the finite-time con-
trol/state estimation problems have been widely investi-
gated for various kinds of dynamical systems with time
delays. However, it is worth pointing out that the exist-
ing finite-time boundedness analysis approaches in Ali
et al. (2016), Ma et al. (2012), Niamsupa and Phat (2016),
Song and He (2015) and Zhao et al. (2013) are conserva-
tive for time-delay systems, since the time-delay informa-
tion has been partly overlooked. Different from the exist-
ing approaches, the useful terms

∫ t
t−τ

eα(t−s)rT(s)Qr(s)ds
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and τ
∫ 0
−τ

∫ t
t+θ

ṙT(s)Zṙ(s)dsdθ are specifically taken into
account in this paper when performing the finite-time
boundedness analysis (see (22)) and then the delay-
dependent constraint condition (10) is induced. Noting
that the Lyapunov-like functionals V(t) in Ali et al. (2016),
Ma et al. (2012), Niamsupa and Phat (2016), Song
and He (2015) and Zhao et al. (2013) are simply bounded
by a delay-independent term of the form rT(t)Pr(t), it
is obvious that our proposed finite-time boundedness
analysis approach utilize the time-delay information suffi-
ciently, which allows us to establish the less conservative
design conditions.

If the terms
∫ t
t−τ

eα(t−s)rT(s)Qr(s)ds and τ
∫ 0
−τ

∫ t
t+θ

ṙT(s)Zṙ(s)dsdθ are ignored in finite-time boundedness
analysis, then LMI (10) is degraded as follows:

[
P11 − R P12
PT12 P22

]
≥ 0. (26)

4. Numerical simulation

In this section, we will show the effectiveness and bene-
fits of ourproposed results bynumerical simulation. In the
simulation, the parameters are selected as a=2.5,b=0.2,
c=1.2, S= I, B = [0.2 0.2 0.2]T and ω(t) = 1/(1 + 2t). In
this case, it can be verified that the finance system (1)
has three unstable fixed points, which are represented as
follows:

(κ1, κ2,−κ3) � P
∗
1, (−κ1, κ2, κ3) � P

∗
2, (0, 5, 0) � P

∗
3

where κ1 = 0.5774, κ2 = 3.3333 and κ3 = 0.4811.
First, we consider the H∞ control problem by the

delayed feedback u(t) = K(x(t) − x(t − τ)). By simple
verifications, it is found that the condition in Zhao
andWang (2014) is infeasible for anyγ and τ . For the fixed
point P

∗
3, our proposed LMI (25) is also infeasible. How-

ever, letting τ = 1, ε = 0.7 and solving LMI (25) with Y1 =
−Y2 � Y in this paper, one can obtain the minimum H∞
performance levels γ = 1.12 and γ = 0.88, respectively,
for the points P

∗
1 and P

∗
2. The corresponding controller

gains K1 = −K2 � K are obtained as follows:

K =
⎡
⎣−0.5462 0.7042 0.2062

−0.5538 −0.2991 0.0803
−0.1078 0.0220 −0.9713

⎤
⎦ (P∗

1),

K =
⎡
⎣ 0.0055 −0.7986 0.7417

0.7523 −0.6346 0.0924
−0.1655 0.3078 −1.2487

⎤
⎦ (P∗

2).

If a larger γ is selected in solving LMI (25), e.g. γ = 3, we
have the following controller gain matrices:

K =
⎡
⎣−0.8621 0.5919 0.2198

−0.4349 −0.8928 −0.1930
0.0836 −0.1669 −0.2246

⎤
⎦ (P∗

1),

K =
⎡
⎣−0.8186 −0.5928 0.1874

0.3871 −0.9055 0.1359
0.0956 0.1236 −0.2363

⎤
⎦ (P∗

2).

Using the above controller gains, state responses of the
error system (6) are plotted in Figures 1–4. It is seen from
Figures 1 and 2 that our proposed control scheme is
indeed effective in controlling the unstable fixed points
P

∗
1 and P

∗
2. In addition, it can be seen from Figures 3–4

that the control design based on a larger level γ means
the worse closed-loop performance.

Next, we will address the H∞ control problem by the
delayed feedback u(t) = K2(x(t − τ) − x∗). For this prob-
lem, it is checked that the global design condition in Zhao
and Wang (2014) is infeasible. Letting γ = 2 and solving
LMI (25) with Y1 = 0 in this paper, we can obtain themax-
imum admissible time delays τ = 1.39 (ε = 11), τ = 1.54
(ε = 1.5) and τ = 0.36 (ε = 1.5), respectively, for the fixed
points P

∗
1, P

∗
2 and P

∗
3. The corresponding controller gains

K2 are obtained as follows:

K2 =
⎡
⎣−0.6067 −0.2869 −0.5521

0.9195 −0.1878 0.8320
0.5096 0.0880 0.4151

⎤
⎦ (P∗

1),

K2 =
⎡
⎣−0.4200 0.3094 −0.2747

−0.8401 −0.0617 −0.5395
0.4434 −0.1581 0.2204

⎤
⎦ (P∗

2),
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Figure 1. State responses of the error system (6) involving P
∗
1

(γ = 1.12).
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K2 =
⎡
⎣−2.7160 −0.1202 −0.7065

−0.0436 −0.7533 −0.2815
0.6867 0.0270 −0.3279

⎤
⎦ (P∗

3).

Based on the above controller gains, we plot the state
responses of the error system (6) in Figures 5–10. It is clear
from Figures 5–7 that our proposed controllers behave
well. However, it can be seen from Figures 8–10 that the
stability cannot be guaranteed for somewhat larger time
delays.

