
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

May 2020

Evaluation of Text Document Clustering Using K-Means Evaluation of Text Document Clustering Using K-Means

Lisa Beumer
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Mathematics Commons

Recommended Citation Recommended Citation

Beumer, Lisa, "Evaluation of Text Document Clustering Using K-Means" (2020). Theses and Dissertations.

2349.

https://dc.uwm.edu/etd/2349

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact open-access@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2349&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F2349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2349?utm_source=dc.uwm.edu%2Fetd%2F2349&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

Evaluation of Text Document Clustering using

k -Means

by

Lisa Beumer

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Mathematics

at

The University of Wisconsin–Milwaukee

May 2020

ABSTRACT

Evaluation of Text Document Clustering using k-Means

by

Lisa Beumer

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Istvan Lauko

The fundamentals of human communication are language and written texts. Social media is

an essential source of data on the Internet, but email and text messages are also considered

to be one of the main sources of textual data. The processing and analysis of text data

is conducted using text mining methods. Text Mining is the extension of Data Mining to

text files to extract relevant information from large amounts of text data and to recognize

patterns. Cluster analysis is one of the most important text mining methods. Its goal is

the automatic partitioning of a number of objects into a finite set of homogeneous groups

(clusters). The objects should be as similar as possible within a group. Objects from different

groups, however, should have different characteristics. The starting-point of cluster analysis

is a precise definition of the task and the selection of representative data objects. A challenge

regarding text documents is their unstructured form, which requires extensive pre-processing.

For the automated processing of natural language Natural Language Processing (NLP) is

used. The conversion of text files into a numerical form can be performed using the Bag-

of-Words (BoW) approach or neural networks. Each data object can finally be represented

as a point in a finite-dimensional space, where the dimension corresponds to the number of

unique tokens, here words. Prior to the actual cluster analysis, a measure must also be defined

to determine the similarity or dissimilarity between the objects. To measure dissimilarity,

metrics such as Euclidean distance, for example, are used. Then clustering methods are

applied. The cluster methods can be divided into different categories. On the one hand,

ii

there are methods that form a hierarchical system, which are also called hierarchical cluster

methods. On the other hand, there are techniques that provide a division into groups by

determining a grouping on the basis of an optimal homogeneity measure, whereby the number

of groups is predetermined. The procedures of this class are called partitioning methods. An

important representative is the k-Means method which is used in this thesis. The results are

finally evaluated and interpreted. In this thesis, the different methods used in the individual

cluster analysis steps are introduced. In order to make a statement about which method

seems to be the most suitable for clustering documents, a practical investigation was carried

out on the basis of three different data sets.

iii

Table of Contents

List of Figures vii

List of Tables xii

List of Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Objective . 3
1.3 Thesis Outline . 6

2 Introduction to Knowledge Discovery 7
2.1 Text Mining . 9
2.2 Natural Language Processing . 9

2.2.1 Natural Language Understanding . 11
2.3 Handling Unstructured Data - Text Pre-Processing 14

2.3.1 Tokenization . 15
2.3.2 Filtering . 15
2.3.3 Normalization . 15

2.4 Handling Unstructured Data - Text Representation 16
2.4.1 Vector Space Model . 16
2.4.2 Word Embedding . 23
2.4.3 Count-based methods . 25
2.4.4 Predictive-based methods . 28
2.4.5 Word2Vec . 33

3 Text Document Clustering 36
3.1 Clustering Algorithms . 41

3.1.1 Hierarchical clustering . 42
3.1.2 Partitioning Algorithms . 47
3.1.3 Visualize Cluster Result . 51
3.1.4 Cluster Validation . 54

4 Text Similarity 57

iv

5 Data sets 62
5.1 20 Newsgroups . 62
5.2 Jeopardy! . 65
5.3 Reddit comments . 68

6 Implementation and Results 70
6.1 Pre-Processing . 72
6.2 Data Representation . 76
6.3 k -Means Algorithm . 79

7 Results 87
7.1 Pre-processing . 87
7.2 Data Representation . 94

7.2.1 Bag-of-Words . 94
7.2.2 Latent Semantic Analysis . 96
7.2.3 Word Embeddings . 98

7.3 Cluster Evaluation . 98
7.3.1 20 newsgroups . 99
7.3.2 Latent Semantic Analysis . 110
7.3.3 Word Embeddings . 113

7.4 Jeopardy! . 115
7.5 Reddit . 120

8 Conclusion and Outlook 123
8.1 Future Work . 125

Bibliography 126

A Images 132
A.1 Data never sleeps 7.0 . 132
A.2 Tokenization Result of data sets . 133

A.2.1 10 most common words of data sets using different BoW representation
techniques . 136

A.2.2 k -Means result accuracy for 20 newsgroups data set using BoW repre-
sentation and uncleaned data . 145

A.2.3 k -Means result accuracy for 20 newsgroups data set using BoW repre-
sentation and cleaned data . 147

A.2.4 k -Means result accuracy for 20 newsgroups data set using word em-
beddings . 150

A.3 k Means clustering result for 20 newsgroups data set using Word2Vec and
Doc2Vec . 152

A.4 k Means clustering result for Jeopardy! data set using BoW approach 155
A.5 k Means clustering result for Jeopardy! data set using LSA 157
A.6 k Means clustering result for Jeopardy! data set using word embeddings . . . 158

v

B Listings 161
B.1 Data Cleaning . 161

C Tables 163
C.1 Number of Tokens . 163
C.2 Runtime Pre-Processing . 166
C.3 LSA . 168
C.4 Word Embeddings . 170

D Files 172
D.1 requirements.txt . 172
D.2 Linguistic structure analysis . 172

vi

List of Figures

1.1 IDC study about the volume of data/information created from 2010 until
2025. Image source [40, p. 6]. 2

1.2 Text clustering steps. 4

2.1 Main steps of the KDD process based on [18, p. 41]. 7
2.2 Data Mining taxonomy based on [34, p. 6]. 9
2.3 Venn diagram for natural language processing based on [13, pp. 5, 69]. The

abbreviations are as follows: AI represents artificial intelligence, NLP stands
for natural language processing, ML for machine learning and DL deep learning. 10

2.4 This diagram outlines the categories of linguistics. Image based on [30, p. 15]. 11
2.5 Two phase process of natural language understanding. Image taken from [30,

p. 46]). 13
2.6 Dependency Structure for the example sentence. 13
2.7 Word Embeddings make it possible to solve analogies by solving simple vector

arithmetic. The closest embedding to the resulting vector from king − man
+ woman is queen. 24

2.8 SVD decomposition of a term-document matrix C where t is the amount of
terms in all documents and d the number of documents within a corpus. The
parameter r is the rank of C and k is a chosen positive value usually far
smaller than r . The image is based on Fig. 2 of [16, p. 398] and [35, pp. 407–
412]. 28

2.9 Single Layer Perceptron architecture. It has n inputs x1, ..., xn with weighting
w1, ...,wn for n ∈ R and one output. 30

2.10 Multi Layer Perceptron or feed forward network. The information flow is
forward directed from the input neurons via the hidden neurons to the output
neurons. 31

2.11 Architecture of the CBOW and skip-gram model. Image taken from [37, p. 5]. 33
2.12 Architecture of the Word2Vec model. Image taken from [46]. 34

3.1 Inter-cluster and Intra-cluster similarity of clusters. 37
3.2 Clustering approaches. Image based on [25, p. 275]. 41
3.3 Ten data points (o1, ..., o10) on a 2D plane are clustered. The dendrogram on

the left side shows the clustering result. 42
3.4 Agglomerative clustering approach (cf. [25, p. 277]) 44
3.5 Single Linkage . 44

vii

3.6 Complete Linkage . 45
3.7 Average Linkage . 45
3.8 Centroid Method . 46
3.9 Flat clustering is the result of just dividing the data objects into groups with-

out organizing them in a hierarchy. 47

5.1 20 Newsgroups categories. 63
5.2 Pie chart 20 newsgroups categories. 64
5.3 Word cloud of 20 newsgroups categories. The size of each word indicates its

frequency or importance. 64
5.4 10 most frequent Jeopardy! categories. 66
5.5 Number of documents in each Jeopardy! category for n_categ=20. 67
5.6 Percentage distribution of Jeopardy! categories for n_categ=20. 67
5.7 Percentage distribution of categories contained in the Reddit data set. The

frequency of categories ranges from 4, 161 to 10, 270. 69
5.8 Number of documents in each Reddit category. 69

6.1 Code snippet - Global Parameter Settings 72
6.2 spaCy tokenization process. Image taken from [45] 74
6.3 Activity Diagram of implemented clustering analysis using BoW text repre-

sentation approach. 80
6.4 Activity Diagram of implemented runKMeans function. 81
6.5 Activity Diagram of implemented k_means_own function. 83

7.1 20 Newsgroups data set (n_categ=20) is unbalanced in terms of document
size. Some documents contain only one term and others 37, 424. The average
term frequency is 238. 88

7.2 Reddit data set (n_categ=5) is unbalanced in terms of document size. One
document with many tokens is particularly prominent. 88

7.3 Document size of Jeopardy! data set for n_categ=20. 89
7.4 Top 100 tokens contained in 20 newsgroups corpus (n_categ=20). 90
7.5 Top 100 tokens contained in Jeopardy! corpus (n_categ=20). 90
7.6 Top 100 tokens contained in Reddit corpus (n_categ=5). 91
7.7 Top 100 pre-processed tokens contained in 20 newsgroups corpus (n_categ=20). 92
7.8 Top 100 pre-processed tokens contained in Jeopardy! corpus (n_categ=20). . 92
7.9 Top 100 pre-processed tokens contained in Reddit corpus (n_categ=5). . . . 93
7.10 Explained Variance of 20 newsgroups data set with n_categ=5. 97
7.11 Singular Values of 20 newsgroups data set with n_categ=5. 97
7.12 20 newsgroups : Matching matrix for pre-processed data transformed with

TF-IDF with euclidean distance. 100
7.13 20 newsgroups : Matching matrix for pre-processed data transformed with

TF-IDF with cosine distance. 101
7.14 20 newsgroups : Cluster result for pre-processed data transformed with TF-

IDF and cosine similarity. 101

viii

7.15 20 newsgroups: Pre-defined clusters for pre-processed data transformed using
TF-IDF (n_categ=5). 102

7.16 20 newsgroups: Cluster assignment error for pre-processed data transformed
with TF-IDF and cosine similarity (n_categ=5). 102

7.17 20 newsgroups : Cluster result for pre-processed data transformed with TF-
IDF and Jaccard similarity (n_categ=5). 103

7.18 20 newsgroups: Cluster assignment error for pre-processed data transformed
with TF-IDF and Jaccard similarity (n_categ=5). 104

7.19 20 newsgroups : Cluster result for pre-processed data transformed with one-
hot encoding and Jaccard similarity (n_categ=5). 104

7.20 20 newsgroups: Pre-defined clusters for pre-processed data transformed using
one-hot encoding (n_categ=5). 105

7.21 20 newsgroups: Cluster assignment error for pre-processed data transformed
with one-hot encoding and Jaccard similarity (n_categ=5). 105

7.22 20 newsgroups: Exemplary vector representation of two data objects. The
cosine distance for the term frequency encoded vectors is 0.963 and for the
one-hot encoded one 0.936. 106

7.23 20 newsgroups : Cluster result for pre-processed data transformed with one-
hot encoding and cosine similarity (n_categ=5). 107

7.24 20 newsgroups: Cluster assignment error for pre-processed data transformed
with one-hot encoding and cosine similarity (n_categ=5). 107

7.25 20 newsgroups: Pre-defined clusters for pre-processed data transformed using
one-hot encoding (n_categ=10). 108

7.26 20 newsgroups: Cluster accuracy for pre-processed data transformed with
TF-IDF and cosine similarity. 109

7.27 20 newsgroups: Cluster accuracy for pre-processed data transformed with
TF-IDF and cosine similarity (n_categ=10). 109

7.28 20 newsgroups : Matching Matrix TF-IDF encoding for pre-processed data out
of 5 categories. 110

7.29 20 newsgroups: Cluster accuracy for pre-processed data transformed with
TF-IDF, cosine similarity and LSA. 111

7.30 20 newsgroups : Cluster result for pre-processed data transformed with TF-
IDF, cosine similarity and LSA. 112

7.31 20 newsgroups: Cluster assignment error for pre-processed data transformed
with TF-IDF, cosine similarity and LSA. 112

7.32 20 newsgroups : Cluster result for pre-processed data transformed with doc2vec
and cosine similarity for clustering. 114

7.33 20 newsgroups: Cluster assignment error for pre-processed data transformed
with doc2vec and cosine similarity. 114

7.34 Jeopardy! : Cluster accuracy for pre-processed data using the TF-IDF, LSA
and doc2vec approach (n_categ=5). 116

7.35 Jeopardy! : Matching matrix for pre-processed data transformed using TF-IDF
and Doc2Vec and cosine similarity. 117

7.36 Jeopardy! : Cluster result and error for pre-processed data transformed with
TF-IDF (n_categ=5). 118

ix

7.37 Jeopardy! : Cluster result and error for pre-processed data transformed with
doc2vec (n_categ=5). 119

7.38 Reddit : Pre-defined clusters for pre-processed data transformed using TF-IDF
(n_categ=5). 120

7.39 Reddit : Cluster accuracy for pre-processed data using the BoW approach. . . 121
7.40 Reddit : Cluster accuracy for pre-processed data using the word embeddings. 122

A.1 Data never sleeps 7.0 - The most popular platforms where data is generated
every minute in 2019. Image source [15]. 132

A.2 Maximum, minimum and average number of tokens of 20 newsgroups data set
(n_categ=10). 133

A.3 Maximum, minimum and average number of tokens of Jeopardy data set
(n_categ=20). 134

A.4 Maximum, minimum and average number of tokens of Reddit data set (n_categ=5).
. 135

A.5 10 most common words of 20 newsgroups with term frequency encoding. . . 136
A.6 10 most common words of 20 newsgroups with one hot encoding. 137
A.7 10 most common words of 20 newsgroups with TF-IDF encoding. 138
A.8 10 most common words of Jeopardy! with term frequency encoding. 139
A.9 10 most common words of Jeopardy! with one-hot encoding. 140
A.10 10 most common words of Jeopardy! with TF-IDF encoding. 141
A.11 10 most common words of Reddit with term frequency encoding. 142
A.12 10 most common words of Reddit with one-hot encoding. 143
A.13 10 most common words of Reddit with TF-IDF encoding. 144
A.14 20 newsgroups : Cluster accuracy for pre-processed data using term-frequency

encoding. 145
A.15 20 newsgroups : Cluster accuracy for pre-processed data using one-hot encoding.145
A.16 20 newsgroups : Cluster accuracy for pre-processed data using TF-IDF. . . . 146
A.17 20 newsgroups : Cluster accuracy for cleaned raw and pre-processed data using

term-frequency encoding. 147
A.18 20 newsgroups : Cluster accuracy for cleaned raw and pre-processed data using

one-hot encoding. 148
A.19 20 newsgroups : Cluster accuracy for cleaned raw and pre-processed data using

TF-IDF. 149
A.20 20 newsgroups : Cluster accuracy for raw and pre-processed data using word2vec.150
A.21 20 newsgroups: Cluster accuracy for raw and pre-processed data using doc2vec.151
A.22 20 newsgroups: Cluster accuracy for raw and pre-processed data using FastText152
A.23 20 newsgroups : Cluster accuracy and error for pre-processed data using Word2Vec153
A.24 20 newsgroups : Cluster accuracy and error for pre-processed data using FastText154
A.25 Jeopardy! : Cluster accuracy for pre-processed data using the BoW approach

(n_categ=10). 155
A.26 Jeopardy! : Cluster accuracy for pre-processed data using the BoW approach

(n_categ=20). 156
A.27 Jeopardy! : Cluster accuracy for pre-processed data using the LSA. 157
A.28 Jeopardy! : Cluster accuracy for pre-processed data using the doc2vec. 158

x

A.29 Jeopardy! : Cluster accuracy for pre-processed data using the word2vec. . . . 159
A.30 Jeopardy! : Cluster accuracy for pre-processed data using the fastText. 160

xi

List of Tables

3.1 Level of measurements (Steven’s topology) [36] 38

4.1 Contingency table for binary data . 58

5.1 20 Newsgroups categories sorted according to topics. 63
5.2 Category names and their target values for n_categ=20 of the Jeopardy! data

set. 66

7.1 Runtime of three k -Means repetitions, for the BoW approach on uncleaned
data, specified in seconds. 99

7.2 Runtime of three k -Means repetitions specified in seconds for pre-processed
data, LSA and TF-IDF . 111

8.1 Accurracy overview of selected parameters (in %). 124

C.1 Number of extracted tokens and corpus length of two different data sets cor-
responding to the specified number of categories and the cleaning type. . . . 164

C.2 Number of extracted pre-processed features and corpus length of the three
different data sets corresponding to the specified number of categories and
the cleaning type. 165

C.3 Runtime Pre-Processing . 166
C.4 Document term matrix computation time using Bag-of-words approach. . . . 167
C.5 LSA applied to pre-processed data represented with TF-IDF. The matrix di-

mensions are specified as Documents× Terms. 169
C.6 Word embedding matrix dimensions and computation time for cleaned data.

Each matrix has the given number of rows and 300 columns. 171

xii

List of Abbreviations

AI Artificial Intelligence.

BoW Bag-of-Words.

CBOW Continuous Bag-of-Words.

CEO Chief Executive Officer.

CPU Central Processing Unit.

DF Document Frequency.

GloVe Global Vector.

HCA Hierarchical Cluster Analysis.

IDC International Data Corporation.

IDF Inverse Document Frequency.

JSON JavaScript Object Notation.

KDD Knowledge Discovery in Databases.

LM Language Model.

LSA Latent Semantic Analysis.

MLP Multi Layer Perceptron.

MSE Mean Squared Error.

NER Named Entity Recognition.

NLG Natural Language Generation.

NLP Natural Language Processing.

xiii

NLU Natural Language Understanding.

NNLM Neural Network Language Model.

PCA Principle Component Analysis.

POS Part of speech.

PPMCC Pearson Product-Moment Correlation Coefficient.

RI Rand Index.

SLP Single Layer Perceptron.

SMC Single Matching Coefficient.

SSE Summation of Squared Errors.

SVD Singular Value Decomposition.

TF Term Frequency.

TF-IDF Term Frequency-Inverse Document Frequency.

TM Text Mining.

TSVD Truncated Singular Value Decomposition.

UML Unified Modeling Language.

VSM Vector Space Model.

ZB Zetabyte.

xiv

Acknowledgments

At this point I would like to thank all those who supported me during my thesis. First

and foremost, I would like to thank my principal supervisor Professor Istvan Lauko for his

expertise, assistance and patience throughout the process of this thesis. I would also like to

thank my committee members, Professor Gabriella Pinter and Professor Vincent Larson, for

their support and encouragement.

My sincere thanks go to Professor Gerhard Dikta at Fachhochschule Aachen for his support

applying for the Dual Degree Program and the UWM for giving me the opportunity to study

in Milwaukee.

Finally, a special thanks to my family for their unconditional support throughout my studies.

Lisa Beumer

xv

CHAPTER 1

Introduction

1.1 Motivation

Nowadays we are surrounded by a large amount of data of different types and the Internet

has become a central part of the daily life for many people. Due to the development in

technology and digitization the amount of data is rapidly increasing. In 2003 the former

CEO of Google, Eric Schmidt, emphasized that ”Every two days now we create as much

information as we did from the dawn of civilization up until 2003. That’s something like five

exabytes of data.” [44]. The International Data Cooperation (IDC) estimates in their last

released report (November 2018) that in 2025 the total amount of data will reach 175 ZB

[40, p. 3]. As Figure 1.1 shows this would be an increase from 33 ZB in 2018 to 175 ZB in

2025.

1

Figure 1.1: IDC study about the volume of data/information created from 2010 until 2025.
Image source [40, p. 6].

Referring to [40, p. 5] a connected person will interact with technological devices every 18

seconds, so nearly 4800 times per day and everything we express no matter if verbally or

textual carries huge amounts of information. Whether the data is produced from Alexa, Siri,

WhatsApp, the Google search engine, online news or social media, they have one thing in

common: Natural Language. This is the native speech of people used for communication,

for example English, French or German. A big amount of textual data is generated in so-

cial media. Twitter users, for example, sent 511, 200 tweets and users conducted 4, 497, 420

Google searches every minute last year [15]. Furthermore, there were 18, 100, 000 texts and

188, 000, 000 emails sent every minute [15]. An overview of the most popular platforms on

which data is generated is shown in the Figure A.1 in the appendix on page 132. Due to the

increase in available data, it is increasingly difficult for a user to find relevant information

to his or her needs. In order to bundle, filter and extract knowledge from the huge number

of digital texts, Text Mining (TM) algorithms are used. Text Mining is an extension of

the Knowledge Discovery in Databases (KDD) process and has several applications such as

classification of news stories according to their content, Email filtering, clustering of docu-

ments or web pages. Further use cases are Customer Support Issue Analysis and Language

Translation.

2

1.2 Research Objective

In this thesis one of the most fundamental text mining tasks, the text document clustering

application is described. Clustering can be useful for information retrieval, topic extraction,

organization of documents or support browsing. It can be described as ”Given a set of data

points, partition them into a set of groups which are as similar as possible.” [3, p. 2]. So, the

goal is to group text documents into categories (clusters) based on their similarity such that

texts within a cluster are more similar than texts between different clusters. The techniques

can be applied to different text granularities, such as document, paragraph, sentence or term

level. This thesis discusses text document clustering. Since data generated from human

language is unstructured because it doesn’t follow specific rules, it doesn’t fit directly into the

row and column structure of databases as structured data does. In order to enable computers

to work with this kind of data Natural Language Processing (NLP) was introduced in the

1950s [30, p. 5]. The clustering process consists of multiple steps which are illustrated

in Figure 1.2. First, a suitable data set depending on the task has to be collected and

pre-processed to improve the data quality and thus the accuracy and efficiency of the text

mining process. To map the pre-processed textual data to a numerical representation several

approaches can be used. One of the simplest techniques is the Bag-of-Words model (BoW).

Based on these numerical representations the data similarity can be determined, which is

needed to obtains a relatively small number of clusters compared to the large amount of data

during the clustering process.

3

Unstructured
text	data

Data	Preparation	using
Text	Pre-processing

Techniques

Tokenization

Transformation

Normalization

BoW

TF-IDF

Text	Representation/
Feature	Extraction

Similarity
Computing

Clustering	Algorithm Cluster	Result Cluster	Evaluation

Filtering

Hierarchical-
Based

Partitionining-
Based

External
Quality
Measure
Internal
Quality
Measure

Word2Vec

Glove

...

Density-Based

Grid-Based

Model-Based

Figure 1.2: Text clustering steps.

4

The main motivation is to compare the effectiveness of these methods by finding out their

potential inefficiencies. Since all of these steps described in Figure 1.2 effect the accuracy

of the resulting cluster distribution, the techniques used to pre-process and to analyze the

data as well as the different similarity measures and clustering algorithms are introduced

and evaluated in this thesis. Before analyzing a large number of already proposed similar-

ity measures the pre-processing steps have to be applied to the dataset. Therefore, various

NLP techniques such as stemming or lemmatization in conjunction with various text repre-

sentations are examined. Furthermore, the key challenge of clustering text data and some

methods used to achieve this goal as well as their relative advantages are presented. There

are many clustering algorithms proposed in the literature. Here, the focus is on the iterative

partitional clustering algorithm called K-Means.

So the following challenges and research questions of finding the best cluster result for doc-

ument clustering arise:

- Select appropriate features of the documents. What kind of pre-processing techniques

need to be applied and what kind of word representation strategies result in suitable

similarity results?

- Select a similarity measure between documents. What text similarity approach per-

forms best on the given data sets?

- Select an appropriate clustering method.

- Efficient implementation in terms of required memory, CPU resources and execution

time.

- Select a quality measure to check the cluster result.

