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Natural Resource Management (MINA), Ås, Norway; eAarhus University, Faculty of Technical Sciences, Department of Agroecology, Research
Centre Flakkebjerg, Slagelse, Denmark

ABSTRACT
There is a need both in organic farming and on farms using integrated pest management for non-
chemical measures that control the perennial weed flora. The effect of mechanical weeding and
fertilisation on perennial weeds, fungal diseases and soil structure were evaluated in two
different experiments in spring cereals. Experiment I included six strategies. The first strategy
was (1) without specific measures against perennial weeds. The other strategies encompassed
one or two seasonal control measures; (2) rhizome/root cutting with minimal soil disturbance in
autumn, (3) hoeing with 24 cm row spacing, (4) combined hoeing and disc harrowing in autumn,
(5) ‘KvikUp’ harrowing in spring, and (6) ‘KvikUp’ harrowing in spring and autumn. Experiment II
included factor (i) inter-row hoeing and (ii) fertilisation level. This experiment included the
comparison between normal row spacing (12 cm) with weed harrowing versus double row
spacing (=24 cm) in combination with inter-row hoeing and 4 fertilisation levels (50–200 kg N
ha−1). In experiment I the strategies consisting of no or one direct weed control measure (1, 2, 3
and 5) clearly did not control the perennial weeds. The two seasonal control measures (4 and 6)
gave a satisfactory weed control and highest crop yield. The combination of best weed control
and no measured harmful effects on soil structure or increase of fungal diseases may explain the
highest yields for these strategies. In Experiment II, hoeing and 24 cm spacing gave less
perennial biomass compared to 12 cm spacing. Grain yields increased linearly with increasing
nitrogen input. The study shows that both inter-row hoeing and weed harrows, are important
elements in integrated pest management practice and organic farming. In addition, our results
indicate that efficient mechanical weeding is possible without harmful effects in crop rotation
consisting of various spring cereals as regards soil structure and plant health.
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Introduction

Organic cereal production inNorway is partly performed in
areas with a low density of animal husbandry infrastruc-
ture. Both research and practical experience have shown
that organic cereal production without or with very
limited use of animal manure (e.g. farmyard manure)
returns low yields with large year-to-year variation (Kor-
saeth and Eltun 2008). Including a full-season green
manure cover crop (usually a legume-grass mix) has
been common in such cropping systems as part of the
crop rotation aiming at both nitrogen supply and weed
control effects. Frequent mowing throughout the
summer of a full-season green cover-crop manure did for
instance control creeping thistle (Cirsium arvense) in

succeeding cereal crops (Dock-Gustavsson 1997; Graglia
et al. 2006; Thomsen et al. 2015). Other weed species
such as couch grass (Elymus repens), however, may be
poorly controlled in such cover crops (Vanhala et al.
2006; Thomsenet al. 2015;Melander et al. 2016).Moreover,
there are also concerns both regarding weeds, especially
some perennial creeping species as E. repens (Thomsen
et al. 2015), mineralisation and leakage of nitrogen
outside of the growing season (Korsaeth and Eltun 2008).
The need for additional sources of fertilisation under
such circumstances may be met by the utilisation of
different organic waste sources, such as biogas residue
and commercially available livestockmanure, e.g. as pelle-
tised, dried chicken manure (Frøseth et al. 2014). Another
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significant drawback of full-season green manure crops is
that these prevent the growing of a cash crop.

In organic cereal cropping systems, with or without a
whole year cover-crop, perennial weeds such as
C. arvense, Sonchus arvensis (perennial sow-thistle) and
E. repens are of great concern in many temperate
countries (Cormack 1999; Salonen et al. 2001; Melander
et al. 2012). Researchers and farmers claim that peren-
nial creeping weeds threaten the future of organic
cereal production, unless the management of these
weeds is given due consideration in crop rotation
(Salonen et al. 2001; Sundheim et al. 2014). Not least,
there is a need for measures that control the whole
weed flora efficiently in a multiyear perspective. These
measures must be so robust that single years with
difficult conditions, for example moist autumns, for
mechanical weed control not cause unacceptable
weed pressure. It is a challenge to find measures that
are effective against all species of perennial weeds sim-
ultaneously. For example, studies by Permin (1961) and
Brandsæter et al. (2012) showed that stubble soil culti-
vation in autumn is more effective against E. repens
than against C. arvense and S. arvensis. Recent studies
by Brandsæter et al. (2017) show that the latter two
species are more vulnerable to disturbance in spring
compared to autumn. One obstacle, however, is that
traditional harrow types like disc-harrows need a
rather long period, maybe 3–4 weeks, in spring for
sufficient weed control, and that causes late sowing of
the crop and lower crop yield, at least at northern lati-
tudes (Brandsæter et al. 2017). Melander et al. (2012)
demonstrated that early post-harvest control strategies
based on rotating weeding devices and mouldboard
ploughing conducted in consecutive years was
effective against mixed stands of perennials. However,
such intensive autumn tillage may not enable optimal
nutrient management on organic farms and thus only
relevant against severe perennial weed problems.
Recently developed mechanical implements, such as
the ‘KVIK-UP’ harrow, may have the potential for short-
ening the cultivation period. Numerous farmers
throughout Scandinavia claim to have good experiences
with such equipment. Most experiments with such
harrows have, however, been conducted in autumn.

Earlier studies by Thomsen et al. (2015) and Melander
et al. (2016) indicate that periods of soil cultivation, for
example both in the autumn and in spring, may be
required for controlling mixed stands of perennial
weeds in cereal-dominated rotations, but there is a
need to verify this with new studies. Furthermore, con-
siderations to the total sustainability of the system are
required. Solutions that, e.g. result in more diseases
and poorer soil structure are not desirable. Organic

cereal crops are vulnerable to foliar disease infections
(Van Bruggen and Finckh 2016), and more information
is needed about the possible influence of different
stubble and soil cultivation operations, row spacing, fer-
tilisation levels and living mulch on foliar cereal diseases
under Norwegian conditions.

Regarding soil structure, Njøs and Børresen (1991)
found that stubble cultivation in combination with
spring or autumn ploughing influenced aggregate stab-
ility negatively in two of three experimental years. In a
long-term field experiment, Fahnbulleh (2014) found the
same negative trend on aggregate stability for the combi-
nation stubble cultivation and autumn ploughing, but for
spring ploughing the effect of stubble cultivation was
positive. However, both Fahnbulleh (2014) and Marti
(1984) reported that penetration resistance in the
ploughed layer increased after stubble cultivation.
Results from a study in Sweden on clay soil (Myrbeck
et al. 2012) concluded that delaying ploughing in
autumn and omitting stubble cultivation had a small
effect on soil mineral nitrogen contents, but had a long-
term negative effect on grain yields and soil structure.
The effect of stubble cultivation in autumn in combination
with ploughing in autumn or spring on soil structure
seems to be small, but there is insufficient knowledge
about stubble cultivation in spring before ploughing.

