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Seed germination and seedling growth parameters in nine tall fescue varieties
under salinity stress
Seyede Roghie Ghadirnezhad Shiade and Birte Boelt

Department of Agroecology, Technical Sciences, Aarhus University, Aarhus, Denmark

ABSTRACT
To assess seed germination parameters and identifying tolerant varieties, seeds of nine tall fescue
varieties (Festuca arundinacea Schreb.) were germinated under various salinity levels for 14 days.
Tall fescue is considered ‘moderately tolerant’ to salinity stress, but our study revealed a
remarkable diversity among the tested varieties. Armani, Essential, Fatcat, and Starlett were
found to reach the same final germination (>90%), irrespective of NaCl concentration up to 15
ds m−1 NaCl; Asterix and Meandre expressed lower germination under the highest salinity level
(>75%); and final germination decreased in Eyecandy, Rhizing star, and Thomahawk gradually
with increasing salinity (>55%). The main effect of increasing salinity was a delay in germination,
and our study suggests that the recording of final germination, which is performed on day-14 in
a standard germination test, should be postponed in order to understand the full effect of
salinity on germination potential. Nonetheless, a delay in germination will affect turf quality
negatively and hence there is good reason to test for salinity tolerance when choosing a variety
for sowing on saline soil. Further, our findings indicate a future perspective for breeding for
improved salinity tolerance in tall fescue by the identification of salinity-tolerant breeding lines
or varieties.

ARTICLE HISTORY
Received 3 March 2020
Accepted 1 June 2020

KEYWORDS
Cumulative germination
percentage; germination
rate; salinity tolerance; salt
stress; vigour index

Introduction

Tall fescue (Festuca arundinacea Schreb.) is a cool-season
grass broadly used for home lawns, golf courses and
other sports grounds (Hatamzadeh et al. 2014). It has
an extensive adaptation to different abiotic stresses
such as heat, drought, and high soil pH, and therefore
it can be used in salt-affected soils (Carrow 1996a,
1996b; Gao and Li 2012, 2014); in other words, it is
assumed that the main contributor of its high persist-
ence could be the possibility of summer dormancy and
expansion of a considerable root system, as well (Pirnaj-
medin et al. 2016). Manuchehri and Salehi (2015) found
that tall fescue has a salinity tolerance threshold value
of 3.9 ds m−1, and several studies have shown that
among cool-season turfgrass species, tall fescue has an
intermediate to high salinity tolerance (Lunt et al. 1961;
Alshammary et al. 2004; Friell et al. 2012).

Salinity stress is becoming a more serious problem in
turfgrass management, particularly in arid and semi-arid
regions. Due to declining freshwater availability, the use
of non-potable water with high levels of salts, for
example, recycled, effluent or reclaimed water, is becom-
ing a considerable source of irrigation for turfgrass
(Alshammary et al. 2004; Huang et al. 2017). High soil

salinity can also be caused by other conditions, such as
low precipitation, water percolation from high water
tables, salts from fertilisers and road de-icers (Zhang
et al. 2013), and higher temperatures combined with
increased evaporation caused by changing climate
(Carlos et al. 2018).

Salinity is one of the most detrimental environmental
factors restricting plant growth and development world-
wide (Reddy et al. 2017). The harmful effects of high sal-
inity can be detected during the whole life cycle from
inhibition or delay in germination to the death of plants
(Parida and Das 2005). Salt stress can affect plants in
several ways including disordered ion homeostasis due
to decreased plant water uptake ability (Zanetti et al.
2019), accumulation of Na+ andCl− causing hyperosmotic
stress (Foti et al. 2018), toxicity (Zanetti et al. 2019), and
high quantity of dissolved ions in the soil environment,
in addition to Na+, Cl− including SO2−

4 , HCO−
3 , and rarely

K+, Ca2+, Mg2+, NO3− (Kujawska et al. 2020). A high con-
centration of absorbed Na+ may restrict K+ uptake and
disrupt regulation of stomatal conductance resulting in
significant water loss and dehydration (Dai et al. 2014).

Furthermore, a high uptake of Cl− may lead to chlor-
ophyll damage (Tavakkoli et al. 2010). It also is able to
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critically decrease grass quality and ornamental appear-
ance (Chen et al. 2014).