5

1.3 Thesis Outline

The entire thesis contains eight chapters. Chapter 1 forms the motivational introduction and

sets out the overall goal of this thesis. The following chapter 2 focuses on the main principle

of automated data analysis, called KDD, and the extension to unstructured textual data,

known as TM. Since TM involves techniques from NLP, this research discipline is briefly

introduced in section 2.2. Generally, it is used to analyze and evaluate natural language to

enable the computer to get an accurate interpretation of the text content by cleaning the

data (see section 2.3) and extracting valuable information from it (see section 2.4). Chapter

3 introduces the main idea of text clustering, related techniques and evaluation methods.

The main objective of chapter 4 is the analysis of text similarity measures based on the text

representation approaches and the resulting features. The data sets used in this thesis are

described in chapter 5. The practical part of the thesis is covered in chapter 6 where all

acquired knowledge is used to determine the best similarity measure in combination with

a suitable text representation method used to cluster different data sets using the k -Means

cluster algorithm. The clustering results are evaluated in chapter 7. Finally, chapter 8

provides a conclusion and outlook according to the thesis’ objectives.

6

CHAPTER 2

Introduction to Knowledge Discovery

The automated analysis and modeling of large data sets is called Knowledge Discovery in

Databases (KDD). KDD is defined by Fayyad [18, 40f] as the ”nontrivial process of identifying

valid, novel, potentially useful, and ultimately understandable patterns in data”. Referring to

[18, p. 39] the following disciplines are used for this purpose: databases, machine learning,

statistics, artificial intelligence, high performance computing and data visualization. Figure

2.1 provides a summarization of the basic iterative KDD steps.

Data Target	Date Pre-processed
Data

Transformed
Data Patterns Knowledge

Selection Processing Transformation Data	Mining Interpretation/
Evaluation

Figure 2.1: Main steps of the KDD process based on [18, p. 41].

The basic workflow of the KDD process consists of the following five phases:

Data selection: Select data according to the objective of the investigation.

Pre-Processing: This phase includes data cleaning and handling of missing values

or errors and is a fundamental step for data analysis. Since there

is no formal definition of data cleaning the procedure depends

on the area the knowledge extraction is applied to.

7

Transformation: The data is converted into the appropriate data format required

by the analysis method. This includes feature extraction and

dimensionality reduction to reduce the storage space and com-

putation time.

Data mining: Choose and apply data mining algorithm to extract data pat-

terns.

Interpretation/Evaluation: Evaluate and interpret the obtained results.

These five steps can be extended to a total number of nine [18, p. 42]. The more detailed

KDD process lists the understanding of the application and the overall goal of the process

as a separate step. Furthermore, the matching of the process goals to data mining methods

and the selection of data mining parameters are listed separately. Finally, the usage of the

newly gained knowledge for further action is added as the ninth phase.

According to [18, p. 37] and [34, p. 1], data mining is the core of KDD and includes after [18,

p. 39] the extraction of new patterns using algorithms from the fields of machine learning,

pattern recognition and statistics. Depending on the particular application, different data

mining methods are applied. Figure 2.2 gives an overview of data mining applications.

Clustering belongs to the category of discovery methods which automatically identify pattern

in data. More precisely to the description branch which focuses on data understanding and

interpretation.

8

Data	Mining
Paradigms

Verification Discovery

Prediction

Classification Regression

Description

Classification

Figure 2.2: Data Mining taxonomy based on [34, p. 6].

2.1 Text Mining

An extension of KDD to unstructured textual data is called Text Mining (TM) [24, p. 1].

Referring to [24, p. 1], text mining is defined as ”Text mining, also known as text data mining

or knowledge discovery from textual databases, refers generally to the process of extracting

interesting and non-trivial patterns or knowledge from unstructured text documents. [...]Text

mining is a multidisciplinary field, involving information retrieval, text analysis, information

extraction, clustering, categorization, visualization, database technology, machine learning,

and data mining.”. Besides the same analytical methods of data mining, text mining also

applies techniques from NLP (cf. [34, p. 809]).

2.2 Natural Language Processing

As stated in [13, 5f.], natural language processing as well as machine learning and deep

learning are subfields of artificial intelligence. Figure 2.3 illustrates the coherence of these

research areas as a Venn diagram.

9

NLP

AI

ML

DL

Figure 2.3: Venn diagram for natural language processing based on [13, pp. 5, 69]. The
abbreviations are as follows: AI represents artificial intelligence, NLP stands for natural
language processing, ML for machine learning and DL deep learning.

The research discipline Artificial Intelligence (AI) was initiated in 1956 [38, p. 87] and has

become very popular in the last few years due to the availability of larger amounts of data,

better developed algorithms, enhanced computing power and compact data storage methods.

Through AI, machines are able to performs complex tasks comparable to the level of human

performance and learn from experiences.

NLP, one sub field of AI, attempts to capture and process natural language using computer-

based rules and algorithms. Processing human language is very complex because ”Human

language is highly ambigious [...]. It is also ever changing and evolving. People are great at

producing language and understanding language, and are capable of expressing, perceiving,

and interpreting very elaborate and nuanced meanings. At the same time, while we humans

are great users of language, we are also very poor at formally understanding and describing

the rules that govern language.” [20, p. 1]. NLP applications must be able to handle for

example ambiguity, slang, social context and syntactic variations. Therefore various methods

and results from linguistics are combined with artificial intelligence. Because NLP is so

complex, it can be divided into two major sub-disciplines: Natural Language Understanding

(NLU) and Natural Language Generation (NLG).

10

2.2.1 Natural Language Understanding

NLU which is about extracting the meaning of natural language is considered as the integral

part of NLP and is also a very complex task [30, p. 91]. For natural language processing,

it is not only necessary to understand individual words and sentences, but also to take the

complete text into consideration to get an idea about the context. This is one of the reasons

why there is much more behind natural language processing than just a dictionary in form

of a large database. According to [30, p. 15], natural language understanding is based on

different language domains as displayed in Figure 2.4.

Language	Levels

Phonetics,
Phonology

Morphology

Syntax

Semantic

Pragmatics

Linguistic	sound

Word	structure	and	relations
between	words

Phrase	and	sentence	structure

Literal	meaning	of	words,
sentences

Analysis	of	single	utterances	in
context

Discourse Analysis	of	larger	utterances

Figure 2.4: This diagram outlines the categories of linguistics. Image based on [30, p. 15].

The analysis of natural language consists of phonological, morphological, lexical, syntactic,

semantic, pragmatic and discourse analysis (cf. [30, p. 17]). Phonological analysis includes

the study of the pronunciation of words (phonetics) and the structure of sounds (phonology).

The second component is the most elementary one and deals with the structure and formation

11

of words from morphemes (cf. [30, p. 17]). The word played, for example, is composed of play-

ed and the word unhappiness of un-happi-ness. Breaking a word down into its morphemes

is called morphological analysis. Morphemes can be divided into stems and affixes which

can be further subdivided into prefix and suffix. There is often more than one affix added

to a word, which particularly influences the grammatical meaning (cf. [26, p. 60]). The

grammatical process of word formation used to express, for example, the number, case,

gender or mood of a word is called inflection (cf. [30, p. 30]). The canonical form of an

inflected form is called lemma. A lemma in combination with its inflection form is known as

lexeme which thus can be represented as a set of forms with the same meaning. A collection

of all lexemes is called dictionary. There exist two different ways to reduce inflection forms:

(1) stemming and (2) lemmatization. They share the same idea but use different ways to

achieve the result. With the simpler option stemming, words are reduced to their stem

using heuristics that cut off the end of words to achieve the correct base. The problem is

that a stemming algorithm may cut off too much (overstemming) because it doesn’t take

the context of the word into account. Taking the words operate, operation, operational or

university, universal, universe the algorithm may produce oper and univers as stems. The

lemmatization algorithm, however, relates different forms of the same word to their dictionary

form (lemma). Therefore it determines the part-of-speech (POS) which is essential to identify

the grammatical context. Taking the sentence

The quick brown fox jumped over the lazy dog. (2.1)

the following part-of-speech tags are determined:

The
︸︷︷︸

DET

quick
︸ ︷︷ ︸

ADJ

brown
︸ ︷︷ ︸

ADJ

fox
︸︷︷︸

NOUN

jumped
︸ ︷︷ ︸

VERB

over
︸︷︷︸

ADP

the
︸︷︷︸

DET

lazy
︸︷︷︸

ADJ

dog
︸︷︷︸

NOUN

.
︸︷︷︸

PUNCT

,

The tag DET stands for determiner, ADJ for adjective, NOUN for noun, singular or mass, VERB

for verb, modal auxiliary and ADP for adverb. If, for instance, the word saw is given,

12

lemmatization would return see or saw whether the original word is a noun or a verb in the

context of the sentence.

The syntax and the semantic component of Figure 2.2 provide information about the lexical

meaning of a sentence (cf. [30, p. 46]). This process is visualized in figure 2.5.

Parser Semantic
analyzer

Grammatical	input

Syntactic
structure

Semantic
structure

Natural	
language	sentence	input

Figure 2.5: Two phase process of natural language understanding. Image taken from [30,
p. 46]).

To transform a sentence into a syntactic structure a parser is used which evaluates each

sentence compared to formal grammar rules to provide the sentence structure. The resulting

structure is called parse tree. The word references of the example sentence 2.1 are displayed

in figure 2.6. The linguistic analysis steps applied to get this visualization are implemented

in Python and are provided in the appendix in section D.2.

The

DET

quick

ADJ

brown

ADJ

fox

NOUN

jumped

VERB

over

ADP

the

DET

lazy

ADJ

dog.

NOUN

det
amod

amod nsubj prep
det

amod

pobj

displaCy file:///C:/Users/Lisa/Desktop/test.html

1 of 1 2/12/2020, 12:40 PM

Figure 2.6: Dependency Structure for the example sentence.

13

The syntactic dependency label det is a representation for determiner, amod for adjectival

modifier, nsubj for nominal subject, prep for prepositional modifier and pobj for object of

preposition. The syntactic structure is then used by a semantic analyzer to establish a correct

logic between words and sentences. This is done by determining the basic dependencies of a

word related to other words. One common technique used for this purpose is called Named

Entity Recognition, NER for short.

To fully understand the natural language, the intended message of the whole text needs

to be taken into account. The pragmatic and discourse analysis (step 5 and 6, Fig. 2.2)

accomplish this. Pragmatics include the intention and context of the whole text whereas

discourse analysis considers the immediately preceding sentences to interpret the actual

sentence.

The previous explanations indicate that the analysis of natural language has a complex

structure. Each of the introduced categories of linguistics relies on certain models, rules and

algorithms. The next section provides an overview of the pre-processing steps applied to

textual data in order to extract the meaning which are based on the categories presented

above.

2.3 Handling Unstructured Data - Text Pre-Processing

The discrete symbols such as letters and words cannot be processed directly by a computer

and must be converted into a structured system that enables automatic processing and eval-

uation. As stated in [34, p. 19], approximately 40% of the collected data is noisy. In order to

improve the efficiency of algorithms working on textual data the data is pre-processed before

transforming it into a form computer can work with (cf. [5]). Pre-processing consists of

several steps, which are applied depending on the application and the data. Different kinds

of data, such as images, text or videos require different pre-processing methods. There exist

several studies about pre-processing techniques which are recommended for text document

14

clustering. According to [5], [27] and [29], pre-processing usually involves tokenization, fil-

tering, normalization (lemmatization or stemming). These techniques are briefly described

in the following.

2.3.1 Tokenization

Before information can be extracted from a sentence, it is tokenized which means that it is

broken down into its individual parts. One approach is to split up a sentence by spaces [43,

p. 264]. Doing so, all punctuation marks and brackets are not recognized as independent

tokens. Thus, the words ”dog” and ”dog.” for example are captured as separate tokens even

though they express the same thing. Another approach is to consider punctuation as word

boundaries (cf. [43, p. 264]). This however is not suitable depending on the application

case, since contractions occurring in the text are separated and in the example of can’t

the resulting division can and t can no longer be used to determine the negative meaning.

Consequently, tokenization is a very complex process that has to be adapted to the problem

and the used language.

2.3.2 Filtering

Data filtering is applied to remove frequently used words which do not contain much infor-

mation and usually just have a grammatical purpose [5]. Those words are called stop words.

Some examples are a, an or the. Filtering consists of various other steps, for example, re-

moving numbers, symbols, whitespaces or punctuation and general noise removal steps like

removing text file headers and footers as well as HTML or metadata.

2.3.3 Normalization

Since words that share the same representation can exist as individual tokens because they are

for example conjugated verbs, a lexical normalization is performed which transforms a word

15

into its canonical form. This can be achieved by stemming or lemmatization. Furthermore,

as mentioned in [29], it could be useful to convert upper case into lower case to avoid the

same tokens. This technique is called case folding [43, p. 264]. However, it is important to

apply the techniques carefully so that the meaning of the text is not destroyed.

2.4 Handling Unstructured Data - Text Representation

As can be seen in Figure 1.2, the pre-processing stage is followed by the conversion of the

generated, possibly filtered and normalized, tokens into a numerical representation that

makes the unstructured text mathematically computable and manageable by text mining

algorithms. A popular model used in this context is called Vector Space Model (VSM).

Before going into detail some new terminology has to be introduced (cf. [26, Sec. 23.1, p.

4]):

1. Document : The unit of text such as paragraphs, articles or sentences.

2. Collection or corpus: A set of documents.

3. Term : Lexical item of a document.

2.4.1 Vector Space Model

The VSM is an algebraic model based on similarity and represents each text document of

a collection C as a vector of weighted features in an N -dimensional vector space, where N

is the total number of unique terms occurring in the corpus which is also called vocabulary.

Let n be the number of documents in a collection, then each document dj can be represented

as a vector

dj = (w1,w2, ...,wN), (2.2)

where j ∈ 1...n, 1 ≤ i ≤ N and wi is the weight of the term i in document j (cf. [26, Sec

23. p.5]). Joining these vectors leads to a term-document-matrix [26, Sec. 23.1 p. 7]. Since

16

a text collection can contain many terms, it has to be first determined which of them are

used as features and how to compute their weights. A common feature extraction technique

for textual data is the Bag-of-Words model, or BoW for short. BoW generates a text

representation using its words (1-gram). An n-gram is a probabilistic language model based

on word count. Language Modeling (LM) was proposed in the 1980s (cf. [31]) and is defined

as ”[...] the task of assigning a probability to sentences in a language. [...] Besides assigning

a probability to each sequence of words, the language models also assign a probability for the

likelihood of a given word (or a sequence of words) to follow a sequence of words” [20, p. 105].

So, LM learns to predict the probability distribution of a sequence s of n words (cf. [31])

P(s) = P(w1,w2, ...,wn). (2.3)

The probability of a sequence s can be expressed as a product of conditional probabilities.

Definition 1 (Conditional Probability)

Given two events A, B. The conditional probability of A given B with p(B) > 0 is defined

as

P(A|B) =
P(A ∩ B)

P(B)
=

P(A|B)P(B)

P(B)
. (2.4)

It follows that

P(s) = P(w1,w2, ...,wn)

= P(w1)P(w2|w1)P(w3|w1w2) · · ·P(wn |w1w2 · · ·wn−1) (2.5)

=
∏

i

P(wi |w1w2 · · ·wi−1).

Because this model depends on many parameters, it is assumed as a simplification that it is

sufficient to consider only a maximum of k preceding words [31]

P(wi |w1 · · ·wi−1) ≈ P(wi |wi−k · · ·wi−1). (2.6)

17

This assumption is also known as Markov assumption. Finally, it follows that

P(s) = P(w1, ...,wn) ≈
∏

i=1

P(wi |wi−k · · ·wi−1). (2.7)

Since n-gram models are based on word count, the individual conditional probabilities cal-

culated in 2.7 are based on frequencies, by which the corresponding n-grams appear in the

text. Hence

P(wi |w1 · · ·wi−1) =
count(wi−k , · · · ,wi−1,wi)

count(wi−k , · · · ,wi−1)
. (2.8)

The main idea of BoW is that the meaning of a document is only comprised in its terms and

that similar documents have similar content. So each word is considered as a feature making

the assumption that the word order and the grammatical structure do not matter (cf. [43,

p. 265], [20, p. 69]), which is why this technique is referred to as ”bag”. This results in the

simplest form of 2.7 with n = 1, called unigram model or 1-gram model

P(s) ≈ P(w1)P(w2)P(w3) · · ·P(wn) (2.9)

≈
n∏

i=1

P(wi).

Let a collection contain two documents:

Document 1: Document2:

The quick brown fox jumped over the lazy dog. The dog is lazy! The fox jumps around.

(2.10)

Since every unique word is treated as a feature, the generated vocabulary for the non-pre-

18

processed data contains the following 14 elements which are linked to a vector index:

{0 : The, 1 : quick, 2 : brown, 3 : fox, 4 : jumped, 5 : over, 6 : the,

7 : lazy, 8 : dog, 9 : ., 10 : is, 11 : !, 12 : jumps, 13 : around} (2.11)

So every document will be represented by a feature vector of 14 elements. The following

term-document-co-occurrence matrix is obtained for the example provided in 2.10.
































d1 d2

the 2 2

quick 1 0

brown 1 0

fox 1 1

jump 1 1

over 1 0

lazy 1 1

dog 1 1

be 0 1

around 0 1
































∈ R
10×2

So if the vocabulary is increasing the vector dimension N does. One technique to decrease

the vocabulary length is to apply the text pre-processing methods discussed in 2.3. Thereby

the vocabulary of 2.11 can be decreased to 10 terms by just ignoring case and punctuation,

converting every word to lowercase and lemmatizing terms.

{0 : the, 1 : quick, 2 : brown, 3 : fox, 4 : jump, 5 : over, 6 : lazy,

7 : dog, 8 : be, 9 : around} (2.12)

However it should be obvious that this approach will not solve all problems. A better idea

19

is to create a vocabulary based on n grouped tokens (n-grams with n > 1). An additional

advantage is that they retain some context (e.g. New York) and thus capture a little bit

more meaning from the document. Nevertheless, it suffers from the fact that language has

long distance dependencies but depending on the task ”[...] a bag-of-bigrams representation

is much more powerful that bag-of-words [...]” [20, p. 75]. The vocabulary of a bigram model

for the example (2.10) above is:

{0 : around brown, 1 : brown dog, 2 : dog fox, 3 : fox is, 4 : is jumped,

5 : jumped lazy, 6 : lazy over, 7 : over quick, 8 : quick the} (2.13)

A more powerful dimensionality reduction technique is discussed in section 2.4.3. Once the

vocabulary has been chosen, the occurrence of terms has to be scored. There exist three

methods for weighting the BoW obtained features: (1) one-hot encoding, (2) frequency

vectors, also called count vectors and (3) term frequency/inverse document frequency.

One-hot encoding

One-hot encoding is a binary weighting approach where words which are not included in the

vocabulary get marked as 0 and present ones as 1. The following feature vector is assigned

to the content of the first document presented in 2.10 based on the vocabulary described in

2.12:

Vocabulary
the quick brown fox jump over lazy dog be around

The quick brown
fox jumped over
the lazy dog.

1 1 1 1 1 1 1 1 0 0

20

Using boolean values makes it difficult to extract sentence similarity, since the generated

vectors are orthogonal. Furthermore the computation of the resulting sparse vectors with

lot of 0-values is inefficient because of the huge computation time and the need of more

memory.

Frequency Vectors

Another weighting method is the counting approach based on the term frequency (TF). The

term frequency of a term t within a document d = {t1, t2, ..., tm} containing m terms is the

amount of times it appears in d and can be defined as (cf. [43, p. 269])

tf (t , d) =
m∑

i=1

f (t , ti) with ti ∈ d , |d | = m and f (t , t ′) =







1, if t=t’

0, otherwise.

, (2.14)

The frequency vector for document one 2.10 using the vocabulary 2.12 is:

Vocabulary
the quick brown fox jump over lazy dog be around

The quick brown
fox jumped over
the lazy dog.

2 1 1 1 1 1 1 1 0 0

This approach implies that terms occurring frequently within a document are more important

than less frequently appearing terms and should therefore receive a higher weight. However,

frequent words may not contain as much information about the content as rarer do. To alle-

viate this problem the word frequency can be re-scaled using the inverse document frequency

(IDF). This measure is called term frequency/inverse document frequency (TF-IDF).

Term Frequent/Inverse Document Frequency

This approach re-scales the term frequency 2.14 with an inverse document frequency which

scores how rare a term is across documents, whereby the frequency of documents containing

21

a term is defined as document frequency (DF). Let C = {d1, d2, ..., dn} be a collection of n

documents d , then DF is defined as (cf. [43, p. 271])

df (t) =
n∑

i=1

f ′(t , di) with di ∈ C , |C | = n and f ′(t , d ′) =







1, if t=d’

0, otherwise.

, (2.15)

The IDF inversely corresponds to the DF and is defined as (cf. [43, p. 272])

idf (t) = log
n

df (t)
, (2.16)

where t is the term and n the total number of documents within a collection.

Equation 2.14 and 2.16 in combination result in the TF-IDF weight (cf. [43, p. 272])

tfidf (t , d) = tf (t , d)× idf (t). (2.17)

The TF-IDF value increases if the number of occurrences of a given term in the document

increases and with an increase in a rarity of the word across the corpus documents. The

TF-IDF vector of the first document presented in 2.10 is:

Vocabulary TF Document 1 TF Document 2 IDF TF*IDF Document 2
the 2/9 2/8 log(2/4) −0.067

quick 1/9 0/8 log(2/1) 0.033
brown 1/9 0/8 log(2/1) 0.033

fox 1/9 1/8 log(2/2) 0
jump 1/9 1/8 log(2/2) 0
over 1/9 0/8 log(2/1) 0.033
lazy 1/9 1/8 log(2/2) 0
dog 1/9 1/8 log(2/2) 0
be 0/9 1/8 log(2/1) 0

around 0/9 1/8 log(2/1) 0

22

Besides the already mentioned disadvantages, e.g. the vector dimensionality or the computa-

tional time complexity due to the obtaining sparse vectors, the BoW model is, as a literature

search showed, a common model for text mining (cf. [43, p. 265], [33]) and provides good

results in text clustering applications (cf. [5], [27], [42], [7]). However, this approach has

some other limitations not discussed yet. The assumptions made in the BoW model work

for many tasks but not for meaning-related tasks including senses or synonyms. Documents

containing similar content but different term vocabulary will not be marked as similar. Fur-

thermore the word order plays an important role. As the following example shows it is not

sufficient to use only lexical (surface) similarity1. Let the first document contain The fox

jumped over the dog and the second one The dog jumped over the fox. The words are an

exact overlap but the context is totally different. Thus it is important to take semantic and

syntactic similarity into account. This can also be shown by looking at the terms New and

York which mean a completely different thing when occurring together as New York.

Some of these problems can be overcome by using dense vectors instead of sparse ones

for word representation. According to [20, p. 92], ”One of the benefits of dense and low-

dimensional vectors is computational: the majority of neural network toolkits do not play

well with very high-dimensional, sparse vectors.”. Moreover, dense vectors represent the

words’ context and capture dependency structures. The representation of words by dense

vectors is known as word embedding.

2.4.2 Word Embedding

Word embeddings were developed to overcome the problems of the traditional bag-of-words

model. According to [6] word embeddings are ”dense, distributed, fixed-length word vectors”

which can express the meaning of a word mathematically. A popular example is shown in

Figure 2.7.

1Lexical similarity measures if the sets of terms of two texts are similar. A lexical similarity of 1 implies

a full overlapping of words, while 0 means that there are no common words in both sets.

23

queen

king

woman

man

Figure 2.7: Word Embeddings make it possible to solve analogies by solving simple vector
arithmetic. The closest embedding to the resulting vector from king − man + woman is
queen.

The semantic relationships between the word queen and king can be determined by simple

algebraic operations [6]. For example, −→vecking − −→vecman + −→vecwoman ≈ −→vecqueen . So, a feature

vector projects each word into a relatively low dimensional vector space where vectors of

words with similar meaning are close together. Each word vector is ”built using word co-

occurence2 statistics as per distributional hypothesis” [6]. The distributional hypothesis has

been developed by Harris in 1954 [6] and is based on the famous statement by the linguist

Firth ”You shall know a word by a company it keeps!” [19, p. 11] or as [41] suggested ”words

which are very similar in meaning will indeed be very similar in contextual distribution”. In

general, word embedding techniques can be divided into two categories: (1) count-based

and (2) predictive-based methods (cf. [6]). Count-based vector space models rely on the

word frequency and co-occurrence matrices which count how often term co-occur in some

environment and are described in 2.4.3. In addition, neural networks which are able to learn

low-dimensional word representations are introduced in 2.4.4.

