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ABSTRACT
We present the results of an aggregation study on the intrinsically disordered biomineralisation peptide
n16N, which selects the aragonite polymorph of calcium carbonate and is expected to have aggregation-
dependent structure and function. The peptide is a sub-sequence of the in vivo protein n16, with putative
framework and polymorph selection roles in the nacre layer of pearl oyster (Pinctada fucata). Employing the
intermediate-resolution coarse-grained protein model PLUM*, which has previously been validated with
respect to n16N, we simulate assemblies of these peptide units for system sizes inaccessible to atomistic
models. We use extensive conformational sampling to show that the configurational ensemble explored
by n16N aggregates contains a significant proportion of ordered β-structure, within which arrangement of
monomers is consistent with a previous hypothesis on functionally distinct subdomains of n16N. We also
study an n16N mutant which fails to aggregate in experimental studies and obtain very similar behaviour,
the consequences of which are discussed.
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1. Introduction

Biomineralisation refers to the formation of composite bio-
inorganic materials, known as biominerals, in controlled envi-
ronments by certain living organisms. Such organisms possess
an ability to form hierarchically nanostructured hard tissues via
biomineralisation processes which are not well understood, but
have a rangeof potential applications [1–4]. In a typical scenario,
biomineralisation is biologically controlled in an extracellular
environment [5,6] by an organic matrix [7–9], which becomes
the organic component of the final structure. The matrix is
typically formed of polysaccharides, glycoproteins and proteins
[10] which are often members of the protein fold class known
as intrinsically disordered proteins (IDPs).

IDPs are defined by their lack of a single stable tertiary
structure [11,12], and often have a function for which their
disorder is essential [13]. It has been suggested that biomineral-
isation proteins are themost disordered functional protein class
[14], perhaps owing to required adaptability for multi-stage
matrix assembly [13], interaction with ions [15] and selectivity
of chemical environment in which assembly occurs [16].

n16 is a biomineralisation framework protein, present in
the nacre layer of the shell of pearl oyster (Pinctada fu-
cata) [17–20], where it is thought to stabilise the aragonite
polymorph of calcium carbonate [21–24]. The 30AA (amino
acid chain length) N-terminal region named n16N has been
used as an n16mimic in experimental biomineralisation studies
[25–33]. Highlights include use of n16N with a Kevlar sub-
strate producing lamellar aragonite [30], and n16N selecting
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aragonite when bound to β-chitin [29], a macromolecule with
a substantial presence in the putative organic biomineralisation
matrix of nacre [34]. n16N has been deemed ‘the key self-
assembly/aragonite forming domain’ [33], and is the focus of
the current work. Dynamic light scattering has confirmed that
n16N oligomerises into μm-scale supramolecular assemblies
[32]; evidence from circular dichroism spectra and NMR show
that these oligomers are composed of 54% randomcoil structure
and 46% β-structure [22,32,35]. Attempts have been made to
converge upon a functional subdomain classification scheme
for n16N, in the context of the n16N/β-chitin/calcium carbon-
ate system. Inputs to this include bioinformatic analysis [24],
with the disorder-predicting algorithm GLOBPLOT2.3 [36],
NMR evidence [22] and atomistic simulation of the monomer
[15]. Figure 1 lays out the current state of these efforts, as
described by Brown et al. [15], on an annotated n16N chain
sequence.

A fully atomistic treatment of multiple n16N peptides, their
aggregation and interaction with mineral ions, remains far be-
yond the reach of contemporary computational capability. This
is particularly true in terms of time scale and hence the ability to
sample the conformation space available to large aggregates of
n16N.Weare thereforemotivated to study the structure of n16N
aggregates using lower resolution, coarse-grainedmodels. These
can provide insight into the gross structural motifs adopted by
aggregates of multiple n16N units, and hence provide struc-
tural input to detailed atomistic simulations of peptide–mineral
interactions at the extremities.

