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ABSTRACT

ROBUST ESTIMATION OF PARAMETRIC MODELS
FOR
INSURANCE L.OSS DATA

by

Chudamani Poudyal

The University of Wisconsin-Milwaukee, 2018

Under the Supervision of Professor Vytaras Brazauskas

Parametric statistical models for insurance claims severity are continuous, right-
skewed, and frequently heavy-tailed. The data sets that such models are usually
fitted to contain outliers that are difficult to identify and separate from genuine
data. Moreover, due to commonly used actuarial “loss control strategies,” the ran-
dom variables we observe and wish to model are affected by truncation (due to
deductibles), censoring (due to policy limits), scaling (due to coinsurance propor-
tions) and other transformations. In the current practice, statistical inference for
loss models is almost exclusively likelihood (MLE) based, which typically results in
non-robust parameter estimators, pricing models, and risk measures. To alleviate
the lack of robustness of MLE-based inference in risk modeling, two broad classes
of parameter estimators — Method of Trimmed Moments (MTM) and Method of
Winsorized Moments (MWM) — have been recently developed. MTM and MWM
estimators are sufficiently general and flexible, and posses excellent large- and small-
sample properties, but they were designed for complete (not transformed) data. In
this dissertation, we first redesign MTM estimators to be applicable to claim severity
models that are fitted to truncated, censored, and insurance payments data. Asymp-
totic properties of such estimators are thoroughly investigated and their practical

performance is illustrated using Norwegian fire claims data. In addition, we explore

i



several extensions of MTM and MWM estimators for complete data. In particular,
we introduce truncated, censored, and insurance payment-type estimators and study
their asymptotic properties. Our analysis establishes new connections between data
truncation, trimming, and censoring which paves the way for more effective modeling

of non-linearly transformed loss data.
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Chapter 1

Introduction and Preliminaries

1.1 Motivation

Parametric statistical models for insurance claims severity are continuous, right-
skewed, and frequently heavy-tailed (see, e.g., Klugman et al., 2012). The data sets
that such models are usually fitted to contain outliers that are difficult to identify
and separate from genuine data. As a result, there could be a significant difference
in statistical inference if the true parametric model is slightly different than the
one assumed. Therefore, it is appealing to search for statistical procedures that are
insensitive against small perturbations from the assumed models.

In the current practice, statistical inference for loss models is almost exclusively
maximum likelihood estimation (MLE) based. The MLE approach typically results
in non-robust parameter estimators. The recently proposed estimators based on
method of trimmed moments (MTM) (see, e.g., Brazauskas et al., 2009) and method
of Winsorized moments (MWM) (see, e.g., Zhao et al., 2018a,b) can address the issue
of non-robustness. These estimators are computationally tractable and efficient but
were developed for completely observed data. Due to different loss control strategies,
insurance loss data are affected by truncation (due to deductibles), censoring (due to
policy limits as well as interval censoring), scaling (due to coinsurance proportions),
inflation, and other transformations. Therefore, our motivation in this dissertation

is to redesign MTM and MWM for such transformed loss data.



1.2 Literature Review

Among many methods of parameter estimation for parametric models the method
of moments and the maximum likelihood estimation (MLE) are commonly used
in the classical statistical literature (see, e.g., Casella and Berger, 2002, Klugman
et al., 2012). MLE is applicable to any form of data sets (i.e., the likelihood func-
tion can always be written, Klugman and Parsa, 1993) and involves sophisticated
analytical optimization arguments. MLE has a lot of desirable properties such as
invariance, asymptotic optimality (in the sense of mean square error) and efficiency,
and consistency (see Casella and Berger, 2002, Serfling, 1980, van der Vaart, 1998).
On the other hand, MLE is not free from flaws such as non-robustness, possible
non-existence, and computational intractability.

Due to the sensitivity of classical statistical estimation procedures to initial
model assumptions (see Tukey, 1960), researchers (see, e.g., Hampel, 1968, 1974,
Huber, 1964) have become aware and started developing more stable (insensitive)
statistical estimation procedures (see Huber and Ronchetti, 2009), which were pop-
ularized under the name “robust.” The primary focus of the robust procedure is
to produce more resistant, stable, and efficient estimators. By design the robust
estimators yield a good performance when there are small perturbations from the
assumed underlying true distribution (see, e.g., Maronna et al., 2006, for details).

Two broad classes of robust estimators — Method of Trimmed Moments (MTM)
and Method of Winsorized Moments (MWM) — have been recently developed in the
actuarial and statistical literatures. Both approaches are sufficiently general, belong
to the class of L-statistics and thus produce estimators that are robust, compu-
tationally efficient and transparent (see Brazauskas, 2009, Brazauskas et al., 2009,
Chernoff et al., 1967, Zhao et al., 2018a,b). Fully worked out examples of MTM
estimators are available for location-scale families (Brazauskas, 2009, Brazauskas
et al., 2009), log-folded-normal, log-folded-Cauchy, and log-folded-t distributions

with known degrees of freedom (Brazauskas and Kleefeld, 2011), as well as exponen-



tial, single-parameter Pareto, generalized Pareto (Brazauskas and Kleefeld, 2009),
and gamma distributions (Kleefeld and Brazauskas, 2012).

As mentioned earlier, in the current actuarial practice, statistical inference for
loss models is almost exclusively MLE-based. Besides typical non-robustness of such
procedures, MLE implementation on real data is also technically challenging (see
discussions by Frees, 2017 and Lee, 2017). This issue is especially evident when one
tries to fit complicated multi-parameter models such as mixtures of Erlangs (see
Reynkens et al., 2017, Verbelen et al., 2015). Taking this discussion into account,
we will redesign the MTM approach for insurance loss data and models with the

expectation that it will simplify computation and improve robustness.

1.3 Preliminaries

This section presents the most relevant technical tools and facts which will be used
in the rest of the dissertation.

Let 8 = (64, ...,0;) be a parameter vector to be estimated. Consider a sequence
of estimators én based on an observed sample X, X, ..., X, from a population
with cumulative distribution function (cdf) F'(-|@), and probability density function
(pdf) f(:|@). The optimality of an estimator is measured in terms of the minimum

possible asymptotic variance and is formally defined as follows (see Serfling, 1980).

Definition 1.1. A sequence én is called asymptotically efficient estimators of @ if
. 1
0.~ AN (6.1 x(0)" ) (L)

where AN stands for “asymptotically normal” and

16) [E{alogg;ixw» alog(ajgixw»”m _ {_E{W loge(igg!@))ﬂm,

is the Fisher information matrix. Further, since [I(0)]”' is finite, relation (1.1)

implies that é\n is a consistent estimator of 6. O
Definition 1.1 evaluates the performance of a single estimator. In order to com-
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pare the performance of two estimators of the same parameter, the following defi-

nition is handy (see Serfling, 1980, for more details).

Definition 1.2. Let 8, and (9\; be two sequences of estimators of @ with their
respective asymptotic variance-covariance matrices 3 and 3*. Then the asymptotic
relative efficiency (ARE) of é\;; with respect to 8, is defined as the ratio of the

determinants (of 3 and X*) raised to the power 1/k:

d’f_@))/ (12)

ARE(6".8,) = (det(E*)

]

In addition, to evaluate asymptotic properties of functions of asymptotically
normal vectors, the delta method is a key tool to use (see Serfling, 1980, van der

Vaart, 1998).

Theorem 1.1. Suppose that 5n = (é\m,@n, ,@m> ~ AN(0,n7'3) with ¥ a co-
variance matriz and neither @ nor ¥ depend onn. Let g = (g1, ..., gm), with each g; :
RF = R for 1 <i<m, a totally differentiable function with nonzero differential at

0. Consider D = [dij]mxk = [ngj-

~

. Then g(6,) ~ AN (g(0),n"* (DXD’)).

w:9:| mxk

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we de-
scribe different types of loss data transformations that appear in insurance con-
tract specifications (which are due to the loss control strategies used to construct
the contract). In particular, assuming that all observed data satisfy the i.i.d.
assumption, we study: the complete (not transformed) data scenario; left- and
right-truncated data; left- and right-censored data; left-truncated, right-censored,
and linearly-transformed data (also known as payment-per-payment variable); and
interval-censored and linearly-transformed data (also known as payment-per-loss

variable).



In Chapter 3, we introduce and develop two estimation procedures — maximum
likelihood (MLE) and method of trimmed moments (MTM) — for all loss data sce-
narios discussed in Chapter 2. Taking into account these data transformations, we
specify the relevant log-likelihood functions, define sample and population trimmed
moments, and describe the procedure for finding MTM estimators. Then asymptotic
properties of MLE and MTM estimators are rigorously studied.

In Chapter 4, we use the general formulation of the estimators and specialize
them for the exponential and normal distributions. This includes derivation of their
computing formulas (or estimating equations) and specification of mean vectors and
variance-covariance matrices for their asymptotically normal distributions.

In Chapter 5, MLE and MTM estimators are implemented for the single-parameter
Pareto and lognormal models that are fitted to Norwegian fire claims data for the
year 1983. The effects of model fitting on insurance contract pricing are then inves-
tigated.

In Chapter 6 , we explore several methodological extensions of the newly designed
MTM estimators for complete, grouped and exponentially distributed random vari-
ables. Specifically, we construct truncated, censored, and insurance payment-type
estimators and prove a series of theoretical results about those estimators’ existence
and asymptotic normality. Our analysis reveals new connections between data trun-
cation, trimming, and censoring.

Finally, in Chapter 7, we summarize the results of this dissertation and briefly

discuss our future research plans.



Chapter 2

Loss Data and Models

In this chapter, we review typical transformations of continuous random variables
that may be encountered in modeling claim severity. For each type of variable
transformation, the resulting probability density function (pdf), cumulative distri-
bution function (cdf) and quantile function (qf) are specified. For some of these

descriptions, we closely follow Klugman et al. (2012, Sections 12.1 and 13.2).

2.1 Complete Data

Following many standard textbooks on probability and mathematical statistics, we

start with the complete data scenario. Suppose the observable random variables
X1, Xo,.. ., X, (2.1)

are independent and identically distributed (i.i.d.) and have the pdf f(x), cdf F(z),
sf S(z) = 1 — F(z), and qf F~'(s), 0 < s < 1. Since loss random variables are
nonnegative, the support of f(x) is the set {x : > 0}. In many practical situations,
the 7.7.d. assumption seems reasonable, but see Section 7.2.2 for a discussion of other
distributional assumptions.

The complete data scenario is not common when claim severities are recorded,
but it represents so-called “ground up” losses and thus important to consider. Sta-
tistical properties of the ground-up variable are of great interest in risk analysis,

product design (for specifying insurance contract parameters), risk transfer consid-



erations, and for other business decisions.

2.2 Truncated Data

Data truncation occurs when sample observations are restricted to some interval,
say (t,7T] (not necessarily finite, e.g., T — o0). Measurements and even a count
of observations outside the interval are completely unknown. To formalize this

discussion, we will say that we observe the i.i.d. data
X1, X5, .o, X0, (2.2)

where each X* is equal to the ground-up variable X, if X falls between ¢ and T,
and is undefined otherwise. That is, X* satisfies the following conditional event
relationship

X*LX|[t<X<T,

where £ denotes “equal in distribution.” Due to this relationship, the cdf F,, pdf
f+, and qf F ! of variables X* are related to F', f, and F~! (see Section 2.1) and

given by:
0, r <t
Fuz|t,T)=P(X" <a|t, T)=P[X <[t <X <T] = FPFd, t<z<T;
1, x>T,
(2.3)
d O << Ty
(|, T) = L [F ¢, T ] — ! F)-F =4 2.4
ful] ) dz (z] ) { 0, elsewhere, (24)
and
F N s|t,T)=F " (sF(T)+ (1 —s)F(t)), for 0 <s<1. (2.5)

In industry wide databases (such as ORX Loss Data), only losses above some
pre-specified threshold, say d, are collected, which results in the left truncated data
at d. Thus, the observations available to the end-user can be viewed as a realization
of random variables (2.2) with ¢ = d and T" — oo. The latter condition slightly

simplifies formulas (2.3)—(2.5); one just needs to replace F'(T') with 1.



