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Producing nitrogen (N) uptake maps in winter wheat by combining proximal crop
measurements with Sentinel-2 and DMC satellite images in a decision support
system for farmers
Mats Söderströma, Kristin Piikkia, Maria Stenbergb, Henrik Stadigc and Johan Martinssond

aDepartment of Soil & Environment, Swedish University of Agricultural Sciences (SLU), Skara, Sweden; bSwedish Board of Agriculture, Skara,
Sweden; cRural Economy and Agricultural Societies, Skara, Sweden; dDataVäxt AB, Hyringa Hedåkers Säteri 3, Grästorp, Sweden

ABSTRACT
Responsive fertilisation of winter wheat (Triticum aestivum L.) is often adopted, with N applied two
or three times between the developmental stages of tillering and booting. Satellite-based decision
support systems (DSS) providing vegetation index maps calculated from satellite data are available
to aid farmers in adjusting the topdressing nitrogen (N) rate site-specifically to the current season
and to variations in growth conditions within the field. One example is the freely available CropSAT
DSS used in Scandinavia, which provides farmers with raster maps of the modified soil-adjusted
vegetation index (MSAVI2) calculated mainly from data obtained from satellites Sentinel-2 (ESA,
EU) and DMC (DMCii Ltd, Guildford, UK). This study investigated the possibility of calibrating
MSAVI2 maps with data from handheld proximal sensor measurements of N uptake covering the
main agricultural regions in Sweden during growth stages Z30-45 on the Zadok scale, in order to
facilitate farmers’ decisions on N rate. More than 200 N-sensor measurements acquired during
2015 and 2016 in seven different winter wheat cultivars were combined with MSAVI2 values
from CropSAT. It was found that N uptake could be predicted in a general, national model, i.e.
for sites and dates other than those for which the calibration model was parameterised, with a
mean absolute error of 11–15 kg N ha−1. A cultivar-specific model performed better than this
general model, but a regional model showed no improvement compared with the model
parameterised with national data. Vegetation indices calculated from the two narrow bands of
Sentinel-2 in the red edge-near infrared region of the crop canopy reflectance spectrum proved
to be promising alternatives to the broadband index MSAVI2. Based on the results, we suggest
that data from a monitoring programme involving handheld N sensor measurements can be
integrated with a satellite-based DSS to upscale N uptake information.
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Introduction

Winter wheat (Triticum aestivum L.) is the most widely
cultivated crop in Scandinavia. Split nitrogen (N) fertilisa-
tion is commonly adopted to target the economic
optimal fertilisation rate and to achieve a desired
protein content in the harvested grain. Optimal N fertili-
sation is also reported to reduce the risk of N leaching
(e.g. Lord & Mitchell 1998; Chen et al. 2014; Delin & Sten-
berg 2014; Basso et al. 2016). Aboveground biomass, leaf
chlorophyll concentration and total N content are
canopy properties that have been successfully described
through the relationship with reflectance in the red and
near-infrared (NIR) region of the electromagnetic spec-
trum (e.g. Jensen et al. 1990; Wiegand et al. 1991;
Broge & LeBlanc 2000; Flowers et al. 2003; Gitelson
et al. 2003; Reusch 2003, 2005; Tremblay et al. 2009).

Data from satellite images have been used since the
mid-1970s to describe and assess the status and vigour
of crops (Rouse et al. 1973) and the accessibility and tem-
poral availability of remote sensing imagery is continually
improving (Wang et al. 2010; Mulla 2013). During the past
two decades a number of commercial systems have been
developed in order to support farmers with satellite
imagery during the growing season, e.g. Farmsat
(Geosys, Morges, Switzerland), Satshot (Fargo, ND, USA),
and Farmstar (Airbus Defence and Space, Toulouse,
France). However, the use of decision support systems
(DSS) for crop production based on optical satellite
remote sensing is a challenge in temperate regions fre-
quently covered by clouds such as northern Europe.
Broadband indices, such as the normal difference veg-
etation index (NDVI) (Rouse et al. 1973) and improved
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versions such as the soil-adjusted vegetation index (SAVI)
(Huete 1988) are commonly used to associate the vari-
ation in satellite images to properties of the crop (Figure
1). In Scandinavia, a free-to-use, non-commercial DSS
based on satellite images (CropSAT), aimed at covering
all cropland and assisting farmers in e.g. determining
optimal N rate for supplementary fertilisation of winter
wheat, has been in use since 2014 (http://cropsat.se;
Söderström et al. 2016). In Sweden, CropSAT is funded
within a programme for improved nutrient use efficiency
and reduced environmental impact (Focus-on-Nutrients)
administered by the Swedish Board of Agriculture (Jord-
bruksverket, Jönköping, Sweden). In Denmark, it is
funded by the central advisory organisation (Seges Land-
brug & Fødevarer F.m.b.A., Aarhus, Denmark). In the
Swedish version of CropSAT, data from the satellites Sen-
tinel-2 (ESA, EU), DMC (the UK-DMC-2 satellite, DMCii Ltd,
Guildford, UK) and, to a very limited extent, Landsat 8
(USGS/NASA, USA) are used to calculate a modified
version of the soil-adjusted vegetation index (MSAVI2)
(Qi et al. 1994):

MSAVI2 =
1
2
[(2× rNIR + 1

−
������������������������������������������
[(2× rNIR + 1)2 − 8× (rNIR - rRED)]

√
(1)

where ρ is reflectance in the red or near infrared (NIR)
band (Figure 1). The reason for using MSAVI2 is that
initial performance tests indicated that e.g. NDVI
reached saturation too early in the season (Söderström
et al. 2016). In CropSAT, users can generate MSAVI2
maps over selected agricultural fields. It is then possible
to manually assign management actions (e.g. how the
supplementary N fertilisation rate should be varied in
relation to MSAVI2) and to download prescription files
to be used in the fertiliser spreader (Söderström et al.