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
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Figure 1. (Colour online) n16N chain sequence, labelled by putative character and function of hypothesised functional subdomain regions [15]. Cationic and anionic
residues are coloured in blue and red, respectively. An ellipsis indicates where the n16 parent protein’s chain continues.

In previous work [37], we explored use of the coarse-
grained protein model PLUM created by Bereau and Deserno
[38]. PLUM is a four-bead-per-residue, implicit-solvent
protein model. It includes steric backbone–backbone repul-
sion via Weeks–Chanlder–Anderson potentials, dipole–dipole
interactions between peptide bonds, and an explicit backbone–
backbone hydrogen bonding potential. Interactions between
side chains are captured via further pair potentials parame-
terised from an analysis of square-well interaction strengths
needed to reproduce structures of crystallised proteins. This
analysis, which includes all 20 × 20 possible pairs of residues,
implicitly captures electrostatic interactions between charged
side chains. However, the model contains no explicit electro-
static terms and is hence unsuitable for simulating the inter-
action of peptides with mineral ions. All other parameters,
including bond and angle potentials, were fitted by Bereau and
Deserno to reproduce the conformational ensemble for a num-
ber of sample protein sequences.

We demonstrated that the standard PLUM parameter set re-
quired only minor modification to produce ensembles of n16N
peptide structures in agreement with structural predictions and
atomistic simulations [15] in the CHARMM22* model [39,40]
with TIPS3P water [41]. Specifically, a 5.5% reduction in the
strength of backbone–backbone hydrogen bonding produced
encouraging preliminary results for both monomer and dimer,
including distinguishing hypothesised subdomain regions by
relative level of disorder, secondary structuremanifestation, and
degree and manner of involvement in dimerisation. We refer to
the adjusted model as PLUM*.

This background offers the tantalising suggestion that the
structure of large n16N aggregates, from which its function
may derive, are accessible via simulations using PLUM-style
models. The primary goal of this manuscript is therefore to
build upon our one-chain and two-chain system findings by
presenting results from simulations of three-, six- and eight-
chain systems of n16N. These system sizes are beyond those
accessible to atomistic simulations.

As a secondary objective, we also simulate a mutant of n16N
called n16NN, in which the acidic residues are replaced by
charge-neutral counterparts (Asp → Asn, Glu → Gln, that is
D→ N and E→ Q in Figure 1). n16NN aggregates differently
[27,30] with circular dichroism spectra suggesting a greater

preference for random coil structure compared to the original
peptide. It also fails to form complexes with Ca2+ [27], likely
because Asp and Glu have an active role in organic–mineral
association [28]. This hampers the aragonite selectivity of the
peptide [29,31]. Our previous work studied the n16NN peptide
in single- and two-chain systems, with the goals of gauging
PLUM*’s sensitivity to the minor distinctions between the two
chains, and forming a hypothesis about n16NN’s failure to ag-
gregate normally. In our previous work we observed lower con-
formational accessibility and greater stability of aggregation-
facilitating hydrogen bonds throughout the chain, including in
the aggregation-driving SD2 region (seeFigure 1),which is iden-
tical in both systems. Here, we investigate if these distinctions
persist to larger aggregates.

2. Simulationmethodology

Each system simulated is referred to by the peptide name and
number of chains in the system, e.g. n16N-3 for the trimer n16N
system. Our aim in the present study is to establish the structure
of oligomers, and the role of the three subdomains within these.
Simulations of each system are initialised with the peptides in
close proximity to encourage formation of oligomers.Wedonot
sample configurations in which any of the peptides unbind. All
statistics extracted from the ensemble generated should be con-
sidered conditional on oligomers of the size simulated having
been already formed via aggregation. The simulation package
LAMMPS [42] was used with a timestep of 3 fs and a Langevin
thermostat with a damping parameter of 1000 fs.

As in our previous work, we employed the replica exchange
molecular dynamics (REMD) technique [43,44], varying repli-
cas by thermostatted temperature and keeping the Hamiltonian
of each replica the same.The replicas at the highest temperatures
achieved enhanced sampling through their ability to overcome
barriers on the potential energy surface. We attempted moves
to swap pairs of system coordinates regularly, at fixed intervals.
These proposals were accepted or rejected according to the
Metropolis prescription, allowing the enhanced sampling at
high temperature to propagate to the reference temperature
without violating canonical ensemble statistics [45].