2.3 Censored Data

There are several versions of data censoring that occur in statistical modeling: inter-
val censoring (it includes left and right censoring depending on which end point of
the interval is infinite), type I censoring, type II censoring, and random censoring.
For actuarial work, the most relevant type is interval censoring. It occurs when
complete sample observations are available within some interval, say (¢, T], but data
outside the interval is only partially known. That is, counts are available but actual
values are not. To formalize this discussion, we will say that we observe the i.i.d.
data

X1 X0 LX) (2.6)

where each X™** is equal to the ground-up variable X, if X falls between ¢t and T,
and is equal to the corresponding end-point of the interval if X is beyond that point.

That is, X** is given by

t, X<t
X**:min{max(t,X),T}: X, t<X<T;
T, X>T.

Due to this relationship, the cdf F,,, pdf f.., and qf F! of variables X** are related
to I, f, and F~! and given by:

0, T <t
Fo(z|t,T) =P [min{max(t,X), T} <z] =< F(z), t<a<T; (2.7)
1, x>T,
F(t)7 r =t
_d _ ) fla), t<z<T;
fula|8,T) = %[F**(m,:r)} =3 ST, st (2.8)
0, elsewhere,
and
t, s < F(t);
FMs|t,T) =4 F7Y(s), F(t)<s< F(T); (2.9)
T, s> F(T).



2.4 Insurance Payments

Insurance contracts have coverage modifications that need to be taken into account
when modeling the underlying loss variable. Usually the coverage modifications such
as deductibles, policy limits, and coinsurance are introduced as loss control strategies
so that unfavorable policyholder behavioral effects (e.g., adverse selection) can be
minimized. There are also situations when certain features of the contract emerge
naturally (e.g., the value of insured property in general insurance is a natural upper
policy limit). Here we describe two common transformations of the loss variable
along with the corresponding cdf’s, pdf’s, and qf’s.

Suppose the insurance contract has ordinary deductible d, upper policy limit wu,
and coinsurance rate ¢ (0 < ¢ < 1). These coverage parameters imply that when
a loss X is reported, the insurance company is responsible for a proportion ¢ of X
exceeding d, but no more than c(u — d).

Next, if the loss severity X below the deductible d is completely unobserv-
able (even its frequency is unknown), then the observed i.i.d. insurance pay-
ments Y7,...,Y, can be viewed as realizations of left-truncated, right-censored, and

linearly-transformed (also known as per-payment variable) X:

c(X—d), d<X <u;

clu—d), u<X. (2.10)

Y$X|X>d:{

We can see that the payment variable Y is a linear transformation of a composition
of variables X* and X** (see Sections 2.2 and 2.3). Thus, similar to variables X*
and X** its cdf Gy, pdf gy, and qf G5 are also related to F, f, and F~! and given
by:

0, y < 0;
Gy(yle,du) =P[Y <y|X >d = FWLBLD g <y <clu—d); (211)
1, y > c(u—d),
J —f((f[/ézs}d), 0<y<c(u—d);
QY(y\de,U) = d_y GY(?J|C>daU) = %, y:c(u—d); (2-12)
0, elsewhere,



and

Goisledu | TG A-F@) —d), 055 < g
S|C u) = |
% .d, c(u — d), WSSSL

The scenario that no information is available about X below d is likely to occur
when modeling is done based on the data acquired from a third party (e.g., data
vendor). For payment data collected in house, the information about the number
of policies that did not report claims (equivalently, resulted in a payment of 0)
would be available. This minor modification yields different payment variables,
say Z1,..., 2y, which can be treated as i.i.d. realizations of interval-censored and

linearly-transformed (also known as per-loss variable) X:

0, X <d,
Z=R c¢(X—-d), d<X<u (2.14)
clu—d), u<X.

Again, its cdf Gz, pdf gz, and gf Ggl are related to F, f, and F~! and given by:

0, z < 05
Gz(z|c,d,u) =P[Z <z]=1 F(z/c+d), 0<z<c(u—d); (2.15)
1, z > c(u—d),
F(d), z=0;
(2| d,u) = dii[az(zm d.u)| = g@éf*d)/c’ Sii(ﬁ%;— D5 (2.16)
0, elsewhere,
and
0, 0<s<F(d);
G, (s|c,dyu) = ¢ c(F7Y(s)—d), F(d)<s< F(u); (2.17)
c(u—d), Fu) <s<1.

2.5 An Example

For illustrative purposes and to get a better understanding of insurance loss control
strategies, let us consider the well-known data set of 30 most damaging hurricanes in
the United States from 1925 to 1995 (see, e.g., Pielke and Landsea, 1998). Table 2.1

presents different insurance modifications of the hurricane data in billions of dollars

10



(rounded to two decimal places).

Table 2.1: Top 30 most damaging hurricane losses in the United States from 1925
to 1995 under different data and payment transformations.

Complete | Truncated losses | Censored losses | Pmt.-per-loss, Z | Pmt.-per-pmt., Y
losses (t,T)=(5,25) | (¢t,T)=(5,25) | (t,T,c)=(5,25,.9) | (t,T,c) = (5,25,.9)
2.27 - 5.00 0.00 -
2.40 - 5.00 0.00 -
2.40 - 5.00 0.00 -
2.44 - 5.00 0.00 -
3.00 - 5.00 0.00 -
3.11 - 5.00 0.00 -
3.34 - 5.00 0.00 -
4.06 - 5.00 0.00 -
5.37 5.37 5.37 0.33 0.33
5.84 5.84 5.84 0.75 0.75
6.30 6.30 6.30 1.16 1.16
6.31 6.31 6.31 1.18 1.18
6.54 6.54 6.54 1.38 1.38
7.04 7.04 7.04 1.84 1.84
7.07 7.07 7.07 1.86 1.86
8.31 8.31 8.31 2.98 2.98
9.07 9.07 9.07 3.66 3.66
9.38 9.38 9.38 3.94 3.94
10.23 10.23 10.23 4.71 4.71
10.71 10.71 10.71 5.13 5.13
10.97 10.97 10.97 5.37 5.37
12.05 12.05 12.05 6.34 6.34
12.43 12.43 12.43 6.69 6.69
13.80 13.80 13.80 7.92 7.92
16.63 16.63 16.63 10.47 10.47
16.86 16.86 16.86 10.68 10.68
22.60 22.60 22.60 15.84 15.84
26.62 - 25.00 18.00 18.00
33.09 - 25.00 18.00 18.00
72.30 - 25.00 18.00 18.00

Each column is assumed to be an i.i.d. sample from the corresponding distribu-
tion. For example, first column is an i.i.d. sample of size 30 given by (2.1), second
column is an i.i.d. sample of size 19 given by (2.2), third column is an i.i.d. sample of
size 30 given by (2.6), fourth column is an i.i.d. sample of size 30 given by (2.14), and
the fifth column is an i.i.d. sample of size 22 given by (2.10).
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Chapter 3

Parameter Estimation

In this chapter we present two estimation procedures — MLE and MTM — along with

their asymptotic properties for different loss data scenarios from Chapter 2.

3.1 Maximum Likelihood Estimation

In classical point estimation theory, the method of maximum likelihood estimation
(MLE) is the most popular among other methods. MLE, by definition, uses entire
sample and is the maximizer of the likelihood function (which is a joint probability
density function and/or probability mass function). In the i.i.d. case, the likelihood
function will be the product of the marginals (pdf’s and/or pmf’s). Typically, MLE
estimators are found by making the logarithmic transformation of the likelihood
function, setting its first partial derivatives equal to zero, and solving the resulting

system of equations.

3.1.1 Definition

Definition 3.1. The likelihood function of the parameter vector 8 for an observed
sample x1 € Ay,...,x, € A, where Ay,..., A, are the events (for example A; may

consist of a single point or an interval), is defined as

n

L(O|zy, ..., 2,) = [ [P(a; € A)), (3.1)

=1

12



and the corresponding log-likelthood function is

1(0|xy,...,x,) =log L(B|xq,...,x,)
= log (P(z; € Ay)). (3.2)

The maximizer vector of either the likelihood function (3.1) or the log-likelihood

function (3.2) is called the maximum likelihood estimate of the parameter vector

0. O

In the following examples, we specify the likelihood and log-likelihood functions

for the data scenarios and models of Chapter 2.

Example 3.1. Complete Data.
For an i.i.d. sample z1,...,z, with pdf f(z|@), the general likelihood (3.1) and
log-likelihood (3.2) functions reduce to

qum@@:Hﬂmm, (3.3)
10|z, ...,x,) =log L(O|xq,...,x,)
= Zlog (x:]0)), (3.4)

and the MLE of € is a maximizer vector of either (3.3) or (3.4). O

Example 3.2. Truncated Data.
For an i.i.d. sample z7,..., z} defined by (2.2) with cdf (2.3), and pdf (2.4), the
corresponding likelihood and log-likelihood functions are

=1

- (z7]6)
HFﬂO F(1]6)

=1

I )
= [F(110) - FO) (3:5)

13



L0y, .. a) = Zlog(f(xﬂe))—nlog(F(T\G)—F(tle))- (3.6)
O

Example 3.3. Censored Data.
For an observed i.i.d. sample z7*, ... x** defined by (2.6) with cdf (2.7), and pdf
(2.8), the likelihood and log-likelihood functions are

Lo(Ol27, . a7 = [ fue?)

([T reo | | I r@ie)| | I ©-Fio)

o=t t<ar*<T e =T

= (F(t|9))2?:1 1z *=t} H f(l,;k*|0) (S(T|0))Z?:1 1{a**=T} 7

t<z;*<T
(3.7)
L@l ) = log (F(110) Y 1{ai" =t} + Y log(f(x"]0))
i=1 t<a*<T
+1og (S(710)))  1{a* =T}, (3.8)
=1
]

Example 3.4. Payment-per-payment Data.
For an observed i.i.d. sample yq,...,y, defined by (2.10) with cdf (2.11), and pdf
(2.12), the likelihood and log-likelihood functions are

f(%+de) H 1 — F(u|6)

LeOlyr, ... yn) = 11 cS(d|6) 1 - F(d|6)

0<y;<c(u—d) yimc(u—d)
(S(u|0>>2?:1 1{y;=c(u—d)} - S, 1{0<y;<c(u—d)}

(5(dl9))"

< T f(%+d|e) , (3.9)

0<y;<c(u—d)

14



le(Olyy, .. yn) = log (S(UIO))Z {y; = c(u — d)} —nlog (5(d|6))

S0 <<t (s~ (1 (% )
i=1 (3.10)

]

Example 3.5. Payment-per-loss Data.
For an i.i.d. sample z1,..., z, defined by (2.14) with cdf (2.15), and pdf (2.16), the
corresponding likelihood and log-likelihood functions are

f (5 +d9)

C

L®®(0|z) = [F(d|0)]z?:1 1{z;=0} H
0<z; <C(u—d)
X S(uie)= A, (3.11)

n

Loo(62) = log (F(d]6)) Y 1{z: = 0} + log (S(ul) D" 1{z = c(u— d)}

- i 1{0 < 2 < c(u—d)} (log (c) —log (f (= +d9))). (312)
where z := (21,..., 2,). 0

3.1.2 Asymptotic Properties

Under certain regularity conditions (see, e.g., Serfling, 1980) on pdf and the like-
lihood function, MLEs are consistent, efficient, and asymptotically normal. In the
following sequence of examples, we summarize the asymptotic properties of MLEs

for different loss data scenarios from Chapter 2.