2016). It is currently recommended that users conduct
inspections in different parts of the field with high,
medium and low vegetation index, in order to be able
to make an appropriate parameterisation of the relation-
ship between the desired application rate and MSAVI2.
The N rate at the inspection locations is preferably
decided through the use of tools such as a leaf sensor
(e.g. the N-Tester (Yara Gmbh, Hanninghof, Germany),
which is based on the Minolta SPAD metre and
measures light transmitted by the plant leaf at 650
and 940 nm) (Uddling et al. 2007). This can assist in pro-
viding an N recommendation to the user. Successful
combination of remote sensing data and chlorophyll
metres has been reported e.g. by Miao et al. (2009).

To further facilitate the use of satellite data for adjusted
N topdressing of small-grain crops at farm level, it would
be an advantage if general satellite index maps could
be converted to crop properties more relevant in the
decision-making process. Extensive comparisons between
different combinations of narrow bands (10 nm) for the
determination of N uptake in winter wheat have shown
that a vegetation index based on two bands in the red
edge-NIR region (centred on 730 and 780 nm) is most
useful, outperforming e.g. traditional NDVI (Reusch 2005;
Jasper et al. 2009). A general vegetation index I (here
referred to as ΔRE) was suggested by Reusch (2005):

DRE = ln(r1)− ln(r2) (2)

where ρ1 is the reflectance in longest of the two wave-
bands in the red edge-NIR region. This corresponds well
with some 10-nm bands available from the Sentinel-2 sat-
ellite (740 and 783 nm, respectively; Figure 1). Various prox-
imal crop sensors that use canopy reflectance have been
developed to assess the total N content of the canopy (‘N
uptake’) (e.g. Link et al. 2002; Solie et al. 2002). In Europe,

Figure 1. Spectral bands of the satellites used in CropSAT in part of the visible to near-infrared (NIR) region. Common broadband veg-
etation indices (e.g. NDVI, SAVI, MSAVI2) are based on the reflectance differences in the NIR and red regions (ρRED and ρNIR). Combi-
nations of two narrow bands in the red edge-NIR region (ρ1 and ρ2) have been reported to be efficient for determination of N uptake
(Reusch 2005; Jasper et al. 2009).
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a commonly used system is the Yara N-Sensor (Yara Gmbh,
Hanninghof, Germany), a tractor-mounted proximal sensor
that measures reflectance in the visible to NIR spectral
range (Link et al. 2002). A handheld version of the instru-
ment also exists and is commonly used in field trials.

To provide farmers with decision support on sup-
plementary topdressing of wheat, handheld Yara N-
Sensors are used by different organisations in Sweden
(the Swedish Board of Agriculture, the Rural Economy
and Agricultural Societies advisory service, Yara AB) in
so-called zero plots (field plots with no N fertiliser
applied). The N-sensor measurements in these zero
plots are used to assess the supply of N from the soil.
Measurements are also made in the field adjacent to
the plots, where the crop has received N fertiliser accord-
ing to the farmer’s management strategy.

The aim of this study was to combine the latter type of
handheld N-Sensor measurements in N fertilised fields
with MSAVI2 calculated using data from the satellites
Sentinel-2 and DMC in the CropSAT DSS, in order to:

(1) Parameterise prediction models for conversion of
MSAVI2 maps to maps of N uptake in winter wheat,
calibrated both for all measured cultivars (intended
for general use) and for the most common cultivar
only, and test whether calibrations for a smaller
region improved the predictions.

(2) Validate the performance and robustness of such
models by testing them for years, dates and
locations not included in the calibration dataset.

The ultimate goal was to improve the functionality of
CropSAT DSS, so as to facilitate correct decisions on sup-
plementary N fertilisation. Furthermore, since Sentinel-2
also delivers data from narrow bands in the red edge
region, we examined whether better correlations with
N uptake could be achieved with the ΔRE index using
these bands. However, it was not possible to do this on
the entire dataset, since the Sentinel-2 satellite has
only been in use since 2016.