2A co-occurence matrix contains the number of times each entity in a row appears in same context as

each entity in a columns.

24

2.4.3 Count-based methods

Count-based methods map high-dimensional count vectors to a lower-dimensional represen-

tation, called latent semantic space, by preserving the semantic relationship. They use a

co-occurrence matrix to determine how often a word occurs together with its neighboring

words in a context window which is specified by a number and the direction. The co-

occurrence matrix of 2.10 based on the vocabulary 2.12 and a context window length of 2

is
































the quick brown fox jump over lazy dog be around

the 0 1 1 1 2 1 4 2 2 0

quick 1 0 1 1 0 0 0 0 0 0

brown 1 1 0 1 1 0 0 0 0 0

fox 1 1 1 0 2 1 1 0 0 1

jump 2 0 1 2 0 1 0 0 0 1

over 1 0 0 1 1 0 1 0 0 0

lazy 4 0 0 1 0 1 0 1 1 0

dog 2 0 0 0 0 0 1 0 1 0

be 2 0 0 0 0 0 1 1 0 0

around 0 0 0 1 1 0 0 0 0 0
































∈ R
10×10,

where the rows contain the focus words and the columns the context words. The matrix

entries are generated as follows:

the quick brown fox jump over the ...
the quick brown fox jump over the ...
the quick brown fox jump over the ...
the quick brown fox jumps over the ...
the quick brown fox jump over the ...
...

...
...

...
...

...
...

. . .

25

The words highlighted in red are the so-called focus words. The words marked in green are

called context words and are counted for the co-occurrence matrix. Since the context window

has been set to 2, each red word is surrounded by two green words in each direction. The

co-occurrence of the word quick, for example, is 1 0 1 1 0 0 0 0 0 0. Since the word quick, for

example, occurs only once within the corpus 2.10, the co-occurrence values can be explained

using the shown co-occurrence matrix above. As shown, the context words of quick are the,

brown and fox. Thus every other word in the vocabulary is assigned a 0. Each of these three

words occurs only once, so a 1 is assigned in each case. One commonly used count-based

word embedding method was developed in 1990 [16] and is called Latent Semantic Analysis

(LSA). According to [16], it overcomes two fundamental problems: synonymy (variability

of word choice) and polysemy(words can have multiple meanings). The algorithm takes as

input a term-document matrix C and represents each document as a vector after modeling

term-document relationships by extracting latent features using a low-rank approximation

for the column and row space computed by a singular value decomposition (SVD) of the

input matrix. The procedure is as follows ([35, p. 411]). Let C be given, derive C = UΣV T

using singular value decomposition.

Definition 2 (Singular Value Decomposition)

Let t be the number of terms and d the number of documents. Given a rectangular term-

document matrix C of size t × d and rank(C) = r ≤ min{t , d} the factorization of C ,

denoted by SVD(C), into the following three matrices is defined as [35, p. 408]

C = UΣV T , (2.18)

where the orthonormal matrices U ∈ R
t×t and V ∈ R

d×d contain the eigenvectors of CTC

and the eigenvectors of CCT . The columns of U and V are also called left and right singular

vectors. The eigenvalues of CCT are the same as the eigenvalues of CTC. CCT is a

square matrix which row and column correspond to each of the t terms. So, each entry

(i , j) represents the overlap between the i-th and j -th terms, based on their co-occurrence in

26

documents. In other words, the entry is the number of documents in which both term i and

term j occur. The diagonal matrix Σ ∈ R
t×d contains the singular values σi =

√
λi , with

λi ≥ λi+1, 1 ≤ i ≤ r and is defined as

Σ = diag(σ1, σ2, ..., σd), σi > 0 for 1 ≤ i ≤ r and zero otherwise. (2.19)

The matrix Σ can be represented as a r × r matrix because all eigenvalues σi , i > r are

0. By removing the rightmost t − r columns of U and the rightmost d − r columns of V,

the dimension of these matrices can be reduced to R
t×r and R

r×d . This reduced form of

SVD is also called truncated singular value decomposition, TSVD for short. Define a positive

number k ≤ r which is usually far smaller than r and replace the r − k smallest singular

values of Σ. The idea is to find a Ck of rank at most k which minimizes the Frobenius norm

of X = C − Ck defined as (cf. [35, p. 410])

||X ||F =

√
√
√
√

t∑

i=1

N∑

j=1

X 2
ij . (2.20)

The following theorem due to Eckard and Young states that the low-rank approximation can

be described as a minimization problem (cf. [35, p. 411])

Theorem 1

min
Z |rank(Z)=k

||C − Z ||F = ||C − Ck ||F = σk+1. (2.21)

It follows that the matrix Ck constructed this way has the lowest possible Frobenius error

and thus is the best rank k least-squares approximation of C incurring an error equal to 2.21

[35, p. 411]. For a larger k the error gets smaller and for k = r the error is 0. The last step

is to compute Ck = UΣkV
T . Figure 2.8 shows a schematic diagram of the SVD for a t × d

term-document matrix.

27

kTerm	
Matrix

Term-Document
Matrix

VT

t	x	d t	x	r r	x	r r	x	d

k

k
k

UC

Transposed
Document	Matrix

Matrix	of
singular
values

Figure 2.8: SVD decomposition of a term-document matrix C where t is the amount of
terms in all documents and d the number of documents within a corpus. The parameter r
is the rank of C and k is a chosen positive value usually far smaller than r . The image is
based on Fig. 2 of [16, p. 398] and [35, pp. 407–412].

This approach scales quadratically with O(dt2) for a t × d matrix. This computational

complexity can be overcome by using a different count-based model developed in 2014,

which is called Global Vector (GloVe) model. It aims to predict surrounding words instead

of determining the co-occurrence matrix directly. This approach is not discussed in this

thesis.

2.4.4 Predictive-based methods

Predictive-based word embedding methods derive from Neural Network Language Models

(NNLMs) which learn the factors of the product 2.7 using neural networks instead of a count-

based approach as presented in section 2.4. As part of supervised learning, neural networks

are a relevant part of machine learning. A neural network is based on a model of neural

connectivity within the human brain and can learn from data through training to recognize

patterns, classify data and predict future events. It is defined as follows [28, p. 34]

Definition 3 (Neural Network)

A neural network is a sorted triple (N ,V ,w), with two sets N ,V and a function w, where

N is the set of neurons and V a set {(i , j)|i , j ∈ N} whose elements are called connections

between neuron i and neuron j . The function w : V → R defines the weights, where w((i , j)),

28

the weight of the connection between neuron i and neuron j , is shortened to wi ,j .

Each artificial neuron can be described by four elements:(1) weights, (2) bias, (3) propagation

function and (4) activation function. Each weight represents the importance of the input

value. The weight is a learnable parameter. The propagation function converts the vector

input to a scalar value. According to [28, p. 35], this function is defined as

Definition 4 (Propagation Function)

Let I = {i1, i2, ..., in} be a set of neurons, such that ∀z ∈ {1, ..., n} : ∃wiz ,j . Then the network

input of j , called netj is calculated by the propagation function fprop as follows:

netj = fprop(oi1, ..., oin ,wi1, ...,win ,j) (2.22)

netj can, for example, be calculated as the weighted sum of the input signals

netj =
∑

i∈I

(oi · wi ,j) + Θj . (2.23)

The bias Θ, also referred to as offset or threshold, is an extra input to neurons that stores

the value of 1. It quantifies the output of a neuron and is uniquely assigned to each neuron.

The activation function defines if the node will be activated (”fired”) or not and determines

the output of the node. It can be defined as [28, p. 36]

Definition 5 (Activation Function)

Let j be a neuron. The activaiton function is defined as

aj (t) = fact(netj (t), aj (t − 1),Θj). (2.24)

It transforms the network input netj , as well as the previous activation state aj (t), with the

treshold value playing an important role. The activation value aj is the output of the neuron

j .

There exist different types of activation functions, for example binary step functions, linear

29

and non-linear functions. The sigmoid function is a common non-linear activation function

and is defined as (cf. [10, p. 228])

1

1 + exp(−x)
, (2.25)

which maps to the range of values of (0, 1).

The simplest form of an artificial neural network is called perceptron and was developed by

Frank Rosenblatt in 1958. Originally, a perceptron consists of only one artificial neuron.

The abstract model of this simple perceptron, also called single layer perceptron (SLP), is

shown in Figure 2.9.

Activation
function

∑
w2x2

...
...

wnxn

w1x1

w01

inputs weights

Figure 2.9: Single Layer Perceptron architecture. It has n inputs x1, ..., xn with weighting
w1, ...,wn for n ∈ R and one output.

As described in Figure 2.9 a neuron first calculates its output as a weighted sum of the

input signals x . The output is then passed to an activation function which calculates the

output of a neuron. A single layer perceptron only represents a linear classification, but often

more complex classifications must be performed, so several perceptrons can be combined to

a network. The perceptrons are first grouped into layers, which are then connected to the

perceptrons of the following layer. The result is a so-called multilayer perceptron (MLP)

(cf. [10, p. 229]) which is illustrated in Figure 2.10.

30

w11

w21
w31

bias1

bias6

w41

w42

Hidden
Layer

Output
Layer

Input
Layer

Figure 2.10: Multi Layer Perceptron or feed forward network. The information flow is
forward directed from the input neurons via the hidden neurons to the output neurons.

There exist three different types of nodes: (1) input, (2) hidden and (3) output nodes. Input

nodes receive initial data for the neural network and output nodes produce the corresponding

result. Hidden neurons are located between the input and output neurons and reflect internal

computations. If a neural network has only one hidden layer it is also referred to as a

shallow neural network. The different artifical neurons are connected to each other by

edges having particular weights which represent the impact to the next layer and thus the

knowledge itself. The number of neurons, layers and connections determine the complexity,

also called depth, of the neural network. So, if these numbers increase the computing power

required for training and operation does, too. Neural networks can have a variety of different

structures. Besides the already presented options there also exist recurrent networks where

information can pass through certain neuron connections of the network backwards and

then again forwards. The word embeddings used in this thesis are trained using feed forward

shallow neural networks.

31

Neural networks learn by iteratively comparing the model predictions with the actual ob-

served data and adjusting the weighting factors and the biases in the network so that in each

iteration the error between model prediction and actual data is reduced. The model error is

quantified by a loss function, for example Mean Squared Error (MSE). The minimization

can be performed by the gradient descent optimization algorithm or the back propagation

method. Further information about the training process can be found in [10, 232ff] and [28,

58ff]. The network is trained using a training set until a minimum error value ǫ is reached.

The size of ǫ depends on the type of problem and the desired accuracy. A training cycle is

called epoch.

The neural network model which learns both the text representation and the probabilistic

model can be described as follows, taken from [9]:

1. Associate with each word in the vocabulary a distributed word feature vector.

2. Express the joint probability function of word sequences in terms of the feature vectors

of these words in the sequence.

3. Learn simultaneously the word feature vectors and the parameters of that probability

function 2.7.

The preceding words are provided to the network as input. The model attempts to up-

date its parameters so that the probability of predicting the word wi at each time step is

maximized (maximum likelihood method). The probabilities are logarithmized so that the

log-probability (log-likelihood) of the corpus is maximized [9].

Word2Vec, Doc2Vec and FastText are popular word embedding methods. The word2vec

model was developed by Minkolov et al. [37] in 2013 at Google and represents words as

vectors in a latent space of N dimensions. Doc2Vec was developed in 2014 as an extension

of word2vec for documents [32]. This model takes into account the entire document structure

in addition to the word level and evaluates it accordingly. In contrast, the FastText model

32

published by Facebook in 2016 works on the character level and generates vectors based on

pairs or sequences of letters, so-called n-grams [12].

2.4.5 Word2Vec

There exist two different flavors of word2vec: (1) continuous bag-of-words (CBOW) and (2)

skip-gram. Figure 2.11 shows the embedding idea and Figure 2.12 their architecture.

Figure 2.11: Architecture of the CBOW and skip-gram model. Image taken from [37, p. 5].

In CBOW a focus word w(t) is predicted based on the context w(t ± 1..n). The number of

words used as context is determined by the so-called window of size n. For example, if {’The’,

’quick’,’brown’,’fox’, ’over’, ’the’,’lazy’,’dog’} is given as context the task is to generate the

center word ’jumped’. In contrast to the CBOW algorithm, the skip-gram algorithm is used

to predict the context from a given word. So, given a corpus, it is iterated over every word

in the corpus. Let wt be the word at position t . All words included in a context window of

size n around wt are considered as context. The main question is how likely it is to find wv

in the context of wt . As can be seen in Figure 2.12, word2vec is a shallow neural network

whose input is a text corpus containing V terms and whose output is a set of V feature

33

vectors.

(a) CBOW

(b) Skip-gram

Figure 2.12: Architecture of the Word2Vec model. Image taken from [46].

34

The input vector is a one-hot encoded word representations. The number of hidden layer

nodes corresponds to the desired length of the resulting vectors N . The input to hidden layer

connections can be represented by an unknown word embedding matrix W of size V × N .

The i -th row of W represents the word embedding of the word wi . For the CBOW model, the

resulting vectors obtained from multiplying the word vectors of multiple context words with

W are averaged. The activation function of the hidden layer is the identity. The connections

from hidden layer to output layer can be described by a matrix W ′ of size N × V which

is unknown, too. Each column of W ′ matrix represents a word from the vocabulary. The

row vectors of this matrix, on the other hand, do not capture the individual words, but the

context in which they occur. Therefore W ′ encodes the meaning of the words. The matrices

W and W ′ are initialized randomly and their optimal values are learned by training the

model. The activation function for the output layer is a softmax

y = Softmax (W ′TW Tx). (2.26)

The ouput of the neural network has to be compared against the pre-defined targets. So the

overall loss is computed after each training phase.

35

CHAPTER 3

Text Document Clustering

In this section, the cluster analysis is explained, which is used to detect hidden patterns in

data. Since clustering is an unsupervised learning method, labels are not known a priori and

thus have to be learned by the learning algorithm itself (cf. [50, p. 2]). In general, clustering

is defined as ”Given a set of data points, partition them into a set of groups which are as

similar as possible.” [3, p. 2]. The goal is to partition a set O of n uniformly represented

objects into k groups (clusters) C ⊆ O of similar objects. In text document clustering

the data objects are usually represented as feature vectors in a N -dimensional vector space

O = {~o1, . . . , ~on} ⊆ R
N . The majority of clustering methods partition a set O into k disjoint

clusters C1, ...,Ck satisfying the following three conditions:

Ci 6= 0 ∀ 0 ≤ i ≤ k

Ci ∩ Cj = {∅} ∀ i 6= j , 1 ≤ i , j ≤ k (3.1)

C1 ∪ C2 ∪ ... ∪ Ck = O

The conditions ensure that each cluster contains at least one element and that each object

must be assigned to a cluster. Each cluster Ci , 1 ≤ i ≤ k is represented by a cluster center

(centroid, prototype) ci ∈ R
N which is usually the mean value with respect to all data

36

objects contained in Ci

ci =

(

1

|Ci |
∑

o∈Ci

o1, ...,
1

|Ci |
∑

o∈Ci

on

)

, ∀o ∈ O . (3.2)

The basic idea of all clustering methods is that objects within a group are more similar to

each other (homogeneity/intra-cluster similarity) while they are less similar to objects in

other clusters (heterogeneity/inter-cluster similarity) and is shown in Figure 3.1.

Inter-cluster
Similarity

Intra-cluster
Similarity

Figure 3.1: Inter-cluster and Intra-cluster similarity of clusters.

Clustering can be applied to objects of different granularities and types, for example docu-

ments, paragraphs, sentences or terms in regard to text document clustering. So, the goal

overall clustering goal is to determine: (a) the number of clusters, (2) their position, (3) the

size of the clusters, (4) their shape and finally (5) their density. The cluster analysis steps

are described in figure 1.2.

After pre-processing, all data has been cleaned and transformed to feature vectors. Based on

the generated term-document matrix the actual data mining process, in this case clustering,

is carried out. For this it is necessary to determine a proximity measure first which quanti-

fies the similarity or difference between two data objects (here documents) and provides a

real-valued distance. Different proximity measures can be used for cluster algorithms. All

measures refer to the feature values but they consider different properties of the feature

vector. There is no optimal proximity measure, since the usage depends on the task [23,

37

p. 49]. Furthermore, the different methods vary in terms of the scale of measure. In [36]

were introduced four scales of measurement: nominal, ordinal, interval, and ratio ([36]). This

taxonomy is still widely used to describe the characteristics of a variable. More precisely,

the level of measurements indicates if the difference of variables is ”arbitrary, relative, or

equidistant” [36]. The four levels are hierarchical ordered, with the nominal scale as the

”lowest” and the ratio scale as the ”highest” one. The higher the scale level, the more precise

statements can be made about the variables. The following relationship applies:

Property Example

Categorical
Nominal =, 6=; Data can be categorized Gender
Ordinal <, >; Data can be ranked Grades

Quantitative
Interval Compare differences Temperature
Ratio Compare relationship Revenue

Table 3.1: Level of measurements (Steven’s topology) [36]

Section 4 provides further information on a variety of distance and similarity measures de-

pending on the level of scale. According to [11, p. 404] ”It is recommended to apply serveral

different similarity measures and check the stability of clustering results.” because different

measures lead to different results.

Then a clustering method is selected, which assigns the data objects to clusters based on

their similarity values until a termination condition is reached. After the research in cluster

analysis started in 1894, many different algorithms were developed (cf. [50, p. 3]). As stated

in [47, pp. 307–310] and [25, pp. 274–275], this family of clustering methods can be classified

into a wide variety of different types, for example:

- Exclusive vs. non-exclusive

In exclusive clustering each data object can only be partitioned into one cluster. If the

data objects have significant overlap they can be clustered such that they belong to

one or more clusters. This is called non-exclusive clustering.

38

- Fuzzy vs. non-fuzzy

This aspect relates to the overlapping or non-overlapping characteristic of the resulting

cluster distribution. Fuzzy clustering, also referred to as soft clustering is one general

type of clustering in which each data object can potentially belong to more than one

cluster, depending on an assigned probability value vi ∈ [0, 1], i = 1, ..., k . On the

other hand, in non-fuzzy (hard) clustering each data point belongs to exactly one

cluster which leads to non-overlapping clusters. If a data object belongs to a particular

cluster, its value is 1, otherwise 0.

- Intrinsic vs. extrinsic

Intrinsic analysis is intended to uncover unknown structures of the available variables.

Before the analysis, both the number of features to be extracted, their significance and

thus the cluster labels are unknown. In other words, this is an unsupervised learning

method. In contrast, in extrinsic analysis, a concrete idea of cluster labels already

exists. Using this type, the predefined structure should be analyzed to determine its

consistency with the existing data.

- Constructive vs. iterative improvement clustering

The clustering methods can be constructive which means that the decision in what clus-

ter each object belongs cannot be change afterwards. Iterative improvement clustering

starts with an initial clustering and moves data objects around to improve clustering.

- Monothetic vs. polythetic

This categorization refers to the cluster membership. In a monothetic scheme the

cluster membership is based on the presence or absence of sequentially features. If

an approach is polythetic, the clustering decisions are based on the distance between

the data objects. Therefore more than one feature is used to divide the collection into

groups. Most algorithms are polythetic.

39

- Hierarchical vs. flat (partitional) clustering

Hierarchical methods produce a nested sequence of partitions, while partitional ap-

proaches produce only a single partition. For a detailed description of the sub-types

see section 3.1.

- Type of clustering algorithm

Every algorithm is based on a different set of rules to determine the similarity between

data objects. A distinction is made between: (1) distributed, (2) density, (3) connec-

tivity and (4) centroid based models. The basic idea of distribution based algorithms

is that the data generated from the same distribution belongs to the same cluster.

The probability that a point belongs to a cluster decreases the further the point is

located from the cluster center. Density-based methods assume that the data which is

in the region with high density of the data space is considered to belong to the same

cluster. So, the more dense the objects the more related they are. Centroid-based,

also know as prototype, clustering is an iterative hard clustering algorithm using a

similarity function to measure the closeness between a data object and the centroid of

the clusters. Commonly, the number of clusters must be defined beforehand. The core

idea of connectivity based methods, also known as hierarchical clustering, is that data

objects closer to each other are more related than the ones lying farther away. This

is similar to centroid-based clustering but instead of pre-defining clusters the clusters

are described by the maximum distance needed to connect parts of the cluster.

As mentioned in [25, p. 268] ”There is no clustering technique that is universally applicable

in uncovering the variety of structures present in multidimensional data sets.”. Thus the

clustering method must be appropriate to the area of application.

40

3.1 Clustering Algorithms

According to [25, p. 274] the different clustering approaches can be described with the help

of a hierarchy as shown in Figure 3.2.

Clustering

Hierarchical Partitional

Agglomerative

Divisive

Centroid	Method

Square	Error

Graph	Theoretic

Mixture
Resolving

Mode	Seeking

k-Means

Expectation
Maximization

Single/Complete/
Average	Linkage

Ward	Method

Figure 3.2: Clustering approaches. Image based on [25, p. 275].

As described above there exist two general methodologies: (1) hierarchical algorithms and (2)

partitioning-based algorithms (cf. [25, p. 274]). Hierarchical clustering or hierarchical cluster

analysis (HCA) seeks to build a nested series of partitions (hierarchy), while partitional

clustering creates only one partition. Within each of the types there exist different algorithms

for finding the clusters.

41

3.1.1 Hierarchical clustering

This method creates a hierarchical partition of a given data set without specifying k . A

hierarchy of O is a family H = {H1,H2, ...,Hc} of c clusters. Let Ci and Cj be subsets of

Hm and Hl with m > l . Then either one subset contains the other one entirely or they are

disjoint: Ci ∈ Cj or Ci ∩ Cj = ∅ ∀i 6= j and m, l = 1, ..., c. The overall process can be

described as:

Parameters Distance or similarity function

Goal Determine a tree based hierarchical taxonomy (dendogram).

Types Divisive, agglomerative

There are two different hierarchical clustering methods, which differ in the proximity mea-

sure they use and their algorithmic procedure (top-down/bottom-up). Once clusters have

been formed, they can no longer be changed. Applying HCA leads to an iteratively build

dendrogram (Figure 3.3) by either merging (bottom-up approach) or splitting (top-down

approach) of the data set.

o1 o2 o3 o5 o6 o7 o9 o10

A
gg
lo
m
er
at
iv
e

D
iv
is
iv
e

o4 o8

o1 o2 o3

o5 o6 o7 o9 o10

o4

o8

Figure 3.3: Ten data points (o1, ..., o10) on a 2D plane are clustered. The dendrogram on the
left side shows the clustering result.

42

Every merging step is represented by the combination of two vertical lines into one and the

division step by the splitting of a vertical line into two vertical lines. The horizontal scale

represents the clusters and the height (vertical scale) of the dendrogram indicates the order

in which the clusters were joined and the similarity between the two clusters.

Agglomerative clustering algorithm

The agglomerative method, also known as the bottom-up HCA method, is more common

in practice and is suitable whenever the data has a hierarchical structure which should be

recovered. The algorithm (see 3.4) starts with each data object forming a separate group.

Thus, the agglomerative methods have perfect intra-cluster homogeneity at the beginning of

the iteration process. Then the distance matrix D is determined using a similarity measure

(see chapter 4). D is a symmetric matrix with the diagonal values being 0. In an iteration

step two most similar clusters are combined until all data objects are finally merged into a

single cluster. After every merging step the distance matrix has to be updated by deleting

the row and column corresponding to the combined clusters and adding a row and column

for the combined cluster. The inter-cluster distance can be calculated using different linkage

criteria. The result is a reverse partition sequence Pn ,Pn−1, ...,P1.

43

Algorithm: Agglomerative Clustering

Init:
n {Data objects}
k = n {Clusters}

While k 6= 1

Compute the similarity between each of the k clus-
ters

Join the two most similar clusters

k := k − 1

End:
n {Data objects}
k = 1 {Cluster}

Figure 3.4: Agglomerative clustering approach (cf. [25, p. 277])

The key step is the selection of the clusters that will be merged. The distance between

two clusters (inter-cluster distance) can be calculated using different methods. In single link

clustering the clusters with the two data points having the smallest distance will be merged.