Seed germination and seedling growth are important
phases in the successful establishment of the plant
(Ibrahim 2016). Germination takes place when the
environmental conditions (for example temperature,
moisture, light and oxygen) are suitable (Arias et al.
2018). Salt stress induces toxic effects in the germinating
seeds, and under high salinity stress, seed germination,
seedling growth and establishment, and root and
shoot length are significantly reduced (Murillo-Amador
et al. 2002; Liang et al. 2018).

In a newly seeded turf, rapid germination and plant
establishment are important to increase the competition
against weeds. Similarly, in established turf, gaps in plant
cover will allow weeds to establish which reduces turf
quality. Restoring turf is performed by reseeding which
is costly and time-consuming and, in salt-influenced
areas, requires access to varieties with tolerance to sal-
inity stress (Ouji et al. 2015). Warm season grasses are
generally considered more salt tolerant than cool
season grasses but they have a relatively long period of
dormancy caused by low temperatures. To prolong the
playing period when turf is used for golf courses and
other sports grounds, cool season grasses are overseeded
in autumn and tall fescue has been shown a good candi-
date for overseeding into zoysia grass (Zoysia japonica
Steud.) (Yin et al. 2014). Hence, identification and devel-
opment of salinity-tolerant varieties is useful for long-
term sustainable management of turfgrass. There are
contrasting reports concerning the effect of salinity on
germination in tall fescue. A reduction in final germina-
tion was found by Horst and Beadle (1984), and Zhang
et al. (2011) by exposing seeds to salinity levels up to
23.4 and 26.1 ds m−1, respectively. In contrast, screened
tall fescue at salinity levels up to 22.5 ds m−1 and found
no effect on final germination.

The objective of this study was to investigate and
compare seed germination and growth parameters of
tall fescue subjected to different levels of salinity stress.
There are contrasting findings in this field, but most
reports are based on the characterisation of one or two
varieties per species. The further aim was therefore to
elucidate the range of variation in salinity tolerance
among nine tall fescue turf varieties.

Material and methods

Plant material

Nine commercial varieties of tall fescue (‘Armani’,
‘Asterix’, ‘Essential’, ‘Eyecandy’, ‘Fatcat’, ‘Meandre’,
‘Rhizing star’, ‘Starlett’ and ‘Tomahawk’) were provided

by the seed companies DLF and DSV Frø Danmark A/S.
During the experiment, the seeds were kept in paper
bags at room temperature (22 ± 2°C). From each
variety, 4 × 25 seeds were characterised for physical par-
ameters (area, seed length and diameter) using a Video-
meterLab instrument (Videometer A/S, Hørsholm,
Denmark). Information from multispectral images cap-
tured at 19 different wavelengths from visible light to
the near-infrared region (375–970 nm) were used to
determine length, diameter and area of each individual
seed. Thousand seed weight (TSW) was calculated
based on the weight of four subsamples of 100 seeds.
Further, each variety was characterised by a standard
germination test (ISTA 2018) using 4 × 100 seeds.

Salinity stress treatments and experimental
design

Seeds were surface-sterilised for 2 min in a 13.5% hypo-
chlorite/H2O solution, with gentle mixing, then rinsed
three times with distilled water. Salinity stress treatments
were created using NaCl at five concentrations (3, 6, 9, 12
and 15 ds m−1, equivalent to 30, 60, 90, 120 and
150 mmol l−1). Distilled water was used as the non-
saline control (0 ds m−1). Germination tests were
carried out in Petri dishes (90 mm-diameter) with one
layer of filter paper. Five millilitres of the desired saline
solution or distilled water were applied to each Petri
dish and after the placement of seeds (four replicates
of 40 seeds each, for each salinity concentration), they
were sealed with Parafilm to avoid evaporation. The
Petri dishes were placed randomly in a germinator with
alternating 30°C 8 h, 20°C 16 h. The germination test
was performed following the International Seed Testing
Association’s rules for tall fescue (ISTA 2018), but in this
experiment the number of germinated seeds was
recorded on a daily basis from 2 to 14 days from
sowing. Seeds were considered germinated when the
radicle was at least 2 mm long.