Materials and methods

Satellite data

We used MSAVI2 vegetation index maps from the
CropSAT DSS from 2015 to 2016. CropSAT was initially
primarily based on DMC low-cost data with 22-m
spatial resolution, with Landsat 8 data (30-m spatial res-
olution) as backup. Spectral bands and spatial resolutions
of the satellite imagery are presented in Figure 1 and in
Table 1. From 2016, data designed for use in vegetation
studies, with higher spatial resolution (10 m) and

additional spectral bands within the red edge region of
the crop canopy spectrum (20-m resolution), became
available from the first of two Sentinel-2 satellites
(Figure 1). CropSAT covers ∼2.4 million ha of arable
land in Sweden, i.e. ∼90% of arable land in the country
(Figure 2). The initial intention with CropSAT was to
provide a practically useful set of vegetation index
maps during the period for supplementary N fertilisation
of small-grain crops (mid-April to mid-June). At least
three cloud-free images for each field, well distributed
over the acquisition period, was the goal. With the
addition of Sentinel-2 data in 2016, >90% of the area
covered by CropSAT was covered by at least three
useful images, compared with 67% in 2015 (Figure 3),
although May 2015 was unusually cloudy and rainy.
All MSAVI2 data used in this study were generated by
Sentinel-2 or DMC. Images from the following dates
were used:

. DMC 2015: April (20, 24), May (17, 27, 29), June (1, 11)

. DMC 2016: April (20), May (2, 10, 23, 26, 27, 31), June (3)

. Sentinel-2 2016: May (6, 9, 13, 21, 28), June (3, 6)

Landsat 8 data were omitted because: (1) they are
only occasionally used in the CropSAT system, and (2)
the MSAVI2 calculated from Landsat 8 differs to some
extent from that calculated from the other two satellites,
owing to differences in the width of the spectral bands.
Before calculating the vegetation index, the satellite
data were converted to reflectance and atmospherically
corrected through dark object subtraction (Chavez 1988).
Pixels with clouds or cloud shadows were manually
removed, as were pixels within 15 m of the field
border. Field borders were derived from a spatial data-
base of cultivated arable land (within the EU subsidies
database held by the Swedish Board of Agriculture, the
so-called ‘Block map’, version 2015). In the CropSAT
DSS, removed pixels along field borders are sub-
sequently recalculated (through averaging) by the
remaining, neighbouring pixels within the field. The

Table 1. Spectral and spatial resolutions of the satellite imagery.
NIR = near infrared.

Satellite
Band
no

Spectral
region

Spatial resolution
(m)

Wavelengths
(nm)

Sentinel-2 2 Blue 10 m × 10 m 458–523
Sentinel-2 3 Green 10 m × 10 m 543–578
Sentinel-2 4 Red 10 m × 10 m 650–680
Sentinel-2 8 NIR 10 m × 10 m 785–900
Sentinel-2 5 Red edge/NIR 20 m × 20 m 698–713
Sentinel-2 6 Red edge/NIR 20 m × 20 m 733–748
Sentinel-2 7 Red edge/NIR 20 m × 20 m 773–793
Sentinel-2 8a Red edge/NIR 20 m × 20 m 855–875
DMC 1 Green 22 m × 22 m 520–600
DMC 2 Red 22 m × 22 m 630–690
DMC 3 NIR 22 m × 22 m 770–900
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images data were processed using ArcGIS 10.3 (Esri Inc.
Redlands, CA, USA).

Crop sensor data collected in the field

The handheld Yara N sensor (Yara Gmbh, Hanninghof,
Germany) is a portable canopy spectrometer. It registers
reflected light from the crop (450–890 nm in 10 nm
bands) at an oblique angle (64°). Weekly field measure-
ments (about mid-April to mid-June, targeted to cover
the development of winter wheat N uptake through
the topdressing period) were conducted in 2015 and
2016 within the advisory service programme Focus-on-
Nutrients, a national undertaking for improved nutri-
ent-use efficiency administered by the Swedish Board
of Agriculture (locations marked JV in Figure 2). The
measurement scheme included measurements in zero
plots (i.e. plots not fertilised with N) and measurements
in the surrounding field (i.e. in fertilised crop). Only
data from the N fertilised fields were used, not from

the zero N plots. A site judged representative of the sur-
rounding crop was chosen 25 m from the border of the
zero plot in the direction into the field along the crop
rows. Four recordings in four different directions were
carried out at each site. Treading was avoided in the
areas for the recordings. The recordings were calculated
into N uptake using an in-house developed calibration
model by Yara (Yara Gmbh, Hanninghof, Germany). For
2015, data were available from 26 winter wheat fields
in south-west and southern Sweden (regions marked
West and South in Figure 2). For 2016, data from 36
sites with winter wheat, also including fields in the East
and Central regions (marked in Figure 2) were used.
The cultivars were: Julius (SWseed, Lantmännen,
Malmö, Sweden; SW), Brons (SW), Norin (SW), Ellvis (Scan-
dinavian Seed, Lidköping, Sweden; Ssd), Mariboss (Ssd),
Praktik (Ssd) and Olivin (Ssd), with Julius being the
most common. Measurements were made in some
additional fields, but those sensor data collection
points were considered too close to field boundaries