An obvious measure for increasing crop yields in
organic farming is to increase the fertilisation level, but
an unwanted consequence can be increased problems
with weeds and diseases. Fertilisation level may
influence the weed species differently, e.g. some will be
stimulated. Furthermore, effects of nutrient supply on per-
ennial weeds may interact with the choice of soil tillage,
and such interactions may differ between weed species
(Håkansson 2003). Higher fertilisation level and a denser
crop canopy might contribute to disease development
(Burdon and Chilvers 1982; Lemmens et al. 2004; Walters
and Bingham 2007; Askegaard et al. 2011), although no
or variable effects of N on diseases have also been
reported (Walters and Bingham 2007; Salgado et al.
2017). If increased fertilisation gives increased problems
with weeds and diseases, the solution may be to
combine hoeing and increased row distance. This pro-
vides opportunities for both in-crop weed control and a
more open crop canopy. It seems that organically grown
spring cereals do not yield less when widening the
inter-row spacing up to 30 cm (Melander et al. 2018).

The aim of this study was to explore the effects of the
use of stubble cultivation in autumn and/or soil cultiva-
tion in spring (off-crop), mechanical weed control (in-
crop) by hoeing combined with increased row distance
and fertilisation levels on weed infestation, fungal dis-
eases, soil structure and crop yield.
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Material and methods

The study consistedof two field experiments, both running
for 3 years, designated Experiment I and Experiment II.

Study site, experimental design and treatments

The experiments were located at the Norwegian Univer-
sity of Life Sciences (NMBU), Ås (59°40’N, 10°47’E, 75
metres above sea level). The soil is described as silty
clay loam with poor natural drainage (Bakken et al.
2006) and classified as Epistagnic Albeluvisol (Siltic)
(World Reference Base 2006). Prior to the experiments,
both fields had been farmed organically for a number
of years, mainly with crop rotations dominated with
cereal crops (with and without undersown clover) and
with green manure (clover-grass mixture) every fourth
year. All experimental plots were mouldboard ploughed
(ploughing depth 23–25 cm) in spring with a reversible
mouldboard plough (Kverneland with body no.8)
equipped with disc-coulters and skimmers. The soil was
then levelled (with a separate under-beam leveller
Type Väderstad) before all plots were fertilised with
dried chicken manure [‘Marihøne Pluss’ 8 (%N) – 4 (%P)
– 5 (%K)] corresponding to 100 kg total N ha−1 in exper-
iment I (except strategy 2 that received 50 kg N ha−1 the
first experimental year) and 50–200 kg N ha−1 in exper-
iment II. The manure was broadcasted by a tractor pro-
pelled fertiliser spreader (Kverneland Villemo, Norway).
Immediately after fertilisation, the experimental area
was harrowed with a s-tine cultivator (type Väderstad
NZM 400) for seed bed preparation. The plots were
sown with a seed drill (type Nordsten 2.5 m). Spring
barley cv. Brage (200 kg ha−1, equivalent to 542 kernels
m−2 in 2013 and 521 kernels m−2 in 2014) was sown
both in 2013 (Experiment II) and in 2014 (Experiments I
and II), with oat cv. Hurdal (200 kg ha−1, equivalent to
526 kernels m−2) in 2015 (Experiments I and II) and
with spring wheat cv. Mirakel (225 kg ha−1, equivalent
to 551 kernels m−2) in 2016 (Experiment I). The same
seed drill was used for both normal row distance
(12 cm) and double spaced (24 cm), for the latter every
second seeding unit was closed. The same seed rate
per ha was used for both row distances. After sowing,
all plots were rolled with a Cambridge roller.

Experimental description

The timing of management operations and weed assess-
ments in the experiments is presented in Table 1. Both
experiments were designed as randomised block exper-
iments. Individual plot size was 7.5 by 10 m, and each
treatment had four (experiment I) or three (experiment

II) replications. There were headlands of 15 m width
between replicates for turning the tractor and
implements. Treatments were repeated on the same
plots for 3 years, 2013–2016 (experiment I) and 2013–
2015 (experiment II).

Experiment I, 2013–2016
In this experiment, we studied the effect of six different
strategies, where different actual measures are added
to a control treatment, for control of perennial weeds

Table 1. Dates for management and assessment operations in
the two experiments (I and II). Number behind operation is
strategy number (see Table 2).

2013 2014 2015 2016

I KVIK-UP harrowing: 5,6 23 April 21 April 28 April
Ploughing: 1,2,3,4, 24 April 22 April 28 April
Ploughing all plots 8 May
Levelling:1,2,3,4 20 May 26 April 22 April 7 May
Fertilizing: 1,2,3,4 20 May 29 April 23 April 7 May
Seedbed preparation:
1,2,3,4

20 May 29 April 23 April 8 May

Sowing cereals: 1,2,3,4 21 May 30 April 24 April 8 May
Rolling: 1,2,3,4 30 April 24 April 8 May
Ploughing: 5,6 28 April 24 April 10 May
Levelling: 5,6 29 April 24 April 10 May
Fertilizing: 5,6 29 April 24 April 11 May
Seedbed preparation: 5,6 29 April 24 April 11 May
Sowing cereals: 5,6 30 April 24 April 11 May
Rolling: 5,6 30 April 24 April 11 May
Sowing white clover: 2 26 May 21 May 10 June 16 June
Weed harrowing (I):
1,2,5,6

22 May – –

Weed harrowing (II):
1,2,5,6

– – –

Hoeing (I): 3,4 10 June 27 May 2 June
Hoeing (II): 3,4 – 10 June 17 June
Hoeing (III): 3,4 – 23 June –
Grain harvesting 22 Aug 15 Aug 7 Sept 10 Sept
Perennial weed
assessment

23–27
Aug

18–19
Aug

8–10 Sept 12–16
Sept

Cutting stubble (I): 1,2,3,5, 28 Aug 28 Aug 11 Sept
KVIK-UP harrowing (I):6 29 Aug

a
28 Aug 11 Sept

Disc harrowing (I): 4 29 Aug
a

28 Aug 11 Sept

Rhizome/root cutter: 2 29 Aug
b

3 Sept b 11 Sept b

Cutting stubble (II): 1,2,3,5 26 Sept 23 Sept –
KVIK-UP harrowing (II): 6 26 Sept 24 Sept –
Disc harrowing (II): 4 26 Sept 24 Sept –

II Ploughing all plots 26 May 24 April 21 April
Levelling 26 May 26 April 22 April
Fertilizing 26 May 29 April 23 April
Seedbed preparation 26 May 29 April 23 April
Sowing cereals 26 May 30 April 24 April
Rolling 27 May 30 April 24 April
Weed harrowing (I) 1 June 22 May –
Weed harrowing (II) 17 June – –
Hoeing (I) 17 June 10 June 27 May
Hoeing (II) 3 July – 10 June
Hoeing (III) – – 23 June
Grain harvesting 2 Sept 15 Aug 7 Sept
Perennial weed
assessment

28 Aug 27– 29
Aug

28 Aug–1
Sept

aTwo treatment the same day, dry and hard soil. b ‘Kverneland Vertical cutter’
in 2013 and 2014, ‘Kverneland Horizontal cutter’ in 2015.
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on weed growth, fungal crop diseases, soil structure and
spring cereal yield. The six different weed control strat-
egies were combinations of harrowing (with/without)
in spring, hoeing (with/without) in the cereal crop and
different stubble cultivation treatments in autumn
(Table 2). The six strategies consisted of four strategies
(1–4) without a harrowing period in spring and strategy
5 and 6 with. Strategy #1 was without any specific
measures for control of perennial weeds except
mowing the stubble and the weeds just after harvest.
For three of the other strategies, one additional
measure against perennial weeds was added, strategy
(i) #2 included a clover living mulch combined with
below-ground fragmentation of shallow growing rhi-
zomes and roots in the autumn, (ii) #3 with inter-row
hoeing and (iii) #5 included a KvikUp-harrowing period
in spring. #4 was similar to #3 but a period of disc harrow-
ing in autumn was added. #6 was an intensive version of
#5 with KvikUp-harrowing periods in spring and autumn.