Measurements

Salinity tolerance was measured based on final germina-
tion (%), germination rate (GR), length (mm) of roots and
shoots on day-7 and day-14 expressed as the mean of
five randomly selected seeds per replicate, root to
shoot ratio (R:S), and seedling vigour index (SVI) on
day-7 and day-14. GR was calculated as:

GR =
∑

Gi/Ti

where G is the number of seeds germinated and t is the
number of days from start of germination and i = day of
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scoring. Seedling vigour index (SVI) was calculated fol-
lowing the modified formula (Abdul-Baki and Anderson
1973).

SVI = shoot lengh (mm)× germination percentage

Statistical analysis

Data were analysed by ANOVA. For all data, normality of
the residuals were analysed by the Shapiro–Wilk test.
Data sets where the residuals did not follow a normal dis-
tribution were arcsine-transformed. Differences between
means were compared using the least significant differ-
ence (LSD) values from Duncan’s multiple range test.
All statistical analyses were performed using SAS statisti-
cal software version 9.3 (SAS 2011).

Results

There was some variation in the size and 1000-seed
weight of the nine varieties of tall fescue (Table 1).
Seeds of ‘Starlett’ appeared to have the highest area
and length, and were relatively wide, but were not the
heaviest. Conversely, seeds of ‘Eyecandy’ were relatively
small with respect to area and length, but had the
highest 1000-seed weight. In the initial germination
test, final germination ranged between 92% and 99%
with the exception of seeds of ‘Rhizing star’ and
‘Asterix’, with 85% and 86% germination, respectively.

The seeds of the different tall fescue varieties
responded differently to salinity (Figure 1). Final germi-
nation was not affected by salinity for ‘Armani’, ‘Essen-
tial’, ‘Fatcat’ and ‘Starlett’. In ‘Asterix’ and ‘Meandre’
only the highest salinity level decreased final germina-
tion, whereas it was gradually decreased in ‘Eyecandy’,
‘Rhizing star’ and ‘Tomahawk’ with increasing salinity. A
standard germination test contains evaluation on both
day-7 and day-14 (final germination) and for all varieties,
germination on day-7 was affected by salinity. The results
shown in Table 2 confirm these findings as the overall

germination rate decreased as the salinity level increased
from 6 to 15 ds m−1. Even the four varieties unaffected by
salinity at day-14 expressed a lower germination rate at
higher salinity levels.

The nine varieties showed variability in germination
rate in the control treatment, with seeds of ‘Armani’
showing the fastest germination rate (GR = 11.09;
Table 2) with 94% germination on day 3 (Figure 1) and
seeds of ‘Rhizing star’ the slowest (GR = 6.40; Table 2)
with 1% germination on day 3 (Figure 1). The GR was
not significantly reduced at 3 ds m−1, except for seeds
of ‘Armani’ and ‘Meandre’, although seeds of ‘Rhizing
star’ still showed the lowest GR (Table 2). Further increases
in salinity resulted in decreases in GR for all varieties, with
the greatest percentage reduction seen in ‘Eyecandy’
(declining from 7.96 at 3 ds m−1 to 1.90 at 15 ds m−1).

Seed vigour index (SVI) calculated for day-7 and day-
14 decreased with increasing salinity level (Table 3).
Among the varieties, ‘Rhizing star’ had the lowest SVI
at any salinity level and ‘Armani’, ‘Essential’, ‘Eyecandy’,
‘Fatcat’ and ‘Starlett’ had the highest SVI in the control
and the 3 ds m−1 NaCl treatment on day-14. In the
high salinity treatments (12 and 15 ds m−1), SVI was
highest in ‘Armani’, ‘Essential’ and ‘Fatcat’.

Root length of all varieties decreased with increasing
salinity level (Figure 2). The longest roots were recorded
in ‘Starlett’ in the control and the 3 ds m−1 NaCl treat-
ment, but at higher salinity levels, it exhibited the
highest reduction rates (68%, 80%, 80% and 98% at 6,
9, 12 and 15 ds m−1, respectively). At 15 ds m−1, ‘Starlett’
had the shortest roots. Salinity also affected the root
length in ‘Armani’, ‘Essential’, ‘Eyecandy’, ‘Rhizing star’
and ‘Tomahawk’ with decreasing root length with
increasing salinity level, but in these varieties the
decline in root length was less than for ‘Starlett’. The
longest roots at the highest salinity levels were found
in ‘Armani’, ‘Asterix’, ‘Essential’ and ‘Fatcat’.