Figure 2. Agricultural areas (dark green) in Sweden covered by satellite data in the CropSAT decision support system. The four regions
(South, West, East, Central) and the point locations where reference data were collected by the handheld Yara N-Sensor are shown. The
reference data constitute two datasets: JV (collected by the Swedish Board of Agriculture) and HS (collected by the Rural Economy and
Agricultural Societies advisory service) (the latter in the West region only). The cities of Stockholm and Gothenburg are shown for orien-
tation purposes only.
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(<30 m) and were excluded. The Zadok (Z) decimal
growth stage (Zadok et al. 1974) during measurement
ranged from Z21 to Z57. In this study we included only
data collected within Z30–45, i.e. the stages of stem
elongation to beginning of booting, which is when
most farmers apply N topdressing to winter wheat in
Sweden. Coordinates of field measurement locations
from 2015 were manually extracted from a general
digital map (http://maps.google.com), whereas those
from 2016 were positioned by mobile phone GPS
(various brands). Both methods resulted in positioning
data with some degree of uncertainty, but we assumed
that the digital map method was more uncertain than
the GPS method. The locations in 2015 were paired
with the average vegetation indices of the pixels within
a distance of 15–30 m from the coordinates of the
sensor measurement, whereas the field data in 2016
were paired with the corresponding satellite image
pixels using the GPS coordinates. Field measurements

were combined with satellite images if their acquisition
dates were within ± 3 days of each other.

In 2016, another set of data (marked HS in Figure 2)
collected by the same type of crop sensor was available
through the Rural Economy and Agricultural Societies
advisory service (Hushållningssällskapet, Skara,
Sweden), but only for the West region. These data
were collected only once in 50 winter wheat fields
during May 23–27 (Z32–39; cv. Julius (SW), Brons (SW),
Ellvis (Ssd), Mariboss (Ssd), Praktik (Ssd), Olivin (Ssd)
and Reform (R.A.G.T Saaten, Hiddenhausen, Germany;
RGT). All datasets collected and used are summarised
in Table 2 and the spatial locations are shown in Figure 2.

N uptake prediction model

The goal of the N uptake model was to assess the poten-
tial for N uptake calibration of vegetation index maps,
such as those used in the CropSAT DSS, using handheld
crop sensors. In particular, we tested the efficiency of
prediction models with parameterisations that were
either general or specific in terms of geographical
region and winter wheat cultivar included. Modelling
was done for:

. All regions, all cultivars (n = 140)

. One region (W), all cultivars (n = 49)

. All regions, one cultivar (Julius; n = 66).

Figure 3. Summary of cloud-free satellite images of arable land in the area displayed in Figure 2. The pie charts to the left show the
fraction of arable land area covered with 1, 2, 3, 4 or >5 cloud-free images in the CropSAT decision support system. The column chart to
the right shows the area of arable land for which MSAVI2 data were available, summarised for five relatively cloud-free sub-periods of
the total period within which CropSAT was run in 2015 and 2016. In reality, there may be more than one image within each of the five
sub-periods. (a) All cultivars, tcv validation (ID = i). (b) All cultivars, riv validation (ID = ii). (c) Cv. Julius, tcv validation (ID = iii). (d) Cv.
Julius, riv validation (ID = iv).

Table 2. Descriptive statistics on the datasets.

Dataset n
SN [kg N ha−1]

(min/median/max)
MSAVI2 [index]

(min/median/max)
Z

(min/max) Regions

JV 2015 46 36 / 74 / 110 0.30 / 0.54 / 0.73 30 / 45 S, W
JV 2016 93 12 / 73 / 142 0.26 / 0.52 / 0.75 30 / 45 S, W, E, C
HS 2016 50 17 / 58 / 87 0.14 / 0.43 / 0.60 32 / 39 W

Note: n = number of measurements; SN = aboveground nitrogen content in
the crop (kg N ha−1) according to handheld Yara N-Sensor; MSAVI2 =modi-
fied soil-adjusted vegetation index; Z = growth stage; W = west, E = east,
S = south, C = central (shown in Figure 2).
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. One region (W), one cultivar (Julius; n = 30)

Julius was chosen because it was the most common
cultivar and the W region was chosen because it was
where the HS dataset could be used for additional vali-
dation. We parameterised simple linear regression
models (Equation 3) in order to predict N uptake from
MSAVI2 data:

SN = a×MSAVI2 + b (3)

where SN is the above ground nitrogen content in the
crop (kg N ha−1) according to handheld Yara N-Sensor,
a is the slope parameter and b is the intercept parameter
of the univariate linear regression between SN and
MSAVI2.

We carried out two types of validations where predic-
tions were compared with observed data:

. An iterative, temporal leave-one-site out cross-vali-
dation (tcv) procedure. For each site and instance, pre-
dictions were made with models parameterised with a
dataset containing only data from the other year and
from earlier occasions the same year and only contain-
ing data from the other sites (i.e. prediction site
excluded).

. An entirely independent regional validation (riv) using
the HS dataset. In this case models developed on the
JV dataset, both national and regional, were applied
on the HS dataset. As in the former procedure, only
data from the other year and from earlier occasions
the same year were included in the parameterisation
dataset.

The validations were designed to ensure that the vali-
dation statistics obtained relevantly assessed the per-
formance of the models if applied in a practical system.
Any negative predictions were set to zero.

The validation statistics used were: mean absolute
error (MAE) (Equation 4), determination coefficient for a
linear regression between predictions and measure-
ments (r2) (Equation 5), and the Nash-Sutcliffe model effi-
ciency (E) (Equation 6), which indicates how well a plot of
predicted versus observed values fits the 1:1-line (Nash &
Sutcliffe 1970).