The experiment was initiated in autumn 2013 and
continued until August 2016. The treatments started
with stubble cultivation or mowing after crop harvest
in 2013 (Tables 1–3). The stubble cultivation treatments
were, with few exceptions (Table 1), repeated twice
during autumn.

Experiment II, 2013–2015
In this experiment two of the strategies included in
Experiment I, #1 and #3, was studied for effects of
double row distance in combination with inter-row
hoeing, versus single row distance, and fertilisation
level on weed growth, fungal crop diseases and spring
cereal yield. The experimental treatments were inter-
row hoeing, with (row spacing 24 cm) and without (row
spacing 12 cm). There were equal number of crop
plants m−2 for both row distances and fertilisation level
(corresponding to 50, 100, 150 and 200 kg total N
ha−1) combined in a factorial split-plot design with

hoeing allotted to main plots and fertilisation to sub-
plots. The experiment was initiated in spring 2013 and
continued until August 2015 (Table 1).

Assessments

Weed and crop assessments
Weed shoot density and aboveground weed biomass per
species and crop biomass were assessed before harvest
(Table 1) in four randomly placed (first experimental
year) 1 m² quadrats per plot each year. The assessed
quadrats were placed in exactly the same position
every year. Before initiating the experiments (Exp. I
August 2013; Exp. II August 2012), shoot density per
species was assessed in the same four quadrates as in
later years. Plants were cut 5 cm above the soil surface,
simulating cutting at crop harvest. The biomass
samples were dried at 70 ◦C for 72 h to determine the
dry weight. All data were calculated to density (shoots
m−2) and aboveground dry matter (DM) (g m−2) before
statistical analysis.

Weed infestation in Exp. 1 was also estimated visually
all years at the growth stages BBCH 85–90. The space
occupied by the crop and the most abundant weed
species, and less frequent species together as ‘other
species’, on all subplots was expressed as percentage
ground coverage. The area covered by crop, weed
species and bare soil was summed to 100%.

The crop was harvested by a plot harvester just
outside the areas in which the weeds were recorded.
The harvested areas were 1.5 m wide and 9–10 m long,
the exact length was measured in each case.

Fungal disease assessments
Fungal diseases were assessed visually once or twice
during each growing season. However, because only
few symptoms were observed at growth stage BBCH
20–30 (tillering), BBCH 40–55 (from booting to
heading), and BBCH 65 (flowering), and since no
obvious differences between experimental treatments
could be seen, no systematic recordings were made.
However, to get a general indication of the disease infes-
tation each year, the percentage of plants showing
symptoms of the foliar diseases barley net blotch (Pyre-
nophora teres), oat leaf spot (Pyrenophora avenae) and
wheat leaf spot complex (Parastagonopora nodorum,
Zymoseptoria tritici, Pyrenophora tritici-repentis) were
recorded in 4 × 1 m rows in two or three randomly
selected plots in each experiment each year at BBCH
20–30. In 2015, three randomly selected plots (oats)
were also assessed at BBCH 65, as described above.

Representative samples of harvested grains from each
treatment and replicate each year in Experiment I, and

Table 2. Description of the six different strategies (#) for control
of perennial weeds in Experiment I.

#

Spring Summer Autumn
Harrowing
perioda Hoeingb

Stubble cultivationNo Yes No Yes

1 x x Mowing
2c x x ‘Vertical –cutter’ +Mowing
3 x x Mowing
4 x x ‘Disc’ harrowing
5 x x Mowing
6 x x ‘KVIK-UP’ harrowing
a‘No’; early (normal) sowing date in spring. ‘Yes’; the use of a ‘KVIK-UP’-harrow
and delayed time of sowing spring cereals (see Table 1). b ‘No’; normal row
spacing (12 cm). ‘Yes’; double spacing (24 cm) and hoeing between. c

Undersown white clover.
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from each replicate of four selected treatments (1, 3, 5, 7)
each year in Experiment II, were analysed for disease
infections by seed health methods at Kimen Seed Lab-
oratory. Barley and oat grains were analysed for net
blotch (P. teres) and leaf spot (P. avenae), respectively,
by a Pyrenophora specific method where infected
kernels develop pigment spots on moist blotters (ISTA
2018), and for seedling blight pathogens (Fusarium
spp./Microdochium spp.) by a seedling symptom test
(Jørgensen 1971). Wheat grains were analysed for
glume blotch (P. nodorum) and seedling blight patho-
gens (Fusarium spp. and Microdochium spp.) by an agar
plate method (ISTA 2018). One hundred kernels were
analysed from each sample, i.e. 4 × 100 seeds from
each experimental treatment.

Soil structure assessments (Exp. 1)
Undisturbed soil samples in cylinders were taken in
autumn 2016 after harvest of the grain. From each plot,
three undisturbed soil cores (100 cm3) from the top
layer (1–6 cm) were sampled and stored in a cool
room. Water retention was measured at −20, −100,
−1000 and −15000 hPa matric potential using sand
boxes (Eijkelkamp) and ceramic plates (Richards 1947,
1948). The equivalent diameter of pores was obtained
from the capillary rise relationship (Kutilek and Nielsen
1994). Air porosity at −100 hPa matric potential (pores
> 30μm) was measured using an air pycnometer (Tor-
stensson and Eriksson 1936), and total porosity was cal-
culated as the sum of air porosity and volumetric water
content at −100 hPa matric potential. Air permeability
at −100 hPa matric potential was determined as

described by Green and Fordham (1975). Visual judg-
ment of soil structure was done according to Pearlkamp
(1958).

Data analyses

General linear mixed models with normally distributed
data were used in both experiments I and II to test the
fixed effects of treatment, the combined effect of year
and crop (here called year), nitrogen rate (only exper-
iment II) and their mutual interactions. The dependent
variables were dry matter of perennial weeds (total,
E. repens and S. arvensis (only experiment I)), number of
shoots of perennial weeds (total, E. repens and
S. arvensis (only experiment I)) and in experiment I
grain yields of spring barley (2014), spring oat (2015)
and spring wheat (2016). The random effect was block
within year in all analyses in experiment I. Since exper-
iment II was a split-plot design, the random effects
were block within year and the interaction between
treatment and block within year. The repeated nature
of the weed data with recordings made over time in
the same plots was accounted for by including year as
a repeated effect, with plot as the subject. An autoregres-
sive correlation structure and variance was assumed
between years. Weed biomass was not assessed in the
initial years 2012 in experiment II and 2013 in experiment
I, but the shoot counts made in the initial years showed
no major differences among treatments irrespective of
weed species, which means that the stands of perennial
weeds were relatively uniform across the experimental
area. For the analyses on weed biomass, the years 2013

Table 3. Implements and settings used in experiments I and II.