The number of replicas required to obtain sufficiently over-
lapping energy histograms increases with the number of
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degrees of freedom in the system. For the smallest system con-
sidered here (3 peptides), we employ 27 replicas thermostatted
at temperatures between 300 and 350K, and for the largest (8
peptides) 84 replicas are used. We selected the temperature
set for each system based on preliminary work, with the goal
of achieving an acceptance rate of approximately 0.2 for swap
attempts between replicas at adjacent temperatures.

Any memory of the initial configuration is very rapidly lost
in the highest temperature replica. This de-correlation propa-
gates to lower temperatures via exchanges. It is hence traversal
of configurations from high to low temperature which is the
limiting factor in determining the ability of our simulations to
generate sampleswhich are statistically independent of the start-
ing configuration. To ensure the desired quality of sampling,
we tracked the average time for a system to traverse the range
of temperatures, and simulate for a time far in excess of this.
Ordered by ascending system size, in pairs of n16N followed by
n16NN systems, the simulation run times were equivalent to 6.4
and 6.4µs, 2.5 and 3.3µs, and 3.4 and 3.3µs. We stress that the
concept of time in coarse-grained models such as PLUM and
PLUM* is not well defined, particularly when accelerating low
temperature sampling via exchange with other replicas. Times
reported above should be considered an indication of sample
size only.

3. Analysis methodology

We visualise the conformational ensemble for each system sim-
ulated using the standard Ramachandran plot. Briefly, this visu-
alises the frequency at which successive peptide-bond dihedral
angles (φ and ψ measured between −180◦ and +180◦) occur
in combination over all samples from the ensemble simulated.
This is typically represented as a ‘heat map’ with hotter colours
indicating a higher frequency of occurrence. A high frequency
of data points in the upper-left quadrant of such plots indicates
a preference for β–sheet structure.

To discern the most favoured aggregate conformations in
each trajectory, we use a clustering analysis based on geometric
similarity. The tool g_cluster is a part of the Gromacs package
[46–48] which performs this function. In this work, we make
use of the gromos clustering algorithm [49]. A pertinent detail
arises from the indistinguishability of identical peptide chains.
When calculating similarity to a reference structure, we must
also compare to all structures resulting from permuting chain
labels within that structure. For the eight-peptide system, this
results in 40, 320 comparisons for each snapshot in the REMD
simulation. We have modified the g_cluster tool to accommo-
date this, parallelising the permutations over processors using
MPI.

For any clustering analysis, a root-mean-square deviation
(RMSD)parameter, governing the allowable deviationof atomic
coordinates of structures in the same cluster,must be set. Table 1
shows the values we used, determined as a compromise between
the level of false negative groupings and false positive groupings.
Note that in general, RMSD cut-offs used in geometric cluster-
ing analysis are size-extensive; however, the cut-off distances
do not follow a clear-cut, simple dependence on system size in
terms of number of atoms alone due to changes in the flexibility
between oligomers of differing size. The main point of our

clustering analysis is not to identify a definitive set of clusters
that can be compared in some absolute sense, but to highlight
key structural differences between the n16N-x and n16NN-x
aggregates (for a fixed value of x), and between the subdomains
therein. So long as the clustering cut-off is kept the same when
comparing n16N-x and n16NN-x, and for each subdomain, this
remains a fair and clear way to compare the two conformational
ensembles.

This clustering analysis allows comparison of flexibility
between chain regions and chain types via comparison of popu-
lations in themost probable cluster, and via the discrete entropy
of the ensemble. Subdomain analyses used same-length repre-
sentations of each chain region: residues 1 to 8, 9 to 16 and 23
to 30 were used. For all analyses, only backbone atom positions
were passed to g_cluster as input.