MAE =
1
n

∑
|p− o| (4)

r2 = 1−
∑

(o− p)2∑
(o− �o)2

(5)

E = 1−
∑

(o− pm)
2

∑
(o− �o)2

(6)

where o are observed values, �o is average of obser-
vations, p are values predicted by a linear regression
model between the predicted and observed values,
and pm are values predicted by the different models for
SN. Note that Equations 5 and 6 are similar in principle,
but with a difference pertaining to usage; r2 is deter-
mined by a statistical model, whereas the pm values in
Equation 6 are outcomes from an applied model.
Values of E can therefore be negative.

A pilot test of red edge indices

The potential performance (assessed through correlation)
of the ΔRE index (Equation 2) compared with that of
MSAVI2 (Equation 1) for prediction of N uptake in winter
wheat (growth stage Z30–43; three cultivars: Brons,
Ellvis, Julius) was performed by a limited test. This was
done using data from the South region only in 2016,
since Sentinel-2 data and proximal sensor data for corre-
sponding dates were only available in that region. For
comparison, we also tested two other common indices
similarly aimed at representing chlorophyll concentration
in the canopy using band combinations in the red edge-
NIR region (ρ1 and ρ2 in Figure 1). These were: the normal-
ised difference red edge index (NDRE) (Equation 7) (e.g.
Barnes et al. 2000) and the chlorophyll red edge index
(CIred-edge) (Equation 8) (Gitelson et al. 2003):

NDRE =
r1 − r2
r1 + r2

(7)

CIred−edge = (r1/r2)− 1 (8)

All spatial analyses were conducted in ArcGIS (ESRI,
Redlands, CA, USA) with the extension Spatial Analyst
and the regression modelling was performed using R
(R Core Team 2016).

Results

The linear regression modelling revealed that MSAVI2
maps calculated from Sentinel-2 and DMC satellite data
were significantly correlated to N uptake in winter
wheat (Z30–45) as predicted by the handheld Yara N-
Sensor (Table 3). On national level, a crop-specific
model for the winter wheat cv. Julius had a somewhat
higher coefficient of determination (r2 = 0.72) than the
general model that included all seven wheat cultivars
(r2 = 0.63). The same was true for the regional models.
However, less of the variation in N uptake could be
explained by MSAVI2 in the regional models, possibly
due to the fact that there was less variation locally.

Validation statistics of the regression models resulting
from the different validation approaches (temporal
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cross-validation (tcv) and regional independent vali-
dation (riv)) are reported in Table 4. Scatterplots of the
validations are shown in Figures 4 and 5. It proved poss-
ible to parameterise linear regression models on the
MSAVI2 vegetation index maps derived from satellite
data and achieve non-biased predictions of N uptake
with a MAE of 10–15 kg N ha in the growth stage interval
Z30–45, depending on the model. Slightly more accurate
predictions were possible for models calibrated and vali-
dated only for cv. Julius compared with general models
calibrated and validated for a mix of cultivars (Table 4;
compare Figure 4a and 4b with Figure 4c and 4d).

Comparing the validation outcomes in Table 4 (vali-
dation model ID: i–iv = national models, v–viii = regional
models) and Figure 5 (regional models) with Figure 4
(national models), it can be seen that the regional
models (West region only; Figure 2) did not perform
better, but rather worse, than the national models. This
might have been caused by a relatively low number of
reference observations regionally and thereby a less
robust model, and also less variation in the data region-
ally compared with the national dataset (as shown by
lower MAE in the regional model validations).

There slight differences in the relationships between r2

and E found between the tcv and riv validation. When the
models were applied on the regional HS dataset, there
was in general a larger deviation from the 1:1 line (lower
E) between observations and predictions, although MAE

was lower in the regional validations than in the national
validations. The mixture of satellite data from the two
satellites DMC and Sentinel-2 did not seem to affect the
predictions (Figure 4a and 4c).

As shown in Figure 6, the three vegetation indices
based on narrow bands in the red edge-NIR part of the
spectrum (ΔRE, CIred-edge and NDRE) were far better
correlated to N uptake measured by proximal handheld
Yara N-Sensor (r2 = 0.89; 0.88; 0.85, respectively) than to
N uptake based on the MSAVI2 index (r2 = 0.61). There
were only small differences between the red edge
indices. The data used in this comparison were from
the South region only (shown in Figure 2). All three
winter wheat cultivars included in this test closely
followed the same regression function in the case of
the red edge indices (Figure 6b–6d).

Discussion

Provision of satellite-based decision support for N
fertilisation in Scandinavia

Satellite data availability
Until recently, no satellite image-based decision support
system for practical use aimed at crop management
within the growing season was available in Scandinavia
(Söderström et al. 2016). However, with increasing
numbers of satellites available and decreasing costs
and delivery time of data, it is now possible to make

Table 3. Results of regression analyses of the MSAVI2 vegetation index calculated from satellite data compared with N uptake as
recorded by the handheld Yara N-Sensor in the growth stage interval Z30–45. The national models are based on all JV data,
whereas the regional models are based only on JV data for the West region (Figure 2).