Example 3.6. Complete Data.
For an i.i.d. sample z1,...,z, with pdf f(x|@), MLE of € is found by maximizing
the likelihood function (3.3); let us denote it as 6,. Then, according to Definition
1.1,

0, AV (0,110 )
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which also implies that én is consistent and efficient. O]

Example 3.7. Truncated Data.

For an i.i.d. sample z7,...,x} defined by (2.2) with pdf (2.4) and cdf (2.3), MLE
of 8 is found by maximizing the likelihood function (3.5) and/or the log-likelihood
function (3.6); let us denote it as 6,. Then 6, ~ AN (6,1 [I*(O)]_l), where the

Fisher information matrix I, (@) is given by

{E {3 [log (f(#]0)) — log (F(T'|0) — F(t[6))]

90;
. Ollog (f(x(0)) - 1Oag9E~F(T|9) — F(t9))] H n (3.13)
0

Example 3.8. Censored Data.

For an i.i.d. sample z7*, ..., z* defined by (2.6) with pdf (2.8) and cdf (2.7), MLE
of 8 is found by maximizing the likelihood function (3.7) and/or the log-likelihood
function (3.8); let us denote it as 6,. Then 6, ~ AN (6,1 [I**(O)]_l), where the
(4,7)th entry of I,,(0) is given by

E {8 log (F'(t|0))1{x =t} +log (f(x|0))1{t <z < T} +1og (S(T0))1{z = T}|

00;
y 0 log (F(t|0))1{z =t} +log (f(z]0))1{t <z < T} +1log (S(T'|0))1{x =T} }
00; ‘
(3.14)
[

Example 3.9. Payment-per-payment Data.

For an 4.i.d. sample yy, ... ,y, defined by (2.10) with pdf (2.12) and cdf (2.11), MLE
of 0 is found by maximizing the likelihood function (3.9) and/or the log-likelihood
function (3.10); let us denote it as 6,. Then 6, ~ AN (CA [I®(0)]_1), where the
(1, 7)th entry of I5(8) is given by

- { 0 [log (S(u|0))1{y = "} —log (S(d|#)) — &s(c, y")I{0 <y < c"}]
00,
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0 [log (S(u|60))1{y = "} —log (5(d|#)) — &a(c, y")U{0 <y < "})]
X o, } . (3.15)

where {g(c,y*) :=log (c) —log (f (y*]0)), ¥* := £ +d, and c* := c(u — d). O

Example 3.10. Payment-per-loss Data.

For an i.i.d. sample z1,. .., z, defined by (2.14) with pdf (2.16) and cdf (2.15), MLE
of 6 is found by maximizing the likelihood function (3.11) and/or the log-likelihood
function (3.12); let us denote it as 6,. Then 6, ~ AN CA [I®®(0)]71), where the

(1, 7)th entry of Ig(0) is given by

E { d [log (F(d|@))1{z = 0} + log (S(u|0))1{z = ¢*} — {ge(c, 2*)1{0 < z < ¢*}]

06;
O llog (F(d]6))1 (= = 0} + log (S@IO)){z = ¢’} — Euo(e.)1{0 < = < ') }
00; ’
where {gg(c, 2*) :=log (c) —log (f (2*]0)), 2" := Z +d, and ¢* := c(u — d). O

3.2 Method of Trimmed Moments

MTM works like the method of moments but is designed to reduce the effect of
possible spurious outliers. To control the influence of extremes, a general strategy
is to trim certain proportion of the ordered sample data on both tails (for example,
5% of lower statistics and 10% of upper) and then apply the method of moments on
the remaining data. The choice of trimming proportions allows the user to balance

robustness and efficiency trade-offs (see Brazauskas et al., 2009, for details).

3.2.1 Definition

Let X1, X,, ..., X, R X, random variables, where X ~ F(z|@) with & unknown
parameters @ = (6q,...,0;). Denote the order statistics of Xi,..., X, by Xi., <
Xo., < -+ < X,.p. Then the MTM estimators of 61, 0,, ..., 0, are found as follows:

e Compute the sample trimmed moments

1 n—mz(j)

b T 2 ek 1=isk (1)




The h’s in (3.16) are specially chosen functions and m,(j) and m;(j) are

integers such that 0 < my,(j) < n—m?(j) < n with 222 — 4 and m"T(]) — b;

n

as n — 0o, where the proportions a; and b; are chosen by researcher.

e Compute the corresponding population trimmed moments

" —/ h(F0))du, 1<j<k  (317)

_1—Clj—bj aj

In (3.17), F~*(u|@) = inf {z : F(x|@) > u} is the quantile function.

e Now, match the sample and population trimmed moments from (3.16) and
(3.17) to get the following system of equations for 61,6, ..., O

p(Or, ..., 08) = i
: (3.18)

Mk(ela'--aek) =

Definition 3.2. A solution, say én = (gm, é\zn, s é\;m), if it exists, to the system of
equations (3.18) is called the method of trimmed moments (MTM) estimator of 6.
Thus, é\]n =: g;(11, o, -, ), 1 < j < k, are the MTM estimators of 6, 6s, ..., 0.

The following examples customize the MTM estimators for data scenarios of

Chapter 2.

Example 3.11. Complete Data.
For this scenario, the MTM estimators are found according to equations (3.16) -

(3.18). 0

Example 3.12. Truncated Data.
For an i.i.d. sample z7,x3,..., 2} defined by (2.2) with cdf (2.3) and qf (2.5), the
sample and population trimmed moments in equations (3.16) and (3.17), respec-

tively, are given by

n—m;,(j)
R 1 .
J n — mn(]) - mn(]) izmn(j)+1 ’
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and

1 1=b;
Psj = T—a -0 /aj hi(F () du
1 1-b,
R / hy (F~ (uF(T|0) + (1 — w)F(1/6)]6)) du, 1<j<k.
(3.20)
MTM of 0 is found by solving (3.18) if a solution exists. []

It is well-known in the operational risk literature that the standard method-of-
moments and maximum likelihood estimators present significant technical challenges
in practice (see Ergashev et al., 2016). In view of this and since operational risk
data is a special case of the truncated data (i.e., T'— o0), the MTM estimators of

Example 3.12 offer an attractive model estimation alternative.

Example 3.13. Censored Data.
For an i.i.d. sample x7*, 25", ... 2 defined by (2.6) with cdf (2.7) and gf (2.9), the
sample and population trimmed moments in equations (3.16) and (3.17), respec-

tively, are given by

n—m, ()
-~ 1 *k
Hoxx,j = . N ook (A Z h](xi:n)7 1< J < k? (321)
and
1 1-b;
ooy =y [ WP @) du, 1< <k (3.22)
ol =,
MTM of 8 is found by solving (3.18) if a solution exists. [

Example 3.14. Payment-per-payment Data.

For an i.i.d. sample y,ys, ..., y, defined by (2.10) with cdf (2.11) and ¢f (2.13), the
sample and population trimmed moments in equations (3.16) and (3.17), respec-
tively, are given by

1 n—my, (j)

oy = L E—



and

pos=1—a—y | WG ds 1<i<k (3.24)
’ 1-— a; — bj a;
MTM of 0 is found by solving (3.18) if a solution exists. O

Example 3.15. Payment-per-loss Data.
For an i.i.d. sample z1, 2o, .. ., 2, defined by (2.14) with cdf (2.15) and qf (2.17), the
sample and population trimmed moments in equations (3.16) and (3.17), respec-

tively, are given by

n—m;,(J)
1
R , , hi(Zimn), 1 <5<k, 3.25
%0 = T =), 2 M) (3:25)
i=mn ()41
and
1 1-b;
H®®,j = m/ h](Ggl(S)) dS, 1 S ] S k. (326)
J J Jaj
MTM of 0 is found by solving (3.18) if a solution exists. O

Note 3.1. In the procedure (3.16) - (3.18), and depending on the data scenario,
there are quite a few arrangements of the proportions (a;, b;) and (a;,b;) and their
positioning in the sample with respect to F'(t) and F(T). For example, in the com-
plete data case (i.e., F'(t) =0 and F(T) = 1), the entries of the variance-covariance
matrix ¥ (see equations 3.28 and 3.29) of the random vector (fiy, fia, - - . , [ix) actually
depend on the proportions (a;, b;) and (a;, b;) and there are six possible combinations

of these proportions:

10§a2§1—62§aj§1—b]<1, ‘O

> a;i  1-b; a 1—b, 1

22.0<a;<a; <1-0b<1-b; <1, 5 211 sz 1Lbi 1Lbj i
3.0<a<a;<1-b<1—b <1, D v S S TS
4. 0<a;<1—-0;<a; <1-b <1, ‘(; ;j 1Lbj ai 1Lbi i'
. 0<a;<a;<1-b<1-b <1, 0 4w 1o 1on 1



60§a]§a1§1—b1§1—b]§1 ‘é) : : libi 1Lbj i‘

a; a;

Each choice results in an MTM estimator with different robustness and efficiency
properties. Following the existing literature, we will consider the case when the re-
spective lower and upper proportions of two sample trimmed moments are identical,
ie,0<a=a;,=a; <1-b=1-b; =1-b<1. Also, for the other data scenarios,
we will choose a and b so that they are inside the interval [F'(¢), F(T')]. Such a choice
results in MTM estimators that will be resistant against outliers, i.e., observations
that are inconsistent with the model and most likely appearing at the boundaries ¢

and T (see also more detailed discussion in Notes 3.4 - 3.5). O]

Note 3.2. In view of Note 3.1, the MTM estimators with ¢ > 0 and b > 0 (0 <
F(t) <a<1-b< F(T) < 1) are globally robust with the lower and upper
breakdown points given by LBP = a and UBP = b, respectively. The robustness
of such estimators against small or large outliers comes from the fact that in the
computation of estimates the influence of the order statistics with the index less than
n x LBP or higher than n x (1 —UBP) is controlled in some way. For more details
on LBP and UBP, see Brazauskas and Serfling (2000) and Serfling (2002). O

Note 3.3. For truncated data, the choice of 0 < F(t) <a<1-0< F(T) <1
yields the following expressions of the sample and population trimmed moments,

respectively (see equations 3.19 and 3.20):

n—mz,(j)
1
fhsj = : hi(e},), 1<j<k,
Ton—ma() —mi () m%)
and
1- b
M*’jzl—a—b/ ) du
1- b
- - b/ “L(uF(T|0) + (1 — w)F(1)|8)) du, 1< j <k
j— a —
The remaining steps are the same as in (3.16) - (3.18). O
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Note 3.4. For censored data, the choice of 0 < F(t) <a<1—-b0< F(T) <1
makes the procedure (3.16) - (3.18) equivalent to the one for complete data. This

is because
1-b 1-b
/ h (FLN(w)) du = / hi (F~'(ul9)) du.