The shoot length of all varieties showed a similar
trend as root length (Figure 3). In the control treatment,
‘Essential’ exhibited the longest shoots, whereas ‘Asterix’

Table 1. Seed characteristics of nine tall fescue varieties (area, length, diameter, 1000-seed weight and germination) and their standard
error (SE).
Variety Area SE Seed length SE Seed diameter SE 1000-seed weight* Germination*

(mm2) (mm) (mm) (g) (%)

Asterix 5.8 1.0 6.1 0.7 1.4 0.1 0.1 93
Armani 5.7 0.9 6.1 0.7 1.3 0.1 0.2 95
Essential 5.4 0.8 5.9 0.6 1.2 0.1 0.2 93
Eyecandy 5.1 0.8 5.5 0.5 1.3 0.1 0.2 95
Fatcat 5.5 0.8 5.9 0.6 1.4 0.1 0.2 93
Meandre 5.5 0.9 5.7 0.7 1.4 0.1 0.2 94
Rhizing star 5.6 0.7 6.0 0.5 1.3 0.1 0.1 86
Starlett 6.0 0.9 6.4 0.7 1.4 0.1 0.2 97
Tomahawk 5.7 1.0 5.9 0.7 1.4 0.1 0.2 94

*Information on 1000-seed weight and germination is provided by the seed companies based on ISTA analysis.
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was the variety with the shortest shoots at 15 ds m−1

NaCl. At low stress levels (control, 3 and 6 ds m−1),
most varieties did not show statistical differences. In

contrast, at higher stress levels (9, 12 and 15 ds m−1),
the shoot length was reduced in all varieties. ‘Eyecandy’
showed the highest reduction rate and at the two

Figure 1. Seed germination (%) in tall fescue as affected by salinity stress. The varieties (a) ‘Arman’, (b) ‘Asterix’, (c) ‘Essential’,
(d) ‘Eyecandy’, (e) ‘Fatcat’, (f) ‘Meandre’, (g) ‘Rhizing star’, (h) ‘Starlett’ and (j) ‘Tomahawk’ were subjected to six NaCl concentrations
(0, 3, 6, 9, 12 and 15 ds m−1) over a 14-day germination period. Within each variety, final germination values with different letters
show significant difference at p < 0.05.
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Table 2. Effect of salinity stress on germination rate of seeds of nine tall fescue varieties subjected to six NaCl concentrations over a 14-day germination period and standard error (SE).

Variety

NaCl concentration

(ds m−1)

0 SE 3 SE 6 SE 9 SE 12 SE 15 SE

Armani 11.0 aA 0.3 9.8 bB 0.3 9.5 bA 0.3 9.1 bcA 0.6 8.6 cA 0.4 7.3 dA 0.7
Asterix 7.8 aC 0.3 7.9 aB 1.3 6.7 bCD 0.5 6.1 bC 0.5 4.6 cC 0.5 3.3 dD 0.4
Essential 8.6 aB 0.6 8.0 aB 0.7 6.0 bED 0.4 6.4 bC 0.6 5.5 bB 0.2 4.6 cBC 0.3
Eyecandy 7.9 aC 0.4 7.9 aB 0.3 6.0 bED 0.0 4.9 cD 0.3 3.0 dE 0.7 1.9 eE 0.4
Fatcat 7.7 aC 0.2 8.0 aB 0.7 7.4 abBC 0.3 6.6 bC 0.2 6.0 bB 0.3 4.7 cB 0.1
Meandre 9.0 aB 0.3 7.9 bB 0.1 6.9 cC 0.2 6.3 cdC 0.1 5.6 dB 0.2 4.6 eBC 0.1
Rhizing star 6.4 aD 0.4 6.1 aC 0.6 5.7 abE 0.6 5.0 bD 0.7 3.7 dcD 0.5 3.4 cD 0.1
Starlett 8.3 aBC 0.4 7.8 aB 0.4 7.1 bC 0.4 6.5 cC 0.1 6.0 cB 0.3 4.0 dC 0.1
Tomahawk 9.0 aB 0.2 8.7 abB 0.4 8.3 abB 0.6 8.1 abB 0.6 6.1 cB 0.55 4.1 dC 0.4

Notes: Data are the mean of four replicates (± standard error). Values with different letters show significant difference at p < 0.05 as determined by Duncan’s multiple range test; lower-case letters in rows relate to differences
between salinity levels within each variety and capital letters in columns relate to differences between varieties within each NaCl concentration.