Experiment Trade mark (Brand?) Tilling (stubble) device
Working depths

(cm)
PTO r
min−1

Forward
speed (km

h−1)

I and II Hatzenbichler Interrow
cultivator (2.4 m)

Goosefoot shares, 18 cm
More information on: http://www.hatzenbichler.com/
hatzenbichler/en/products.html

2–4 – 3–4

I and II Einböch spring tine harrow
(4.5 m)

More information on:
http://www.einboeck.at/index.php?option=com_content&
view=article&id=2050&Itemid=891&lang=en

2 – 8–10

I KVIK-UP-harrow Heavy tines, with goosefoot shares, loosens the soil in ca 15 cm
depth. Rotor with spring tines. Throws soil and plant material
up- and backwards. Speed 180 r min−1 (powered by tractor
PTO), The spring tines works in 5–7 cm. depth.
More information on: http://www.kvikagro.com/en_ku_info.
html

15 (goosefoot) /5
(spring tines)

480 4–5

I Disc-harrow Disc diameter 35 cm. Kverneland, Norway. 8–10 – 8–10
I and II Kverneland FH180 Chopper Stubble and pasture mower. http://no.kverneland.com/

Grasprodukter/Beitepussere
4–6 a 540 5–7

I Kverneland «Vertical
rhizome/root cutter»
(Prototype)

The discs (diameter 36 cm) of the prototype make cuts for each
10 cm and fragment the horizontally growing rhizomes and
roots with minimal soil disturbance.

8–12 – 5

I Kverneland «Horizontal»
rhizome/root cutter»
(Prototype)

Flat shares like a goosefoot share 54 cm wide, cuts the vertical
roots to an even depth throughout the whole width.

10–12 7

astubble height.
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(experiment II only), 2014, 2015 and 2016 (experiment I
only) were included in the repeated statement,
whereas for total shoot number the initial years 2012
(experiment II only) and 2013 (experiment I only) were
included in addition to the other years.

The yield data in Experiment II was analysed by linear
regression with increasing nitrogen input as the co-
variate and year and treatment as categorical variables.
The random effects were block within year and the inter-
action between treatment and block within year. The
yield data in experiment I was also analysed by linear
regression to study whether increasing total perennial
weeds biomass affected grain yields. Weed biomass
was the co-variate and year the categorical variable in
this analysis, again with block within year as the
random term.

The parameters of the linear models were estimated
by residual likelihood estimations and calculations were
made using the MIXED procedure of SAS (SAS release
9.2, SAS Institute Inc., Cary, N.C.). Means were calcu-
lated as least square means (LSM) and pair-wise com-
parisons between LSMs were based on t-tests, with
probability values adjusted according to the Tukey
method. The 5% level or less indicated a significant
difference between means. The denominator degrees
of freedom (DDF) in F-tests and t-tests for mean separ-
ations were calculated according to Kenward and
Roger (1997). Data were either logarithmic or square
root transformed whenever necessary to obtain hom-
ogeneity of variance. Assumptions for the statistical
models used (independent experimental errors with
homogeneity of variances, normally distributed and
no outliers) were checked with visual inspection of
standardised residuals plots; including normal prob-
ability plots and residuals versus fitted values of the
response variables (y).

Results

Experiment I (different weed strategies)

Weeds
The ground coverage of the weeds differed considerably
both between strategies and through the experimental
years (Figure S1). The most frequent perennial weed
species and total perennial weed biomass was included
in the further statistical analyses.

Total perennial weed biomass and the principal
species E. repens responded with significant main
effects for treatment (P = 0.0033 (total) and P = 0.0004
(E. repens)) and year (P = 0.0007 (total) and P = 0.0203
(E. repens)). The two factors also interacted significantly
for both variables: P = 0.0156 (total) and P = 0.0065

(E. repens). The biomass of S. arvensis was not affected
by treatment and year.

The number of above-ground shoots of perennial
weeds in total and of E. repens in particular was
affected by treatment and year similarly as for biomass.
Main effects of treatment and year were P < 0.0001 and
P = 0.0481, respectively, for total shoot number and P <
0.0001 and P = 0.1276, respectively, for E. repens. Treat-
ment and year interacted significantly with P = 0.0285
for total shoot number and P = 0.0002 for E. repens. For
shoot number of S. arvensis, only the main effect of
year was significant (P = 0.0215).

Tables 4 and 5 show the interactions between treat-
ment and year for weed biomass and shoot numbers
for perennials in total, E. repens and S. arvensis. In
general, treatments 4 and 6 resulted in the smallest
populations of perennial weeds in total 2015 and 2016,
with effects mainly seen for E. repens. However, the
populations were not significantly reduced when com-
paring 2016 with 2014, irrespective of the treatment.
Comparisons between the initial shoot densities in
2013 and the final densities in 2016 only revealed one
significant reduction, namely the 97% reduction of
E. repens with treatment 6 (P < 0.025). The effect on
Sonchus arvensis did not differ among treatments.

Fungal diseases
In general, only low levels of foliar diseases were seen in
the fields. The few symptoms observed were evenly dis-
persed across treatments. In 2014, less than 1% of barley
plants had net blotch symptoms at BBCH 20–30. Oat leaf
spot incidence in 2015 was 3% at BBCH 20–30, and 8% at
BBCH 65. No symptoms of wheat leaf spot diseases were
observed in spring wheat (2016). Late in the season, at
BBCH 70–80 (milk development/late milk), low levels of
powdery mildew (Blumeria graminea) and rust diseases
(Puccinia spp.) were observed evenly dispersed across
treatments in all three years/all three cereal species. In
harvested grain, the infection levels in barley (2014)
and oats (2015) were 45% net blotch and 42% leaf
spot, respectively, on average of the six treatments (strat-
egies), with no significant differences between the strat-
egies (Table 6). The infection levels of glume blotch in
harvested spring wheat grain (2016) were low.
However, grain harvested from plots that had been
KvikUp-harrowed in autumn and spring, and sown with
normal row spacing (strategy 6), had less infection than
grain from plots with double row distance/hoeing (strat-
egies 3 and 4), and the strategy with clover (strategy 2)
(Table 6). Low levels of seedling blight were recorded
in all three cereal species, with no differences between
the different strategies.
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Soil structure
In general, there were small effects on soil volumetric
properties from the different strategies for control of per-
ennial weeds (Table 7). However, KVIK-UP harrowing
(strategy 5) in spring was among the treatments that
resulted in lowest bulk density and highest pore
volume. The greatest volume of pores >200 μm and
pores > 30 μm were measured after normal sowing
time, weed harrowing and mowing (treatment 1). The
volume of 0,2 −30 μm pores (available water) was great-
est for normal sowing time, weed harrowing and
mowing + vertical cutter (strategy 2), and it seems that
pore fraction 0,2 −3 μm (less available water) had
increased compared with the other treatments. Air per-
meability showed the highest value (not significant) for
treatment 1 (weed harrowing and mowing), followed
by treatment 6 (KVIK-UP both in spring and autumn).
The visual judgment of soil structure did not show any
significant difference, but the KVIK-UP treatments were
among the treatments with the highest score.