The distance is defined as:

d(C1,C2) = mino1∈C1,o2inC2
d(o1, o2) (3.3)

Figure 3.5: Single Linkage

In complete linkage clustering, the distance between two clusters is defined as the maximum

44

distance between two points in each cluster.

d(C1,C2) = maxo1∈C1,o2∈C2
d(o1, o2) (3.4)

Figure 3.6: Complete Linkage

In average linkage clustering, the average distance between the points from two clusters is

defined as:

d(C1,C2) =

∑

o1∈C1,o2∈C2
d(o1, o2)

|nC1
||nC2

| , (3.5)

where nC1
, nC2

represent the number of data objects within C1, C2.

Figure 3.7: Average Linkage

Using the centroid method, the centroids ci of all clusters are first determined and then the

distance between them is calculated in each iteration steps.

d(C1,C2) = d(c1, c2) (3.6)

45

Figure 3.8: Centroid Method

Divisive clustering algorithm

A cluster hierarchy can also be generated top-down. This hierarchical clustering method is

called divisive clustering and starts with a single cluster containing all data objects. Then,

splits are performed in every iteration until a separate cluster is assigned to each data object.

Consequently, the partition sequence P1,P2, ...,Pn is produced. Since there exist 2n ways

of splitting each cluster, heuristics such as k-Means are needed. Due to the needed flat

clustering method, divisive clustering is more complex.

Hierarchical Clustering Evaluation

Let n be the number of data objects (here text documents). The memory complexity for

hierarchical clustering is O(n2). Since the similarity matrix has to be updated in every

iteration, the time complexity is O(n3) in many cases because there are n steps at which the

distance matrix must be updated and searched. For some approaches (single and complete

linkage) the complexity can be reduced to O(n2 log n) (cf. [25, p. 293]). The space and time

complexity is very high for a huge data set. Another limitation is that no objective function

is directly minimized. Moreover merges are final and cannot be undone which prevents

global optimization and trouble for noisy data. Another disadvantage is that all different

approaches to calculate the similarity have their own disadvantages. Single-link algorithms

46

for example can capture clusters of different sizes and shapes but on the other hand are

sensitive to noise. Complete-linkage methods are less susceptible to noise and outliers but

tends to break large clusters.

An advantage is that hierarchical clustering is suitable for data with arbitrary shape and

attributes of different types. Furthermore, the generated dendrograms are great for visu-

alization. However, it might be difficult to identify the correct number of clusters by the

dendrogram. Another benefit is that no a priori information about the number of clusters

is needed. By cutting the dendrogram at a proper level a desired number of clusters can be

obtained.

3.1.2 Partitioning Algorithms

As opposed to hierarchical cluster methods, partitioning algorithms generate a flat clustering

instead of a dendrogram (Figure 3.3) which has only one granularity level and is shown in

Figure 3.9.

o2

o1 o8

o7o6

o5o4

o3

o9

Figure 3.9: Flat clustering is the result of just dividing the data objects into groups without
organizing them in a hierarchy.

The k -Means algorithm is a hard cluster algorithm and each data point is deterministically

assigned to a specific cluster. The main idea is to define k centroids, one for each cluster. In

order to achieve this, the algorithms rearrange an initial non-overlapping cluster setting into

k optimal clusters by moving the data objects from one cluster to another such that a certain

47

homogeneity criterion is optimized. This is usually based on a certain proximity measure and

the assumption that k is known or has been estimated in advance. In order to reach a global

minimum, an exhaustive search would be necessary, in which all combinations of divisions

would have to be considered. Since this is practically impossible, iterative optimization

algorithms are used which vary in terms of their criterion function. Referring to [25, p. 18]

the most popular one is the summation of squared-errors (SSE) (cf. [50, p. 8]):

min
{ci},1≤i≤k

k∑

i=1

∑

o∈Ck

ωodist(o, ci), (3.7)

where ωo is the feature weight of o, k is the number of pre-defined clusters Ci with centroids

ci and dist() is the distance between a data object o and a centroid ci . The distance function

can be optionally chosen. For the squared Euclidean distance (L2) the so called k -Means

clustering algorithm is obtained.

k-Means

The k-Means algorithm is ”one of the oldest and most widley used [...] prototype-based,

simple partitional clustering algorithm” [50, p. 7]. The pseudocode based on [25, 279f] is

shown in algorithm 1.

Algorithm 1 k -Means

Input Data set O = {o1, o2, ..., on}, total number of clusters k
Output Cluster center dividing O into k clusters

1: Fix a subset of k << n centroids among the given data objects
2: while Stopping criteria not fulfilled do
3: for all Data objects o ∈ O do ⊲ Assignment step:
4: Find closest center ci ∈ C , 1 ≤ i ≤ k using euclidean distance ||o − ci ||2
5: Assign data object o to cluster Ci

6: end for
7: for all Cluster centers ci ∈ C do ⊲ Compute Centroids:
8: Set ci as defined in 3.2
9: end for

10: end while

48

The algorithm has four steps. For an effective k -Means clustering the number of clusters has

to be specified in advance. There have been developed different approaches to find the k -

value which are explained in section 3.1.2. Then k data objects of the data set are randomly

selected and initially defined as centroids. Due to the random choice of initial cluster setting,

the algorithm gives varying results on different runs. There exist several algorithms which

are described in section 3.1.2 to determine a suitable initialization. Once they have been

determined every data object oi ∈ O , 1 ≤ i ≤ n is assigned to a cluster to which it has the

greatest similarity. The similarity between oi and the cluster centers ci ∈ C , 1 ≤ i ≤ k is

for the k-Means algorithm implicitly defined as the Euclidean distance

| ~on − ~ci | =

√
√
√
√

N∑

j=1

(on,j − ci ,j)2, (3.8)

where N is the number of features of the data objects. In text document clustering N is the

total number of unique tokens occurring in the document corpus. However, other distance

measures can also be used. Afterwards the cluster centers are redetermined. A centroid

represents the mean value with regard to all the points contained in Ci , 1 ≤ i ≤ k (see 3.2).

The last two iteration steps are repeated until the mapping process becomes stable, until the

defined number of iterations is reached or until a stopping criterion for example if the ratio

between the decrease and the objective function is below a threshold is reached. Stability

in this context means that the centroid of a cluster in an actual iteration is identical to the

centroid of the last iteration.

The advantage of this method is, that it is easy to implement and is able to identify unknown

groups of data from complex data sets. According to [50, p. 8] ”[...] K-Means is very simple

and robust, highly effcient, and can be used for a variety of data types.”. Another benefit is

that it guarantees convergence by trying to minimize the total SSE as a criterion function

over a number of iterations. Furthermore it is variable, for example that a created cluster can

be altered again. This is not possible for agglomerative approaches because there clusters can

49

only be extended by objects. Moreover k -Means is linear in iterations i , number of clusters

k and number of vectors n and therefore has an overall linear time complexity of O(i ∗ k ∗n)

([25, p. 293]). So, k -Means is more sufficient especially for large data sets than hierarchical

algorithms. However, there are also disadvantages. One limitation is that the algorithm can

end up with a singleton cluster if an outlier is chosen as an initial centroid. Furthermore

outliers do not fit well into any cluster. Another reason why outliers have a great influence on

the result is because all objects are included in the calculation of the centroid. Nevertheless,

”Some disadvantages of K-Means [...] are dominated by the advantages [...]” [50, p. 8].

Choosing k

The k -value cannot be calculated using the k -Means algorithm. The user must initially

determine this value. The values of k can be determined using statistical measures, visual-

ization or a neigbourhood measure (cf. [39, pp. 104–107]). The most well known technique

is called elbow method. The algorithm is ran for different k values and the SSE is calcu-

lated and graphed. The point where the function appears to become flat also referred to

as ”elbow” is chosen as the optimal value of k . Another option to determine the k value

is the average silhouette method. The silhouette index is a clustering evaluation method

which estimates the average distance between clusters and is described in section 3.1.4. The

idea is to calculate the average silhouette coefficient for different values of k (see 3.23), plot

the resulting curve and choose the k value which maximizes the curve. Further options are

described in [39].

Choosing Initial Centroids

Whenever the initial cluster setting is chosen randomly, different runs of k -Means produce

different total SSEs. Therefore, choosing suitable initial centroids is the key step of k-Means.

The idea is to place the initial cluster centers optimally, preferably as close as possible to

the optimal centroids, in order to minimize the required iterations and thus the required

50

computation time. One option is to run the algorithm several times with different random

initial cluster points and then choose the result with the lowest SSE. Instead of randomly

selection, hierarchical clustering can be used to cluster a sample of points. Then k clusters are

extracted and used as initial centroids. A commonly used approach is called k -Means++1.

According to [8, p. 3], the steps involved are:

1. Randomly select the first centroid c1 from the data points X .

2. Select x ∈ X as a new center ci with probability

D(x)2
∑

x∈X D(x)2
, (3.9)

where D(x) denotes the distance each data object to its nearest, previously choosen

centroid.

3. Repeat step 2 until k centroids have been chosen.

4. Continue as the standard k -Means algorithm (1) does.

3.1.3 Visualize Cluster Result

In order to evaluate the cluster result, the grouping must be presented in a structured

way. There are several ways to do this. A dendrogram for example is a tree-like structure

frequently used to illustrate the arrangement of the clusters produced by hierarchical clus-

tering. This method describes the cluster formation process. The distance at which clusters

are merged is called the merging level. Another widley used technique is called Principal

Component Analysis (PCA). PCA is a dimensionality reduction technique primarily used for

visualization [10, p. 531]. The goal of PCA is to extract the most important information from

the data set {x1, x2, ..xN} where each variable has dimension D and express this information

1The ++ only refers to the special initialization of the cluster centers. The k -Means algorithm does not

change.

51

in terms of a smaller number of linearly uncorrelated variables, the principal components,

having dimensionality M < D preserving as much variance as possible [10, p. 562]. For the

visualization of the cluster results, the data is projected into a 2- or 3-dimensional sub-space.

If the data should be displayed in two dimensions, the x-axis of the coordinate system nor-

mally represents the first principle component and the y-axis the second. The procedure is

as follows. First, the origin of the coordinate system is placed in the center of mass of the

data points. The next step is to find the direction of the first coordinate such that it points

in the direction of the greatest variance of the data points. This direction defines the new

axis (first principle component). Then an orthogonal axis to the one just found is defined

and rotated around it until the variation along the new axis is maximal. If the data is to be

displayed in 3D, an additional axis orthogonal to the second axis must be defined. This axis

is rotated around the second axis until it points in the direction of the remaining maximum

variation. So, the main components are formed in descending order of importance where

the first main component is responsible for the majority of the variations. The result is the

rotation of the coordinate system such that the axes have maximal variation along their

direction.

Mathematically, the dispersion of the variables can be describes by the variance σ2 which is

defined as follows for one-dimensional data sets X containing N data objects:

Var(X) =
1

N

N∑

i=1

(xi − x̄)2, (3.10)

where x̄ is the expected value, i.e. (cf. [10, p. 562])

x̄ =
N∑

i=1

xi . (3.11)

52

The following applies to multidimensional data objects x ∈ R
D in a data set X given as

X =









x1,1 · · · x1,D
...

. . .
...

xN ,1 · · · xN ,D









, (3.12)

Var(X) =
1

N

N∑

i=1












(xi ,1 − x̄1)
2

(xi ,2 − x̄2)
2

...

(xi ,N − x̄N)
2












. (3.13)

The relationship between two data objects is expressed by the covariance. This is a gener-

alization of the variance, with

Var(x) = Cov(x , x). (3.14)

The covariance matrix CM of a data set X (3.12) is constructed using the following matrix

X ′ =









x1,1 − x̄1 · · · x1,D − x̄D

...
. . .

...

xN ,1 − x̄1 · · · xN ,D − x̄D









. (3.15)

It follows

CM =
XX ′T

N
=









C1,1 · · · C1,D

...
. . .

...

CN ,1 · · · CN ,D









, (3.16)

with

Ci ,j =
1

N
((xi − x̄i)(xj − x̄j)), ∀1 ≤ i , j ≤ D . (3.17)

The goal of PCA is to find an orthonormal basis B that transforms the coordinate sys-

tem Y = BX such that the covariance matrix become a diagonal matrix CMY = 1
N

YY T

53

while keeping the maximum variation. The eigendecomposition of the covariance matrix

CM provides the basis vectors of B whose row vectors represent the principle components.

The eigenvalues of the covariance matrix will be the diagonal elements of the resulting ma-

trix CMY . In the two-dimensional case, the two eigenvectors of CM corresponding to the

two largest eigenvalues must be calculated. The computational cost of computing the full

eigendecomposition of a D × D matrix is O(D3) ([10, p. 563]).

3.1.4 Cluster Validation

As already described at the beginning, the cluster analysis is mainly influenced by the fea-

ture extraction method, the number of clusters, the distance measure and the clustering

algorithm. To evaluate the resulting structure, validation procedures are used. As described

in [25, p. 268] and [22, p. 123], there exist three types of validation approaches to evaluate

the goodness of the clustering result: (1) internal, (2) external and (3) relative procedures.

External techniques compare the clustering result with previously defined or determined

structures. Internal validation methods focus on the heterogeneity between the clusters and

the homogeneity within the clusters and evaluate the results without an external reference.

The relative criteria compare the results of different cluster schemes using the same algorithm

with different parameter values.

External evaluation criteria

A predefined cluster partition P = {P1, ...,Pm} (ground truth value) will be compared with

a division C = {C1, ...,Cn} of the same objects generated by a clustering algorithm. The

54

proposed evaluation techniques use the following notation, based on [22, p. 126]:

TP :Data objects belong to the same cluster of P and C .

TN :Data objects belong to the same cluster of C and to different ones of P .

FP :Data objects belong to different clusters of C and to the same cluster of P

FN :Data objects belong to different cluster of C and to different ones of P .

The Rand Index (RI) and the Jaccard coefficient are common evaluation technique and

measures similarity between C and P . The RI is defined as

RI =
TP + TN

TP + TN + FP + FN
. (3.18)

For the Jaccard coefficient the following applies

J =
TP

TP + TN + FP
. (3.19)

The range of these indexes is between 0 and 1. They are maximized if n = m (cf. [22,

p. 126]).

Internal evaluation criteria

The cluster division C = {C1, ...,Ck} is evaluated without external cluster information.

Two commonly used indices are the Dunn index and the silhouette coefficient. The Dunn

index defines the ratio between the minimal inter-cluster distance to maximal intra-cluster

distance. The index is defined as [22, p. 130]

D = mini=1,...,k

{

minj=i+1,...,k

(
d(Ci ,Cj)

maxl=1,...,kdiam(Cl)

)}

, (3.20)

55

where k is the number of clusters contained in the data set, d(Ci ,Cj) defines the inter-cluster

distance between two clusters Ci and Cj by

d(Ci ,Cj) = min
x∈Ci ,y∈Cj

d(x , y) (3.21)

and diam(·) denotes the diameter (intra-cluster distance) of a cluster

diam(C) = max
x ,y∈C

d(x , y). (3.22)

The Dunn index has a value between 0 and ∞. The clustering result is optimal if the Dunn

index is maximized. This indicate the presence of compact and well-separated clusters. The

silhouette index measures the average distance between clusters and is defined by

S =
1

n

n∑

i=1

S (i), (3.23)

where

S (i) =
b(i)− a(i)

max{a(i), b(i)} (3.24)

and

a(i) =
1

|Ci | − 1

∑

j∈Ci ,i 6=j

d(i , j),

b(i) = mink 6=i

1

|Ck |
∑

j∈Ck

d(i , j). (3.25)

Furthermore, d(i , j) is the distance between two data objects i and j , a(i) describes the

average distance between a data object i and all other objects in the same cluster and b(i)

the average distance between i and all objects in any other cluster. S (i) is not defined

for only one cluster. The range of the values is [−1, 1], whereas 1 represents well-clustered

objects. Thus the silhouette index has to be maximizes.

56

CHAPTER 4

Text Similarity

A key factor for any clustering approach is the proximity measure which characterizes the

similarity or dissimilarity (distance) between objects. Those terms are opposite to each other

which means that the similarity measure decreases as the distance measure increases. Let a

collection containing n documents O = o1, ..., on be given. A value can be assigned to each

object pair using a proximity dimension function p: (oi , oj) → p(oi , oj) ∈ R. A similarity

measure is a function which assigns a real number si ,j between 0 and 1 to the text where a

score of 1 indicates maximum similarity and can be described as

0 ≤ si ,j ≤ 1 (4.1)

sii = 1 (4.2)

si ,j = sj ,i , (4.3)

for all 1 ≤ i ≤ n and 1 ≤ j ≤ N . The function values s(i , j) can be combined to a

symmetrical N × N -matrix which is called similarity matrix.

Similarity Measure

There exist different similarity measures for the scale of measurements described in [36].

The similarity of metric variables can be determined using Cosine similarity or Pearson’s

correlation coefficient. The Cosine cos(x , y) measures the similarity by calculating the cosine

57

of the angle between two feature vectors x and y containing N features

s(x , y) = cos(x , y) =
〈x , y〉

||x ||||y || =
∑N

i=1 xiyi
√
∑N

i=1 x 2
i

√
∑N

i=1 y2
i

. (4.4)

The similarity ranges from −1 (opposite) over 0 (orthogonality) to 1 (exactly the same).

Cosine similarity is not invariant to shifts whereas the Pearson’s correlation coefficient is.

The correlation coefficient, also known as Pearson Product-Moment Correlation Coefficient

(PPMCC), measures the linear correlation between two finite and positive variables that are

at least interval-scaled and is defined as

Corr(x , y) =

∑

i(xi − x̄)(yi − ȳ)
√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
=

〈x − x̄ , y − ȳ〉
||x − x̄ ||||y − ȳ || = cos(x − x̄ , y − ȳ). (4.5)

The value of a correlation coefficient ranges between −1 (perfectly negatively linearly related)

and 1 (perfectly positively linearly related). A correlation of 0 indicates that x and y don’t

have any linear relation.

Common similarity coefficients for non-binary data are Simple Matching coefficient, Jaccard

coefficient and Sørensen-Dice coefficient. For binary data these coefficients are based on a

contingency (matching) table. Let x and y be two binary variables containing N features

which can have two states (0:absent, 1: present). The corresponding matching table is shown

in 4.1.

Object y

0 1 sum

Object x

0 a =
∑N

j=1 I (xk = 0, yk = 0) b =
∑N

j=1 I (xk = 0, yk = 1) a + b

1 c =
∑N

j=1 I (xk = 1, yk = 0) d =
∑N

j=1 I (xk = 1, yk = 1) c + d

sum a + c b + d p

Table 4.1: Contingency table for binary data

58

The simple matching coefficient (SMC) is defined as

s(x , y) =
number of matching attributes

number of attributes
=

a + d

a + b + c + d
. (4.6)

The simple matching coefficient is invariant if the binary value is symmetric. A binary

attribute is symmetric if its states have equal importance. The SMC is similar to the Jaccard

coefficient which is defined as the number of features where both variables are equal to 1

divided by the number of attributes where either of the two is equal to 1,

s(x , y) =
|x ∩ y |
|x ∪ y | =

d

b + c + d
. (4.7)

The closer the Jaccard coefficient is to 1, the greater the similarity of the quantities. The

minimum value of the Jaccard coefficient is 0. The Jaccard coefficient is non-invariant if the

binary variable is asymmetric. The Dice’s coefficient is defined as

s(x , y) =
2|x ∩ y |
|x |+ |y | =

2d

2d + b + c
. (4.8)

If the two variables are identical, the coefficient is equal to 1, while if x and y have no

attributes in common, it is equal to 0.

Distance Measure

Proximities measure the distance d between two objects x , y in a set by a numerical value.

A distance measure is considered a metric if the following four conditions are fulfilled (cf,

[23, p. 50]).

59

Definition 6 (Metric)

Let d be a distance measure between two objects x , y ∈ X . d is a metric on X if and only if

d is always positive: ∀x , y ∈ X , d(x , y) ≥ 0

d meets the identity criterion: d(x , y) = 0 ↔ x = y

d is symmetrical: d(x , y) = d(y , x)

d satisfies the triangle inequality: d(x , z) ≤ d(x , y) + d(y , z)∀x , y , z ∈ X

A common distance function is the Minkowski distance or Lp-norm which compares the

objects N features and is defined as:

d(x , y) = Lq(x , y) = ||x − y ||p = p

√
√
√
√

N∑

i=1

|xi − yi |p . (4.9)

For p = 1 the respective distance function is known as Manhattan (city block) distance

d(x , y) = ||x − y ||1 =
N∑

i=1

|xi − yi |. (4.10)

The so called Euclidean distance derives from setting p = 2

d(x , y) = ||x − y ||2 =

√
√
√
√

N∑

i=1

|xi − yi |2. (4.11)

The square Euclidean distance follows from the Euclidean distance:

d(x , y) =
N∑

i=1

|xi − yi |2. (4.12)

As already mentioned in 3, a precise definition of the proximity between two objects is a

precondition for an accurate cluster analysis. The presented similarity and distance measures

60

are typically applied in clustering and have proven to be useful depending on the task. The

question now is what effect these measures have when applied to text documents. The

similarity of a pair of documents is not always clear and usually varies depending on the

problem. For example, as [23, p. 49] points out, two research papers are considered similar

if they are similar in terms of their topics, whereas web pages are considered similar if

they have almost the same meaning and conveying the same information. So the similarity

can be defined in terms of surface (lexical) and meaning (semantic) closeness. As already

discussed in section 2.4 it is depending on the task useful to take the context into account

to capture more of the semantics. According to [21, p. 13] string-based algorithms are

used to measure lexical similarity and corpus- and knowledge-based algorithms are based on

semantic similarity. According to [21, p. 13] string-based algorithms operate on strings and

character chains. Character-based measures include Jaro-Winkler and Damerau-Levenshtein

measures, for example. The simple matching, jaccard and dice coefficient as well as the cosine

similarity and the manhattan and euclidean distance are term based string measurements.

Corpus-based similarity determines the semantic similarity according to information gained

from a large corpora. A widley used technique is LSA (see section 2.4.3) (cf. [21, p. 14])

which captures the most descriptive features of the document meaning and thus reduces

the dimensionality of the document vector space representation. Knowledge-based similarity

uses information derived from semantic networks, for example WordNet which is a large

lexical database. This approach will not be discussed further in this thesis.

61

CHAPTER 5

Data sets

The different methods are evaluated on three data sets:

1. 20 Newsgroups

2. Jeopardy! questions

3. Reddit comments

All data sets have pre-assigned category labels. This allows external cluster validation tech-

niques to be used. The data sets differ in terms of document size, number of categories and

average category size. The smallest contains 18, 846 (20 newsgroups) documents in total,

the second smallest 39, 999 (Reddit) and the largest 349, 641 (Jeopardy!). The number of

categories are 5 (Reddit), 20 (20 newsgroups) and 43, 369 (Jeopardy!). The characteristics

and sources of these data sets are described in the following subsections.

5.1 20 Newsgroups

The 20 Newsgroups data set is a widely used data set in text mining. It can be downloaded

from [1] or loaded directly from the Python library scikit-learn using the following command:
✞ ☎

1 from sklearn.datasets import fetch_20newsgroups

2 # Fetch dataset

3 # Strip metadata using remove statement

4 df = fetch_20newsgroups(subset=’all’, remove =(’headers ’, ’footers ’, ’quotes ’))
✝ ✆

62

The data set contains 18, 846 non-null newsgroup posts out of 20 different categories. 380 of

them are empty and 180 are duplicated posts. The resulting data set thus contains 18, 286

entries. Table 5.1 provides an overview of the categories partitioned according to their topic.

comp.graphics (1)
comp.os.ms.windows.misc (2)
comp.sys.ibm.pc.hardware (3)
comp.sys.mac.hardware (4)
comp.windows.x (5)

rec.autos (7)
rec.motorcycles (8)
rec.sport.baseball (9)
rec.sport.hockey (10)

sci.crypt (11)
sci.electronics (12)
sci.med (13)
sci.space (14)

misc.forsale (6)
talk.politics.misc (18)
talk.politics.guns (16)
talk.politics.mideast (17)

talk.religion.misc (19)
alt.atheism (0)
soc.religion.christian (15)

Table 5.1: 20 Newsgroups categories sorted according to topics.