The VMD viewer [50] was used to produce cartoon-style
images of peptide aggregates. While automatic structure-
identifying algorithms exist, these are not functional on the
geometry of thePLUMmodel.Assignmentwasperformedman-
ually based on backbone dihedral angles and hydrogen bonding
criteria.

4. Results and discussion

Figure 2 shows the evolution of the secondary structure of
n16N chains with increasing system size. Between the n16N
monomer and the n16N-6 system, these Ramachandran plots
show a consistent migration of structure from the α-helix peak
at (φ,ψ) ≈ (− 60◦,−45◦), and other accessible areas, to the β-
structure peak at (φ,ψ) ≈ (−100◦, 130◦).Wewill subsequently
show in detail that the n16N-6 and n16N-8 systems aggregate
into full β-sheets. In the n16N-6 and n16N-8 systems, the vari-
ance of accessed (φ,ψ) angles about the peaks is extremely low
compared to the n16N-3 system.

Two new peaks appear in n16N-6, Figure 2(c), and become
dominant in n16N-8, Figure 2(e). The difference plots reveal
that the magnitude of this change from n16N-6 to n16N-8
is approximately twice as great as any difference between the
n16N-3 and n16N-6 systems. However, it will be illustrated that
the n16N-8 system is in fact more strongly β-sheet-dominated
than any of the smaller systems. We suggest these peaks result
from an artefact of the PLUM*model occurringwhenβ-strands
are tightly packed, in which strands tend to adopt alternating
pairs of these (φ,ψ) angles.

Figure 3 is a trajectory snapshot which summarily displays
the favoured aggregation behavior of the largest system of the
n16N peptide, alongside the favoured structure of themonomer
(inset). Geometric clustering of like conformations throughout
the trajectory was used to generate the most likely structures
in the conformational ensemble, and the most populous cluster
is shown. This will henceforth be referred to as a system’s top
cluster. In the top cluster of the n16N-8 system, the chains lie
in two highly-ordered β-sheets, both exhibiting a chain kink
at P15 in the sequence. The smaller sheet lies at a 90◦ rotation
about its plane to the larger sheet, optimising overlap of sheet
SD2 regions (see Figure 1 for a definition of SD2) which are
hypothesised to be responsible for aggregation, without overlap
of other subdomains. In stark contrast to the PLUM* predic-
tions for the monomer system, almost no α-helical structure
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Table 1. Root-mean-square deviation (RMSD) values used for the geometric clustering analysis.

Target RMSD value (nm)

Three-chain systems 0.8
Six-chain systems 1.13
Eight-chain systems 1.2
Subdomain regions 0.2

Figure 2. (Colour online) Ramachandran heat maps of n16N systems, accompanied by difference maps between neighbouring system sizes. In the difference maps,
positive values are those more favoured in the larger system.

is present. This emergent behavior, inaccessible to atomistic
approaches, demonstrates the utility of carefully parameterised
intermediate resolution models, such as PLUM*.

We refer readers to the supporting information for clustering
results at every system size. A trend of aggregation through
increasing β-structure content and decreasing α-helix content
as chain number increases is demonstrated.

Figure 4 shows the frequency of inter-peptide hydrogen
bonds in n16N-8 over the entire ensemble. It is clear that chains
exclusively undergo parallel β-sheet oligomerisation, and fall
into a shifted register in which inter-peptide hydrogen bond-
ing most frequently occurs between residues i and i + 2. This

matches the staggered chains which constitute the sheets in
Figure 3. The PLUM* model captures the fact that the proline
residue is unable to form hydrogen bonds through its backbone
nitrogen atom. The effect of this can be seen in the absence of
hydrogen bonds from the heat map of Figure 4, and is likely
related to the turn in each β-sheet of Figure 3. It is impossible
for two proline residues to hydrogen bond to each other, which
implies that a perfect parallel β-strand of two concurrent n16N
chains cannot exist, and may account for the observation of
chains preferentially aggregating out of step. Figure 4 suggests
that shifts of ±n, where n = 1 or 2 account for the majority
of bonding, with approximate symmetry between positive and
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Figure 3. (Colour online) Most populated structural group of the n16N-8 system,
comprising 17.5% of trajectory snapshots. Inset: Most populated structural group
of the n16N-1 system, with 4.4% [37].