The remaining combinations of a, b, F(t), and F(T') are listed in Appendix A. It is
also important to note that for this procedure to work, one needs to first estimate
F(t) and F(T), which can be done as follows
F) 1§n:]1{ “_ 1 and B(T) 1271:11{ w1y
(3 ? n — 7

n
i=1

]

Note 3.5. For payment-per-payment data, there are three different cases to con-

sider. After defining s* := W, we have
1. 0<a; <s*<1-b; <1
1 s
e = ——— [/ h; (c [F‘l(s +(1-— S)F(d|0)|9) — d]) ds
1— (Zj — bj aj

4 / el — ) ds}

*

*

_ ;/ hi (c[F~ (s + (1 — 5)F(d|0)|6) — d]) ds

1—6Lj—bj y

L2b =8 — ). (3.27a)

]_—CLj—bj J

2.0<a;<1-b;<s" <1t

ey ;/w hi (c[F~' (s + (1= s)F(d|6)|0) —d]) ds. (3.27b)

_1—(Ij—bj aj

3. 0<s"<a;<1-b; <1t

e s — Ti—bj/ T hyle(u = d)) ds = hy(c(u — d)). (3.27)

aj
In order to implement the procedure, one needs to estimate s* directly from available
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data, which can be done as follows

A*_@[O<Y<c(u—d)]_ln < c(u—
o S0 _n;1{0<yl<( d)}.

More specifically, if both uncensored and censored sample observations participate
in /i ;, then we end up with the first case. If the censored observations, i.e., ¥; =
c(u—d), 1 <j <k are not involved in computing /i ;, then we end up with the
second case. And, finally if jig ; is computed only with censored observations, then
we are in the third case, but in this case (equation 3.27c) the population trimmed
moment [ig ; is no longer a function of the parameter to be estimated. Thus, in that
case MTM is not recommended approach of estimation. We may also rule out the

third case by choosing a; = 0, i.e., no trimming on the left. O]

Note 3.6. The payment-per-loss scenario is a special case of censored data. MTM

estimators follow from Note 3.4 with obvious adjustments of notation. [

3.2.2 Asymptotic Properties

MTM estimators belong to the class of L-statistics whose general asymptotic prop-
erties have been established by Chernoff et al. (1967). Specifically, asymptotically

equation (3.16) is equivalent to

1 & i
;= — J; hi(Xim), 1<j<k,
Hj n; J<n+1> i(Xin) <7<

where

. B (1—(Ij—bj)_1, Clj<$<1—bj;
Jj(s) = { 0, otherwise,
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Then the k-variate vector /n(ft — p) converges in distribution to the k-variate nor-
2 } k

mal random vector with mean O and the variance-covariance matrix 3 := [Jij it

with the entries (see Chernoff et al., 1967, REMARK 9)

ot = /0 " (), (1)

:/01 <1iu)2 Ul Ji(U)H;<v)(1—U)dU/ul J(w) HY (w)(1 — w) dw| du.
(3.28)

Further, Brazauskas et al. (2007) independently established an equivalent simplified

2

expression for o;;, which can be written as

2

L (min {ug o} — ) dhy(F7A(0]0)) dhi(F7(ul6))
Uij o (1 — a; — bz)(]_ — CLj — b])

(3.29)

Thus,
(ﬁl)ﬁ% nak) ~ AN((Mly,uQ) XD :uk:)an_lz)' (330)

The relation (3.30) along with the delta method (see Theorem 1.1) can be used to
derive the asymptotic distribution of the MTM estimators. Consider g = (g1, ..., gx)
such that 6, = g(fi). Then

~

6, ~ AN (g(pn),n"" (DXD")), (3.31)

with the usual meaning of D as in Theorem 1.1. Relation (3.31) can be used to

perform statistical inference based on the MTM estimators.

Example 3.16. Complete Data.

For this data scenario, with a = a;, = a; and b = b; = b;, the entries afj of the

variance-covariance matrix 3 are given by equation (3.29). 0

Example 3.17. Truncated Data.
For this data scenario, with 0 < F'(t) <a <1—b < F(T) < 1, the vector

I’Z* ~ AN(H‘*anilz*)?
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where the entries O'Z»Qj of 3, are given by

o2 = (1—a—b) / ) / * (min {u, 0} — w) dhy(F(0) dha(F-Mw)), (3.32)

with F=\(u) = F~1 (uF (T|6) + (1 — u)F(]6)|6). O

Example 3.18. Censored Data.

For this data scenario, with 0 < F/(f) <a <1—b < F(t) < 1, the vector
fas ~ AN (B, 07 B00),
where the entries afj of 3,, are given by

2= (1—a—b)? / ) /  (min {u, v} - wo) dhy(F (0) dhi(F3 (),

with the qf F;! given by equation (2.9). O

Example 3.19. Payment-per-payment Data.

F(uw)=F(d)

For this data scenario, with 0 <a <1 -6 < ()

< 1, the vector
ﬁ@ ~ AN(IJ'®7 n712®)7
where the entries 07; of X are given by

1-b  pl—b
afj =(l—a-— b)_Q/ / (min {u, v} — uv) dhj(G{,l(v)) dhi(G;l(u)), (3.33)

with the qf Gy' defined by equation (2.13). O

Example 3.20. Payment-per-loss Data.
For this data scenario, with 0 < F(t) <a < 1—b < F(T) < 1, the vector

bos ~ AN (peg. n ' Eas),

where the entries afj of Xy are given by

afj:u—a—b)?/ i / (min {u, v} — uv) dhy(G5(v)) dhi(G' (w)),

with the qf Gy defined by equation (2.17). O
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Chapter 4

Analytic Examples

In this chapter, we derive MLE and MTM estimators for the parameters of expo-
nential and normal distributions, under the data scenarios of Chapter 2. Note that
for insurance losses the equivalent (after the logarithmic transformation) models are
Pareto and lognormal. Thus, the estimators derived in Sections 4.1 and 4.2 can
easily be adjusted for Pareto and lognormal models. Their asymptotic properties

will remain valid as well.

4.1 Exponential and Pareto Models

Let X ~ Exp(#) with the ground-up loss distribution function F(z]f) = 1 — e~ 5,
density function f(z|f) = %6_%, r > 0, and the quantile function F~1(ulf) =
—0log (1 — u).

4.1.1 Maximum Likelihood Estimation

In the following examples, we specify the maximum likelihood estimators for the

data scenarios and models of Chapter 2 when X ~ Ezp(6).

Example 4.1. Complete Data.

For an i.i.d. sample zy,...,x, with pdf f(z|0) = %6_%, the log-likelihood function

(equation 3.4) becomes

n 1 n
1021, . .. x,) = ;log (F(zil6)) = —nlogf — - 2_;;5 (4.1)
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Then, setting I'(6|z1,...,z,) = 0 and solving for 0 yields @L = 1, where i is the
sample mean. Also, it readily follows that 8, ~ AN (6, n=16?). O

Example 4.2. Truncated Data.

*

For an i.i.d. sample z7j,..., 2z}, of truncated data in the interval (¢,77], defined by

(2.2) with pdf (2.4), the log-likelihood function (equation 3.6) becomes

L0y, .. a,) = Zlog (f(716)) — nlog (F(T|0) — F(t[6))

= —nlogf — nlog <e*5 - e’%) - %Zﬂff (4.2)

Setting I, (A|2%, ..., 2%) = 0 yields the equation

- te~o —Te~ o

where 1 = n~' )" | &F is the sample mean. Solving (4.3) for 0 leads to the MLE

~

0.
Proposition 4.1. If i > #, then the MLE estimate @\n of 8 does not exist.
Proof. 1t follows directly from the proof of Theorem 6.5. [

In this case the Fisher information matrix I, (f) given by (3.13) is a scalar and

can be computed as

1 T —t\? e
I*(g) - @ - ( 02 ) . - 2" (44)
(i)
Therefore,
~ 1
0, ~ AN (9, - [I*(Q)]1> ;
which also implies that é\n is consistent and efficient. O

Example 4.3. Censored Data.

If an 4.i.d. sample z3*, ... z** of censored data, defined by (2.6), is observed, then
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the log-likelihood function (equation 3.8) becomes

Lo (Ol o) = log (P(H0)) 3 1{a7" = th+ 3 log (f(x"10))

t<x;*<T

+ log (S(TIQ))Z {z;" =T}

n

— log (1 - e‘5> PR TEAETIEEDY <10g ©)+ 1‘0)

i=1 <z <T

n

- G U =T}, (4.5)

Setting 1., (0|3, ..., z%*) = 0 gives

> (5 - W) + @; 1{z* =T} =0, (4.6)

t<x;*<T

te~ v =
—— ) Wz =t} -
02(1 —e o) ; { J
which should be solved numerically to obtain @L

The information matrix I...(6) given by equation (3.14) is a scalar. With straight-

forward calculation, we get

£2S(t|0)  F(T|0) — F(t]0)

I1.(0) = , 4.7
() 01 F(t]0) 02 (4.7)
and hence,
~ 1
Qn ~ AN <07 — [I**(Q)]_l> ’
n
which also implies that @1 is consistent and efficient. O

Example 4.4. Payment-per-payment Data.
For an observed i.i.d. sample yi, ..., y, defined by (2.10), the log-likelihood function
(3.10) becomes

lo(Oy1s- - -, yn) = log (S(UIO))Z H{y; = c(u —d)} —nlog (5(d|6))
- Z]I{O <y <clu—d)} (log (c) — log (f <% + d|0>>)
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n

— o (¢7#) Y 1 = clu— )} — nlog (¢H)

i=1

~ Z;: 1{0 < y; < c(u— d)} <log (c) — log Ge +>)

n

= IS = e )} +

i=1

- ;]1{0 <y <clu—d)} <log (c) +log () + %;d) , (4.8)

Setting lé(9|y1, ..+, Yn) = 0 yields the explicit formula

B = (u—d) i Hyi=clu—d)} 1307, y:1{0 <y <clu—d)}
" Y l{o<y, <clu—d)} e Dl 1{0<y <clu—d)}

The information matrix I (#), a scalar, given by the expression (3.15) can be

(4.9)

computed as

F(ul6) — F(d|6)

Iy(0) = 4.10
and hence,

~ 1 _

o AN (8,210,
which also implies that §n is consistent and efficient. O]

Example 4.5. Payment-per-loss Data.
Consider an observed i.i.d. sample zi,..., 2, defined by (2.14). Then the linearly
transformed i.7.d. sample 2 +d, ..., 2 +d is exactly the sample 27", ..., z;" treated

in Example 4.3 withd=tand u="1T. O]

4.1.2 Method of Trimmed Moments

In the following examples, we specify MTM estimators for the data scenarios and
models of Chapter 2 when X ~ Ezxp(f). Since 0 is a scalar, only one function A is

needed. The most convenient choice is h(z) = .
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Example 4.6. Complete Data.
This scenario has been fully investigated by Brazauskas et al. (2009). The sample

trimmed moment (3.16) takes the form

with m,,/n — a and m}/n — b. The corresponding population trimmed moment

1 1-b .
n = m/a F <U,|0) du

0 1-b
1—a—b/a og (1 —u)du

0I(a,1—10)
l—a—10b"

(3.17) is given by

The MTM estimator of 8 is then

0, — —%. (4.11)

Its asymptotic distribution is

2 62 J(a,1 -0
QRNAN(G —A), with A:w,
where -
/ / mlm_{z vi =) Y dv du.
This also implies that 9 n 18 consistent. O

Example 4.7. Truncated Data.
For an i.i.d. sample z7, ...,z defined by (2.2) the sample trimmed moment (3.16)

is given by

:u*:n_m E xzn’
n

n i=mp+1
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with m,,/n — a and m* /n — b. The corresponding population trimmed moment

(3.20) with the qf defined by (2.5) is given by
1 1-b
= i
1t 1_a_b/a . (u)du

_ ﬁ/ O F Y WF(TI8) + (1 — W F(1]6))9) du

0 1-b .
= —m/a IOg <6 0 — Up(9)> du, (412)

_T

where p(0) = eo — e @. Clearly, the equatlon [« = Jix needs to be solved numeri-
cally for 0. Let us denote the solution by (9 n, if it exists. Its asymptotic distribution

18

6, ~AN (6,0 'D?%,), (4.13)

where the single entry of X, is given by (3.32):

o2 = (1—a—b)" / o / T nin {0 — o) dF () dF- (u)

e min {u, v} — uv
1‘“‘b / / (7 = op(®) (75 = up(0)) dvdu

and the Jacobian D, entry is found with implicit differentiation of # with respect

to . from equation (4.12) as follows:

-1

1-b o
D, = b _ —(1—a—"0) / log <e‘5 - up(@)) + e ? - upir () du
i a 0 (e‘é — up(@))

where pir(0) 1= te=6 — Te 7. O

Example 4.8. Censored Data.