Crop yield
Crop yield analysis showed significantmain effects of treat-
ment (P < 0.0001), year (P < 0.0001) and a significant

interaction between the two factors (P = 0.0078). The
yield effects within years are shown in Table 8. Treatments
4 and 6 mostly gave the highest yield values in all three
years, although not always significantly higher, but
always significantly higher than untreated (treatment 1),
except for treatment 4 in 2014. Yield differences between
treatments within years could largely be explained by the
reduction in perennial weed infestation, see Figure 1. This
was particularly evident in 2015 and 2016, where perennial
weed biomass was linearly correlated with crop yield.

Experiment II (inter-row hoeing and N-levels)

Weeds
The number of shoots of perennials in total was only
affected by year (main effect, P < 0.0001), with shoot
numbers (no. m−2) averaging: 107.4 in 2012 (the initial
population); 244.7 in 2013; 101.6 in 2014; and 16.9 in
2015. Inter-row cultivation at 24 cm row spacing only
tended to lower shoot number (main effect, P = 0.0878)
in comparison with no hoeing (12 cm row spacing),
which was most pronounced for year 2015. A separate
analysis of shoot number of the principal species,
E. repens, showed that only year could explain the

Table 4. Least squares means (LSMtransf, square-root-transformed values with detransformed values in parentheses) of weed biomass
(DM g m−2) of perennials in total, Elymus repens and Sonchus arvensis shown for each treatment within the years 2014–2016 in
experiment I. The relative change of the perennial weed population between years is shown for each treatment and weed
category. All comparisons are based on Tukey tests.

Strategy 2014 2015 2016

LSMtransf (DM g m−2) LSMtransf (DM g m−2) % change 14 vs. 15 LSMtransf (DM g m−2) % change 15 vs. 16 % change 14 vs. 16

Total biomass
1 7.57 (57.3) a 9.60 (92.2) a +61 ns 12.84 (165.0) a +79 * +188 **
2 6.64 (44.1) a 7.91 (62.6) a +42 ns 10.09 (101.9) abc +63 ns +131 ns
3 6.98 (48.7) a 8.19 (67.1) ab +38 ns 11.30 (127.7) ab +90 (*) +162 *
4 6.31 (39.8) a 3.97 (15.8) b −60 ns 06.90 (47.60) bc +201(*) +20 ns
5 6.64 (44.1) a 8.16 (66.7) ab +51 ns 09.43 (88.90) abc +33 ns +102 ns
6 4.68 (21.9) a 3.65 (13.3) b −39 ns 05.63 (31.70) c +138 ns +45 ns
SED 1.419 1.419 1.419
Elymus repens
1 5.80 (33.6) a 7.95 (63.3) a +88 ns 9.40 (88.3) a +39 ns +163(*)
2 3.23 (10.4) a 4.61 (21.2) ab +104 ns 6.26 (39.1) ab +84 ns +276 ns
3 4.55 (20.7) a 5.44 (29.6) ab +43 ns 7.46 (55.6) a +88 ns +169 ns
4 3.32 (11.0) a 1.64 (2.68) b −76 ns 2.23 (4.98) b +86 ns −55 ns
5 4.07 (16.6) a 3.47 (12.0) ab −28 ns 2.68 (7.21) ab −40 ns −57 ns
6 2.17 (4.71) a 0.75 (0.56) b −88 ns 1.38 (1.90) b +239 ns −60 ns
SED 1.369 1.369 1.369
Sonchus arvensis
1 3.90 (15.2) a 3.66 (13.5) a −11 ns 5.53 (30.6) a +127 ns +101 ns
2 5.23 (27.4) a 4.85 (23.5) a −17 ns 6.29 (39.6) a +69 ns +45 ns
3 4.56 (20.8) a 3.88 (15.1) a −27 ns 5.96 (35.5) a +135 ns +71 ns
4 4.71 (22.1) a 2.26 (5.09) a −77 ns 4.42 (19.6) a +285 ns −11 ns
5 4.12 (17.0) a 5.19 (27.0) a +59 ns 6.39 (40.8) a +51 ns +140 ns
6 3.62 (13.1) a 2.33 (5.43) a −59 ns 4.36 (19.0) a +250 ns +45 ns
SED 1.839 1.839 1.839

Different letters alongside LSMtransf in columns for each weed category and year indicate significant differences P < 0.05.
SED =maximum standard error of differences between LSMtransf.
ns = not significant.
(*) = 0.05≤ P < 0.1.
* = P < 0.05.
** = P < 0.01.
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variation significantly (main effect: P = 0.0009), again with
2015 having the smallest population: 13.0 shoots m−2.

The biomass of perennials in total responded to year
(main effect, P < 0.0001), treatment (main effect, P =
0.0390) and the interaction between the two factors (P
= 0.0129). The effects were mainly driven by E. repens
and partly by Vicia cracca (tufted vetch). Similar to
shoot numbers, nitrogen level did not explain any of
the biomass variation except for V. cracca, which
showed biomass reduction with increasing N-levels
(main effect, P = 0.0163). Figure 2 illustrates the total per-
ennial biomass plotted against increasing N-levels and in
relation to year and treatment. Hoeing at 24 cm row
spacing resulted in significantly less perennial biomass
than when hoeing at 12 cm spacing, primarily in 2015.
While 2015 had the lowest shoot number of perennials

in total of all years, 2015 also had the greatest amount
of perennial weed biomass. The shoot numbers in the
other years originated primarily from many tiny shoots
of Stachys palustris (marsh woundwort), especially in
2013 and V. cracca. Shoot growth of E. repens was also
less vigorous in 2013 and 2014 (data not shown).

Fungal diseases
As in Experiment I, only low levels of foliar diseases were
observed in all three years throughout the experimental
fields (across treatments) in Experiment II. Barley net
blotch occurred on 3% of the plants in 2013 and on
less than 1% in 2014, at BBCH 20–30. In 2015 (oats), 3%
of the plants had leaf spot symptoms at BBCH 20–30
and 8% at BBCH 65. Also in this experiment, low levels
of powdery mildew and rust diseases were observed in

Table 5. Least squares means (LSMtransf, square-root (total) and log-transformed (E. repens and S arvensis) values with detransformed
values in parentheses) of number of perennial shoots in total, Elytrigia repens and Sonchus arvensis, respectively, shown for each
treatment within the years 2013–2016 in experiment I. The relative change of the perennial weed population between years is
shown for each treatment and weed category. All comparisons are based on Tukey-Kramer tests.