For the further processing the corresponding targets (see 5.1) are used. As can be seen in

Figures 5.1 and 5.2, the data set is balanced in terms of cluster size.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Target

0

200

400

600

800

1000

Nu
m

be
r o

f D
oc

um
en

ts

Number of documents in each target

Figure 5.1: 20 Newsgroups categories.

63

alt.atheism
4.3%

comp.graphics

5.2%

comp.os.ms-windows.misc

5.2%

comp.sys.ibm.pc.hardware

5.3%

comp.sys.mac.hardware

5.1%

comp.windows.x

5.3%

misc.forsale

5.2%

rec.autos

5.1%rec.motorcycles

5.3%

rec.sport.baseball 5.2%

rec.sport.hockey
5.3%

sci.crypt

5.3%

sci.electronics

5.2%

sci.med

5.2%

sci.space

5.2%

soc.religion.christian

5.3%

talk.politics.guns

4.9%

talk.politics.mideast

5.0% talk.politics.misc

4.1%
talk.religion.misc3.3%

Figure 5.2: Pie chart 20 newsgroups categories.

The frequency of the categories can also be displayed as a word cloud (see Figure 5.3). The

frequency ranges from 606 to 976.

Figure 5.3: Word cloud of 20 newsgroups categories. The size of each word indicates its
frequency or importance.

For the cluster analysis, 5 and 10 categories were clustered. If the specified number of

64

clusters n_categ=20 differs from the maximum number (in this case 20), the data objects of

the n_categ most frequently occurring categories are selected. For 5 categories 4, 847 data

objects are clustered and for 10 categories 9, 629.

5.2 Jeopardy!

The Jeopardy! data set, taken from [2], includes information about every question asked in

season 1 through 35 of the American quiz show Jeopardy!, among other things. The data set

stored in JSON format contains 348, 220 non-null and 1421 duplicate entries out of 43, 369

categories. Each entry contains the following information

1. category

2. value

3. question

4. answer

5. round

6. show_number

7. air_date

For the unsupervised clustering approach only the questions and their categories are ex-

tracted from the JSON file. Some of the categories occur only once, while others occur 855

times. The 10 most frequent ones are shown in Figure 5.4.

For the cluster analysis, the data of 5, 10 and 20 categories is used. These categories and

their target values are listed in table 5.2.

65

0 200 400 600 800
Number of documents

SCIENCE

LITERATURE

AMERICAN HISTORY

HISTORY

SPORTS

POTPOURRI

BEFORE & AFTER

WORD ORIGINS

WORLD HISTORY

WORLD GEOGRAPHY

ca
te

go
ry

Jeopardy!-
 Top 10 categories

Figure 5.4: 10 most frequent Jeopardy! categories.

SCIENCE (0)

TRANSPORTATION (12)

LITERATURE (1)
POTPOURRI (5)
ART (15)
WORD ORIGINS (7)

AMERICAN HISTORY (2)
HISTORY (3)
WORLD HISTORY (8)
U.S. HISTORY (19)

SPORTS (4) BEFORE & AFTER (6)

WORLD GEOGRAPHY (9)
U.S. CITIES (11)
U.S. GEOGRAPHY (18)
WORLD CAPITALS (16)

BUSINESS & INDUSTRY (10)
COLLEGES &
UNIVERSITIES (13)

RELIGION (14) ANIMALS (17)

Table 5.2: Category names and their target values for n_categ=20 of the Jeopardy! data
set.

The resulting data set for 5 categories contains 3, 869 entries, 7, 175 for 10 categories and

12, 543 objects for 20. As can be seen in Figures 5.5 and 5.6, the data set is balanced in

terms of cluster size.

66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Target

0

200

400

600

800
Nu

m
be

r o
f D

oc
um

en
ts

Jeopardy!-
 Number of documents in each target

Figure 5.5: Number of documents in each Jeopardy! category for n_categ=20.

SCIENCE
6.8%

LITERATURE

6.5%

AMERICAN HISTORY

6.3%

HISTORY

5.7%

SPORTS

5.6%

POTPOURRI

5.5%

BEFORE & AFTER

5.3%WORD ORIGINS

5.3%

WORLD HISTORY 5.2%

WORLD GEOGRAPHY

5.0%

BUSINESS & INDUSTRY

4.8%

U.S. CITIES

4.6%

TRANSPORTATION

4.5%

COLLEGES & UNIVERSITIES

4.4%

RELIGION

4.3%

ART

4.2%

WORLD CAPITALS

4.1%

ANIMALS

4.0% U.S. GEOGRAPHY

4.0%
U.S. HISTORY

4.0%

Jeopardy!-
 Pie Chart of categories

Figure 5.6: Percentage distribution of Jeopardy! categories for n_categ=20.

67

5.3 Reddit comments

This data set was downloaded from [14] and contains 39, 999 parent comments from May

2015 out of 5 subreddit pages. Since 1, 753 text entries are duplicates, only 38, 245 entries

are used for further processing. The file includes the following information:

1. parent_id

2. text

3. topic

4. length

5. size_range

For this thesis only the question and the topic information are extracted. The categories

and their corresponding target values are nfl (0), pcmasterrace (1), news (2), movies (3)

and relationships (4). The proportion of objects contained in each category is visualized

in Figure 5.7 and 5.8.

68

movies

15.9%

news

23.1%

nfl
26.9%

pcmasterrace

23.3%

relationships

10.9%

Reddit-
 Pie Chart of categories

Figure 5.7: Percentage distribution of categories contained in the Reddit data set. The
frequency of categories ranges from 4, 161 to 10, 270.

nfl pcmasterrace news movies relationships
Target

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f D
oc

um
en

ts

Number of documents in each target

Figure 5.8: Number of documents in each Reddit category.

69

CHAPTER 6

Implementation and Results

In order to execute the KDD process introduced in chapter 2 a Python3 program was de-

veloped using Jupyter Notebook. The basic software and libraries used in this thesis are:

Basic Software: Anaconda, Jupyter Notebook

Data Pre-Processing: pandas, spaCy, numpy

Data Transformation/
Data Mining:

gensim, scikit-learn

Visualization: matplotlib, seaborn, wordcloud

To unpack the program provided as a zip-file a corresponding program must be available.

All relevant files are then unpacked and stored in the following directory structure. In order

to run the Jupyter notebook files it is necessary to ensure that all required packages are

installed. A list of all packages is contained in the file requirements.txt. An overview is

provided in the appendix (see D.1). In order to install all packages run:
✞ ☎

1 pip install -r requirements.txt
✝ ✆

The text document clustering was implemented for the three data sets introduced in 5. The

file clusterAnalysis.ipynb contains the actual cluster analysis. As can be seen in Figure 6.1

the user has to specify global parameters, first.

70

Global Parameters

→Please specify a data set:

0: 20 newsgroups

1: Jeopardy! questions

2: Reddit comments

[4]: datasets = 0

→Please specify the number of data objects:

The 20 newsgroups data set contains 18, 286 not null and not duplicated data objects, the Jeopardy

data set 348, 220 and the Reddit data set 38, 245. If n_comp_reduced is set to False the total number
of data objects of each data set is used. If it is set to True n_comp objects will be selected.

[5]: n_comp_reduced = True

n_comp = 100

→Please specify the number of categories:

The 20 newsgroups data set contains 20 categries, the Jeopardy data set 43, 369 and the Reddit

data set 5. If n_categories_reduced is set to False the total number of categories is used. If it is set
to True n_categ categories will be selected.

[6]: n_categories_reduced = False

n_categ = 4

→Please decide if the data set should be cleaned or not:

[7]: clean = True

if clean:

clean_annot = "activated"

else:

clean_annot = "deactivated"

→Please specify the metric and the word embedding:

The following metrics are implemented: - manhattan - euclidean - cosine - jaccard - matching -
overlap

The following BoW representations are implemented: - Frequency Vectors - One-Hot-Encoding -
TF-IDF - LSA

71

The following word embeddings are implemented: - Word2Vec CBOW - Word2Vec skip-gram -
Word2Vec pre-trained - Doc2Vec pre-trained - FastText pre-trained - GloVe pre-trained

[8]: # Metric options

metrices = ["manhattan", "euclidean", "cosine", "jaccard", "matching",␣

→֒"overlap", "ppmcc"]

metrices = ["manhattan", "euclidean", "cosine", "jaccard","matching", "ppmcc"]

BoW options

bow_embedding_types = dict({0: "Frequency Vectors", 1: "One-Hot-Encoding", 2:␣

→֒"TF-IDF", 3: "LSA"})

bow_embedding_types = dict(

{0: "Frequency Vectors", 1: "One-Hot-Encoding", 2: "TF-IDF", 3: "LSA"}

)

Word embedding options

dh_embedding_types = dict({0: "Word2Vec pre-trained", 1: "Doc2Vec␣

→֒pre-trained", 2: "FastText pre-trained"})

dh_embedding_types = dict(

{

0: "Word2Vec pre-trained",

1: "Doc2Vec pre-trained",

2: "FastText pre-trained"

}

)

Figure 6.1: Code snippet - Global Parameter Settings

Two of the datasets are stored in the directory data, the other one is loaded from the scikit-

learn library. The file helperFunctions.ipynb contains all shared functions. The images

created during the program execution are automatically saved in the images directory. The

directory embeddings contains pre-trained word embeddings which are described in section

6.2.

6.1 Pre-Processing

After loading the three data sets, they are stored in a pandas data frame. In order to make

them more manageable, the rows with null values and empty texts are dropped. Moreover

HTML content is removed. Before each data set is converted into a machine readable format,

72

they are cleaned-up and pre-processed. The conversion into tokens and the pre-processing

is mainly done using the open source libraries spaCy and regular expressions (re). spaCy is

written in Python and Cython. Besides spaCy there is a wide range of libraries for NLP.

Depending on the application, some of them are more suitable than others (cf. [4]). For this

thesis spaCy was mainly chosen because of its high performance and claimed accuracy for

syntactic analysis in [4]. The command sequence of the tokenization process is as follows:

Listing 6.1: Data Tokenization
✞ ☎

1 # Load language model instance (available pretrained statistical model for English

language)

2 # en_core_web_sm: English multi -task CNN trained on OntoNotes. Assigns context -specific

token vectors , POS tags , dependency parse and named entities.

3 # This pipeline is by convention stored in a variable called ’nlp ’.

4 nlp = spacy.load("en_core_web_sm")

5 nlp.add_pip(merge_entities)

6 if clean:

7 df["cleaned"] = df.text.apply(lambda x:cleaning(x))

8 df["tokens"] = df.cleaned.apply(lambda x: nlp(x))

9 else:

10 df["tokens"] = df.text.apply(lambda x: nlp(x))

11 # Number of tokens after tokenization

12 df["numTokens"] = [len(token) for token in df.tokens]

13 # Save index of non empty token lists

14 idx_token = df[df.numTokens != 0]. index.tolist ()

15 # Remove column entries where numTokens is 0

16 print(

17 "The dataset contains {} texts which result in an empty token list.".format(

18 len(df[df.numTokens == 0]))

19)

20 # Drop columns of dataset where numTokens = 0

21 df = df.drop(df[df.numTokens == 0]. index)

22 df = df.reset_index(drop=True)
✝ ✆

First, a language model containing language specific rules has to be loaded for the tagging,

parsing and entity recognition process. The library spaCy provides different pre-trained

language models. The en_core_web_sm model used in this thesis is a small-sized English

model trained on written web text (blogs, news, comments) that includes vocabulary, syntax,

73

entities and word vectors [17]. It can be downloaded using the following command
✞ ☎

1 python -m spacy download en_core_web_sm
✝ ✆

After loading the English model, a nlp object is received which contains the processing

pipeline (tagger, parser, ner). In order to tokenize named entities, i.e. New York, the

function merge_entities is added to the spaCy pipeline. If the user activated text cleaning

(clean=True), which is recommended, the data is cleaned before processing it with the loaded

English model. For example, URLs and email addresses are removed, as well as whitespaces,

newlines and tabs. A detailed overview is given in the corresponding Python function, listed

in the appendix (see B.1). During processing spaCy first generates tokens. Therefore, it

separates words by whitespace characters and applies exception rules and prefix or suffix

rules. The official example provided on [45] is the tokenization of the sentence Let’s go to

N.Y.! and is shown in Figure 6.2.

Figure 6.2: spaCy tokenization process. Image taken from [45]

The processed text is saved in a doc object, stored in df[’tokens’]. Each token is rep-

resented as a token object including several attributes. For example .text returns the

token text and .is_punct indicates whether the token is punctuation or not. Since the

74

tokenization process can result in an empty list, these are subsequently removed.

As described in 2.3, the data is pre-processed in order to remove stop words, for example,

and therefore to reduce the vector space dimension. Furthermore, the cluster effectiveness

can be improved at the same time. An outline of the implemented pre-processing process

can be obtained from Listing 6.2.

Listing 6.2: Data Pre-processing
✞ ☎

1 def dataNormalization(doc , stopwords):

2 """

3 This function normalizes tokens.

4 :param text: tokenized text

5 :return normalized: normalized tokens

6 """

7 normalized = []

8 for token in text:

9 # Filter out symbols , punctuations and whitespaces

10 if token.pos_ not in (’SYM’, ’PUNCT’, ’SPACE ’):

11 lemma = ""

12 if token.lemma_ != "-PRON -": # -PRON - stands for personal symbol

13 lemma = token.lemma_.lower().strip()

14 else:

15 lemma = token.lower_

16 # Remove stopwords

17 if lemma not in stopwords:

18 lemma = re.sub(r"[^a-zA -Z]+",’’,lemma)

19 if lemma != ’’:

20 if len(lemma)>3:

21 normalized.append(lemma)

22 if len(normalized) == 1 and len(normalized [0]) == 1:

23 return []

24 return normalized

25

26 # Load 326 stopwords

27 stopwords = spacy.lang.en.stop_words.STOP_WORDS

28 # Normalize tokens

29 df[’tokensPreProc ’] = df.tokens.apply(lambda x: dataNormalization(x, stopwords))
✝ ✆

The first step is the removal of all white spaces as well as punctuations and symbols. Then

75

each inflectional form is reduced to its lower case base form using the lemmatization tool

provided in spaCy. Since stop words do not contain important meaning they are removed in

the next step. The first 10 out of 326 stop words are ’m, myself, himself, enough., this, may,

because, above, see and say. Since there usually is some noise present in the corpus after

performing, the words having a very short length, here 3, are removed. If an empty token

list is assigned to a document after normalization, it is removed.

6.2 Data Representation

After pre-processing the text data, the features are generated. The user can choose the

following representation types to be used for the cluster analysis.

Listing 6.3: Data Representation Options
✞ ☎

1 bow_embedding_types = dict ({0: ’Frequency Vectors ’, 1: ’One -Hot -Encoding ’, 2: ’TF-IDF’,

3: ’LSA’}) # Bag of word representation methods

2 dh_embedding_types = dict ({0: ’Word2Vec pre -trained ’, 1: ’Doc2Vec pre -trained ’, 2: ’

FastText pre -trained ’})
✝ ✆

The open source natural language processing library gensim, which is implemented in Python

and Cython is used to build the document vectors. Before converting the corpus which

contains all documents into vectors, a mapping (dictionary) between each word in a doc-

ument and an unique id must be generated. Therefore the gensim.corpora.dictionary.

Dictionary class is used, as shown in Listing 6.4.

Listing 6.4: Data Representation: Dictionary construction
✞ ☎

1 dictionary_raw = Dictionary(df.tokensString) # Create dictionaries (map tokens to id

2 dictionary_norm = Dictionary(df.tokensPreProc) # based on observed order)

3 features_raw = len(dictionary_raw.token2id) # Extract dictinary feature

4 features_norm = len(dictionary_norm.token2id)
✝ ✆

First, the BoW model is implemented. To convert the tokenized documents to numerical

vectors using this approach, the function shown in Listing 6.5 is used.

76

Listing 6.5: Conversion from document tokens to vectors
✞ ☎

1 def bow_document_term_matrix(model_type , dictionary , corpus , features):

2 model = None

3 if model_type == 0: # Term Frequency

4 model = [dictionary.doc2bow(doc) for doc in Documents(corpus)]

5 matrix = matutils.corpus2dense(model , features).transpose ()

6 elif model_type == 1: # One Hot

7 model = [[(token [0], 1) for token in dictionary.doc2bow(doc)] for doc in

Documents(corpus)]

8 matrix = matutils.corpus2dense(model , features).transpose ()

9 elif model_type == 2: # TF-IDF

10 model = TfidfModel(dictionary=dictionary , normalize=True)

11 vec = [model[dictionary.doc2bow(doc)] for doc in corpus]

12 matrix = matutils.corpus2dense(vec , features).transpose ()

13 else:

14 return []

15 del model

16 return matrix
✝ ✆

The function distinguishes between the desired BoW types. For the representation using

term frequency encoding the function doc2bow() is called which counts the number of oc-

currences of each word, converts it to its integer id stored in the dictionary and returns

it as a sparse vector. Since gensim doesn’t provide a one-hot encoder, the doc2bow() is

used again, with the difference that the list of tuples returned from this function is con-

verted into a list containing the returned token_id and a 1 as a tuple. In order to generate

TF-IDF encoded tokens a corresponding model is build using models.TfidfModel(). As

already described in chapter 2.4.2, the word embeddings are separated into count based and

predictive based methods. In the context of count based methods, LSA is implemented.

Before the actual model can be created the optimal number of components (k_tsvd) must

be identified. Therefore a TSVD is applied to each corpus using sklearn.decomposition.

TruncatedSVD. Then the explained variance stored in the attribute explained_variance_

ratio is extracted and the cumulative explained variance is calculated. If this value ex-

ceeds a threshold (here 80%), the corresponding number of components is set as the optimal

77

number. This number is then passed to the constructor of the LSA model, implemented in

gensim.models.LsiModel, as described in Listing 6.6.

Listing 6.6: Creation of an LSA model using gensim
✞ ☎

1 # train model

2 lsamodel = LsiModel(tfidf_norm , num_topics=optimal_k_tsvd , id2word=dictionary_norm)

3 tfidf_lsa = lsamodel[tfidf_norm]

4 # Convert corpus into dense numpy array

5 tfidf_lsa_mat = matutils.corpus2dense(tfidf_lsa , optimal_k_tsvd).transpose ()
✝ ✆

Since it is beneficial to clean and pre-process the data sets and that TF-IDF is the only BoW

method which measures the importance of a word in regard to a document in a corpus, LSA

is only applied to the vector representation of this kind of data (tfidf_norm).

The last step is the representation of the corpus based on the distributed hypothesis which

is not just a mapping from each token to a score. The library gensim provides already

pre-trained word embeddings as well as the functionality to train models. In this thesis only

pre-trained models were used. For word2vec a pre-trained model trained on Google News

was downloaded from [48]. The file is called GoogleNews-vectors-negative300.bin.gz

and contains 300-dimensional vectors for 3 million words and phrases. For the extension of

word2vec, called doc2vec, a pre-trained model containing vectors of the same length, was

downloaded from [49]. Since a FastText model can not be loaded into gensim, it has to

be downloaded using gensim.downloader.api.load() each time the complete program is

executed. The data set is called fasttext-wiki-news-subwords-300 and contains 1 million

vectors whose dimension is 300, too.

The chosen word embedding models are iteratively scanned and the corresponding pre-

trained model containing the word representations is loaded for raw as well as pre-processed

data. The word2vc model is completely loaded after 183.5 seconds, the doc2vec one after 8.07

seconds and the fastText model takes 325 seconds to load. To create the respective term

document matrix, out-of-vocabulary words are first removed from the documents. Docu-

78

ments that have no word vectors in word2vec are completely removed. For the remaining

ones the procedure is as follows: For each word the corresponding trained word vector of the

model is used. Each document is then represented as the average of its word vectors.

Once word vectors of a representation type are generated, the k -Means algorithm is applied

to generate the corresponding clusters.

6.3 k-Means Algorithm

The clustering procedure is shown in Figure 6.3 as an example of vector representation using

BoW. It is carried out analogously for LSA and word embeddings.

79

BOW k-Means Analysisact BoW k-Means Analysis

other embedding
available

N

bow_document_term_matrix
for raw data

bow_document_term_matrix
for norm data

other metrics
available

Y

N runKMeans on raw
data

runKMeans on
norm data

plot_cluster_result
for norm data

plot_cluster_result
for raw data

Y

Figure 6.3: Activity Diagram of implemented clustering analysis using BoW text represen-
tation approach.

As discussed in 6.2 the feature matrix for each embedding is first generated from the dictio-

nary and the corpus. The runKMEans() function is then called for each metric that is to be

tested. Figure 6.4 shows the corresponding UML activity diagram.

80

runKMeansact runKMeans

define available distance
function

user defined
type_metric ?

max init reached ?

calc accuracy result

run implemented k-
Means algotithm

N

select metric name
for cdist as string

create lambda call for
own implemented

metric

Y

better accuracy
than

saved result

save accuracy score
in list

N

N

update best labels
and centers

Y

Figure 6.4: Activity Diagram of implemented runKMeans function.

A code snippet of this function is provided in the following Listing:

Listing 6.7: Run k -Means
✞ ☎

1 def runKMeans(df_mat , labels_gt , optimal_cluster_no , metric , n_init):

2 term_based_metrics = {’manhattan ’:’cityblock ’, ’euclidean ’:’euclidean ’, ’cosine ’:’

cosine ’,

3 ’dice’:’dice’, ’jaccard ’:"jaccard", ’matching ’:"matching",

4 ’overlap ’:type_metric.USER_DEFINED}

5 user_metric_func = {’overlap ’:my_overlap}

81

6 # Compute cluster distance function

7 dist_type = term_based_metrics[metric]

8 dist = None

9 if dist_type == type_metric.USER_DEFINED:

10 if metric == "overlap":

11 dist = lambda p1,p2: user_metric_func[metric](p1, p2)

12 else:

13 dist = dist_type
✝ ✆

The function runKMeans receives the feature vectors, the correct targets and the pre-defined

number of clusters, the distance metric and the number of times the algorithm will be run

with different initial centroid settings (n_init). The value of n_init is set to 3. For each

of the above data sets the number of clusters is set equal to the number of pre-assigned

labels. The distance metrics shown in 6.7 are implemented. For all metrics except overlap

and PPMCC, the provided functions of scipy.spatial.distance.cdist are called. Alter-

natively, a user defined metric whose name is stored in the term_based_metric dictionary

as a USER_DEFINED metric is passed to the function. After specifying the appropriate metric

inside of runKMeans, a customized k -Means algorithm according to algorithm 1 is called

as often as specified with the passed n_init variable. The k -Means algorithm provided by

scikit-learn could not be used because it is only implemented for the Euclidean distance and

no other distance metric can be specified. An alternative is offered by a library called pyclus-

tering. However, this library has a disadvantage, too. Depending on the parameter setting

the k -Means algorithm returns less clusters than specified. This contradicts the conditions

defined in 3.1. The Natural Language Toolkit, which is also a commonly used library for

NLP can also be used for clustering using the k -Means algorithm. Unfortunately, the com-

putation time for large data sets is a considerable problem here. So a custom implemented

k -Means algorithm (k_means_own) based on algorithm 1 is used in this thesis. The control

and object flow of this function represented as a UML diagram in Figure 6.5.

82

k_means_ownact k_means_own

update_cluster_center

update_cluster_mapping

choose random k
vectors from sample

as start clusters
start cluster

defined?

calc mean of every
dataset with the same
label as new center

calc distance
between samples and

centers

save for every sample
vector the index of
the nearest center

label

N

Y

mean for type of
metric useful

N

Y

convergence
conditions
achieved?

Y

calc distance from
dataset with the same

label to ever other

choose for every label the
dataset with the lowest
averaged distance as

new center

N

Figure 6.5: Activity Diagram of implemented k_means_own function.