For an i.i.d. sample z7*, ... 2** defined by (2.6) the sample trimmed moment (3.16)
is given by
R 1 n—msy, .
/J“_n_mn m*z Lims
T j=mn,+1
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with m,,/n — a and m* /n — b. The corresponding population trimmed moment

(3.20) with the qf defined by (2.9) is given by

1 1-b .
=T F,

1 1-b
_ -1
__1_a_b/a F(ulf) du,
0I(a,1—10)
B ETETS (4.14)

by assuming the most general case that 0 < F(t) <a<1—-b< F(T) <1 asin
Example 3.13. Thus, with the assumption 0 < F(t) <a <1—b < F(T) < 1, this

case translates to the complete case as in Example 4.6. O]

Example 4.9. Payment-per-payment Data.
For an i.i.d. sample i, ..., y, defined by (2.10) the sample trimmed moment (3.16)
is given by

n—mj,

R 1

He = " E Yin,
n—m,—m

 j=m,+1
with m,/n — a and m?/n — b. Assume that m} > "  1{y; = c(u — d)}, then
we end up with the most general second case of Example 3.14. That, is 0 < a <

1-0<s" <1with s* = %. Then, the corresponding population trimmed

moment (3.27b) with the qf defined by (2.13) is given by

pe = ﬁ alb Gy' (u) du
_ ﬁ/jbc [FY(s+ (1 — s)F(d|6)|9) — d] ds
_ %m_b /al_bc[—Qlog(l — s~ (1— §)F(d|9)) — d] ds
_ _1+¢—b [0I(a,1—b) +0log (1 — F(d|0))(1 —a—b) +d(l —a—b)]
:-%ﬁ_b {Gl(a,l—bﬂ—ég(l—a—b)—d(l—a—b)
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chl(a,1—0b)
l—a—0b

Setting pg = 1 yields

_ B(l—a-=0b)
n——m—-g(u)-

)

(4.15)

The entries of the matrix 3, which is one-dimensional, follow from equation (3.33):

o Ja S in w0} —w) dR(GY (v) dh(Gy' (w))
L (I1—a—-0)(1—a-0>b)

B 1=b min {w v} wv) (1 — F(d|0))
(1 —a—b / / [ F(d|0)) + F(d|0)]0)|0]

X — F(d]f) dv dw
FIFE=Hw(1 = F(d|f)) + F(d]0)|6)[6]
_ 2 1—F(d[f) /1 bt (min {w, v} — wv) dvdw
B 1—a—b o« fd—=20log (1 —)|0)f(d—0log (1l —w)|h)
c26?
= — 1—-0).
(1 —q— b)2 J(a’7 )
Also, g—/%‘ﬂ = —dl(a 5y Lhen, DgXgDj = 6° I‘]((all blﬁQ Therefore
= 62 J(a,1—10)
0, ~ 0, —A ith A = ————
A (0.500) vt & = G
which implies that gn is consistent. O

Example 4.10. Payment-per-loss Data.

Consider an observed i.i.d. sample 21, ..., z, defined by (2.14). Then, as in Example
4.5, the linearly transformed 4.7.d. sample 2t +d, ..., ** + d is exactly the sample
x1*, ..., 2" treated in Example 4.8 withd =t and u =T O

n

4.2 Normal and Lognormal Models

Let X ~ Normal(, 0?) with ground-up loss distribution function

T — 0

g

F(z)=9® ( > : —00 < 7 < 00, (4.16)
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where —oo < 6 < oo, the location parameter, 0 < o < 0o, scale parameter, and & is
the cdf of the standard normal distribution. The corresponding ground-up density

function is

1 —0
flx)=—¢ (x ) : —00 < x < 00, (4.17)
o o
where ¢ is the pdf of the standard normal distribution given by
I a2
() = ez, —00 < & < 00. (4.18)

The quantile function F~! is given by
F ' u|0) =0+ *(u). (4.19)

The parameter vector to be estimated is 8 = (6, 0).

The following additional notation will be used in this section.
NOTATION: Let t and T be the left and right truncation thresholds, respectively,
as defined in Section 2.2. Define:

t—0 T-0
R:=T —1, t, = ——, T, =
o o
Then, obviously
0=t—ot,, T. :tz+§. (4.20)
o
Additionally,
Kou(t,) = 1—9(t,),
’ 4.21
{ Kor(T.) = 1-&(T.). (421)

Since K, is defined by equation (4.21), we recursively define

/ K. (4.22)

then consequently

s = K, (4.23)
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Lemma 4.1. For alln > —1 (Cohen, 1950),
(n+1)Kpi1 (2) + 2K, (2) — K,—1.(2) = 0. (4.24)

Note 4.1. The variable ¢, is considered to be the independent parameter of location
in Examples 4.12, 4.13, and 4.14. The mean, 6, is a linear function of t, given by
(4.20). m

4.2.1 Maximum Likelihood Estimation

We now derive the maximum likelihood estimators for all the data scenarios of

Chapter 2 when X ~ Normal(6, o?).

Example 4.11. Complete Data.
It can be found in any standard statistics textbook (see, e.g., Wasserman, 2004)
that for a completely observed i.i.d. normal sample 1, ..., z, of size n, the MLE

estimators of @ = (6, 0) are:

~ 1 o 1 ~\2
en = \Un An = | = i - ( i n>
(6, 5n) an, Ol :
i=1 =1
and
~ o? . 10
0, ~ AN | (0,0),—Sy| with Sy= R (4.25)
n 2
[
Example 4.12. Truncated Data.
Let x7,..., 2} be an i.i.d. sample of truncated normal data in the interval (¢, T] with

cdf (2.3) and pdf (2.4) . Let us linearly transform the observed data via y := z* —t.

Clearly, 0 < y < R and the density function of the random variable Y is given by

 fly+t]o)
FW) = FTie) = Fijey
e H(trt)

B (Vi 27T(K0,t — KO,T) ’
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The log-likelihood function given by equation (3.6) for an i.i.d. sample of size n
of the random variable Y := X* — t takes the form
1 i\ 2
L(t,, o) = —nlog <(K07t - KO,T)U\/QW) -3 (tz + %) . (4.26)

1=

Using equations (4.18), (4.20), (4.21), and (4.22), we summarize the following deriva-

tives:
(Ot __ ot _
3_tz - 17 b 07
oT, __ 1 o, _ _ R
ot, ~ 0o o2
Ap(t 0p(t~
B = —to(t), T =0
0UL) _ T 4(T)) 99(Tz) _ RT:4(T:) (4.27)
ot, z z)y do — o2 )
8K t aK bt
g = —o(2), s =0,
oK, oK,
| - = —o(T2), e = O(T2) 35
Therefore, setting
ol _
{ 8_tz _ 07
Ol _
@ =0

yields the system of MLE equations

o on(olt) — (1) < Yi B
g_]lfz - Koy — Kor B ; (tz + 0) =0 (428

n ( ng(T) )§_z+1 - b (t+5)] = o

Koy —Kor) 0?2 o o? —
Consider,
() o(T%)
7, =2 Ty = , 4.29
' Koy~ Ko T Koy~ Kor 429)
then the MLE system of equations (4.28) becomes
o(Zy—Zy—t,)—m = 0,
(4.30)
O'2 (1—t2<Zl —Zg—tz)—%) _//,ZQ = O,

where [i; and iy are the first and second sample moments given by f1; =n='> 7" | Yl
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j=1,2.
The system of equations (4.30) can be solved for 7,, and tAzn by using a modified

Newton-Raphson method (see, e.g., Cohen, 1950) with the initializing values

_ o~ ~9 o ILLl
Ostart = \/ Mo — K7, and tz,start — _A—AQ
Vo2 — K

To establish the asymptotic distribution of (tAz,n, 0n), define (Cohen, 1950)

fl(tmTz) = — [1 —|— tzZl — TZZQ — (Zl — 22)2] y
folte, To) o= B2((Zy — Zy) = T + |2y — Zy — L], (4.31)
fa(to, T2) = (B Zo(Zo+ T.) — [2 — t.(Zy — Zy — t.) — 228B].

Let
L(t..0) = {a“ ‘“2}

21 A22

be the Fisher information matrix given by equation (3.13), then

ay = —fi(tz, 1),
a1y = ag = —0 ' fo(t,, Ty),

A29 = _U_2f3(tza Tz)

Therefore,
1= f3 . ofa ;
~ f1fs—f3 fifa—=f3
t ~ t — . O
( z,nao-n) AN ( Z:U)an oo o2 f

Nfs—f3  hfs—13
Example 4.13. Censored Data
Let x7*, ..., 2% be an i.i.d. sample with cdf (2.7) and pdf (2.8). Before going in

further details, let us borrow all the symbols from Example 4.12. In addition, define

n

o ::Z]l{yi:()}, ny 1:ZI{O<% < R}, U 1221{%23}-
i=1 i=1 i=1

Note that n = ng+n;+nq. In this case the log-likelihood function given by equation

(3.8) becomes

Li(t,,0) = constant 4 nglog (1 — Ko ;) — ny log (o)

37



B % Z (tz + %)2 + ng log (Kor)- (4.32)

0<y;<R

For the censored case the system of equations (4.28) takes the form

al Cb(tZ) ¢(T2) < yi)
e = - - t+2) =,
ot T Koy Kor Z "o
’ ’ 0<yi<R (4.33)
o = ozt O (B emf2 0
do 10_ o2 % z o 2 KOT .
0<yi<R ’
Similarly with (4.29), define
n tz
i = n_(lJ 1?&(0)’“
T (4.34)
Yo = TL_? KO,ZT ’
then the MLE system of equations (4.33) becomes
O-<Yv1_Y'2_tz)_,al = Oa
(4.35)
02 (1_tz()/1_§/2_tz)_%) _ﬁZ = 07

where Ji; and iy are the first and second sample moments, 7i; = ny ' > 1 1{0 < y; <
R}yf , 7 = 1,2. To solve the system (4.35) for %\z,n and 0,, we initialize the system
as below (Cohen, 1950). The initial values ¢, sart and T ot are, respectively, the
solution of the following equations.

no 1 /tz 82
—=1-Kp;=— e 2 ds,
” 0,t Tl

N9 1 /oo _s2
— =Kopr = — e 2 ds,
n 0T \V2m Jr,

then from (4.20), we initialize o as

R
Ostart — T

z,start Zfz,start
Let
o)< [0 2
b21

b22
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be the Fisher information matrix given by equation (3.14), then
bin = — (Kot — Kor) 1(t2, T?),
bz = by = — (Koy — Kor) o' ga(t., T2),

by = — (Ko — Kor) 0 2gs(t., T2),

where
( . T,
2 T
| 0t T) = (8% (T -2 - -tz - 2 —t) - 21,

Then it follows that

~ 1 —g3 092
(tz,nvan) ~ AN ((tz7‘7)v n [ ]) ’ =

(Kot — Kor) (9195 — 63) ogs —0%qy

Example 4.14. Payment-per-payment Data.