Strategy 2013 2014 2015 2016

LSMtransf

(shoots m−2)
LSMtransf

(shoots m−2)
% change
13 vs. 14

LSMtransf

(shoots m−2)
% change
14 vs. 15

LSMtransf

(shoots m−2)
% change
15 vs. 16

% change
13 vs. 16

Total number
1 11.16 (124.6) a 11.71 (137.1) a +10 ns 11.70 (137.0) a −0.1 ns 16.57 (274.7) a +99 ns +120 ns
2 8.90 (79.3) a 9.08 (82.4) a +4 ns 9.62 (92.6) ab +12 ns 12.31 (151.6) ab +64 ns +48 ns
3 11.54 (133.2) a 10.77 (115.9) a −13 ns 9.25 (85.6) ab −26 ns 13.91 (193.6) ab +126 ns +45 ns
4 10.41 (108.4) a 7.65 (58.6) a −46 ns 5.07 (25.7) b −56 ns 08.88 (78.6) bc +206 ns −27 ns
5 9.32 (86.9) a 10.24 (104.9) a +21 ns 9.05 (82.0) ab −22 ns 11.77 (138.5) abc +69 ns +37 ns
6 9.62 (92.6) a 6.16 (37.9) a −59 ns 5.08 (25.8) b −32 ns 06.38 (40.7) c +58 ns −56 ns
SED 1.524 1.524 1.524 1.524
Elymus repens
1 3.12 (22.1) a 4.59 (97.7) a +342 ns 4.57 (95.6) a −2 ns 5.28 (195.4) a +104 ns +784 ns
2 2.87 (17.1) a 3.69 (39.4) a +130 ns 3.28 (26.0) ab −34 ns 4.30 (72.9) ab +180 ns +326 ns
3 2.96 (18.8) a 4.31 (74.2) a +295 ns 3.83 (45.7) a −38 ns 4.65 (104.4) a +128 ns +455 ns
4 2.97 (19.0) a 3.59 (35.6) a +87 ns 1.41 (3.60) bc −90 * 2.17 (8.2) bc +128 ns −57 ns
5 2.72 (14.7) a 4.09 (58.9) a +301 ns 3.18 (23.5) ab −60 ns 3.14 (22.6) ab −4 ns +54 ns
6 2.65 (13.6) a 2.24 (8.90) b −35 ns 0.55 (1.23) c −86 ns −0.1 (0.4) c −67 ns −97 *
SED 0.601 0.601 0.601 0.601
Sonchus arvensis
1 1.07 (2.4) a 2.23 (8.8) a +267 ns 1.68 (4.7) a −47 ns 2.77 (15.5) a +228 ns +546 ns
2 1.45 (3.8) a 2.90 (17.6) a +363 ns 2.96 (18.9) a +7 ns 3.38 (28.9) a +53 ns +661 ns
3 2.06 (7.4) a 2.77 (15.4) a +108 ns 2.45 (11.1) a −28 ns 3.10 (21.8) a +96 ns +195 ns
4 2.20 (8.5) a 2.18 (8.3) a −2 ns 1.97 (6.7) a −19 ns 3.11 (22.0) a +228 ns +159 ns
5 1.49 (3.9) a 2.51 (11.8) a +203 ns 2.79 (15.8) a +34 ns 3.31 (26.7) a +69 ns +585 ns
6 1.85 (5.9) a 2.17 (8.3) a +41 ns 2.18 (8.4) a +1 ns 3.02 (20.0) a +138 ns +239 ns
SED 0.938 0.938 0.938 0.938

Different letters alongside LSMtransf in columns for each weed category and year indicate significant differences P < 0.05. SED = maximum standard error of differ-
ences between LSMtransf. ns = not significant. * = P < 0.05.

Table 6. Diseases (% infected kernels) recorded by laboratory analyses of grain harvested from experiment I in 2014, 2015 and 2016.

Strategy Row distance N (kg ha−1)

2014 (barley) 2015 (oat) 2016 (spring wheat)

Net blotch Seedling blight Leaf spot Seedling blight

Seedling blight Glume
blotchFusarium spp. Microdochium spp.

1 12 100 47 4 41 4 6 3 2 ab
2 12 100a 39 3 46 4 3 1 6 a
3 24 100 50 7 43 8 5 4 6 a
4 24 100 43 6 40 4 1 3 7 a
5 12 100 49 4 39 4 3 3 3 ab
6 12 100 44 4 43 4 3 2 1 b
P-value: 0.14 0.38 0.87 0.14 0.43 0.52 0.03
a undersown white clover. 2014: 50 Kg N.
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all three years late in the growing season (at BBCH 70–80,
milk development/late milk). In harvested grain, the
infection levels of net blotch in barley in 2013 and
2014, and of leaf spot in oats in 2015 were 19%, 43%
and 37% infected kernels, respectively, on average of
the four tested treatments. There was a trend (not stat-
istically significant) towards lower fungal infections in
grain from the lowest N level (50 kg N) than from the
higher level (150 kg N) in all three years (Table 9). The
levels of pathogens causing seedling blight in the har-
vested grain was low also in this experiment (as in Exper-
iment I).

Crop yield
Grain yields increased linearly with increasing nitrogen
input and could be described by one common slope (P
< 0.0001), irrespective of the two categorical variables
year and treatment. Year had a strong main effect (P <
0.0001) but interacted with treatment (P = 0.0390). The
simplest model, in which all non-significant effects were
excluded, is shown in Table 10 and Figure 3. Treatment
only affected yields in oats in 2015, when yields were
17% higher for 24 cm row spacing + hoeing as compared
to 12 cm spacing. All three highest N-levels gave higher
yield than 50 kg N, and 200 kg N gave higher yield than
100 kg N for both 2013 and 2014. In 2015, the two
highest levels, 150 kg N and 200 kg N, gave higher yield
than the two lowest N-levels, with no difference

between the two highest N-levels. Crop yields increased
while perennial weed biomass remained the same with
increasing nitrogen supply, which implies that the crops
utilised the added resources better than the weeds.

Perennial weed biomass was not included in the ana-
lyses as a co-variate in addition to nitrogen input
because these data were strongly confounded with year
and treatment. In addition, the range of weed biomass
within year and treatment was too small to cause any sig-
nificant correlations between yields and weed biomass.

Discussion

Strategy 1, without stubble cultivation or hoeing treat-
ments, was considered as the standard treatment of
Experiment I (Table 2). According to studies of Salonen

Table 7. Soil volumetric properties, air permeability and visual judgment of soil structure for the different strategies for control of
perennial weeds (Experiment 1).

Strategy Bulk density g cm−3 Pore volume Vol%

Pore volume (µm)

Air perme-ability µm2 Visual judgment of soil structure> 200 > 30 0,2–30 0,2–3

1 1.35 48.1 7.6 10.7 21.0 17.4 9.7 5.6
2 1.36 47.8 4.1 7.0 23.9 20.4 2.7 5.4
3 1.39 46.2 6.0 8.3 21.1 17.7 4.1 5.4
4 1.35 48.2 5.7 8.7 22.8 18.9 3.8 6.9
5 1.39 46.7 4.9 8.0 22.0 18.2 3.4 7.3
6 1.34 48.8 7.1 10.2 22.6 18.7 7.5 6.5
Sign. ns ns * ns * * ns ns

ns = not significant.
* = P < 0.05.

Table 8. Least squares means (LSM) of grain yield (kg ha−1) of
spring barley (2014), spring oat (2015) and spring wheat (2016)
in experiment I. All comparisons are based on Tukey tests.
Strategy Barley (2014) Oat (2015) Wheat (2016)

1 2923.9 ab 3702.4 a 1468.0 a
2 2628.5 a 3815.5 ab 1628.3 ab
3 2958.4 ab 4505.5 b 2573.3 c
4 3157.8 ab 4718.5 b 2816.2 c
5 3556.4 bc 3962.5 ab 2344.6 bc
6 4008.5 c 4542.7 b 3014.7 c
SED 206.07 250.97 268.97

Different letters alongside LSMs in columns for each year indicate significant
differences P < 0.05.