Figure 4. (Colour online) Average number of interpeptide hydrogen bonds per
residue–residue pair in the n16N-8 system.

negative shifts. This leads to aggregates exhibiting a disorder in
chain stacking, qualitatively distinct from amyloid-like struc-
ture. The lack of any hydrogen bonding away from the diagonal
in Figure 4 signifies a degree of specificity in aggregation behav-
ior of n16N, suggesting that the forms of ordered structures in
the conformational ensemble of n16N-8 do not deviate signifi-
cantly (other than registry shifts) from the cluster in Figure 3.

InFigure 5,wepresent the fractionof configurations inwhich
each residue within n16N and n16NN is involved in hydrogen
bonding. Compared to Figure 4, information on intra-chain
bonding topology is lost, masking any possible difference in
aggregation behavior between the two peptides. The area under
the curves can be taken as a normalised measure of total inter-
peptide interaction, suggesting that hydrogen bonding in aggre-
gates of both n16N and n16NN increases with system size, and
also that differences in bonding between successive oligomers
reduce with system size. We can therefore be confident that no
qualitative difference in behavior will arise for larger aggregates
than studied here.

Our expectation to see SD2 as the principal driver of aggre-
gation in n16N is largely confirmed by Figure 5. The residues

Figure 5. (Colour online) Average frequency of each n16N or n16NN residue being
involved in aggregation-enabling interpeptide hydrogen bonds, at each system
size. For the n16NN systems, the anionic residues indicated along the axis in red
are replaced in n16NN according to D→ N and E→ Q.

most involved in inter-peptide hydrogen bonding are always
located in SD2. However, at the largest system sizes, the N-
terminal region of SD3 is also highly involved, as it is in the
aggregate in Figure 3. The continuation of β-structure well
into SD3 is a result unseen at smaller system sizes. This defies
the expected subdomain behavior, and is unusual given the
highly charged nature of SD3. This behavior may arise from the
crowding together of chains in the largest systems, coupled with
the approximation inherent to the PLUM* model of describ-
ing all side-chain interactions on a simple hydrophobic scale,
therefore omitting electrostatic repulsive interactions.Matching
the subdomain hypothesis, SD1 remains mostly uninvolved in
interpeptide hydrogen bonding for all systems.

In the two-unit systems previously studied [37], a whole-
chain difference was seen in measures of conformational ac-
cessibility, including the frequency of interpeptide hydrogen
bonds between n16N and n16NN, with the latter being higher.
This led to the hypothesis that the whole-chain conformational
accessibility, whichmay be a prerequisite of assembly, was com-
promised in themutant. However, Figure 5 reveals that increas-
ing system size diminishes the hydrogen bonding differences
between the two peptides: the 3-chain systems are similar up to
residue K5, the 6-chain ones are similar up to residueW13, and
the 8-chain ones are similar throughout the entire sequence.
To examine this discrepancy fully, we include an additional
approach to inspecting conformational accessibility.

In table 2, our clustering analysis is extended to include
comparable, equal-length representations of subdomains SD1,
SD2 and SD3, as well as the full systems. By comparing the
population of every group’s top cluster, we gain a further insight
into the relative conformational accessibility of each. We also
compute the discrete entropy (−∑

i pi ln pi, where pi denotes
the population of the ith cluster) over all clusters in the ensemble
to provide an indication of the extent to which the remaining
population is distributed over multiple clusters. Note that clus-
ter population comparisons of differently-sized full systems are
not meaningful. Similarly, comparison between the full chain
and subdomain data is meaningless.

By this measure, there are no significant differences in levels
of disorder in a given subdomain and system size between n16N
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Table 2. Population of most populated clusters in full-system and subdomain clustering analyses, and discrete entropy of the configurational ensemble, providing an
insight into the stability of the system or chain region compared to regions or systems of the same size.