83

As can be seen in Listing 6.8, the function receives the feature vectors, the numbers of clusters

k and the specified distance function. Optionally a start cluster setting, a convergence

conditions and a flag which indicates how the cluster centers are calculated in each update

step can be passed. If no cluster division is passed, k cluster centers are randomly chosen

from the data set.

Listing 6.8: Implemented k -Means Algorithm
✞ ☎

1 def kmeans_own(sample ,k,distance_metric ,initial_centers=None , converg_dist =0.01 , mean_f=

True):

2 # List contains the corresponding labels

3 nearest_cluster_label = np.zeros(len(sample))

4 if initial_centers == None:

5 random_ind = choice(len(sample), size=k, replace=False)

6 initial_centers = sample[random_ind ,:]

7 temp_dist = 1.0

8 max_iter = 100

9 iter_count = 0

10 while temp_dist > converg_dist and iter_count < max_iter:

11 nearest_cluster_label = update_cluster_mapping(sample ,initial_centers ,

distance_metric)

12 new_centers = update_cluster_center(sample ,nearest_cluster_label ,initial_centers ,

distance_metric ,mean_f)

13 temp_dist = 0

14 for i in range(len(initial_centers)):

15 temp_dist = temp_dist + np.sum(distance.cdist ([initial_centers[i]],[new_centers[i

]], distance_metric))

16 initial_centers = new_centers

17 iter_count = iter_count + 1

18 temp_dist = calc_wce_count(sample ,nearest_cluster_label ,initial_centers ,

distance_metric)

19 return temp_dist ,new_centers , nearest_cluster_label
✝ ✆

Subsequently, an iterative process takes place within the while loop, which is repeated until

a maximum number of iterations is reached or the calculated cluster centers have moved less

than converg_dist. First, the data objects are assigned to the cluster centers using the

update_cluster_mapping function. This function requires the feature vectors, the current

cluster centers and a distance function. The output are the new labels. The implementation

84

of this function shown in 6.9 is based on the k -Means algorithm implemented in sklearn.

Listing 6.9: Assign data objects to clusters
✞ ☎

1 def update_cluster_mapping(sample ,centers ,distance_metric):

2 num_cores = multiprocessing.cpu_count ()

3 X,Y,dtype = _return_float_dtype(sample ,centers)

4

5 fd = delayed(_dist_calcer)

6 ret = np.empty ((sample.shape[0], centers.shape [0]), dtype=dtype , order=’F’)

7

8 Parallel(n_jobs=num_cores ,backend="threading")(

9 fd(distance_metric ,ret , s , X[s], Y)

10 for s in gen_even_slices(_num_samples(X), effective_n_jobs(num_cores)))

11

12 # determine new cluster centers

13 min_dist_ind = np.argmin(ret ,axis =1)

14 return min_dist_ind
✝ ✆

For each feature vector the function calculates the distance to each cluster center using the

passed metric. This is one of the most computationally intensive steps of the algorithm, so the

calculations are performed simultaneously. The feature vector is divided into as many equal

parts as there are CPU cores on the computer. Every thread calls the function _dist_calcer

which calculates the distance using the function scipy.spatial.distance.cdist in com-

bination with the specified metric. Each calculated portion is then stored in the correct

position of the entire distance matrix. The advantage of the cdits function is that already

implemented distance metrics like euclidean or cosine similarity, for example, are based on

fast C implementations. The parallel implementation allows a relatively fast calculation

of distance matrices even for large data sets. As can be seen in Listing 6.9, the nearest

cluster center is then determined for each feature vector using the numpy.argmin function.

The resulting cluster labels are returned to the kMeans_own function. Once the cluster as-

signment has been determined, the cluster centers are updated. This is done within the

update_cluster_center function, which calculates the average value of all data objects be-

longing to a cluster and defines it as the centroid. However, this only works for metrics that

85

allow the calculation of an average. For metrics, like Jaccard, there is no average of points.

So, the centroid is defined as the point closest to other points. Closest in this case indicates

smallest maximum distance to the other points, smallest average distance to other points or

smallest sum of squares of distances to other points. In this thesis the data points whose

average distance to all other points within the group is minimal is assigned as the new cluster

center. So, the k -Means algorithm tends to become a k -Medoids algorithm. The determined

centroids are returned to the calling function kMeans_own. The convergence criteria is up-

dated by calculating the distance between the old and new cluster centers (within-cluster

error). If the termination criterion of the loop is not met, the next iteration of the while

loop starts. Otherwise, the current cluster centers and labels are returned as the result of

the algorithm. This is then compared with the known targets to evaluate the clustering

efficiency. As mentioned before, the k -Means algorithm is ran several times (n_init), so

that the center points and labels that have achieved the best result are returned at the end

of the runs. Afterwards the results are graphically presented using PCA and the images are

automatically saved.

86

CHAPTER 7

Results

In this chapter the implemented KDD process is evaluated based on the different data sets.

The aim is to answer the research questions and to evaluate the cluster challenges which

were already presented in chapter 1. These were:

- Select appropriate features of the documents. What kind of pre-processing techniques

need to be applied and what kind of word representation strategies result in suitable

similarity results?

- Select a similarity measure between documents. What text similarity approach per-

forms best on the given data sets?

- Select an appropriate clustering method.

- Efficient implementation in terms of required memory, CPU resources and execution

time.

- Select a quality measure to check the cluster result.

7.1 Pre-processing

The runtimes required for the cleaning and tokenization process of all three data sets as

described in 6.2 are shown in Table C.3. As can be seen in Figures 7.1 and 7.2 the cleaned

87

data sets, 20 newsgroups and the Reddit, are unbalanced in terms of document size which is

measured by computing the number of tokens in each document.

0 2000 4000 6000 8000 10000
Document index

0

2500

5000

7500

10000

12500

15000

Nu
m

be
r o

f t
er

m
s

Number of terms in each document

Figure 7.1: 20 Newsgroups data set (n_categ=20) is unbalanced in terms of document size.
Some documents contain only one term and others 37, 424. The average term frequency is
238.

0 5000 10000 15000 20000 25000 30000 35000 40000
Document index

0

20000

40000

60000

80000

Nu
m

be
r o

f t
er

m
s

Number of terms in each document

Figure 7.2: Reddit data set (n_categ=5) is unbalanced in terms of document size. One
document with many tokens is particularly prominent.

88

As illustrated in Figure 7.3, the number of words contained in each document varies for the

cleaned Jeopardy! data set, too. However, there are not as many ”outlier documents” as in

the 20 newsgroups and Reddit data set. The number of words for n_categ=20 ranges from

2 to 47 per document. The average number of tokens in a document is 17.

0 2000 4000 6000 8000 10000 12000
Document index

0

10

20

30

40

Nu
m

be
r o

f t
er

m
s

Number of terms in each document

Figure 7.3: Document size of Jeopardy! data set for n_categ=20.

Table C.2 provides an overview of the token numbers for cleaned and uncleaned data. These

were generated within the times specified in Table C.3. It can be seen that the larger the data

sets, the longer the time for cleaning and tokenization. Furthermore, cleaning together with

tokenization does not take as long as just tokenization for data sets containing documents

involving a large amount of tokens. This, along with the fact that cleaning improves the final

data mining result, suggests that it should be applied in advance. Depending on the data

set, cleaning the tokens without further pre-processing reduces the data set by 177, 327 to

309, 021 for 20 newsgroups or 38 to 198 tokens for Jeopardy!. An overview of the minimum,

maximum and average number of tokens per category is provided in Figures A.2, A.3 and

A.4 in the appendix. As visualized in Figures 7.4, 7.5 and 7.6, the huge number of features

is mainly due to the large number of stop words, for example the, this, of and and.

89

0 50 100 150 200 250 300 350

0

25

50

75

100

125

150

175

20 newsgroups-
 Wordcloud of top 100 raw words

Figure 7.4: Top 100 tokens contained in 20 newsgroups corpus (n_categ=20).

0 50 100 150 200 250 300 350

0

25

50

75

100

125

150

175

Jeopardy!-
 Wordcloud of top 100 raw words

Figure 7.5: Top 100 tokens contained in Jeopardy! corpus (n_categ=20).

90

0 50 100 150 200 250 300 350

0

25

50

75

100

125

150

175

Reddit-
 Wordcloud of top 100 raw words

Figure 7.6: Top 100 tokens contained in Reddit corpus (n_categ=5).

The resulting word cloud is similar for different numbers of categories. Since cleaning the

data does not remove stop words, there is no significance difference between the uncleaned

and the cleaned word cloud. One thing that is noticeable, for example, is that the token n’t

is listed in the uncleaned cloud but not in the cleaned one. Figures A.2, A.3 and A.4 show

the maximum, minimum and average number of tokens after pre-processing the data. The

resulting top 100 words are visualized as a word cloud in Figures 7.7, 7.8 and 7.9.

91

0 50 100 150 200 250 300 350

0

25

50

75

100

125

150

175

20 newsgroups-
 Wordcloud of top 100 pre-processed words

Figure 7.7: Top 100 pre-processed tokens contained in 20 newsgroups corpus (n_categ=20).

0 50 100 150 200 250 300 350

0

25

50

75

100

125

150

175

Jeopardy!-
 Wordcloud of top 100 pre-processed words

Figure 7.8: Top 100 pre-processed tokens contained in Jeopardy! corpus (n_categ=20).

92

0 50 100 150 200 250 300 350

0

25

50

75

100

125

150

175

Reddit-
 Wordcloud of top 100 pre-processed words

Figure 7.9: Top 100 pre-processed tokens contained in Reddit corpus (n_categ=5).

Table C.1 provides an overview of the token numbers for cleaned and uncleaned pre-processed

data. The corresponding computation times are listed in Table C.3. Depending on the data

set, cleaning alone reduces the data set by 4, 852 to 7, 639 for 20 newsgroups, for example.

Furthermore, it is also shown that the normalization of the data, both for non-cleaned and

cleaned data, reduces the total number of tokens. Looking at the 20 newsgroups data set,

on average 30% of the raw tokens remain after normalization. The average for the Jeopardy!

data set is about 40%. The cluster analysis considers raw and pre-processed data for both

uncleaned and cleaned data. To compare these techniques, all records that are removed

during pre-processing because they are assigned an empty token list are removed from the

raw object list as well, so that the raw and pre-processed data objects match. Each data

object is finally represented as a point in a finite-dimensional space, where the dimension

corresponds to the number of unique tokens.

93

7.2 Data Representation

After already established that pre-processing plays a fundamental role not only for the re-

duction of features, the extracted tokens can be represented numerically.

7.2.1 Bag-of-Words

For the BoW approach the dictionary containing a word and id mapping needs to be de-

termined. The dictionary characteristics for the cleaned 20 newsgroups data set containing

all categories are listed as an example in 7.1. As can be seen in this Listing, the number

of features can be significantly reduced by pre-processing the data. For the 20 newsgroups

data set containing 5 categories this is a reduction of about 37%. In addition, the difference

between raw and pre-processed data is apparent from the corpus. For example, the raw

data set contains many stop words, symbols and punctuation which are removed from the

pre-processed data sets.

94

L
is

ti
n
g

7.
1:

D
ic

ti
on

ar
y

d
et

ai
ls

fo
r

ra
w

an
d

p
re

-p
ro

ce
ss

ed
20

n
ew

sg
ro

u
ps

d
at

a
se

t
(n

c
at

eg
=

5)
.

C
le

an
in

g
d
ea

ct
iv

at
ed

.
✞

☎

1
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

2
|

R
A
W

D
A
T
A

|
|

3
+
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
+
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
+

4
|

C
o
r
p
u
s

|
0

[
\
n
\
n
,

I
,

a
m
,

s
u
r
e
,

s
o
m
e
,

b
a
s
h
e
r
s
,

o
f
,

P
e
n
s
,

f
.
.
.

|

5
|

|
1

[
\
n
,

[
,

s
t
u
f
f
,

d
e
l
e
t
e
d
,

]
,

\
n
\
n
,

O
k
,

,
,

h
e
r
e
,

.
.
.

|

6
|

|
2

[
\
n
\
n
\
n
,

Y
e
a
h
,

,
,

i
t
,

’
s
,

t
h
e
,

s
e
c
o
n
d
,

o
n
e
,

.
,
.
.
.

|

7
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

8
|

C
o
r
p
u
s

L
e
n
g
t
h

|
4
8
3
3

|

9
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

1
0

|
D
i
c
t
i
o
n
a
r
y

|
{
’
\
n
’
:

0
,

’
\
n
\
n
’
:

1
,

’
’
:

2
,

’
’
:

3
,

’
!
’
:

4
,

"
’
"
:

5
,

’
,
’
:

6
}

|

1
1

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

1
2

|
F
e
a
t
u
r
e
s

|
6
2
9
7
9

|

1
3

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

1
4

1
5

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

1
6

|
N
O
R
M
A
L
I
Z
E
D

D
A
T
A

|
|

1
7

+
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
+
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
+

1
8

|
C
o
r
p
u
s

|
0

[
s
u
r
e
,

b
a
s
h
e
r
,

p
e
n
s
,

p
r
e
t
t
y
,

c
o
n
f
u
s
e
d
,

l
a
c
k
,

k
.
.
.

|

1
9

|
|

1
[
s
t
u
f
f
,

d
e
l
e
t
e
,

s
o
l
u
t
i
o
n
,

y
o
u
r
,

p
r
o
b
l
e
m
,

c
a
n
a
d
.
.
.

|

2
0

|
|

2
[
y
e
a
h
,

s
e
c
o
n
d
,

b
e
l
i
e
v
e
,

p
r
i
c
e
,

g
o
o
d
,

l
o
o
k
,

b
r
u
.
.
.

|

2
1

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

2
2

|
C
o
r
p
u
s

L
e
n
g
t
h

|
4
8
3
3

|

2
3

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

2
4

|
D
i
c
t
i
o
n
a
r
y

|
{
’
a
c
t
u
a
l
l
y
’
:

0
,

’
b
a
s
h
e
r
’
:

1
,

’
b
e
a
t
’
:

2
,

’
b
o
w
m
a
n
’
:

3
,

’
c
o
n
f
u
s
e
d
’
:

4
,

’
c
o
u
p
l
e
’
:

5
,

’
d
e
v
i
l
’
:

6
}

|

2
5

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

2
6

|
F
e
a
t
u
r
e
s

|
3
9
9
6
1

|

2
7

+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+

2
8 ✝

✆

95

Table C.4 lists the matrix dimensions and their computation times corresponding to the

three different BoW encoding types. It can be seen that the computation time increases

with the size of the term document matrix. It is also obvious that the term frequency and

the one-hot encoding are calculated faster because they are based on a simpler calculation

rules. Despite the large amount of matrix entries, computation times of 0.35 up to 14.69

seconds are within reasonable limits. An overview of the 10 most frequently occurring words

for all three data sets, in terms of raw and pre-processed data, using the different BoW

methods, is given in the appendix on page 136 - 144.

7.2.2 Latent Semantic Analysis

By using LSA the terms occurring often in the same document and documents sharing some

of the same terms are extracted in order to determine hidden (latent) global information

within the corpus. The high dimensional term-document matrix can then be projected into

a subspace of smaller dimension. Table C.5 shows the achieved dimensionality reductions

using LSA for the three data sets introduced above. The size of the cleaned and pre-processed

term-document-matrix of the 20 newsgroups data set (n_categ=5), for example, could be

reduced from 4830× 38, 635 to 4830× 2, 220. To reach a threshold of 80% for this data only

5.7% of the original term-document matrix columns are needed. The curve of the explained

variance is shown in Figure 7.10.

96

Figure 7.10: Explained Variance of 20 newsgroups data set with n_categ=5.

The corresponding singular values are displayed in Figure 7.11.

Figure 7.11: Singular Values of 20 newsgroups data set with n_categ=5.

This implies that the majority of the columns of V 1 have a very small effect on the recon-

struction of the term-document matrix. This in turn explains why just a few components are

needed to approximate the matrix. However, the creation of the matrix using this method

takes longer, because a TSVD is executed at the beginning. The execution times of LSA are

listed in Table C.5.

1A SVD factorizes a matrix into UΣV
T where V contains the right-singular vectors.

97

7.2.3 Word Embeddings

Since all pre-trained vectors have a length of 300, the features are also mapped to this

dimension. For example, considering the Jeopardy! data set with 20 categories, the matrix

of the cleaned and pre-processed data each document is represented by 49, 150 features. After

applying LSA the number of columns is reduced by 74%. Using the pre-trained methods,

the number of columns is 300 which is only 1.57% of the original feature size. Table C.6 lists

the dimensions of the word embedding matrix using word2vec, doc2vec and fastText and

their computation times.

7.3 Cluster Evaluation

Finally, the techniques applied in the cluster analysis steps are compared. The cluster analy-

sis idea is to run the k -Means algorithm for four data settings: (1) raw, (2) pre-processed, (3)

uncleaned and (4) cleaned and different text representations as well as similarity measures.

Some disadvantages of methods used in the clustering steps have already been presented in

the chapters about theoretical basics. For example, that the clustering result of raw data is

usually more inaccurate than the one of pre-processed data. Furthermore, TF-IDF should

provide the best results for clustering. To confirm or disprove these claims, the cluster re-

sults for all four data settings and the different representations and similarity measures were

generated based on the 20 newsgroups data set with 5 categories. The results were evaluated

for cluster performance and cluster accuracy. The resulting most suitable techniques were

then applied to the two other data sets with varying numbers of predefined categories in

order to examine how they behave based on them and possibly lead to similarly successful

results.

The results of the 20 newsgroups data set using 5 categories are discussed first, followed by

those of LSA and finally those of word embeddings. The techniques that seem to be most

98

appropriate are then applied to the other two data sets.

7.3.1 20 newsgroups

Bag-of-Words approach

The runtime specifications for running the k -Means three times using different metrics and

data setting are listed in Table 7.1.

Term-Frequency
Encoding

One-Hot
Encoding

TF-IDF

Raw Pre-Processed Raw Pre-Processed Raw Pre-Processed
Manhattan 545 340 618 356 539 380
Euclidean
distance

333 63 130 21 131 52

Cosine 70 37 63 48 61 39
Jaccard 196.5 116 183 140 498 311
Matching
coefficient

236 140 220 162 252 157

PPMCC 470 353 464 646 448 526

Table 7.1: Runtime of three k -Means repetitions, for the BoW approach on uncleaned data,
specified in seconds.

As the table shows, the runtimes of the individual procedures vary greatly with regard to the

data settings and similarity metrics used. The runtime is shorter for pre-processing because

the number of features is reduced. The variation due to different metrics used is mainly

due to two reasons. Firstly, user-defined distance measures are slower because they do not

have a fast C implementation in cdist and are instead calculated vector-wise using a loop

in Python. In addition, the metrics for which the mean cannot be used to calculate the new

cluster centers are slower, because in order to determine the medoid, a pairwise distance

matrix must always be calculated additionally in each iteration step.

By looking at the cluster accuracy results of the three BoW methods, which are visualized in

sections A.2.2 and A.2.3 in the appendix, the difference between the raw and pre-processed

data becomes also obvious. Due to the pre-processing, a better accuracy can be achieved

99

because the data sets become more unique to each other, so that the subjects similarities

receive a higher weighting. If the unprocessed data are excluded for further consideration,

TF-IDF performs best on average for the euclidean (0.61), cosine (0.69) and PPMCC (0.79)

metric. The matching matrices displayed in Figures 7.12 and 7.13 visualize the cluster

assignment errors of each category based on pre-processed data represented using TF-IDF

and cosine and euclidean distance. In the matrix all correct cluster assignments are located

in the diagonal. The error such as the assignment of rec.motorcycle data object to targets

1, 2 and 3 using euclidean distance is represented by values outside the diagonal.

Figure 7.12: 20 newsgroups : Matching matrix for pre-processed data transformed with TF-
IDF with euclidean distance.

100

Figure 7.13: 20 newsgroups : Matching matrix for pre-processed data transformed with TF-
IDF with cosine distance.

The cluster result generated for TF-IDF and cosine is shown in the Figure 7.14.

Figure 7.14: 20 newsgroups : Cluster result for pre-processed data transformed with TF-IDF
and cosine similarity.

101

Comparing it with the original plot (see Figure 7.15), which can be generated because the

labels are pre-defined, the clustering errors shown in Figure 7.16 arise, which can also be

obtained from the matching matrix.

Figure 7.15: 20 newsgroups : Pre-defined clusters for pre-processed data transformed using
TF-IDF (n_categ=5).

Figure 7.16: 20 newsgroups : Cluster assignment error for pre-processed data transformed
with TF-IDF and cosine similarity (n_categ=5).

102

Jaccard does not perform well on TF-IDF with 0.20, because the real-valued vector entries

(no binary entries) differ from each other due to scaling by IDF and there is therefore an

empty intersection. So the Jaccard distance is usually 1. The cluster result is shown in

Figure 7.17. The corresponding errors are visualized in Figure 7.18.

Figure 7.17: 20 newsgroups : Cluster result for pre-processed data transformed with TF-IDF
and Jaccard similarity (n_categ=5).

103

Figure 7.18: 20 newsgroups : Cluster assignment error for pre-processed data transformed
with TF-IDF and Jaccard similarity (n_categ=5).

For one-hot encoding and term frequency, however, the clustering result using Jaccard looks

better because the probability of matching vector entries increases. Since one-hot encoding

is a binary encoding, Jaccard scores better for this representation (41%) than for term

frequency encoding (28%). The cluster result is displayed in Figure 7.19.

Figure 7.19: 20 newsgroups : Cluster result for pre-processed data transformed with one-hot
encoding and Jaccard similarity (n_categ=5).

104

If compared with the predefined cluster result (Figure 7.20), the following error overview

shown in Figure 7.21 is obtained.

Figure 7.20: 20 newsgroups : Pre-defined clusters for pre-processed data transformed using
one-hot encoding (n_categ=5).

Figure 7.21: 20 newsgroups : Cluster assignment error for pre-processed data transformed
with one-hot encoding and Jaccard similarity (n_categ=5).

Surprisingly, cosine performs relatively well for one-hot encoding and term frequency with an

accuracy of 0.7. The assumption was that the vectors contain only a few identical features

105

because of the sparsity and are therefore orthogonal to each other. The distance calculation

of the k-Mean would then return maximum inequality. However, if at least one entry of

the vectors matches, the distance calculation yields values less than 1. Since the k-Means

algorithm assigns the points to the cluster centers with the smallest distance, these values

can be used for an assignment. This is illustrated by the example shown in Figure 7.22.

(a) Term Frequency

(b) One-hot encoding

Figure 7.22: 20 newsgroups: Exemplary vector representation of two data objects. The
cosine distance for the term frequency encoded vectors is 0.963 and for the one-hot encoded
one 0.936.

The obtained results for one-hot encoding and cosine similarity is shown in Figure 7.23. The

corresponding error overview is visualized in Figure 7.24

106

Figure 7.23: 20 newsgroups : Cluster result for pre-processed data transformed with one-hot
encoding and cosine similarity (n_categ=5).

Figure 7.24: 20 newsgroups : Cluster assignment error for pre-processed data transformed
with one-hot encoding and cosine similarity (n_categ=5).

Since the documents of the 20 newsgroups data set are unbalanced in terms of document

size, a data subset containing 10 instead of 5 categories will probably contain more outliers.

As can be seen from the plot containing the pre-defined labels shown in Figure 7.25, the

107

PCA clusters can no longer be clearly separated by using five additional categories.

Figure 7.25: 20 newsgroups : Pre-defined clusters for pre-processed data transformed using
one-hot encoding (n_categ=10).

The clustering algorithm is sensitive to them because outliers cause a shift of the centers.

The k -Means algorithm doesn’t recognize the outliers and just assigns them to a cluster

as for all other data objects. They are often assigned to individual clusters. Figure 7.26

shows that the accuracy of the best representation settings (TF-IDF) that are yield from the

analysis using 5 clusters drops from 0.69 to 0.56.

108

Figure 7.26: 20 newsgroups : Cluster accuracy for pre-processed data transformed with TF-
IDF and cosine similarity.

The corresponding PCA plot is shown in Figure 7.27.

Figure 7.27: 20 newsgroups : Cluster accuracy for pre-processed data transformed with TF-
IDF and cosine similarity (n_categ=10).

The fact that especially the topics rec.sport.hockey and rec.sport.basketball are not well

clustered can be seen in the matching matrix shown in Figure 7.28.