Table 3. The effect of salinity on the seedling vigour index (SVI) of nine tall fescue varieties subjected to six NaCl concentrations. The SVI was calculated on day 7 and day 14 of germination.

Time Variety NaCl concentration

(ds m−1)

(day) 0 SE 3 SE 6 SE 9 SE 12 SE 15 SE

7 Armani 2390.0aA 114.5 1537.5bA 157.7 1464.9bA 156.1 623.1dcA 67.5 944.4bcA 429.8 0.0dA 0.0
Asterix 1016.8aC 71.7 451.4bC 40.2 118.6bcBC 56.8 110.8bcBC 21.8 0.0cB 0.0 0.0cA 0.0
Essential 1159.3aC 69.2 1124.1abB 78.7 214.1bcBC 159.9 308.1dcB 82.5 42.0deB 31.4 0.0eA 9.8
Eyecandy 375.4aD 160.7 238.5aD 89.2 0.0bC 0.0 0.0bC 0.0 0.0bB 0.0 0.0bA 0.0
Fatcat 959.3aC 56.9 944.8 aB 75.8 471.1bB 22.4 69.4cBC 40.2 14.6 cB 0.0 0.0cA 0.0
Meandre 1064.4abC 150.5 1028.8abB 127.6 1252.0aA 370.5 607.0bcA 183.4 92.5 dcB 92.5 0.0dA 0.0
Rhizing star 271.6aD 71.7 69.8bD 40.1 119.9bBC 56.7 21.8bC 21.7 0.0bB 0.0 0.0bA 0.0
Starlett 411.5aD 90.4 380.3aD 56.0 207.1bC 70.6 109.4bcBC 16.4 39.0cB 39.0 9.8cA 0.0
Tomahawk 1706.3aB 400.8 1533.1aA 216.6 1480.0aA 132.1 582.5bA 142.9 403.1bB 100.6 0.0bA 0.0

14 Armani 4365.0aAB 76.08 3999.4aABC 225.2 3775.0aB 123.7 3827.5aA 64.7 2963.1bA 43.4 747.5cB 443.4
Asterix 3658.8aC 128.9 3482.2aDC 294.2 3400.0baBC 260.0 1873.1bD 637.1 542.1 cCD 254.7 76.9cCD 41.3
Essential 4827.5aA 106.9 4016.3aABC 309.5 3392.5bcBC 437.0 2868.1bABCD 303.2 2177.5cAB 438.0 1238.1cA 258.4
Eyecandy 4393.8aAB 208.0 3728.1aBCD 151.0 2538.1bC 561.1 603.8cE 125.7 0.0cD 0.0 0.0cD 0.0
Fatcat 4261.3abB 345.3 4587.5abA 278.6 4808.8aA 196.9 3645.0bcAB 609.1 3047.5cA 213.7 764.6dB 105.2
Meandre 4012.5aC 129.3 3262.5bD 242.9 3164.2bBC 153.5 3063.5bABC 151.2 665.0cCD 134.4 361.3cC 35.3
Rhizing star 3010.6aD 128.9 3271.3aD 249.2 2985.6aC 260.0 2606.3aBCD 637.0 369.0bD 254.7 41.3bCD 41.2
Asterix 3658.8aC 128.9 3482.2aDC 294.2 3400.0baBC 260.0 1873.1bD 637.1 542.1 cCD 254.7 76.9cCD 41.3
Tomahawk 3603.8abC 135.1 3840. aBCD 87.9 3053.1bcBC 136.4 2388.8cCD 453.3 1306.3dBC 221.1 260.0eD 163.9

Notes: Data are the mean of four replicates (±standard error). Values with different letters show significant difference at p < 0.05 as determined by Duncan’s multiple range test; lower-case letters in rows relate to differences
between salinity levels within each variety and capital letters in columns relate to differences between varieties within each NaCl concentration.
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Figure 2. Effect of salinity stress on the root length (mm) of 14-day-old seedlings of nine tall fescue varieties subjected to six NaCl
concentrations (ds m−1). Data are the mean of four replicates. Values with different letters show significant difference at p < 0.05;
lower-case letters relate to difference between salinity levels within each variety and capital letters relate to differences between var-
ieties within each NaCl concentration.