Finally, we are concerned with the finite-time H∞ con-
trol problem. Here, we adopt the feedback controller
u(t) = K2(x(t − τ) − x∗). Note that

∫ +∞
0 ωT(s)ω(s)ds =

0.5. Choose c1 = 0.25, δ = 0.5, T =5, α = 0.05 and γ = 2,
and solve LMIs (9)–(13) with Y1 = 0, we obtain the min-
imum c2 = 1.54 (τ = 1.39, ε = 1.5), c2 = 1.56 (τ = 1.54,
ε = 1.5) and c2 = 1.84 (τ = 0.36, ε = 1), respectively, for
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Figure 2. State responses of the error system (6) involving P
∗
2

(γ = 0.88).
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Figure 3. State responses of the error system (6) involving P
∗
1

(γ = 3).
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Figure 4. State responses of the error system (6) involving P
∗
2

(γ = 3).

the fixed points P
∗
1, P

∗
2 and P

∗
3. The corresponding con-

troller gains K2 are obtained as follows:

K2 =
⎡
⎣−0.5397 −0.4390 −0.2821

0.7886 −0.0579 0.5392
0.4288 0.1686 0.2561

⎤
⎦ (P∗

1),

K2 =
⎡
⎣−0.4284 0.3986 −0.1456

−0.7891 0.0024 −0.5219
0.4039 −0.1788 0.2081

⎤
⎦ (P∗

2),

K2 =
⎡
⎣−2.7629 0.0116 −0.6888

0.0467 −0.9307 0.0415
0.8045 −0.0776 0.0472

⎤
⎦ (P∗

3).

In Figure 11–13, we plot the the state responses of the
error system (6) based on the above controller gains. It
is seen from Figure 11–13 that the state of the error sys-
tem (6) satisfies the corresponding constraint ‖r(t)‖ ≤ c2
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Figure 5. State responses of the error system (6) involving P
∗
1

(τ = 1.39).
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(∀ t ∈ [0, 5]), which shows the effectiveness of our pro-
posed control scheme.

On the other hand, it is worth mentioning that, if
LMI (10) is replaced by LMI (26) in minimizing the val-
ues of c2, the larger c2 = 1.84, c2 = 1.84 and c2 = 1.91
can be achieved, respectively, for P

∗
1, P

∗
2 and P

∗
3, which

means that our proposed finite-time boundedness anal-
ysis approach is specifically effective in reducing the con-
servatism.

Remark 4.1: To reduce the possible conservatism, the
adjusting parameter ε �= 0 is introduced in this paper.
Generally speaking, different choosing of the scalar ε

might result in different system performance, which can
be shown by simulation. For example, let us consider
the H∞ control design for the fixed point P

∗
1 under the

delayed feedback u(t) = K(x(t) − x(t − 1)). Selecting the
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Figure 6. State responses of the error system (6) involving P
∗
2

(τ = 1.54).
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Figure 7. State responses of the error system (6) involving P
∗
3

(τ = 0.36).
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Figure 8. State responses of the error system (6) involving P
∗
1

(τ = 1.78).
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Figure 9. State responses of the error system (6) involving P
∗
2

(τ = 1.89).
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Figure 10. State responses of the error system (6) involving P
∗
3

(τ = 0.42).
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Figure 11. The error state r(t) and its 2-norm‖r(t)‖ involvingP
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Figure 12. The error state r(t) and its 2-norm‖r(t)‖ involvingP
∗
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Figure 13. The error state r(t) and its 2-norm‖r(t)‖ involvingP
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3.

parameter ε as 0.1, 0.5, 0.7, 0.9 and 2.0, and solving
LMI (25) with Y1 = −Y2 � Y , the achieved minimum H∞
performance levels γ are, respectively, 4.33, 1.14, 1.12,
1.15 and 1.54. In addition, it is worth pointing out that the
system performance is highly related to the time delay τ ,
which can also be illustrated by simulation. For example,
let us address the H∞ control problem for P

∗
1 under the

feedback controller u(t) = K(x(t) − x(t − 1.2)). Letting
ε = 0.7 andusingCorollary 3.2,wehave theminimumH∞
performance level γ = 1.26 > 1.12, which implies that
the system performance become worse as τ increases.

5. Conclusions

In this paper, we have addressed the finite-time H∞ con-
trol problem for a class of chaotic finance system via
delayed feedback controller. By using some less conser-
vative techniques, a sufficient condition has been devel-
oped, which can guarantee that the closed-loop error
system is finite-time bounded with a prescribed H∞ per-
formance level. As the by-product, a sufficient condi-
tion based on the standard H∞ control scheme has also
been established. The effectiveness and advantages of
our obtained results have been sufficiently demonstrated
by numerical simulation. The proposed analysis approach
in this paper can be extended to some other kinds of
finance systems.

On the other hand, it should be pointed out our pro-
posed results are based on the simple linearization tech-
nique and, thus, the application range of our results is
restricted. As the further research, wewould like to utilize
some advanced techniques, such as the piecewise-linear
approach, the T-S fuzzy approach and neural networks to
improve the results of thiswork. In addition, it is also inter-
esting to investigate the synchronization control issue
(Chen, Wang, Shen, & Dong, 2018; Wang, Wang, Han,
& Wei, 2018) and the saturated control problem (Chen,
Fei, & Li, 2017; Ma, Wang, Liu, & Alsaadi, 2017) for chaotic
finance systems without or with stochastic disturbances
(Ma, Wang, & Lam, 2017; Ma, Wang, Liu, et al., 2017).
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