109

Figure 7.28: 20 newsgroups : Matching Matrix TF-IDF encoding for pre-processed data out
of 5 categories.

So an accurate clustering requires a precise and suitable definition of the document closeness.

Overall, observing the cluster result of correctly and incorrectly clustered data objects, it

can be seen that data is often incorrectly assigned in areas that overlap when transformed

by PCA into a two-dimensional space.

7.3.2 Latent Semantic Analysis

As already described in section 6.2, LSA was only applied for pre-processed data transformed

by TF-IDF. Figure 7.29 illustrates that the use of the PPMCC for LSA does lead to an

accuracy improvement of 7%. The accuracy for the cosine similarity increases from 69% to

82%.

110

Figure 7.29: 20 newsgroups : Cluster accuracy for pre-processed data transformed with TF-
IDF, cosine similarity and LSA.

On the other hand, the number of features is significantly reduced, which has a positive effect

on the runtime of the cluster algorithm without taking the computation of the optimal feature

number into account. The runtime, specified in seconds, depending on three executions of

the k -Means algorithm for different metrics is listed in table 7.2.

Manhattan 24
Euclidean distance 10
Cosine 6.2
Jaccard 24
Matching Coefficient 24
PPMCC 268

Table 7.2: Runtime of three k -Means repetitions specified in seconds for pre-processed data,
LSA and TF-IDF

The cluster result is shown in the Figure 7.30. An overview of the correctly and incorrectly

clustered data is visualized in Figure 7.31.

111

Figure 7.30: 20 newsgroups : Cluster result for pre-processed data transformed with TF-IDF,
cosine similarity and LSA.

Figure 7.31: 20 newsgroups : Cluster assignment error for pre-processed data transformed
with TF-IDF, cosine similarity and LSA.

112

7.3.3 Word Embeddings

The accuracies of the cluster result of raw and pre-processed 20 newsgoups data with re-

spect to word2vec, doc2vec and fastText are shown in Figures A.20, A.21 and A.22 in the

appendix. As can be seen from these Figures, fastText performs worse than word2vec on

the 20 newsgroups dataset. Doc2Vec generates even better accuracy. This is probably due

to the fact that word2vec averages all the words in a document and therefore does not learn

the entire document itself. With doc2vec, a representation of the document is learned in

parallel to the words. Moreover it can be recognized that TF-IDF surprisingly performs

better on the 20 newsgroups data set than the word embeddings. So choosing the complex

models is not beneficial here. This may be due to the fact that the word embedding has

been over-fitting on the training data set. It might also be more sensitive to noise because

of the content within the hidden layers. Another problem could be that the data set is too

specific and the trained corpus is not suitable for it. But this is rather unlikely, because at

the beginning of the embedding process it is checked if there are out-of-vocabulary words and

none are recognized. The cluster result of the best word embedding model and the correctly

and incorrectly assigned data points can be seen in Figures 7.32 and 7.33. The results for

the other two embeddings are shown in Figures A.23 and A.24 in the appendix.

113

Figure 7.32: 20 newsgroups: Cluster result for pre-processed data transformed with doc2vec
and cosine similarity for clustering.

Figure 7.33: 20 newsgroups : Cluster assignment error for pre-processed data transformed
with doc2vec and cosine similarity.

114

7.4 Jeopardy!

For the second data set, the word embeddings then perform significantly better with a

maximum average value of 64% for doc2vec. The TF-IDF encoding using cosine similarity

results in an accuracy of 45%. The application of LSA again provides better values (51%)

than TF-IDF. The accuracy values are shown in Figure 7.34. This is also shown by the

matching table displayed in Figure 7.35. Since the data set contains History and History of

the USA as categories which are very close to each other, as can be seen in Figures 7.37 and

7.36, several targets of these two categories are clustered incorrectly.

115

(a) TF-IDF

(b) LSA

(c) Doc2Vec

Figure 7.34: Jeopardy! : Cluster accuracy for pre-processed data using the TF-IDF, LSA and
doc2vec approach (n_categ=5).

116

(a) TF-IDF

(b) Doc2Vec

Figure 7.35: Jeopardy! : Matching matrix for pre-processed data transformed using TF-IDF
and Doc2Vec and cosine similarity.

117

(a) Pre-defined Labels

(b) Custer error

Figure 7.36: Jeopardy! : Cluster result and error for pre-processed data transformed with
TF-IDF (n_categ=5).

118

(a) Cluster result doc2vec

(b) Custer error

Figure 7.37: Jeopardy! : Cluster result and error for pre-processed data transformed with
doc2vec (n_categ=5).

119

Referring to the plots shown in sections A.5, A.5 and A.6 of the appendix, the result gets

even worse by taking more than 5 clusters into account.

7.5 Reddit

The visualization of the pre-defined labels (see Figure 7.38) already suggests that the cluster

results for the Reddit data set might not be accurate.

Figure 7.38: Reddit : Pre-defined clusters for pre-processed data transformed using TF-IDF
(n_categ=5).

This is also reflected in Figure 7.39, which shows the accuracies for the different representa-

tion methods.

120

(a) TF-IDF encoding

(b) One-hot encoding

Figure 7.39: Reddit : Cluster accuracy for pre-processed data using the BoW approach.

121

(a) LSA

(b) Doc2Vec

Figure 7.40: Reddit : Cluster accuracy for pre-processed data using the word embeddings.

122

CHAPTER 8

Conclusion and Outlook

As a literature review showed, clustering is a widely used technique to partition a set of

data to homogeneous and well separated groups. In this thesis, text document clustering

was investigated applying the k -Means algorithm to three different data sets using different

distance measures and data characteristics (raw, pre-processed, uncleaned, cleaned). The

following components that affect the cluster result have been identified:

1. Data characteristics

2. Data pre-processing

3. Transformation of data into word vectors

4. k -Means parameters such as n_iter or the metric used to compute the similarity of

data objects and clusters

The respective methods were compared and evaluated in experiments. The most important

results are summarized in Table 8.1

123

TF-IDF LSA Doc2Vec
euclidean cosine cosine euclidean cosine

20 newsgroups
n_categ=5

61 69 82 76 57

Jeopardy!
n_categ=10

19 35 33 43 43

Reddit
n_categ=5

30 29 30 35 33

Table 8.1: Accurracy overview of selected parameters (in %).

From the experiment, pre-processing, i.e. cleaning, normalization and stop-word removal,

does play a significant role because it results in an improved cluster performance and ac-

curacy. Especially the BoW vectors benefit from pre-processing. When using the BoW

representation approach, TF-IDF in combination with the cosine or PPMCC metric pro-

vides the best results in most cases. Furthermore, it is advantageous to apply LSA to the

TF-IDF data. The TSVD reduces the number of features to the most important main com-

ponents which has among other things a positive effect on the computing time. For example,

for the 20 newsgroups data set a reduction from 39961 to 2169 features was achieved. For

the Jeopardy! data set 77.5% of the features could be neglected to reach a threshold of 80%.

The pretrained word embedding models have also produced useful results. Their advantage

is that they contain a much smaller number of features for large data sets. Among other

things, this allows faster clustering and of course the determination of the semantic similarity

of words and not just the lexical one, as with BoW. Depending on the data set word embed-

dings have proven to be effective if they contain many clusters with similar topics. Otherwise,

however, TF-IDF and even LSA achieved better results. One disadvantage of word embed-

dings is that a large and cleaned text corpus is required to generate a meaningful vector

representation. Furthermore, the algorithms are very computationally intensive. Moreover,

the problem arises that these models only recognize words contained in their training corpus

and that they need a lot of memory.

124

8.1 Future Work

The experiments could be extended as follows: First, the effect of text preprocessing could be

studied in more detail. In this work the text pre-processing included filtering, normalization,

the stop words removal and lemmatization. It could be investigated separately for each

data set which pre-processing methods improve the clustering result. Furthermore, instead

of the k -Means method, other clustering algorithms, such as the also explained hierarchical

methods, could be used. Also with regard to the text representation other ideas could be

developed. For example, further research could be carried out to establish the impact of

n-grams in terms of the reduced feature space and the clustering result. With regard to

word embeddings, other pre-trained models could be used or own models especially for the

available data sets could be trained.

125

Bibliography

[1] 20 newsgroups. url: http://qwone.com/~jason/20Newsgroups/ (visited on 04/08/2020).

[2] 200,000+ Jeopardy Questions. url: https://knowledge.domo.com/Training/Self-

Service _ Training / Onboarding _ Resources / Fun _ Sample _ Datasets (visited on

04/08/2020).

[3] C.C. Aggarwal and C.K. Reddy. Data Clustering: Algorithms and Applications. CRC

Press, 2016. isbn: 9781498785778. url: https://books.google.com/books?id=

p8b1CwAAQBAJ.

[4] F. N. A Al Omran and C. C. Treude. “Choosing an NLP Library for Analyzing Software

Documentation: A Systematic Literature Review and a Series of Experiments”. In: 2017

IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).

2017, pp. 187–197.

[5] M. Allahyari et al. “A Brief Survey of Text Mining: Classification, Clustering and

Extraction Techniques”. In: CoRR (2017).

[6] F. Almeida and G. Xexéo. “Word Embeddings: A Survey”. In: CoRR abs/1901.09069

(2019). url: http://arxiv.org/abs/1901.09069.

[7] Sumayia Al-Anazi, Hind AlMahmoud, and Isra Al-Turaiki. “Finding Similar Doc-

uments Using Different Clustering Techniques”. In: Procedia Computer Science 82

(2016). issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2016.04.005.

url: http://www.sciencedirect.com/science/article/pii/S1877050916300199.

126

http://qwone.com/~jason/20Newsgroups/
https://knowledge.domo.com/Training/Self-Service_Training/Onboarding_Resources/Fun_Sample_Datasets
https://knowledge.domo.com/Training/Self-Service_Training/Onboarding_Resources/Fun_Sample_Datasets
https://books.google.com/books?id=p8b1CwAAQBAJ
https://books.google.com/books?id=p8b1CwAAQBAJ
http://arxiv.org/abs/1901.09069
https://doi.org/https://doi.org/10.1016/j.procs.2016.04.005
http://www.sciencedirect.com/science/article/pii/S1877050916300199

[8] D. Arthur and S. Vassilvitskii. “K-Means++: The Advantages of Careful Seeding”. In:

vol. 8. Jan. 2007, pp. 1027–1035. doi: 10.1145/1283383.1283494.

[9] Y. Bengio et al. “A Neural Probabilistic Language Model”. In: J. Mach. Learn. Res. 3

(2003). issn: 1532-4435.

[10] C.M. Bishop. Pattern Recognition and Machine Learning. Springer Science+Business,

LLC, 2006. isbn: 9780387310732.

[11] R.C. Blattberg, B.D. Kim, and S.A. Neslin. Database Marketing: Analyzing and Man-

aging Customers. International Series in Quantitative Marketing. Springer New York,

2010. isbn: 9780387725796. url: https://books.google.de/books?id=xLq8BAAAQBAJ.

[12] P. Bojanowski et al. “Enriching Word Vectors with Subword Information”. In: CoRR

abs/1607.04606 (2016). arXiv: 1607.04606. url: http://arxiv.org/abs/1607.

04606.

[13] K.R. Bokka et al. Deep Learning for Natural Language Processing: Solve your natural

language processing problems with smart deep neural networks. Packt Publishing, 2019.

isbn: 9781838553678. url: https://books.google.com/books?id=HxmdDwAAQBAJ.

[14] S. Curiskis et al. Data for:An evaluation of document clustering and topic modelling in

two online social networks: Twitter and Reddit. 2019. url: https://data.mendeley.

com/datasets/85njyhj45m/1 (visited on 04/10/2020).

[15] Data Never Sleeps 7.0. 2019. url: https://www.domo.com/learn/data-never-

sleeps-7 (visited on 02/16/2020).

[16] S. Deerwester et al. “Indexing by latent semantic analysis”. In: Journal of the American

Society for Information Science 41.6 (1990). doi: 10.1002/(SICI)1097-4571(199009)

41:6<391::AID-ASI1>3.0.CO;2-9. url: https://asistdl.onlinelibrary.wiley.

com/doi/abs/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%

3AAID-ASI1%3E3.0.CO%3B2-9.

127

https://doi.org/10.1145/1283383.1283494
https://books.google.de/books?id=xLq8BAAAQBAJ
https://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://books.google.com/books?id=HxmdDwAAQBAJ
https://data.mendeley.com/datasets/85njyhj45m/1
https://data.mendeley.com/datasets/85njyhj45m/1
https://www.domo.com/learn/data-never-sleeps-7
https://www.domo.com/learn/data-never-sleeps-7
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9
https://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-4571%28199009%2941%3A6%3C391%3A%3AAID-ASI1%3E3.0.CO%3B2-9

[17] English Available pretrained statistical models for English. url: https://spacy.io/

models/en#en_core_web_sm (visited on 04/14/2020).

[18] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. “From Data Mining to Knowledge

Discovery in Databases”. In: AI Magazine 17.3 (1996). doi: 10.1609/aimag.v17i3.

1230. url: https://wvvw.aaai.org/ojs/index.php/aimagazine/article/view/

1230.

[19] J.R. Firth. A Synopsis of Linguistic Theory, 1930-1955. 1957. url: https://books.

google.com/books?id=T8LDtgAACAAJ.

[20] Y. Goldberg and G. Hirst. Neural Network Methods in Natural Language Processing.

Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publish-

ers, 2017. isbn: 9781627052955. url: https : / / books . google . com / books ? id =

Za2zDgAAQBAJ.

[21] Wael H. Gomaa and Aly A. Fahmy. “Article: A Survey of Text Similarity Approaches”.

In: International Journal of Computer Applications 68 (2013).

[22] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. “On Clustering Validation Techniques”.

In: Journal of Intelligent Information Systems 17 (2001), pp. 107–145.

[23] A. Huang. “Similarity measures for text document clustering”. In: Proceedings of the

6th New Zealand Computer Science Research Student Conference (Jan. 2008).

[24] T. Ah-hwee. Text Mining: The state of the art and the challenges. 1999.

[25] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data Clustering: A Review”. In: ACM

Comput. Surv. 31.3 (1999). issn: 0360-0300. doi: 10.1145/331499.331504. url:

https://doi.org/10.1145/331499.331504.

[26] D. Jurafsky et al. Speech and Language Processing. Pearson Education, 2014. isbn:

9780133252934. url: https://books.google.com/books?id=Cq2gBwAAQBAJ.

128

https://spacy.io/models/en#en_core_web_sm
https://spacy.io/models/en#en_core_web_sm
https://doi.org/10.1609/aimag.v17i3.1230
https://doi.org/10.1609/aimag.v17i3.1230
https://wvvw.aaai.org/ojs/index.php/aimagazine/article/view/1230
https://wvvw.aaai.org/ojs/index.php/aimagazine/article/view/1230
https://books.google.com/books?id=T8LDtgAACAAJ
https://books.google.com/books?id=T8LDtgAACAAJ
https://books.google.com/books?id=Za2zDgAAQBAJ
https://books.google.com/books?id=Za2zDgAAQBAJ
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/331499.331504
https://books.google.com/books?id=Cq2gBwAAQBAJ

[27] A.I. Kadhim, Cheah Y., and N.H. Ahamed. “Text Document Preprocessing and Di-

mension Reduction Techniques for Text Document Clustering”. In: (2014). doi: 10.

1109/ICAIET.2014.21.

[28] D. Kriesel. A Brief Introduction to Neural Networks. 2007. url: http://www.dkriesel.

com/en/science/neural_networks.

[29] A. Kumar and S. Chandrasekhar. “Text Data Pre-processing and Dimensionality Re-

duction Techniques for Document Clustering”. In: 1 (2012). issn: 2278-0181.

[30] E. Kumar. Natural Language Processing. I.K. International Publishing House Pvt.

Limited, 2011. isbn: 9789380578774. url: https://books.google.com/books?id=

FpUBFNFuKWgC.

[31] J. Kun, J. Xu, and B. He. “A Survey on Neural Network Language Models”. In: (June

2019).

[32] Q.V. Le and T. Mikolov. “Distributed Representations of Sentences and Documents”.

In: CoRR abs/1405.4053 (2014). arXiv: 1405.4053. url: http://arxiv.org/abs/

1405.4053.

[33] Vijaymeena M K and Kavitha K. “A Survey on Similarity Measures in Text Mining”. In:

Machine Learning and Applications: An International Journal 3 (Mar. 2016), pp. 19–

28. doi: 10.5121/mlaij.2016.3103.

[34] O. Maimon and L. Rokach. Data Mining and Knowledge Discovery Handbook. Series in

Solid-State Sciences. Springer US, 2010. isbn: 9780387098234. url: https://books.

google.com/books?id=alHIsT6LBl0C.

[35] C.D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.

Cambridge University Press, 2008. isbn: 9781139472104. url: https : / / books .

google.de/books?id=t1PoSh4uwVcC.

[36] N. Matthews. “Measurement, Levels of”. In: (Jan. 2017). doi: 10.1002/9781118901731.

129

https://doi.org/10.1109/ICAIET.2014.21
https://doi.org/10.1109/ICAIET.2014.21
http://www.dkriesel.com/en/science/neural_networks
http://www.dkriesel.com/en/science/neural_networks
https://books.google.com/books?id=FpUBFNFuKWgC
https://books.google.com/books?id=FpUBFNFuKWgC
https://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
https://doi.org/10.5121/mlaij.2016.3103
https://books.google.com/books?id=alHIsT6LBl0C
https://books.google.com/books?id=alHIsT6LBl0C
https://books.google.de/books?id=t1PoSh4uwVcC
https://books.google.de/books?id=t1PoSh4uwVcC
https://doi.org/10.1002/9781118901731

[37] T. Mikolov et al. Efficient Estimation of Word Representations in Vector Space. 2013.

arXiv: 1301.3781 [cs.CL].

[38] J. Moor. “The Dartmouth College Artificial Intelligence Conference: The Next Fifty

Years”. In: AI Magazine 27.4 (2006). doi: 10.1609/aimag.v27i4.1911. url: https:

//www.aaai.org/ojs/index.php/aimagazine/article/view/1911.

[39] D. Pham, S. Dimov, and C. Nguyen. “Selection of K in K -means clustering”. In:

Proceedings of The Institution of Mechanical Engineers Part C-journal of Mechani-

cal Engineering Science - PROC INST MECH ENG C-J MECH E 219 (Jan. 2005),

pp. 103–119. doi: 10.1243/095440605X8298.

[40] D. Reinsel, J. Gantz, and J. Rydning. “Data Age 2025: The evolution of Data to Life-

Critical”. In: IDC White Paper (2017). url: https://assets.ey.com/content/dam/

ey-sites/ey-com/en_gl/topics/workforce/Seagate-WP-DataAge2025-March-

2017.pdf.

[41] H. Rubenstein and J.B. Goodenough. “Contextual Correlates of Synonymy”. In: Com-

mun. ACM 8.10 (1965). issn: 0001-0782. doi: 10.1145/365628.365657. url: https:

//doi.org/10.1145/365628.365657.

[42] D. Sailaja et al. “An Overview of Pre-Processing Text Clustering Methods”. In: 6

(2015). issn: 0975-9646.

[43] EMC Education Services. Data Science & Big Data Analytics. Discovering, Analyzing,

Visualizing and Presenting Data. John Wiley & Sons, Ltd, 2015. isbn: 9781119183686.

doi: 10.1002/9781119183686.ch9. url: https://onlinelibrary.wiley.com/doi/

abs/10.1002/9781119183686.ch9.

[44] M.G. Siegler. Eric Schmidt: Every 2 Days We Create As Much Information As We

Did Up To 2003. 2010. url: https://techcrunch.com/2010/08/04/schmidt-data/

(visited on 04/02/2020).

130

https://arxiv.org/abs/1301.3781
https://doi.org/10.1609/aimag.v27i4.1911
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1911
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1911
https://doi.org/10.1243/095440605X8298
https://assets.ey.com/content/dam/ey-sites/ey-com/en_gl/topics/workforce/Seagate-WP-DataAge2025-March-2017.pdf
https://assets.ey.com/content/dam/ey-sites/ey-com/en_gl/topics/workforce/Seagate-WP-DataAge2025-March-2017.pdf
https://assets.ey.com/content/dam/ey-sites/ey-com/en_gl/topics/workforce/Seagate-WP-DataAge2025-March-2017.pdf
https://doi.org/10.1145/365628.365657
https://doi.org/10.1145/365628.365657
https://doi.org/10.1145/365628.365657
https://doi.org/10.1002/9781119183686.ch9
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119183686.ch9
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119183686.ch9
https://techcrunch.com/2010/08/04/schmidt-data/

[45] spaCy 101: Everything you need to know. url: https://spacy.io/usage/spacy-101

(visited on 04/20/2020).

[46] Lilian Weng. Learning Word Embedding. url: https://lilianweng.github.io/lil-

log/2017/10/15/learning-word-embedding.html (visited on 04/18/2020).

[47] WT Williams. “Principles of clustering”. In: Annual Review of Ecology and Systematics

2 (1971), pp. 303–326.

[48] word2vec. url: https : / / code . google . com / archive / p / word2vec/ (visited on

04/18/2020).

[49] word2vec. url: https : / / www . kaggle . com / yoshikiohira / doc2vec - english -

binary-file (visited on 04/18/2020).

[50] J. Wu. Advances in K-means Clustering: A Data Mining Thinking. Springer Theses.

Springer Berlin Heidelberg, 2012. isbn: 9783642298073.

131

https://spacy.io/usage/spacy-101
https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html
https://lilianweng.github.io/lil-log/2017/10/15/learning-word-embedding.html
https://code.google.com/archive/p/word2vec/
https://www.kaggle.com/yoshikiohira/doc2vec-english-binary-file
https://www.kaggle.com/yoshikiohira/doc2vec-english-binary-file

APPENDIX A

Images

A.1 Data never sleeps 7.0

Figure A.1: Data never sleeps 7.0 - The most popular platforms where data is generated
every minute in 2019. Image source [15].

132

A.2 Tokenization Result of data sets

0 1 2 3 4 5 6 7 8 9
Target

0

2500

5000

7500

10000

12500

15000

Am
ou

nt

20 newsgroups -
 Token statistic per target containing raw tokens in total out of 10 categories. Cleaning deactivated.

Max
Min
Mean

(a) Uncleaned raw data

0 1 2 3 4 5 6 7 8 9
Target

0

2500

5000

7500

10000

12500

Am
ou

nt

20 newsgroups -
 Token statistic per target containing raw tokens in total out of 10 categories. Cleaning activated.

Max
Min
Mean

(b) Cleaned raw data

0 1 2 3 4 5 6 7 8 9
Target

0

1000

2000

3000

4000

5000

Am
ou

nt

20 newsgroups -
 Token statistic per target containing pre-processed tokens in total out of 10 categories. Cleaning activated.

Max
Min
Mean

(c) Cleaned pre-processed data

Figure A.2: Maximum, minimum and average number of tokens of 20 newsgroups data set
(n_categ=10).

133

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Target

0

200

400

600

800
Am

ou
nt

Jeopardy! -
 Token statistic per target containing raw tokens in total out of 20 categories. Cleaning deactivated.

Max
Min
Mean

(a) Uncleaned data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Target

0

200

400

600

800

Am
ou

nt

Jeopardy! -
 Token statistic per target containing raw tokens in total out of 20 categories. Cleaning activated.

Max
Min
Mean

(b) Cleaned data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Target

0

200

400

600

800

Am
ou

nt

Jeopardy! -
 Token statistic per target containing pre-processed tokens in total out of 20 categories. Cleaning activated.

Max
Min
Mean

(c) Cleaned data

Figure A.3: Maximum, minimum and average number of tokens of Jeopardy data set
(n_categ=20).

134

0 1 2 3 4
Target

0

5000

10000

15000

20000

25000
Am

ou
nt

Reddit -
 Token statistic per target containing raw tokens in total out of 5 categories. Cleaning deactivated.

Max
Min
Mean

(a) Uncleaned data

0 1 2 3 4
Target

0

5000

10000

15000

20000

25000

Am
ou

nt

Reddit -
 Token statistic per target containing raw tokens in total out of 5 categories. Cleaning activated.