Let y1,...,y, be an i.i.d. sample with cdf (2.11) and pdf (2.12) with policy limit
u, deductible d, and coinsurance factor ¢. For notational simplicity and to borrow
the symbols from previous examples, we assume that d =t and v = T. Then, the

log-likelihood function given by equation (3.10) becomes
lg(t,, o) = constant + ns log (Ko 1) — nlog (Ko.) — nilog (o)
1 Yi \?
- o+ ) 4.37
2 Z < + co ( )

Thus, setting

olg
ot - 07
olg
2 = 0,
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yields the system of MLE equations

2
Ko, Ko r

o) AT

> (

0<y;<R

e
C

;)

Ro(T, 1 i
N9 ¢< )—nl—F? Z y,-(tz—i—g—(j) = 0.

2
02K, o
0T 0<yi<R

Define
Q == #(tz)

ni1 Koz’

QQ — ng ¢(T%)

n1 Ko’

then the system of MLE equations (4.38) takes the form
9 (Ql - QZ - tz) - c_l,al = 0,

{ 0? (1= t(Q1 = Qs —t.) = LF) — ¢l = 0,

(4.38)

(4.39)

(4.40)

where fi; and fiy are the first and second sample moments, fi; = ny ' Y. 1{0 <

Y < R}yf, j = 1,2. To solve the system (4.40) for tAm and o, we initialize the

system as below:

—1
¢

Ostart — \/672/72 - (Cil,al)2 and

tz,start = -

Let
Iot) = [0 0]

Co1 C22

be the Fisher information matrix given by equation (3.15), then

Ky — K
C11 = _( 07tK07t OyT)/’nl(tzaTz)a
Ky — K
Clg = C1 = —(O’tK—O’T)CT_ITQ(tz,Tz),
0.t
Ky — K
Co2 = _ Ko — Kor) O’T)U_2T3(tz, T.),

Ko

40

Ostart



where

(

T1<tz7Tz) = = []- + tzZI - TZZQ - ﬁ(LOZBZl + %?ZT)ZQ} 5

Pt T.) = 52 [T (7, 7, -1, (4.41)
| (1) = (9% (L-5E) - 2-t(z - Z—t) - 28],

Therefore, it follows that

(Tos8) ~ AN (t00) Ko, o a
Loy On) ™~ l.,0), 7 .
’ n(Kos — Kor) (rirs — 13) 2

OTreg —0°T1

Example 4.15. Payment-per-Loss Data.
Consider an observed i.i.d. sample z1, ..., z, defined by (2.14). Then the linearly
transformed i.7.d. sample 2 +d, ..., ** +d is exactly the sample x7*, ..., x}* treated

in Example 4.13 with d=tandu="1T. O]

4.2.2 Method of Trimmed Moments

In the following examples, we specify MTM estimators for the data scenarios and
models of Chapter 2 when X ~ Normal(f, 0?). Since the location parameter 6 can
be any real number, we choose hi(x) = x, but to ensure that the estimator of o is

positive, we choose hy(z) = z2.

Example 4.16. Complete Data.
This scenario has been fully investigated by Brazauskas et al. (2009). Using equation

(3.16), the sample trimmed moments are:

. n—m3 (1)
i=mn(1)+1
1 n—ms (2)
Ty = 2
Mo = n — mn(2) — m:<2) ‘ Z Liins
i=mp(2)+1

with m,(1)/n = m,(2)/n — a and m*(1)/n = m*(2)/n — b.

The corresponding population trimmed moments by using equation (3.17) are
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computed as
= —— / F~ 1 (u|0) du = 0 + ocy,
l—a—-0>

fo == ———— / u|0 } du = 6 + 200¢, + o%cs,
1—a—0»5

where

(@, a,b) = ﬁ / o (w)])* du. (4.42)

The MTM estimators of 8 and ¢ are then

On = fn— 160 =g, M),
(4.43)
On = \/(/72 — it/ (ca — 1)) =t ga(fin, fi2).-
The asymptotic distribution is
~ 2
(0,0,) ~ AN ((9,0), J—S) with S :=02DXD’, (4.44)
n

where the variance-covariance matrix ¥ is computed by using equation (3.29). The
entries of the matrix D as in Theorem 1.1 can be computed by using the functions

gi, 1 <i <2 given by (4.43).

le] 0, O+ca0
d11 = =1- C1 35~ 292 = Sorar 2 s

O | (11 p12) O | (i) O(e2=c1)

0 0
d12 = & = —C 292 = — <1

0 Log 20(ca—c?)?

B2 1 () HU T (i a2) olez=ci)

~ (4.45)

dyy = 992 — —i — _ ftag

S Y [ 0 PR C R O
dyy = dg2. _ 0.5 _ 1

- T - — — - __ 2
o1 (uapi2) \/(“2—“%)/(02—0%) (111.412) 20(ca—c3)’

The matrix S does not depend on any unknown parameters which makes the esti-

~

mator vector 8, = (ﬁn, G ») asymptotically consistent. O

Example 4.17. Truncated Data.

Let z7,...,x} be an i.i.d. sample of truncated normal data in the interval (¢, 7]
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with gf given by (2.5). Then, following the procedure of Example 3.12, we have

) . nm
1 — Lims
Mo 1 n— mn(1> _ m:iL(l) o ©n
) . e
Hx2 = . mn(Q) — m;kl(2) ‘ Z Tiins
1=mn(2)+1

with m,(1)/n = m,(2)/n — a and m}(1)/n = m}(2)/n — b.
The corresponding population trimmed moments by using equation (3.20) with

af (2.5) are computed as

1 1-b

T S / Fo () du =0+ oc, s,

1 1-b 9
[y 1= —/ [F*_l(u)] du = 0% + 200¢, 1 + 0%¢c, o,
’ l—a-0b/, ’ ’
where
1 1-b i
= eoa(®abt ) im oy [ (07 (T + (1= w(e)] du,
(4.46)
and
t—0 T—-10
tz = Tz =
o o

as defined at the beginning of Section 4.2. Note that, ¢, ; do depend on the unknown
parameters § and o. Equating p.1 = fi.1, and ji. o = .2 yields the implicit (the

system 4.43 is explicit) system of equations to be solved for # and o

0 = 1 — Ci10,

: (4.47)
o = =720/ (cr =)

The system of equations (4.47) can be solved for G, and 0, by using an iterative

numerical method with the initializing values

_ ~ /\2 _ ~
Ostart = \/ ,u*,2 - H*Ja and estart - ,U*,l-
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A special case with @ = 0 = b (which translates to classical method of moments),
can be handled in the following way. Instead of the first two moments, i.e., hy(z) =
z, ho(x) = 2%, we take the first four sample moments and match them with the

corresponding population moments. That is

n *J
G 2=t 1934
n

The expected value and the variance of the doubly truncated normal random variable
can be found in Ergashev et al. (2016), Johnson et al. (1994). However, with the

help of mathematical induction, all moments can be computed as follows.

Lemma 4.2. Define p1, 1 =0 and p1.o = 1. Then the moments of doubly truncated,
in the interval (t, T], normally distributed random variable X* with parameters (0, o)

are given by,
pog = (7 = Doz + Opugr +op™ [0 () = TV 10 (T)] .5 = 1,2,
where p = ® (T,) — @ (t,).
Then, by Central Limit Theorem (see, e.g., Serfling, 1980), we have
~ 1
P ™~ AN (l’l”h 52*) )

where the (7, 7)th entry of X, is equal to ft.;4; — faifts j for j = 1,2, 3,4. Following
the work of Shah and Jaiswal (1966), # and ¢* can be expressed as

Ny

0=1t—— = #,1y Mox,29 Mox,3y Mox,4 )
D, G0 (Fo 15 Hx 25 Hor 35 fhx,a)

= gg(,u*,b M 25 s 3, ,U*,4)7

Q
Il
Sl
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where Dy = D, and

R:=T —t, as defined above,

Ny := —2t(2R* + 6tR + 5t*) iy + (12tR 4 15t* + 2R?)puy 1t 2 + 2t 1 f1e 3
+ 12 (3R? + 8tR + 5t%) iy — 3(T + 2t)tua + 3piofis + R iy
— (4tR+ 5% + R ptag + (T + t)ptuy — t*R* — 2t'R — £°

Ny = T?p2  — t(R* + 3tR + 2%t 112 — (2R + 26° + R*) 13
+ (3tR+ 3 + Rl y — (T4 t) panfte s — flaptog — T2
+ ui:g + t(R? 4+ 3tR 4 2t*) ptz — tTptan + (T + 1) fla 1 fln s,

Dy := —2(tR+3t + R*)pi? y + 3(T + t)pu 1t 2 + 26 (R 4 3tR + 2t%) . 1

21 s — 3pts o + R2pn — (T + )3 — PR — 20°R — t*.
Now, let the Jacobian matrix be

996 996 996 996
6#*,1 B,Uf*,Q a#*,3 BH*A

D, =
agg 89(; 890 890
6,114*,1 8,“4*,2 8,‘1*,3 8#*,4

Then by the delta method (Theorem 1.1), we have

~2

= 1 ’
0,,0,)~ AN ((9,02), —D*E*D*) :
n

Example 4.18. Censored Data.

Let x7*,..., 2" be an i.i.d. sample of censored normal data in the interval (¢, 7]

with qf given by (2.9). Then, following the procedure of Example 3.13, we have

/’[/**,1 - n - m E 337, mo
n

n i=mn—+1

~ 2 : *%2
:LL**,Q - n -m xz m
n

" i=mn—+1
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with m, /n — a and m}/n — b. The corresponding population trimmed moments

(3.22) with the qf defined by (2.9) are given by

1 1-b
P i= m/ F N u) du
1 1-b .
=0+ ocy,

1 b g
M2 1= m/ﬂ [F** (U)} du

:—1_2_1;/_ [F(ul)]? du

= 0%+ 200¢; + o2co,

by assuming the most general case that 0 < F(t) <a<1—-b0< F(T) <1lasin
Example 3.13. Thus, with the assumption 0 < F(t) < a <1—5b < F(T) < 1, this

case translates to the complete case as in Example 4.16. O]

Example 4.19. Payment-per-payment Data.