National models Regional models

All cv. cv. Julius All cv. cv. Julius

â (slope) 203.5 ± 13.14*** 205.2 ± 15.93*** 188.5 ± 21.80*** 219.9 ± 29.67***
b̂ (intercept) −28.90 ± 6.84*** −32.41 ± 8.46*** −31.78 ± 11.17** −47.54 ± 15.24**
n 140 66 49 30
r2 0.63 0.72 0.61 0.65

Numbers within brackets are standard error; cv. = cultivar; n = number of observations; â and b̂= estimated parameter values ± standard error. Asterisks denote
the significance level at which the null hypothesis (that the parameter is equal to zero) was rejected.

***p < 0.001, **p < 0.01.

Table 4. Validation statistics for prediction of N uptake in winter wheat from the MSAVI2 vegetation index maps in the growth stage
interval Z30–45.

W.wheat cultivars Calibration region Validation region

MAE

r2 E IDdata strategy n (kg N ha−1)

All S/W/E/C
{
S/W/E/C JV tcv 140 15 0.56 0.56 i
W HS riv 50 11 0.56 0.43 ii

Julius S/W/E/C { S/W/E/C JV tcv 66 14 0.63 0.63 iii
W HS riv 23 10 0.65 0.63 iv

All W
{
W JV tcv 49 14 0.48 0.42 v
W HS riv 50 12 0.56 0.40 vi

Julius W { W JV tcv 30 15 0.47 0.38 vii
W HS riv 23 11 0.65 0.61 viii

Note: Regions: S = South; W =West; E = East; C = Central (Figure 2). Strategy abbreviations: tcv = temporal cross-validation; riv = regional independent validation.
ID is identification code for validation models (i–iv = national models, v–viii = regional models).
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use of timely remote sensing data for descriptions of
crop status on within-field level in Sweden.

Compared with indices based on commonly used
broad visible and near-infrared bands, new satellite
systems such as Sentinel-2 offer relatively fine resolution
(10 m) for a number of bands in the red-edge-NIR region
of the electromagnetic reflectance spectrum of a crop
canopy. When the second of the Sentinel-2 satellites
(2B) becomes operational (planned for 2017), Sentinel-
2A and Sentinel-2B in combination might prove suffi-
cient as a free data source for a DSS even in cloudy
areas such as northern Europe.

At present, however, with only one Sentinel-2 satellite
in operation, relying on data from that satellite would
have resulted in lack of cloud-free images for many
fields in growth stages Z30-45 (in this case around 10
May to the first week of June), as can be seen in
Figure 7. In the sample field shown in Figure 7, only
data from the DMC satellite were useful during this

period. As shown in Figure 3, most of the arable land
in Sweden was covered by cloud-free satellite data
several times during the period late April-early to mid-
June in 2016. In 2015, when Sentinel-2A data were not
available, the coverage was poorer, but this was also
due to considerably cloudier conditions in that year.
This indicates that even in a cloudy part of the world,
such as Scandinavia, it is possible to provide users with
free or low-cost data from satellites for use in time-critical
applications such as agricultural management.

Stability of spatial variation patterns in crop vigour
The data and workflow overview of the CropSAT DSS are
visualised for one 60-ha field in Figure 7, and in that case
satellite index maps were available from eight dates in
2016 (between 12 April and 6 June). Farmers and advi-
sors often believe that satellite images must be no
more than a few days old if they are to be relevant in por-
traying crop conditions in fields. This has also been

Figure 4. Validation of national (all regions) calibration models for N uptake in winter wheat (cf. Table 4). In (a) and (b) all cultivars (cv.)
were used, whereas in (c) and (d) only Julius was used. Validation strategy abbreviations: tcv = temporal cross-validation; riv = regional
independent validation (data for the West region only). Triangles are estimates from Sentinel-2 data, dots are estimates from DMC data.
(a) All cultivars, tcv validation (ID = v). (b) All cultivars, riv validation (ID = vi). (c) Cv. Julius, tcv validation (ID = vii). (d) Cv. Julius, riv
validation (ID = viii).
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reported in the literature (e.g. Muñoz-Huerta et al. 2013).
However, experiences from the CropSAT DSS have
shown that the within-field spatial pattern of vegetation
indices during the period for supplementary fertilisation
of small-grain crops is generally relatively stable. In the
field in Figure 7, the map shows winter wheat in the
southern part and oats (Avena sativa, L.) to the north.
In addition, the winter wheat area had two different pre-
ceding crops, resulting in differences in available soil N,
but the spatial pattern was still fairly consistent. This is
not an exception (Söderström et al. 2016), and thus the
relative variation data in one- to two-week-old veg-
etation index maps might still be useful as base maps
if combined with field calibrations.