Population of region (%) Discrete entropy (kB)

Full-system SD1 SD2 SD3 Full-system SD1 SD2 SD3

n16N-3 7.0 55.8 72.1 37.9 7.96 1.63 1.19 1.90
n16NN-3 12.3 57.1 71.3 35.7 7.22 1.64 1.22 2.02

n16N-6 3.1 55.6 63.7 48.1 6.14 1.65 1.26 1.67
n16NN-6 10.1 56.1 63.0 52.7 5.12 1.63 1.29 1.61

n16N-8 17.5 57.8 69.1 58.5 4.19 1.65 1.17 1.58
n16NN-8 15.0 54.7 67.4 57.1 4.50 1.77 1.35 1.61

and n16NN. This includes the highly charged SD3 subdomain,
where the point mutations are introduced. The population of
the top cluster of SD3 increases with increasing system size,
overtaking SD1 in the largest system, corroborating the evidence
from the rising hydrogen bonding frequency in Figure 5 of
falling disorder.

Data in table 2 demonstrate that SD2 consistently explores
fewer conformations than the other two subdomains at all sys-
tem sizes. This supports suggestions that this subdomain is key
to aggregation by presenting a more consistent geometry for
inter-chain hydrogen bonding.

5. Conclusions

In summary, we have presented a specific, scalable oligomer
structural model for n16N peptide systems involving staggered-
chain β-sheets stacking at 90◦ rotations to each other, with
overlapping SD2 regions. The structure represents an emer-
gence of order entirely unseen in the monomer state, match-
ing expectations of disordered framework proteins [13]. The
structure conforms in the main to existing hypotheses about
the peptide’s three subdomains [15], with aggregation being
centred on SD2.We observe themaximumpropensity for inter-
chain hydrogen bonding between SD2 subdomains, particularly
in the smaller aggregates, coupled with the most consistent
subdomain structure. Results from this aggregation study do
not highlight a clear role for SD1 and SD3. However these two
regions are less involved in aggregation-enabling inter-peptide
hydrogen bonds, which leaves them available to perform other
roles, such as the ‘fly-casting’ mechanism proposed previously.
Given our validation of the n16N PLUM* model against atom-
istic simulations, we expect this conclusion to be qualitatively
robust.Wecaution that inclusionof side-chain interactionswith
atomistic detail could feasibly result in different quantitative
conformational flexibility in this region.

We believe that the approach adopted here for simulating
IDPs, i.e. validation of a PLUM-style model against atomistic
simulations via the conformational ensemble for small numbers
of peptides, followed by scale-up to larger aggregates, is a viable
route to identifying representative structures for use in detailed
atomistic simulations.

As a secondary objective, we have compared properties of
the structural ensemble of n16N with those of n16NN in an
attempt to understand their differing ability to facilitate biomin-
eralisation. The resulting data do not demonstrate any signif-
icant differences in the ensemble statistics of the two peptides

when formed into oligomers. Structural differences reported
previously [37] for the dimer do not persist into these larger
aggregates. Conclusions regarding n16NN are somewhat more
tentative than for n16N, as PLUM* data have not been validated
against atomistic simulations for the mutant. However, even
if the PLUM* model is transferable to n16NN, there are a
number of potential reasons why no difference in aggregation
behaviour was observed. Firstly, we stress that our sampling
does not consider unbinding of peptide chains and hence does
not inform on the relative stability of bound versus unbound
configurations. Detailed binding free energy calculations may
reveal that n16NN structures are less stable than their n16N
equivalents due to the weaker side-chain interactions. Secondly,
the inability of the n16NN mutant to function correctly in
biomineralisation processes may lie in kinetic effects (such as
the mobility in solution of individual peptides), or interactions
with ions during aggregation rather than in relative stabilities of
different aggregate structures. Neither of these possibilities can
be captured in the present model, motivating future studies into
how such details can be captured in tractable models.
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