SED =maximum standard error of differences between LSMs.

Figure 1. The relationships between biomass of perennial weeds
in total (g DM m−2) and grain yield (kg ha−1) of spring barley in
2014 (blue colour), spring oat in 2015 (red) and spring wheat in
2016 (black) in experiment I. The relationships can be described
by one common slope −7.82 (kg ha−1 g−1 m2) and three inter-
cepts: 2014 = 3569.3 (kg ha−1), 2015 = 4643.2 (kg ha−1), 2016
= 3060.0 (kg ha−1). Non-transformed weed biomass values was
used in the regression. ◇ = 1, ○ = 2, □ = 3, = 4, Δ = 5 and
× = 6.
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et al. (2001) and Sundheim et al. (2014), this treatment is
very close to the practice of many organic farmers today
and the authors conclude needs for improvements for
controlling weeds. The strategies consisting of one
direct weed control measure, i.e. hoeing (strategy 3),
‘KVIK-UP’ harrowing in spring (strategy 5) and the use
of the ‘Vertical-cutter’ in autumn (strategy 2) did not
result in decreased biomass or shoot number for either
total records or specific weed species. These treatments
did not suppress any of the specific weed species in our
study (Tables 4 and 5). Nevertheless, it is interesting to
observe that the composition of weed species changed
during the years in strategy 5, with a decrease of
E. repens and an increase of S. arvensis, although these

results were not significant (Figure S1, Tables 4 and 5).
New studies are needed to verify whether a short
period of ‘KVIK-UP’ bare fallow in spring could be
sufficient for control of E. repens in fields dominated by
this species, as well as verifying the risk of promoting
S. arvensis. The ‘vertical cutter’ fragments shallow-
growing rhizomes and creeping roots with minimal dis-
turbance. This may have several environmental
benefits, but lack of weed control of this strategy post-
harvest (in autumn) was recently shown by Bergkvist
et al. (2017). However, Ringselle et al. (2018), using the
same vertical cutter for control of E. repens when renew-
ing a ley, concluded that rhizome fragmentation by this
tool reduced growth of E. repens and benefited ryegrass
and white clover crops.

Two direct weed control measures within an annual
cycle, stubble harrowing in autumn and spring (strategy
6) or stubble cultivation in autumn and hoeing (strategy
4) was necessary for controlling the whole perennial
weed flora (Figure S1, Tables 4 and 5). Although not
always resulting in significantly lower numbers of
weeds, these two treatments clearly distinguished them-
selves from all the other treatments. The combination of
‘KVIK-UP’ harrowing and hoeing, two potential spring –
early summer measures, was not included in our study.
However, it would have been interesting to have
included this treatment because it might minimise the
risk of soil erosion and nutrient leaching linked to inten-
sive soil cultivation in autumn.

Soil structure was evaluated by measuring various
volumetric properties of the soil (Table 7). These

Figure 2. Least square means (LSM) (shown as back-transformed LSMs from log-transformation) of weed biomass (g DM m−2) of all
perennial weed species in total in experiment II. LSMs are plotted against increasing nitrogen input and shown for the categorical vari-
ables year and treatment. ▴ = 24 cm inter-row spacing + hoeing, Δ = 12 cm inter-row spacing without hoeing.

Table 9. Diseases (% infected kernels) recorded by laboratory analyses of grain harvested from experiment II in 2013, 2014 and 2015.

Row distance N (kg/ha)

2013 (barley) 2014 (barley) 2015 (oat)

Net blotch Seedling blight Net blotch Seedling blight Leaf spot Seedling blight

12 50 19 3 37 1 26 4
12 150 26 3 43 1 40 5
24 50 14 2 38 3 35 5
24 150 18 3 52 3 47 5
P-value: 0.07 0.76 0.29 0.47 0.12 0.91

Table 10. Parameter estimates for grain yields of spring barley
(2013 and 2014) and spring oat (2015) regressed linearly
against increasing nitrogen level in experiment II. Parameter
estimates are from the simplest model. Standard errors of the
estimates are shown in parentheses.

Year (crop) Treatment
Intercept (kg

ha−1)
Slope (kg ha−1 kgN−1

ha)

2013 (Spring
barley)

12 cm 2885.2 (147.8) 11.63 (0.827)

24 cm +
hoeing

2885.2 (147.8) 11.63 (0.827)

2014 (Spring
barley)

12 cm 1967.2 (145.1) 11.63 (0.827)

24 cm +
hoeing

1967.2 (145.1) 11.63 (0.827)

2015 (Spring
oat)

12 cm 3273.0 (172.6) 11.63 (0.827)

24 cm +
hoeing

3836.9 (177.4) 11.63 (0.827)
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measurements show only few significant effects of the
strategies. Even if the various parameters do not show
the same trend, it can be generalised that more intensive
treatments such as KVIK-UP did not harmed the soil
structure in our experiment. Our measurements were
made after harvest but before any autumn treatments,
and we expect insignificant direct effects from autumn
treatments because the soil is ploughed in spring. That
can also be true for the spring treatment with KVIK-UP,
since the soil is ploughed within short time after the
use of the KVIK-UP. Treatment 2, with the use of a vertical
cutter, seems to have changed the pore size distribution
towards more pores in the fraction 0,2–3 μm probably
because of the disk which are cutting the soil, also
compact the soil. Air permeability also shows this
trend, although it is not significant. However, the effect
measured on the soil structure will not have any
influence on plant growth. The workability of the soil
may have been affected by the autumn treatment. The
disk harrowed and KVIK-UP harrowed plots may have
been drier at the time of normal sowing than plots that
was mowed because of different evaporation from the
surface. For strategies 5 and 6 with use of KVIK-UP in
spring to the same time as normal sowing time, but so
ploughed about 1 weeks later could also have been
ploughed and sown with another soil moisture content
as compared to treatments with normal sowing time.

Because the combination of best weed control in
strategies 4 and 6 and no measured harmful effects on
soil structure, it is not surprising that the highest yields
were achieved in strategy 4 and 6. The weed data,
however, cannot alone explain all yield responses. For
example in 2016 strategy 3 resulted in grain yields simi-
larly to the most effective weed control strategies 4 and
6, though strategy 3 had very large biomass, which was
significantly higher than those measured for strategies.
The different weed management strategies did not
influence on levels of net blotch and leaf spot in har-
vested grains of barley and oat, respectively. In spite of

modest development of disease symptoms in the
fields, considerable infections of net blotch and leaf
spot pathogens were detected in harvested barley and
oat grains, respectively (Table 6). This was probably
caused by the relatively wet conditions promoting
disease spread in the last part of the growing season.