Translation of MSAVI2 maps to maps of N uptake

For spatial estimation of the optimal N rate for topdres-
sing, measuring actual N uptake rather than vegetation
index values may simplify the process. The results

obtained in this study showed that MSAVI2 index maps
relatively accurately can be translated to N uptake maps
by calibration against proximal N sensor measurements.
Even a general national model based on data from two
years which included a mix of seven winter wheat culti-
vars proved useful for within-season prediction of N
uptake for growth stage period Z30-45 (validation
model i in Table 4: E = 0.56; MAE = 15 kg N ha−1). The
independent regional validation gave lower E and MAE
(validation model ii in Table 4: E = 0.43; MAE =
11 kg N ha−1). The reference dataset used herewas some-
what limited, which prevented tests on a range of cultivar-
specific models, but a model parameterised specifically
for the most common cultivar, Julius, showed some
improvements compared with the general model (vali-
dation model iii in Table 4: E = 0.63; MAE 14 kg N ha−1;
compare also Figure 4a and 4b with Figure 4c and 4d).
This suggests that further and extended proximal sensor
measurements for enlarging the reference database
would be useful. Therefore we recommend that such

Figure 5. Validation of regional calibration models of N uptake in winter wheat (only West region; Figure 2). In (a) and (b) all cultivars
(cv.) were used, whereas in (c) and (d) only cv. Julius was used (see also Table 4). Validation strategy abbreviations: tcv = temporal cross-
validation; riv = regional independent validation (the HS-dataset). All estimates based on data from DMC.
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measurements currently conducted throughout the
period of N topdressing by the Swedish Board of Agricul-
ture are continued and possibly expanded to include
small-grain crops other than winter wheat.

Scope for improvement using sentinel-2 red edge
bands

There is scope for improvement of spatial N uptake predic-
tions by using ΔRE or other indices based on bands in the
red edge-NIR spectral region, instead of the broad-band
index MSAVI2. In the limited test in southern Sweden
2016 reported here (Figure 6), we confirmed findings
from e.g. Reusch (2005), who stated that an index based
on differences in two bands in the NIR and red edge
region (Equation 2) is better related to N uptake in
winter wheat than common broad-band indices, here
MSAVI2. Combining the narrow 10 nm band 6 (783 nm)
and band 5 (740 nm) data from Sentinel-2 in the ΔRE
index seems to be a useful alternative to common
indices such as MSAVI2 for calibration of Sentinel 2 data

against winter wheat N uptake as recorded by the hand-
held Yara N-Sensor. However, satellite data for narrow
bands in this spectral region are still not common.
Hence, if a multitude of different satellites are to be com-
bined to improve temporal coverage, thenmore traditional
broad-band indices might be preferred, particularly if
assessments of historical data are also of interest.

Improvements through design-based N sensor
measurements

There is scope for improvement of spatial N uptake
predictions by adopting a design-based N sensor
measurement programme aimed at overcoming
factors causing noise in the currently used dataset.
The noise evident in the validations (Figures 4 and 5)
may originate from a number of factors, e.g. variations
between cultivars (Reusch 2005) and seasonal differ-
ences (Samborski et al. 2009), as well as differences in
resolution between the reference data. In this case,
the satellite image data had 10 × 10 m2 or 22 × 22 m2

Figure 6. Correlation between N uptake in three cultivars of winter wheat measured by the handheld Yara N-Sensor and (a) MSAVI2, (b)
ΔRE, (c) CIred-edge and (d) NDRE vegetation index calculated from Sentinel-2 data. Growth stage Z30–43, data from the South region only
(see Figure 2).
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resolution, while the proximal sensor measurements
represented a few square metres. In addition, the posi-
tioning of the N sensor measurements was uncertain,
especially in 2015, and there was a temporal difference
of up to ±3 days in acquisition between proximal sensor
data and satellite images. Moreover, atmospheric cor-
rections were made with simple dark object subtraction
applied on entire satellite scenes, a rather crude
method which does not consider within-scene differ-
ences in atmospheric conditions. Despite all these
obstacles and pitfalls, application of the models on
data from 2015 to 2016 produced reasonable predic-
tions, as shown in the validations (Table 4, Figures 4
and 5). The predicted N uptake was totally out of
range (a very low negative prediction which was set
to 0) in only one case (in the regional independent vali-
dation) (Figure 4b, 4d, 5b and 5d). Data on one particu-
lar location with exceptionally low vegetation index
resulted in this outlying prediction in all models.
Whether this was a result of incorrect positioning of
the field-measured data is unknown.

Based on the above, we make the following rec-
ommendations for improved calibration data collection:

. Adequate positioning of handheld N sensor measure-
ments (e.g. differential GPS or real-time kinematic
GPS).

. Appropriate geographical support of handheld N-
sensor measurements for combination with satellite-
based raster data, e.g. several sub-readings distributed
over a reasonably large area (e.g. 10 × 10 m2).

. Collection of sufficient data for parameterisation of
cultivar-specific calibration models: at least 20 N-
sensor measurements during growth period Z30–
Z45 in each of the most common cultivars.

. If possible, synchronisation of handheld N sensor
measurements with known satellite passes to reduce
time discrepancies between remote and proximal
measurements.

. Rapid delivery of collected data for continuous cali-
bration of vegetation index maps to N uptake maps
during the season.