Let y1,...,y, be an i.i.d. sample of payment-per-payment data defined by (2.10)
with gf (2.13). Since ¢, d, and u are assumed to be known constants, then we
linearly transform the sample as £ +d, ..., % + d. Then, following the procedure

of Example 3.14, the sample trimmed moments given by (3.16) are

e (y. +d>7

with m,/n — a and m} /n — b. Asin Example 4.9, assume that m} > >""  1{y; =
c(u—d)}, then we end up with the most general second case of Example 3.14. That,

is0<a<1—-0b0<s" <1 with s*= W. Then, the corresponding population
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trimmed moments (3.27b) with the qf defined by (2.13) are given by

1

1-b
fot — m/ [F(s + (1 — 5)F(d|6)|6)] ds,

=0+ o0cg1,

M&W:Tj%jaé_[F1@+{1—$FMWH®fds

=0 + 200cg 1 + 02cy 2,

where
1 1-b &
Cok = Cor(P,a,b,d,u) = ﬁ/ (@7 (s+ (1= s)®(d.))] ds, (4.48)
and d, := (d — 0)/o. Again, cg ) depend on the unknown parameters. Equating

He1 = e, and fig 2 = [ig 2 yields the implicit system of equations to be solved for

6 and o:

0 = ﬁ@,l — Cp,10 = 91(/7@),17%7@,2)7

(4.49)
o = \/(M®72 - M%,l)/(%g - Cgm) = 92(M®,1, M®,2)-

The system of equations (4.49) can be solved for G o and 0, by using an iterative

numerical method with the initializing values

o ~ /\2 . o~
Ostart — \/ He2 — ,u®717 and estart = Ux,1-

The entries of the variance-covariance matrix 3 calculated using (3.33) are

(1= B(d)P
R ey E

1=t p1=b min {u,v} — uv o du
/ / ST (0t (- 0)@(d)] 6 [0 (ut (1 —w)dd)) 7"

s 200%(1 —®(d.))?
712 = (1—a—"0)?

" /1_b /1_b min {u,v} — uv o du
o Joo @270+ (1 =0)@(d:)] o[ (ut (1 —u)P(d.))]
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20%(1 — ®(d,))?
(1 —a—0b)?

/1 b/ [min {u, v} —wv] @ (u+ (1 — u)P(d,))
@271 (v + (1= 0)@(d2))] @[ (u+ (1 — u)®(d-))]

o _ 4070%(1 - 2(d:))
2T T a2

=0 min {u, v} — uv
[ [ smrerasesen e o v
8003(1 — ®(d,))?
(1 —a—0b)?

/1 b/ [min {u, v} — wv] @71 (u+ (1 — u)®(d.)) o du
P[P~ (v+ (1 —0)2(d:))] [ (u + (1 — u)P(d.))]

A R {u v} —uv] @7 (u+ (1 —u)®(d,))
1—a—b / / { P27 (v + (1 —v)P(ds))]

O (v+ (1 —0v)®(d,))

X dv du.
P[P~ (u+ (1 — u)®(d:))]
For k =1, 2; it follows evidently that
_ _ k—
e — oty [ U@ IR
00 o(l—a—b) " ¢ [(I)—l (8 4 (1 _ S)(I)(dz))] ’ (4 50)
_ _ k— ’
deos  _ _2k1(d0)¢(dz>/1 "(L— ) (@ (s + (1 - 9)P(d.))]" s
o7 I @127 (s + (1 = 5)0(d.))] '
For k =1, 2; let us denote
Ig1 092
0, v = s and o, PR
o Ot k (h®,1,1,2) o Ot k (h@,1,1e,2)
Consider the following more notations
Ocg 1 Ocg
=1 —_— = :
f11(0,0) +o 20 fi2(0,0) :==cg1+0 9
Jcg, oc oc oc
fa(0,0) == 86 — 2¢g,1 a@;l, f22(0,0) :== 8&2_2 ®,1 8®1

The entries of the matrix Dg are found by implicitly differentiating the functions

g; (with multivariate chain rule) from equations (4.49) with the help of equations
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(4.50).

dyy = 0 _ 1 —f120u®,1 _ 1 —f12d21’

fe fu fu
f12<7p ) fi2daa
dlg:e“@ﬁz_ .f11®2:_ fll ’
Do — & _ K [2f11M®,1(C®,2 - C%@,l) + f21(M®,2 - Ng@,l)}
2 e fulcos — 1)+ K(pea — 5 1) (fiifor — frafor)’
K fi1(cgz — 1)
dy2 = Opg o =

fuleos —c31)? + K(pga — p131) (fiifoor — fiafar)

2
where K := 3,/ %. Hence the asymptotic result (3.31) becomes
, ®,1

@,?n) ~ AN ((9,0),n‘1D®2®D'®> .

Example 4.20. Payment-per-loss Data.

(4.51)

Consider an observed i.i.d. sample 21, ..., z, defined by (2.14). Then, as in Example

4.15, the linearly transformed i.1.d. sample 2* +d, ..., ** + d is exactly the sample

[

¥, ..., z)" treated in Example 4.18 with d =¢ and u =T
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Chapter 5

Real Data Illustrations

In this chapter, we study the practical performance of the estimators developed in
Chapter 4. Specifically, we fit Pareto I and lognormal models using MLE and MTM
approaches to the Norwegian fire claims data for the year 1983. After validating
the models, we use them to price an insurance contract and investigate the effect of
model estimation on the actuarial premium.

Let us start by introducing the data set.

Data set is available at

http://1lstat.kuleuven.be/Wiley/ (in Chapter 1, file NORWEGIANFIRE.TXT).

It represents total damage done by fires in Norway for the year 1983.

e Losses are measured in thousands of Norwegian kroner. It is unknown if claims

were inflation adjusted.

Only damages above 500,000 are reported (i.e., data is left-truncated at d :=
500,000). The sample size is n = 407.

5.1 Modeling Severity

As can be seen from Figure 5.1, the histograms of data and log (data) are similar to
many insurance loss distributions. Moreover, there are few observations far in the

right tail, which suggests that a right-skewed and heavy-tailed distribution might
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be a reasonable choice. In view of this, we will consider Pareto I and lognormal

distributions.
350
300
250
15 200 :_5
£ 150 j:
100
50 |
D - . _—
a 10 20 30 40 50 13 14 15 16 17 18
Losses (million) Log( Actual Losses)
(a) Original Data (b) Log transformation of the data

Figure 5.1: The histograms of Norwegian fire claims and log-transformed claims for
the year 1983.

The cumulative distribution function (cdf) of the single parameter Pareto and

lognormal models are, respectively, given by

Zo

Pareto I(a, zp) : Fi(x) =1 — (—)a, x> x9, and
x

LN(0,0) : F(z) = ® <M) x>0,

g

where a > 0, —o0 < 0 < 00, and ¢ > 0 are unknown parameters with ® denoting
the standard normal cdf. The parameter x5 > 0 is assumed to be known in advance
and we set it to be o = 1 (i.e., one Norwegian krone).

Since the data is left truncated, we will use MLE and MTM estimators developed
in Examples 4.9 and 4.19, with u = oo. The trimming proportion pairs given by

Table 5.1 will be used:

Table 5.1: Trimming proportion pairs for real data illustrations.

Asymmetric Trimming Symmetric Trimming
Name | MTM2 MTM3 MTM4 | MTM1 MTM5 MTM6 MTM7
a .00 .00 .00 .00 .05 .10 .25
b .05 .10 .25 .00 .05 .10 .25
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Note that as follows from the results of Chapter 6, MTM1 coincides with MLE
for Pareto I. Similar result for the lognormal distribution has been established by
Ergashev et al. (2016). The estimated parameters are listed in Table 5.2 (at the end
of this chapter).

5.2 Model Validation

To assess the quality of fits, we first present the quantile-quantile plots and then

compute two goodness-of-fit statistics and their p-values for the observed data.

5.2.1 Quantile-Quantile Plots

In Figures 5.2 and 5.3, we present plots of the MTM fitted-versus-observed quantiles
for Pareto I and lognormal models. That is, the points plotted in those graphs are

the following pairs:

(log (B [+ (1 = s) ()] ) Jos (a7, )

where F, is the estimated parametric cdf, 13*’ lis the estimated parametric qf (see

Section 2.2 for the corresponding definitions with 7" — oo, and d = t), x},, < -+ <

2i—1
2n

x; ., denote the ordered observed claim severities, and s; = 1= 1,2,...,n,
is the quantile level. The qqg-plot pairs can easily be adjusted for complete loss
data via d — 0. Note that there are nine observations which are exactly equal to
the priority d = 500,000. For the purpose of parameter estimation, construction
of quantile-quantile plots, and for computation of other model validation measures,

such data clusters were de-grouped using the method described in Brazauskas and

Serfling (2003).
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Pareto I Models

Lognormal Models

19 19
18 18 | 1
17 17 1
- = Hlog(w) 2 ]
2% 16 = 16 ]
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15 15 1
14 14 o
13 13
13 14 15 16 17 18 19 13 14 15 16 17 18 19
MTM1 Fitted Exponential Quantiles MTM1 Fitted Normal Quantiles
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data
o

log (
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14 15 16 17 18 19
MTM?2 Fitted Exponential Quantiles

19
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)

log( :

13 14 15 16 17 18 19 13 14 15 16 17 18 19
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18 1 18 1
17 1 17 1
A =
3|g RS
= 16 1 = 16 J
o0 a0
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log (data)

14 15 16 17 18 19
MTM2 Fitted Normal Quantiles

13

14 15 16 17 18 19
MTM4 Fitted Normal Quantiles

Figure 5.2: Log-fitted versus log-observed quantiles of Norwegian fire claims, using MLE (MTM1) and asym-
metrically trimmed MTM estimators. Left panels: Pareto I models. Right panels: Lognormal models. The solid

45° red line represents the perfect fit. The dashed lines reflect contract specifications (to be used in Section 5.3).
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Pareto I Models

Lognormal Models
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Figure 5.3: Log-fitted versus log-observed quantiles of Norwegian fire claims, using MLE (MTM1) and sym-
metrically trimmed MTM estimators. Left panels: Pareto I models. Right panels: Lognormal models. The solid

45° red line represents the perfect fit. The dashed lines reflect contract specifications (to be used in Section 5.3).

54



DiscussioN OF FIGURES 5.2 AND 5.3: All qg-plots seem to be alike for the Pareto
I model regardless of the trimming proportions. Since 45° line is above the data
points, Pareto I models seem to overestimate the right tail of the data. In contrast,
all lognormal models underestimate the right tail of the claims. Also, this model
is quite sensitive to the choice of the trimming proportions. Overall, we can infer
from the qg-plots that the single parameter Pareto models capture the pattern of
the data better than the lognormal counterparts. O]

5.2.2 Goodness-of-Fit Statistics

To formally assess the “closeness” of the fitted model to the observed data, we will
measure the distance (according to a selected measure) between the truncated em-
pirical distribution function F,(z) = £ 3"  1{d < x; < x} and the parametrically
estimated left truncated (at deductible d = 500, 000) distribution function:

F(x) - F(d)

E@=="%0

, x>d.

There are multiple options available to accomplish this task, for example, the mean
absolute deviation is used both in Brazauskas et al. (2009) and Zhao et al. (2018a),
but in this dissertation we choose to work with two popular discrepancy measures

for individual data. They are (see, e.g., Klugman et al., 2012, Chapter 16):

i. mazimum absolute distance: Kolmogorov-Smirnov (KS) statistic, and

ii. cumulative weighted quadratic distance: Anderson-Darling (AD) statistic.