Hoeing and 24 cm spacing resulted in significantly
less perennial biomass as compared to 12 cm spacing.
The differences were greatest in 2015, followed by
2013 and 2014 (Figure 2). Differences between years
were probably most related to different number of
hoeing operations between years (2015 = 3 times; 2013
= 2 times; 2014 = 1 time). As an average over years,
each hoeing operation corresponded to a biomass
decrease of ≈ 15 percent per hoeing (data not shown),
slightly higher than the ca. 10 percent per hoeing (2 yr.
average) against C. arvense reported by Graglia et al.
(2006). Melander et al. (2005) previously summarised
that widening crop row spacing to allow for inter-row
hoeing may reduce yields under conventional growing
conditions, but concluded also that evidence on the
effect of row-spacing on yield is inconclusive in both
spring and winter cereals. Moreover, recent results
obtained from three-year experiments with organically
grown spring barley and spring wheat did not reveal
any unambiguous yield penalty associated with widen-
ing inter-row spacing from 125 mm to 150, 200, 250 or
even 300 mm (Melander et al. 2018). This can be exem-
plified by Andersson (1983), who showed that when
row spacing of winter wheat was increased from 100
to 220 mm with the same seeding rate, the largest
yield was achieved with 100-mm row spacing, and
yield was decreased by 0.7% for every centimetre
increase of row distance. In contrast to this, neither Ras-
mussen (1998) nor Tillett et al. (1999) found any yield
reduction when increasing row spacing of winter
wheat from 100–120 to 200–220 mm. In clear contrast
to our results, Lötjönen and Mikkola (2000) in Finland
found that a similar spacing increase (125–250 mm) in

Figure 3. Linear regression of grain yield against increasing nitrogen input shown for the categorical variables year and treatment in
experiment II. Curves were fitted according to the parameter estimates shown for the simplest model in Table 10. ▴ = 24 cm inter-row
spacing + hoeing, Δ = 12 cm inter-row spacing without hoeing.
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spring barley caused yields to decrease by 12–13%, and
interrow hoeing did not increase the yield further. One
explaining factor of these contradictory results may be
differences in weed flora and weed pressure, which
gave higher advances of hoeing in our study (Figure 3).

Increased nitrogen level did not explain any of the
variation of weed biomasses except for V. cracca
where biomass was reduced by increasing N-level
(data not shown). E. repens is exemplified by Håkans-
son (2003) as a species that responds positively to
stronger fertilisation, but this was not shown in our
study. However, other studies have demonstrated con-
tradictory results with E. repens and its response to
organic amendments when competing with arable
crops (Rasmussen et al. 2014; Melander et al. 2016).
Another species, S. arvensis is exemplified as a
species that responds opposite, i.e. stronger fertilisation
decreases the competition ability of this species
(Håkansson 2003; Eckersten et al. 2010).

Also in Experiment II (12 vs. 24 cm row distance and
different N levels), considerable infections of net blotch
and leaf spot pathogens were detected in harvested
barley and oat grains, respectively, in spite of low levels
of symptoms in the fields (Table 9). However, double
spacing and hoeing did not increase fungal disease
levels in harvested grain compared to normal spacing.
On the contrary, there was a tendency of less net
blotch in barley from double vs normal row distance in
2013. In the spring wheat experiment in 2016 (weed
control strategies) the level of glume blotch in harvested
grain was low, but tended to be higher in the treatments
with wide compared to normal row spacing (24 vs.
12 cm). It is unlikely that this had any practical
influence. However, it can be mentioned that Broscious
et al. (1985) reported more glume blotch at wider row
spacing (18 vs. 13 cm) in two experiments, although in
most cases row spacing did not consistently affect the
disease severity. In a study by Orth and Grybauskas
(1994), wide rows (20 vs. 10 cm) tended to increase
glume blotch severity, although grain infection was not
affected or decreased with wide row spacing. A more
recent study (Salgado et al. 2017) did not observe high
enough leaf blotch intensity to evaluate the row-
spacing effect. Tompkins et al. (1993) reported that
narrow row spacing (9 vs. 36 cm) produced a canopy
microclimate favourable for the development of glume
blotch. These somewhat inconsistent observations indi-
cate a need for further field studies on the effects of
row distance on fungal diseases in cereals, preferably
at a number of locations and soil types, and in more
years to have different weather conditions. No literature
was found concerning fungal disease development and
row distances in barley and oats.

The influence of N supply on cereal diseases is
reported to be contradictory (Walters and Bingham
2007). Increased N rates have been shown in a number
of studies to increase fusarium head blight, wheat leaf
spot complex, barley net blotch, powdery mildew, rust
diseases, etc (e.g. Lemmens et al. 2004; Baeckström
et al. 2006; Askegaard et al. 2011; Salgado et al. 2017).
In our study, we did not see a significant effect of nitro-
gen fertilisation on fungal disease levels, although there
was a trend towards increased disease with increased N
supply. Other studies have also reported no effect of N
on the severity of cereal diseases, e.g. Salgado et al.
(2017), who did not find a significant effect of N on
FHB or the mycotoxin deoxynivalenol (DON).

The use of undersown white clover did not reduce the
disease incidences in our experiment (Table 6). This devi-
ates from a number of studies that have reported
reduced fungal disease severity with the use of green
manures and living mulches; e.g. Costanzo and Barberi
(2016) reported that the presence of legume living
mulch reduced the severity of the wheat leaf spot
complex by 37% in average, and Kosinski et al. (2011)
found that kura clover living mulch significantly
reduced the development of barley leaf diseases. In a
previous Norwegian study, the frequencies of net
blotch infected barley seedlings were significantly
reduced after soil amendments of grass and clover in a
greenhouse experiment using two heavily infected
seed lots (Brodal et al. 2008).

As commented by a number of studies, cereal dis-
eases are greatly influenced by weather conditions in
the growing season (e.g. Baeckström et al. 2006;
Walters and Bingham 2007). In our experiments, it is
likely that weather conditions late in the growing
season caused considerable development of barley net
blotch and oat leaf spot infections evenly dispersed
throughout the experimental fields.

We can conclude that in Experiment I the strategies
consisting of no or one direct weed control measure
clearly did not control the perennial weed flora (Figure
S1, Tables 4 and 5). The two seasonal control measures
gave a similar and satisfactory weed control as well as
the highest crop yield. Since the combination of best
weed control in the two strategies and no measured
harmful effects on soil structure or increase of diseases
in these strategies, it is not surprising that the highest
yields also were achieved here. The different strategies
for control of perennial weeds did not affect the soil
structure, as evaluated by pore size distribution, air per-
meability and visual judgment. In Experiment 2, hoeing
and 24 cm spacing resulted in significantly less perennial
biomass as compared to 12 cm spacing. As an average
over years, each hoeing operation corresponded to a
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biomass decrease of ≈ 15 percent per hoeing. Double
row spacing and hoeing did not increase disease levels
in harvested grain compared to normal spacing.
Increased nitrogen level did not explain any of the vari-
ation of weed biomasses, except for V. cracca where
biomass was reduced by increasing N-level. In our
study, we did not see a significant effect of nitrogen fer-
tilisation on the fungal disease levels, although there
seemed to be a trend towards increased disease with
increased N supply. In the two first experimental years,
the crop yield was similar for the two spacing levels,
the third year hoeing and 24 cm gave the highest
yield. The study shows that both inter-row hoeing and
the use of weed harrows, especially those that both
desiccate and starve the perennial weeds, are important
puzzle pieces in when developing integrated pest man-
agement practice and organic farming. Our results also
show that relatively intensive soil cultivation may not
be harmful for the soil structure when carried out
when the soil is workable.
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