Figure 3. Effect of salinity stress on the shoot length (mm) of 14-day-old seedlings of nine tall fescue varieties subjected to six NaCl
concentrations (ds m−1). Data are the mean of four replicates. Values with different letters show significant difference at p < 0.05; lower-
case letters relate to differences between salinity levels within each variety and capital letters relate to differences between varieties
within each NaCl concentration.
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highest salinity levels shoot growth was inhibited. Simi-
larly, ‘Starlett’ had no shoots at 15 ds m−1. In general,
shoot length was more negatively affected by increasing
salinity than root length.

Root to shoot ratio (R:S) was calculated (data not
shown). There was a tendency to a decreasing R:S with
increasing salinity up to 6 ds m−1, but a further increase
in salinity level increased R:S. ‘Rhizing star’, ‘Asterix’ and
‘Meandre’ showed a higher R:S (4.6, 2.46 and 2.28,
respectively) compared with other varieties.

Discussion

The current study identified a variation in salinity toler-
ance during germination and early seedling growth in
tall fescue. Four (‘Fatcat’, ‘Starlett’, ‘Essential’ and
‘Armani’) of the nine varieties included in the study
reached the same final germination irrespective of
NaCl concentration in the interval 0–15 ds m−1, two
varieties (‘Asterix’ and ‘Meandre’) had lower germina-
tion under the highest salinity level and in the remain-
ing three varieties (‘Rhizing star’, ‘Eyecandy’ and
‘Thomahawk’), final germination decreased gradually
with increasing salinity (Figure 1). Our results showed
that salinity stress delayed germination, which is in
agreement with studies by Rubio-Casal et al. (2003),
Ouji et al. (2015), Foti et al. (2018) and, Melendo and
Giménez (2018). When final germination was recorded
(day-14), some seed lots tested under high salinity
levels were still in the process of germination. There-
fore, it may be necessary to allow for a longer germina-
tion period by postponing the scoring of final
germination beyond day-14 in order to record the full
potential under salinity stress.

There is limited information concerning differences in
salinity tolerance among turfgrass species, and the avail-
able reports date back to when there was limited focus
on breeding for turfgrass quality and stress tolerance.
Ali Harivandi et al. (1992) rated tall fescue ‘moderately
tolerant’ to salt stress, which they categorised as being
tolerant to salinity levels of 6–10 ds m−1. Wheatgrass
(Agropyron cristatum L.), perennial ryegrass (Lolium
perenne L.), red fescue (Festuca rubra L.), and switchgrass
(Panicum virgatum L.) were also classified ‘moderately
tolerant’ together with tall fescue. Among the cool-
season turfgrasses, the authors only rated alkali grass
(Puccinellia spp.) as ‘tolerant’: able to grow at salt levels
equivalent to >10 ds m−1. In our study, this salinity
level did not affect final germination in ‘Armani’,
‘Asterix’, ‘Essential’, ‘Fatcat’, ‘Meandre’ and ‘Starlett’, but
it reduced the germination rate in all varieties except
‘Armani’. Marcum (2006) also classified alkali grass as
more tolerant to salt stress than tall fescue with a 50%

decrease in growth for three alkali grass species and
one tall fescue variety (‘Alta’) grown in 12–18 and 7 ds
m−1, respectively, in soil saturated paste extract (ECe).
Alshammary et al. (2004) distinguished between salt
stress levels for 50% reduction in root and shoot
lengths in four grass species. In general, the reported
salt stress levels were a bit higher than reported by
Marcum (2006), but the ranking of species according to
salt tolerance level was the same. In tall fescue, R:S
increased with increasing salt level (Alshammary et al.
2004), which was also found in the current study for sal-
inity levels >6 ds m−1.

Most studies of salt tolerance in turfgrasses evaluate
growth and plant cover/plant density. However, fast
establishment, which comprises germination and seed-
ling growth, is important to avoid the growth of weeds
and to improve turf quality. A reduction in seedling
number and germination rate with increasing salt con-
centration was found in tall fescue by Horst and Beadle
(1984), and Zhang et al. (2011). In the experiment per-
formed by Horst and Beadle (1984) a variation in
response to increasing salinity was found among var-
ieties but no information about the germination in a
non-stressed control was included. In the study by
Zhang et al. (2011), two varieties were included. In con-
trast, Serena et al. (2012) saw no decline in germination
in response to increasing salinity levels for the one
variety used in their experiment. The recent study sup-
ports both of these contrasting findings depending on
which variety is evaluated. This implies that to character-
ise salinity tolerance at the species level, several varieties
should be screened.