Max
Min
Mean

(b) Cleaned data

0 1 2 3 4
Target

0

2000

4000

6000

8000

Am
ou

nt

Reddit -
 Token statistic per target containing pre-processed tokens in total out of 5 categories. Cleaning activated.

Max
Min
Mean

(c) Cleaned data

Figure A.4: Maximum, minimum and average number of tokens of Reddit data set
(n_categ=5).

135

A.2.1 10 most common words of data sets using different BoW rep-

resentation techniques

(a) Raw documents

(b) Pre-processed documents

Figure A.5: 10 most common words of 20 newsgroups with term frequency encoding.

136

(a) Raw documents

(b) Pre-processed documents

Figure A.6: 10 most common words of 20 newsgroups with one hot encoding.

137

(a) Raw documents

(b) Pre-processed documents

Figure A.7: 10 most common words of 20 newsgroups with TF-IDF encoding.

138

(a) Raw documents

(b) Pre-processed documents

Figure A.8: 10 most common words of Jeopardy! with term frequency encoding.

139

(a) Raw documents

(b) Pre-processed documents

Figure A.9: 10 most common words of Jeopardy! with one-hot encoding.

140

(a) Raw documents

(b) Pre-processed documents

Figure A.10: 10 most common words of Jeopardy! with TF-IDF encoding.

141

(a) Raw documents

(b) Pre-processed documents

Figure A.11: 10 most common words of Reddit with term frequency encoding.

142

(a) Raw documents

(b) Pre-processed documents

Figure A.12: 10 most common words of Reddit with one-hot encoding.

143

(a) Raw documents

(b) Pre-processed documents

Figure A.13: 10 most common words of Reddit with TF-IDF encoding.

144

A.2.2 k-Means result accuracy for 20 newsgroups data set using

BoW representation and uncleaned data

Figure A.14: 20 newsgroups: Cluster accuracy for pre-processed data using term-frequency
encoding.

Figure A.15: 20 newsgroups : Cluster accuracy for pre-processed data using one-hot encoding.

145

Figure A.16: 20 newsgroups : Cluster accuracy for pre-processed data using TF-IDF.

146

A.2.3 k-Means result accuracy for 20 newsgroups data set using

BoW representation and cleaned data

(a) Raw documents

(b) Pre-processed documents

Figure A.17: 20 newsgroups : Cluster accuracy for cleaned raw and pre-processed data using
term-frequency encoding.

147

(a) Raw documents

(b) Pre-processed documents

Figure A.18: 20 newsgroups : Cluster accuracy for cleaned raw and pre-processed data using
one-hot encoding.

148

(a) Raw documents

(b) Pre-processed documents

Figure A.19: 20 newsgroups : Cluster accuracy for cleaned raw and pre-processed data using
TF-IDF.

149

A.2.4 k-Means result accuracy for 20 newsgroups data set using

word embeddings

(a) Raw documents

(b) Pre-processed documents

Figure A.20: 20 newsgroups: Cluster accuracy for raw and pre-processed data using
word2vec.

150

(a) Raw documents

(b) Pre-processed documents

Figure A.21: 20 newsgroups: Cluster accuracy for raw and pre-processed data using doc2vec.

151

(a) Raw documents

(b) Pre-processed documents

Figure A.22: 20 newsgroups : Cluster accuracy for raw and pre-processed data using FastText

A.3 k Means clustering result for 20 newsgroups data

set using Word2Vec and Doc2Vec

152

(a) Cluster result

(b) Cluster error

Figure A.23: 20 newsgroups : Cluster accuracy and error for pre-processed data using
Word2Vec

153

(a) Cluster result

(b) Cluster error

Figure A.24: 20 newsgroups : Cluster accuracy and error for pre-processed data using Fast-
Text

154

A.4 k Means clustering result for Jeopardy! data set

using BoW approach

(a) TF-IDF encoding

(b) One-hot encoding

Figure A.25: Jeopardy! : Cluster accuracy for pre-processed data using the BoW approach
(n_categ=10).

155

(a) TF-IDF encoding

(b) One-Hot encoding

Figure A.26: Jeopardy! : Cluster accuracy for pre-processed data using the BoW approach
(n_categ=20).

156

A.5 k Means clustering result for Jeopardy! data set

using LSA

(a) n_categ=10

(b) n_categ=20

Figure A.27: Jeopardy! : Cluster accuracy for pre-processed data using the LSA.

157

A.6 k Means clustering result for Jeopardy! data set

using word embeddings

(a) n_categ=10

(b) n_categ=20

Figure A.28: Jeopardy! : Cluster accuracy for pre-processed data using the doc2vec.

158

(a) n_categ=10

(b) n_categ=20

Figure A.29: Jeopardy! : Cluster accuracy for pre-processed data using the word2vec.

159

(a) n_categ=10

(b) n_categ=20

Figure A.30: Jeopardy! : Cluster accuracy for pre-processed data using the fastText.

160

APPENDIX B

Listings

B.1 Data Cleaning

Listing B.1: Code Snippet - Data Cleaning
✞ ☎

1 def cleaning(text):

2 # Remove new line , new tab

3 text = re.sub(r"\n", ’ ’,text)

4 text = re.sub(r"\t",’ ’,text)

5 # Remove URL

6 text = re.sub(r’’’(?i)\b((?: https ?://| www\d{0 ,3}[.]|[a-z0 -9.\ -]+[.][a-z]{2 ,4}/) (?:[^\s()

< >]+|\(([^\s() < >]+|(\([^\s() <>]+\)))*\))+(?:\(([^\s() < >]+|(\([^\s() <>]+\)))*\) |[^\s

‘!() \[\]{};: ’". , < >?]))’’’, " ", text)

7 # Remove HTML

8 text = re.sub(r’ <.*?>’, ’’, text)

9 # Remove Email

10 text = re.sub(’\S+@[a-zA-Z]+\.[a-zA-Z]+’, ’’, text)

11 # Remove repeating chars

12 text = re.sub(r"!+", "! ",text)

13 text = re.sub(r"\.+", ". ",text)

14 text = re.sub(r"\?+", "? ",text)

15 text = re.sub(r"*+", "* ",text)

16 text = re.sub(r"\>+", "> ",text)

17 text = re.sub(r"\<+", "< ",text)

18 # Clean shorthands

19 text = re.sub("\’s"," ", text)

20 text = re.sub("\’ve"," have ", text)

21 text = re.sub("\’re", " are ", text)

161

22 text = re.sub("\’ll", " will ", text)

23 text = re.sub("I’m", "I am", text)

24 text = re.sub("\’d", " would ", text)

25 text = re.sub("n’t", " not ", text)

26 text = re.sub("can’t", "can not", text , flags=re.IGNORECASE)

27 text = re.sub("i\.e\.", "id est", text , flags=re.IGNORECASE)

28 text = re.sub("e\.g\.", "for example", text , flags=re.IGNORECASE)

29 text = re.sub("e-mail", "email", text , flags=re.IGNORECASE)

30 # Remove comma between numbers

31 text = re.sub("(? <=[0 -9]) \ ,(?=[0 -9])’", "", text)

32 # Special characters

33 text = re.sub("\$"," dollar ", text)

34 text = re.sub("\&", " and ", text)

35 text = re.sub("\%", " percent ", text)

36 # Remove non ascii character

37 text_non_ascii = ""

38 for i in text:

39 num = ord(i)

40 if(num >= 0):

41 if(num <= 127):

42 text_non_ascii=text_non_ascii+i

43 text = text_non_ascii

44 # Remove smiley faces such as :), :(, :-) and :-(

45 text = re.sub(r":\) |:\(|: -\(|: -\)",’ ’,text)

46

47 # Remove ’s’

48 text = re.sub(’ s ’, " ", text)

49 # Remove extra spaces

50 text = re.sub("[\s]+", " ", text)

51 # Strip text

52 text = text.strip()

53

54 return text
✝ ✆

162

APPENDIX C

Tables

C.1 Number of Tokens

163

U
n
c
le
a
n
ed

D
a
ta

C
le
a
n
ed

D
a
ta

D
a
ta

S
e
t

N
o
.

o
f

C
o
m

p
o
-

n
en

ts

N
o
.

o
f

T
o
k
en

s

N
o
.

o
f

U
n
iq

u
e

T
o
k
en

s

N
o
.

o
f

D
o
c-

u
m

en
ts

N
o
.

o
f

D
o
c-

u
m

en
ts

w
it

h
em

p
ty

T
o
k
en

L
is

t

N
o
.

o
f

T
o
k
en

s

N
o
.

o
f

U
n
iq

u
e

T
o
k
en

s

N
o
.

o
f

D
o
c-

u
m

en
ts

N
o
.

o
f

D
o
c-

u
m

en
ts

w
it

h
em

p
ty

T
o
k
en

L
is

t
2
0

n
e
w
s-

g
ro

u
p
s

5
1,

37
1,

21
8

72
,9

61
4,

84
7

0
1,

19
3,

89
1

68
,4

19
4,

84
7

4
10

2,
36

7,
52

3
11

5,
98

0
9,

62
9

0
2,

08
1,

79
4

2,
08

1,
79

4
9,

62
9

17
20

4,
66

7,
15

9
21

0,
11

4
18

,2
86

0
4,

35
8,

13
8

19
3,

57
5

18
,2

86
5

J
eo

p
a
rd

y
!

5
57

,7
99

12
,5

23
3,

86
9

0
57

,9
43

12
,4

50
3,

86
9

0
10

10
7,

51
6

19
,7

17
7,

17
5

0
10

7,
55

4
19

,5
47

7,
17

5
0

20
18

5,
09

7
28

,5
63

12
,5

43
0

18
4,

89
9

28
,2

06
12

,5
43

0

T
ab

le
C

.1
:

N
u
m

b
er

of
ex

tr
ac

te
d

to
ke

n
s

an
d

co
rp

u
s

le
n
gt

h
of

tw
o

d
iff

er
en

t
d
at

a
se

ts
co

rr
es

p
on

d
in

g
to

th
e

sp
ec

ifi
ed

n
u
m

b
er

of
ca

te
go

ri
es

an
d

th
e

cl
ea

n
in

g
ty

p
e.

164

U
n
c
le
a
n
ed

D
a
ta

C
le
a
n
ed

D
a
ta

D
a
ta

N
u
m

b
er

o
f

C
o
m

p
o
-

n
en

ts

N
u
m

b
er

o
f

T
o
k
en

s

N
u
m

b
er

o
f

U
n
iq

u
e

T
o
k
en

s

N
u
m

b
er

o
f

D
o
c-

u
m

en
ts

N
u
m

b
er

o
f

D
o
c-

u
m

en
ts

w
it

h
em

p
ty

T
o
k
en

L
is

t

N
u
m

b
er

o
f

T
o
k
en

s

N
u
m

b
er

o
f

U
n
iq

u
e

T
o
k
en

s

N
u
m

b
er

o
f

D
o
c-

u
m

en
ts

N
u
m

b
er

o
f

D
o
c-

u
m

en
ts

w
it

h
em

p
ty

T
o
k
en

L
is

t
2
0

n
e
w
s-

g
ro

u
p
s

5
36
8,
81
5

40
,9
10

4,
84
7

13
36
3,
86
3

38
,6
35

4,
84
3

13
10

65
8,
38
4

64
,4
01

9,
62
9

29
65
2,
46
8

60
,9
79

9,
62
4

27
20

1,
30
8,
69
2

12
4,
56
1

18
,2
86

72
1,
30
1,
05
3

10
7,
79
4

18
,2
69

57

J
eo

p
a
rd

y
!

5
23
,4
46

8,
30
6

3,
86
9

0
23
,7
30

8,
28
2

3,
86
9

1
10

44
,0
04

13
,1
98

7,
17
5

0
44
,5
49

13
,1
11

7,
17
5

1
20

76
,3
90

19
,1
50

12
,5
43

0
77
,4
35

18
,9
35

12
,5
43

1
R
ed

d
it

5
10
0,
73
9

14
,2
94

T
ab

le
C

.2
:

N
u
m

b
er

of
ex

tr
ac

te
d

p
re

-p
ro

ce
ss

ed
fe

at
u
re

s
an

d
co

rp
u
s

le
n
gt

h
of

th
e

th
re

e
d
iff

er
en

t
d
at

a
se

ts
co

rr
es

p
on

d
in

g
to

th
e

sp
ec

ifi
ed

n
u
m

b
er

of
ca

te
go

ri
es

an
d

th
e

cl
ea

n
in

g
ty

p
e.

165

C.2 Runtime Pre-Processing

20 newsgroups Jeopardy! Reddit

No. of

Categories
5 10 5 10 20 5

Uncleaned

Tokenization

Time (sec.)
198,9 349,3 32,0 60,1 117,9 162,1

Pre-

Processing

Time (sec.)

2,57 5,36 0,14 0,26 0,61 1,7

Cleaned

Cleaning

Time (sec.)
3,8 7,3 0,31 0,66 1,32 −−

Tokenization

Time (sec.)
174,7 319,6 34,1 60,1 101,65 168,6

Pre-

Processing

Time (sec.)

2,57 5,09 0,15 0,28 0,48 1,9

Table C.3: Runtime Pre-Processing

166

C
o
m

p
u
ta

ti
o
n

T
im

e
(s

ec
.)

D
a
ta

se
t

C
le

a
n
in

g
N

u
m

b
er

o
f

C
a
te

g
o
ri

es

M
a
tr

ix
D

im
en

si
o
n
s

T
er

m
-

F
re

q
u
en

cy
O

n
e-

H
o
t

T
F
-I

D
F

2
0

n
e
w
sg

ro
u
p
s

U
n
cl

ea
n
ed

5
4,
83
3
×

40
,9
10

2.
9

2.
9

4.
3

10
9,
60
0
×

94
,4
01

11
.3

13
.8

14
.6

9

C
le

an
ed

5
4,
83
0
×

38
,6
35

2.
6

2.
7

4.
2

10
9,
59
7
×

60
,9
79

7.
2

7.
1

11
.2

J
eo

p
a
rd

y
!

U
n
cl

ea
n
ed

5
3,
86
9
×

8,
30
6

0.
35

0.
34

0.
57

10
8,
17
5
×

13
,1
98

1.
25

1.
25

1.
63

20
12
,5
43

×
19
,1
50

3.
13

3.
75

5.
34

C
le

an
ed

5
3,
86
8
×

8,
28
2

0.
33

0.
32

0.
56

10
7,
17
4
×

13
,1
11

1.
11

1.
19

1.
48

20
12
,5
42

×
18
,9
35

4.
47

3.
37

4.
2

R
ed

d
it

U
n
cl

ea
n
ed

5
9,
82
8
×

25
,6
09

4.
28

5.
6

8.
2

T
ab

le
C

.4
:

D
o
cu

m
en

t
te

rm
m

at
ri

x
co

m
p
u
ta

ti
on

ti
m

e
u
si

n
g

B
ag

-o
f-
w

or
d
s

ap
p
ro

ac
h
.

167

C.3 LSA

168

D
a
ta

se
t

C
le

a
n
-

in
g

N
o
.

o
f

C
a
te

g
o
-

ri
es

O
ri

g
in

a
l

M
a
tr

ix
D

im
en

si
o
n

R
ed

u
ce

d
M

a
tr

ix
D

im
en

si
o
n

D
im

.
R

ed
u
c-

ti
o
n

C
o
m

p
u
-

ta
ti

o
n

T
im

e
k
_

ts
v
d

(s
ec

.)

C
o
m

p
u
-

ta
ti

o
n

T
im

e
L
S
A

(s
ec

.)

2
0

n
ew

s

n
on

-
cl

ea
n
ed

5
4,
83
3
×

40
,9
10

4,
83
3
×

2,
24
7

38
,6
63

12
9

27
.6

10
9,
60
0
×

64
,4
01

9,
60
0
×

3,
87
5

60
,5
26

51
4

89
20

4,
83
0
×

38
,6
35

4,
83
0
×

2,
22
0

36
,4
15

11
3

27
.5

cl
ea

n
ed

5
4,
83
0
×

38
,6
35

4,
83
0
×

2,
22
0

36
,4
15

11
3

27
.5

10
9,
59
7
×

60
,9
79

9,
59
7
×

3,
81
4

57
,1
65

44
6

89

J
eo

p
a
rd

y
!

n
on

-
cl

ea
n
ed

5
3,
86
9
×

8,
30
6

3,
86
9
×

1,
98
2

6,
32
4

12
.2

11
.8

10
7,
17
5
×

13
,1
98

7,
17
5
×

3,
29
8

9,
90
0

45
.4

38
.1

20
12
,5
43

×
19
,1
50

12
,5
43

×
4,
98
9

14
,1
61

21
4

11
2.
8

cl
ea

n
ed

5
3,
86
8
×

8,
28
2

3,
86
8
×

1,
96
8

6,
31
4

11
.6

10
.6

10
7,
17
4
×

13
,1
11

7,
17
4
×

3,
25
7

9,
85
4

45
.4

34
.7

20
12
.5
42

×
18
,9
35

12
,5
42

×
4,
89
1

14
,0
44

25
9.
7

89
.3

R
ed

d
it

n
on

-
cl

ea
n
ed

5
9,
82
8
×

25
,6
09

9,
82
8
×

3,
33
3

22
,2
76

17
3.
9

65
.9

cl
ea

n
ed

5
9,
79
5
×

23
,5
63

9,
79
5
×

3,
19
5

20
,3
68

13
2.
4

49
.6
1

T
ab

le
C

.5
:

L
S
A

ap
p
li
ed

to
p
re

-p
ro

ce
ss

ed
d
at

a
re

p
re

se
n
te

d
w

it
h

T
F
-I

D
F
.
T

h
e

m
at

ri
x

d
im

en
si

on
s

ar
e

sp
ec

ifi
ed

as
D

o
cu

m
en

ts
×

T
er

m
s.

169

C.4 Word Embeddings

170

N
u
m

be
r

o
f
D

o
c
u
m

e
n
ts

M
a
tr

ix
C
o
m

p
u
ta

ti
o
n

T
im

e
(s

ec
.)

D
a
ta

S
et

D
a
ta

S
et

ti
n
g

N
u
m

b
er

o
f

C
a
te

g
o
ri

es

W
o
rd

2
V

ec
D

o
c2

V
ec

F
a
st

T
ex

t
W

o
rd

2
V

ec
D

o
c2

V
ec

F
a
st

T
ex

t

2
0

n
e
w
sg

ro
u
p
s

R
aw

5
48

29
48

28
48

30
6.

62
5.

22
8.

00

10
95

92
95

93
95

95
12

.2
11

.4
13

.6

P
re

-

P
ro

ce
ss

ed

5
48

18
48

22
48

19
2.

23
1.

97
2.

27

10
95

70
95

76
95

73
4.

67
3.

44
4.

39

J
eo

p
a
rd

y
!

R
aw

5
38

68
38

68
38

68
0.

5
0.

33
0.

73

10
71

74
71

74
71

74
1.

2
0.

77
0.

98

20
12

,5
37

12
,5

38
12

,5
42

1.
71

1.
14

2.
0

P
re

-

P
ro

ce
ss

ed

5
38

60
38

64
38

62
0.

31
0.

24
0.

43

10
7,

15
5

7,
16

1
7,

15
8

0.
55

0.
57

0.
55

20
12

,5
05

12
,5

11
12

,5
05

1.
16

0.
64

1.
06

R
ed

d
it

R
aw

5
9,

75
9

9,
74

4
9,

78
1

6.
16

4.
81

7.
30

P
re

-

P
ro

ce
ss

ed
5

9,
68

1
9,

69
0

9,
69

3
2.

16
1.

61
2.

33

T
ab

le
C

.6
:

W
or

d
em

b
ed

d
in

g
m

at
ri

x
d
im

en
si

on
s

an
d

co
m

p
u
ta

ti
on

ti
m

e
fo

r
cl

ea
n
ed

d
at

a.
E

ac
h

m
at

ri
x

h
as

th
e

gi
ve

n
n
u
m

b
er

of
ro

w
s

an
d
30
0

co
lu

m
n
s.

171

APPENDIX D

Files

D.1 requirements.txt

All software libraries used in this thesis are listed in D.1.

Listing D.1: requirements.txt
✞ ☎

1 numpy

2 sklearn

3 pandas

4 matplotlib

5 seaborn

6 wordcloud

7 spacy

8 gensim

9 scipy

10 tabulate

11 pyclustering

12 itertools

13 joblib

14 multiprocessing
✝ ✆

D.2 Linguistic structure analysis

In this thesis the python free, open-source library spaCy is used to apply the linguistic

concepts explained in chapter 2. After downloading, installing and loading the model a

172

Language object containing linguistic annotations is provided.
✞ ☎

1 import spacy

2 from spacy import displacy

3 nlp = spacy.load(’en_core_web_sm ’)

4 sentence = "The quick brown fox jumped over the lazy dog."
✝ ✆

Processing the example sentence with the nlp object returns an object that contains all

tokens, their linguistic features and relationships.
✞ ☎

1 # Process sentence , i.e. split into words and annotate them

2 doc = nlp(sentence)

3 # Tokenization

4 print ([token.text for token in doc])
✝ ✆

The computed tokens are:
✞ ☎

1 [’The’, ’quick’, ’brown ’, ’fox’, ’jumped ’,

2 ’over’, ’the’, ’lazy’, ’dog’, ’.’]
✝ ✆

spaCy uses a statistical model to predict the part-of-speech tags. It returns the result as a

simple or a detailed part-of-speech-tag.
✞ ☎

1 # POS -Tagging

2 # Print Text , POS , Tag , Dep

3 # Text - original word text

4 # POS - simple pos -tag

5 # TAG - detailed pos -tag

6 # DEP - Syntactic dependency

7 for token in doc:

8 print(token.text , token.pos_ , token.tag_ , token.dep_)
✝ ✆

The result for the provided sentence is
✞ ☎

1 The DET DT det

2 quick ADJ JJ amod

3 brown ADJ JJ amod

4 fox NOUN NN nsubj

5 jumped VERB VBD ROOT

6 over ADP IN prep

7 the DET DT det

8 lazy ADJ JJ amod

9 dog NOUN NN pobj

173

10 . PUNCT . punct
✝ ✆

The part-of-speech tags and the syntactic dependencies can be visualized using the depen-

dency visualizer dep.
✞ ☎

1 displacy.render(doc , style="dep")
✝ ✆

174

	Evaluation of Text Document Clustering Using K-Means
	Recommended Citation

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Research Objective
	Thesis Outline

	Introduction to Knowledge Discovery
	Text Mining
	Natural Language Processing
	Natural Language Understanding

	Handling Unstructured Data - Text Pre-Processing
	Tokenization
	Filtering
	Normalization

	Handling Unstructured Data - Text Representation
	Vector Space Model
	Word Embedding
	Count-based methods
	Predictive-based methods
	Word2Vec

	Text Document Clustering
	Clustering Algorithms
	Hierarchical clustering
	Partitioning Algorithms
	Visualize Cluster Result
	Cluster Validation

	Text Similarity
	Data sets
	20 Newsgroups
	Jeopardy!
	Reddit comments

	Implementation and Results
	Pre-Processing
	Data Representation
	k-Means Algorithm

	Results
	Pre-processing
	Data Representation
	Bag-of-Words
	Latent Semantic Analysis
	Word Embeddings

	Cluster Evaluation
	20 newsgroups
	Latent Semantic Analysis
	Word Embeddings

	Jeopardy!
	Reddit

	Conclusion and Outlook
	Future Work

	Bibliography
	Images
	Data never sleeps 7.0
	Tokenization Result of data sets
	10 most common words of data sets using different BoW representation techniques
	k-Means result accuracy for 20 newsgroups data set using BoW representation and uncleaned data
	k-Means result accuracy for 20 newsgroups data set using BoW representation and cleaned data
	k-Means result accuracy for 20 newsgroups data set using word embeddings

	k Means clustering result for 20 newsgroups data set using Word2Vec and Doc2Vec
	k Means clustering result for Jeopardy! data set using BoW approach
	k Means clustering result for Jeopardy! data set using LSA
	k Means clustering result for Jeopardy! data set using word embeddings

	Listings
	Data Cleaning

	Tables
	Number of Tokens
	Runtime Pre-Processing
	LSA
	Word Embeddings

	Files
	requirements.txt
	Linguistic structure analysis