Figure 7. Current working model for the CropSAT satellite image-based DSS used in Scandinavia, exemplified with data for 2016 for one
60-ha field in south-west Sweden. Vegetation index maps are generated from free or low-cost satellite data for most arable fields during
the period of supplementary N fertilisation of small-grain crops. Through tools available in the DSS, these maps are manually converted
to N application maps based on field inspections, occasionally with the use of low-cost crop sensors. Computer files that control fertiliser
spreaders on-the-go can be downloaded. Photo: Christina Lundström.
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Challenges in translating satellite N uptake maps
to variable-rate application maps for N

Once N uptake maps are available (e.g. derived by cali-
bration of satellite data), the major remaining challenge
is the transfer of spatial N uptake data to decision
support for real management actions, for instance pre-
scription files for variable-rate application (VRA). In prin-
ciple, and irrespective of whether it is determined for
an entire field or for a 10 × 10 m2 pixel in that field, the
N rate to apply depends on the yield potential, the soil
N supply, the price ratio between fertiliser N and grain,
the amount of N fertiliser applied earlier in the season
and whether the goal is to target the economic
optimum fertilisation or to achieve a certain protein
content. Responsive fertilisation taking the growth con-
ditions of the current year into account is recommended,
by splitting the total amount of mineral N into two-three
applications. Reference plots with zero fertilisation (indi-
cating soil N supply) can be used as a guide when decid-
ing the N rate in the second and third applications.
A drawback of such reference plots is that they are
rarely representative of the field average (it is difficult
to place them in a representative part of the field) and
do not reveal the spatial variation in soil N supply or
crop N demand (Samborski et al. 2009). Instead, infor-
mation on the spatial variation in crop N status can be
derived from other tools such as proximal tractor-borne
optical sensors or satellite-based DSS. However, there is
today no given algorithm for determination of N rate
based on either vegetation indices or crop N uptake in
growth stage Z30–45. One practical manner in which
to apply N uptake maps produced through the models
presented in this study could be to first determine a
field average N requirement according to common prac-
tice (taking the above aspects into consideration), and
then redistribute the average N according to the N
uptake map. This redistribution need to take into
account if other factors than N is expected to limit crop
growth, but generally it has been demonstrated that a
reasonable approach might be to move N from areas
with the lowest and highest values to medium areas
(Berntsen et al. 2006), and algorithms built into some
tractor-borne N sensors work this way (Söderström
et al, 2004). Linear relationships between N uptake and
N rate to apply have been reported (Flowers et al.
2003), but these have been found to be highly unreliable
and often site-specific (Samborski et al. 2009).

In the satellite-based CropSAT DSS, the transformation
of vegetation index maps to N rate maps is done by
manual calibration. The user can enter the N rates corre-
sponding to five equally distributed index values and a
piecewise linear relationship between N rate and satellite

index is fitted. The user is recommended to visit a few
sites in the field with different index values (Figure 7)
and estimate the optimal rate for N topdressing before
performing the manual calibration, either with the help
of an N-tester (handheld chlorophyll metre) or through
expert judgment and experience. The vegetation index
map is then recalculated to an N rate map in a download-
able file that can be used directly for variable-rate appli-
cation (VRA) by various equipment. Since vegetation
indices are relative values reflecting crop vigour, trans-
lation to absolute N uptake, as demonstrated here,
assists the farmer in decisions on N rates to apply.

Societal value of low-cost or publicly available
satellite image-based DSS for VRA for N

An advantage of using satellite data for N management
within fields compared with handheld or vehicle-
mounted sensors is that the data collected cover huge
areas and can be used on a multitude of scales, from
watersheds and landscapes to fields. New low-cost or
publicly available satellite systems such as Sentinel-2
with high temporal resolution and with additional wave-
bands targeted for assessment of crop properties opens
up exciting possibilities for improved N management
and nutrient use efficiency for more efficient food chains.

Easier access to decision support should increase the
adoption of VRA for N, which in turn should result in a
smaller proportion of arable land being under-fertilised
or over-fertilised. Economically optimal nitrogen rate
(EONR) has been demonstrated to be a threshold value
for increased nitrate leaching (Lord & Mitchell 1998;
Delin & Stenberg 2014), and therefore it is important
not only from an economic perspective but also from
an environmental perspective to avoid N rates higher
than EONR.

Summary

We developed empirical relationships between MSAVI2
and N uptake in growth stage Z30–45 based on a
combination of satellite data used in an online decision
support system and data from handheld crop sensors
representing a large part of the arable land in Sweden.
The models obtained were evaluated for general use
and validated through an iterative, temporal leave-one-
field out cross-validation procedure mimicking practical
implementation. It proved possible to parameterise
linear calibration models for translation of MSAVI2
maps to N uptake maps, resulting in models with MAE
ranging between 11–15 kg N ha−1. A cultivar-specific
model (cv. Julius) performed better than the general
model, but a model calibrated and validated by data
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from one region only showed no improvement over the
model parameterised with data from all four regions.

The different indices calculated from the two narrow
bands of Sentinel-2 in the red edge-NIR spectral region
were demonstrated to be promising alternatives to the
broadband MSAVI2 index.

Recommendations proposed for continuous hand-
held N sensor measurements include collection of suffi-
cient data of suitable quality for parameterisation of
cultivar-specific calibrations in order to minimise discre-
pancies between satellite data and proximal measure-
ments in terms of position, spatial support and time of
acquisition.
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