While increasing salinity generally delayed germina-
tion with the consequence that seeds were still actively
germinating under the high salinity levels at the time
of recording final germination, the varieties ‘Rhizing
star’ and ‘Asterix’ seemed to have reached the highest
achievable germination for all salinity levels on day-14.
The standard test showed a low final germination for
these two varieties (Table 1). Thus, the current seed
lots representing these two varieties might be of a
poorer quality, perhaps older seed lots and hence they
may also react differently to salinity stress. For a better
characterisation of salt tolerance at variety level it
would have been preferred to test a range of seed lots
in each variety. ‘Eyecandy’ is the variety showing the
strongest effect in response to the tested salinity levels
with an interval from 98% to 59% final germination
with increasing salinity levels.

There was limited variation in physical parameters
among the seeds of all nine tall fescue varieties and all
had a standard germination of 85% or above (Table 1),
as required for certification according to the OECD
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standards. However, germination of ‘Rhizing star’ and
‘Asterix’ was very close to the threshold level, showing
85% and 86%, respectively.

Seedling growth parameters gradually decreased with
increasing NaCl concentration, this is a common occur-
rence for plants under salt stress (Arias et al. 2018), as
expressed by decreased root and shoot lengths (Tables
2 and 3) and this could reflect toxic effects along with
insufficient water and nutrient uptake (Foti et al. 2018).
As roots absorb water from soil, root length can be one
of the most important traits for assessing salt stress. Sal-
inity is found to increase the osmotic potential and
results in ion toxicity by inducing cellular dehydration
and rising solute concentration in plants (Yang et al.
2018). High concentrations of NaCl may also inhibit the
elongation of roots and shoots by lowering the water
uptake by the plant for osmotic adjustments (Munns
2002). Reduction of shoot length might be caused by a
higher accumulation of salts in the cell walls, which
results in a more rigid cell wall that would diminish the
turgor pressure efficiency and, consequently, cell enlar-
gement and shoot elongation will be slower and
shorter (Ouji et al. 2015). Another reason for the growth
limitation at high salinity may be due to depletion of
resources for growth (Alshammary et al. 2004). In other
words, rapid accumulation of salt in plant organs might
have obliged it to close its stomata to preserve water;
this protective process may lead to alteration in photo-
synthate allocation (Zanetti et al. 2019).

The highest germination rate of tall fescue seeds was
obtained in the distilled water control. Fast germination
under non-saline conditions was also revealed for Halox-
ylon recurvum and H. salicornicum, halophytes of the
Indian desert (Sharma and Sen 1989). It was suggested
that this phenomenon is a mechanism to use the short
availability of water after a rainfall event. Rapid germina-
tion ensures fast seedling establishment and thus
reduced competition with other plant species in salt-
affected areas. The seed vigour index decreased at
increasing salinity levels for all varieties; similar results
were obtained by Foti et al. (2018).

Tall fescue varieties were found to possess a wide
range of variation in salinity tolerance, which is in agree-
ment with findings in Poa annua as reported by Dai et al.
(2009). This might be the explanation for contrasting
findings of the effects of salinity in tall fescue as ident-
ified in reports from Horst and Beadle (1984), Leinauer
et al. (2012) and Zhang et al. (2011). These findings are
based on a limited number of varieties tested and our
data highlight the importance of evaluating a range of
varieties to characterise the range of diversity in this
trait. The review by Huang et al. (2014) addresses the
reported variation in ranking of salinity tolerance and

points to the importance of the parameters used for
the evaluation, variable growing conditions or the
method for imposing salinity. Our study revealed, that
tall fescue varieties possess a wide range of variation in
salinity tolerance and we identified varieties with a toler-
ance to salinity levels higher than previously reported for
this species. With the increased frequency of saline soils,
in particular on golf courses and other sports grounds,
where the availability of fresh water resources for irriga-
tion is limited, there is an increasing demand for turf-
grasses with demonstrated salinity tolerance.
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