The Kolmogorov-Smirnov test statistic for truncated data is defined as

D = max |F,(z) — F.(z)|,

d<z<u

where w is the right censoring point (u = oo if there is no censoring, which is the case
for the data considered in this chapter). For computational purposes, the following

form is more convenient:

B, - & } |




where 27, < x5, <-.- < denote the ordered claim severities. The Anderson-

Darling test statistic for truncated data type is defined as

R - ﬁ*(m)]z R
4 _/d Fu(x) [1 —ﬁ*(x)} Jloyde

And the corresponding computationally convenient form is given by

k ~
A = —nBw) 0} 11— Fy ()] log (%)
i=0 — I \Yit1

k ~
. ”Z [Fn<yz)]2 log <M) 7

i=1 (i)
where the unique non-censored data points are d = yp < y1 < -+ < yYp < Y41 =
u < oo. If u = o0, i.e., the observed data is only left truncated (no censoring), then
k—1 =~
A = —n+n) [1—F(y))log <A—(y))
i=0 1-— F*(yl—i-l)

Both KS and AD test statistics can be reduced to the complete data case by
letting w — oo and d — 0. The formal hypothesis testing results are summarized
in Table 5.2. There we arrive at similar conclusions to those based on the qg-plots,

i.e., Figures 5.2 and 5.3.

DiscussioN OF TABLE 5.2: The p-values of both KS and AD test statistics for
single parameter Pareto are larger than the corresponding values for lognormal mod-
els. For any trimming proportion, both KS and AD p-values for Pareto models are
slightly higher than the corresponding values for lognormal models. Further, AD
p-values for Pareto models fitted with MTM1, MTM3, and MTM6 exceed 0.10,
which indicates that the single parameter Pareto is a plausible model for the data
fitted with those trimming proportions. Neither KS nor AD p-values are higher

than 0.10 for any trimming proportion used to fit lognormal models, which means
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that lognormal distribution may be inadequate for this data set. O]

5.3 Actuarial Premiums

We now consider estimation of the severity component of the pure premium for an
insurance benefit equal to the amount by which a fire claim exceeds 1.5 million with

co-insurance factor ¢ = 0.8 and the maximum paid benefit of 10 million. That is,

Deductible: d* = 1,500, 000;
Policy Limit: u = 14,000,000; and

Co-insurance factor: ¢ = 0.8.

Note that there are five claims larger than u. Now, consider the random variable Y

defined by equation (2.10) with the above specifications. That is,

. 0.8(X —1.5), 15<X <14
YL X|X >d = (5.1)
10, 14 < X.

Then, we seek

cH{E (X Au) —E(X Ad*)}

H[F] = E[Y] = ]P’(X N d*)

(5.2)

A [ = d)artale) + (- ai - Fuie)
P(X > d*)

08 {/14 (z — 1.5) dF(z]0) + 12.5(1 — F(14))}
' P(X > 1.5) '

The premium values including their corresponding 95% confidence intervals (CIs)
with different fitted models are summarized in Table 5.2. We can compare the
estimated parametric premiums, II[F], with the empirical premium II[F,,], where
F,, denotes the empirical distribution function and m = " 1{z; > d*}. By

Central Limit Theorem,
[F,] ~ AN (L[F],m™'Var(F)),
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where Var(F) = E[Y?] — (E[Y])*. Thus, II[F,,] is simply the sample mean of the
random variable, Y, and the sample variance of II[F},] is the sample variance of ¥
divided by the number of observations above 1.5 (million).

On the other hand, the asymptotic distribution of H[ﬁ | can be established by

using the asymptotic normality results for parameter estimators in conjunction with

the delta method. That is, by Central Limit Theorem,
HF) ~ AN (I[F], 0™} (VIF)) Sy (VI[E]))

where VII[F] is the gradient vector evaluated at the parameter vector 8 and X is

the variance-covariance matrix of §n In particular, for Pareto I(c, 29 = 1) model,

VII[F) = dgLF |

67

_oedt (AN (d\] e
Ca—1\u -« &\ (a—1)%’

and ¥, = DgXg D, with Dg and Xy as given by Example 4.9. Similarly for

Lognormal(6, o) model,

00 ' Oo (970)’
with
OUF] o[ gr2? OH(0,0) 0Kor  ,0Ko,
W_CK(M |:{6 H(@,O’)—FT +u 89 d (99 KO,t
— (60+7H(9, O') + UKO,T — d*K07t> WM} ,

OIF] o[ pee? 0H(0,0) 0Kor 0K,
5o cKy; He oH(0,0)+ . +u i d 5o Ko,
o2 0K,
- (69+7H(9, o)+ uKor — d*K07t> aao’t} :
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where

Ko,T = 1- (I)(Tz)> Ko,t =1- Cb(tz),
H0,0) = ®(T,—0)—P(t, —0),
2l = Lip(t. — o) — G(T. — 7)),
o = ot:—0) (5 +1) = (T o) (4 1),
T = so(t), Tgrt =Lt
[ 5t = 30T, gt = Ro(T),

and 3 = DgXg Dy, with Dg and Xy as given by Example 4.19.

D1scussiION OF TABLE 5.2 (continued): First, note that 1 < & < 2, which im-
plies that the claims distribution is heavy-tailed (because for o < 2, the variance of
Pareto I is infinite). Second, as suggested by model validation, actuarial premiums
based on Pareto I models exceed the empirical premium, and those based on seem-
ingly inappropriate lognormal models are significantly below. Although the latter
observation may not be accurate as the MLE, MTM2, and MTM5 based fits look
good. Third, it is quite surprising and counter-intuitive to see that the premium
estimates change less for MLE than MTM estimators, when the distributional as-
sumption is changed. Further, for Pareto I model, CIs via MTM are very close to
CI via MLE. For lognormal model, CIs via MTM are mush shorter than the corre-
sponding CI via MLE. Finally, the main advantage of parametric procedures (both
MTM and MLE) over the empirical approach is that, in general, all the parametric
intervals are shorter than the empirical one. It is also evident from the model valida-
tion and premium calculation that the MTM approach with appropriate trimming
proportions lead to premium point estimate which are closer to empirical counter

part than those with over-cutting (i.e., MTM4 and MTMYT). O

59



Table 5.2: Goodness-of-fit measurements, parameter estimates, actuarial premiums and 95% confidence
intervals of the premium for the layer [1,500,000; 14,000, 000] with co-insurance factor ¢ = 0.8.

. Pareto I Model Lognormal Model
Estimators =
Zo a AP (x10%) CIs (x10°) 0 o APs (x10% CIs (x10)
MLE = MTM1(a = .00,b = .00) 1 1.18 2.21 (1.95,2.47) | 6.04 2.71 1.94 (1.05,2.84)
MTM2(a = .00,b = .05) 1 1.16 2.26 (1.98,2.54) | 8.02 2.37 1.85 (1.36,2.35)
MTM3(a = .00,b = .10) 1 1.15 2.27 (1.98,2.56) | 10.74 1.77 1.61 (1.37,1.85)
MTM4(a = .00,b = .25) 1 1.12 2.36 (2.02,2.69) | 12.63 1.17 1.13 (1.10,1.16)
MTM5(a = .05,b = .05) 1 1.16 2.27 (1.98,2.53) | 8.12 2.35 1.85 (1.24,2.46)
MTM6(a = .10,b = .10) 1 1.15 2.26 (1.98,2.56) | 10.78 1.76 1.60 (1.29,1.91)
MTM7(a = .25,b = .25) 1 1.13 2.32 (1.99,2.65) | 12.89 1.05 1.02 (0.61,1.42)
Empirical - - 2.20 (1.54,2.89) - - 2.20 (1.54,2.89)
Goodness-of-fit Measures KS AD KS AD
TS  p-val TS p-val TS  p-val TS p-val
MLE = MTM1(a = .00,b = .00) | 0.062 0.02 1.822 0.12 0.044 0.02 1.242 0.03
MTM2(a = .00,b = .05) | 0.057 0.02 1.681 0.08 0.041 0.01 1.209 0.01
MTM3(a = .00,b = .10) | 0.056 0.02 1.658 0.16 0.035 0.01 1.323 0.01
MTM4(a = .00,b = .25) | 0.048 0.05 1.700 0.05 0.053 0.01 3.246 0.01
MTM5(a = .05,b = .05) | 0.057 0.02 1.683 0.08 0.041 0.01 1.208 0.01
MTM6(a = .10,b = .10) | 0.056 0.02 1.665 0.16 0.035 0.01 1.334 0.01
MTMT7(a = .25,b = .25) | 0.051 0.03 1.646 0.02 0.060 0.02 4.367 0.00

KS = Kolmogorov-Smirnov; AD = Anderson-Darling; TS = Test Statistics; p-val = p-values; AP = Actuarial Premiums; Cls = Confidence

Intervals. The p-values are computed using parametric bootstrap (see, e.g., Wasserman, 2006, Chapter 3) with 1000 simulation runs.
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Chapter 6

Methodological Extensions

In this chapter, we use the ideas of loss data scenarios of Chapter 2 to construct
novel estimation procedures for complete data given by (2.1). We develop and
study asymptotic properties of the newly proposed estimators. Several connections

between data truncation, trimming, and censoring will also be established.

6.1 Method of Truncated Moments

Instead of trimming fixed proportion from both tails as investigated by Brazauskas
et al. (2009), in this approach of parametric estimation we truncate the data from
below at lower threshold and from above at upper threshold and then apply the
method of moments on the remaining data. We call such an approach method-of-

truncated-moments (MTuM).

6.1.1 Definition

Let X1, Xo, ..., X, be i.i.d. random variables with common cdf F'(-|@). The trun-
cated moments estimators of 6,0, ..., 0, are computed according to the following

procedure.

e The sample truncated moments are computed as

T < X< T)
’ o Wty < Xi <T3}

1<j<k. (6.1)

The h/js in (6.1) are specially chosen functions as well as the thresholds ¢; and
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T; are chosen by the researcher. In general, it is reasonable to assume that

Xim <t; <Tj; < Xpp, forall 1 < j <k.
e Derive the corresponding population truncated moments as

,uj(91,92, 79k) =E [h](X)|tj < X< T‘j]
E

[hi(X){t; < X < T3}
P(t; < X <Tj)
[V () f(2|0) dz

SR - Fey SISk (62

e Now, match the sample and population truncated moments from (6.1) and

(6.2) to get the following system of equations for 0y, 05, ..., 0y :

#1(91, cee ,Hk) = W
: (6.3)

~

:uk’<01a s 79k) = Mk

Definition 6.1. A solution to the system of equations (6.3), say 0= (51, 52, s (9};),
if it exists, is called the method of truncated moments (MTuM) estimator of 6. Thus,
@- =: g; ({1, a2, -y i), 1 < j < k are the MTuM estimators of 0y, 0, ..., 6.

6.1.2 Asymptotic Properties

For 1 < j,j" <k and for any positive integer n, define 1{t;;; < X < T} = 1{t; <
X <T;}1{t; < X < Ty} and consider the following additional notations:

Zj = hi(X),  hyj(x) == hi(@)hy (), p; = F(T;]0) — F(t;]6),

7y = hy(t)), Wi = Zil{tjyp < X < Ty}, pinm = Fu(T5) — Fu(ty),

where F,(z) = 23" | 1{X; < x} is the empirical distribution function. Note that
Y =Y but Wj; # Wy for j # j', in general. With those notations, the density
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of Y;(1 < j < k) can be expressed as

1_FZj(Rj|0)+FZj(Tj|0)7 .1':0,
fy,(x) = [fz,(x]6), rj <z < Rj;
0, otherwise.

The density of the random variables Y = Yj,; and W, can be constructed with the
four possible scenarios which are listed in Appendix A. To establish the asymptotic
distribution of p, we need the following lemma (its proof can be found in Serfling,

1980).
Lemma 6.1. For1<j,j <k,
Cov(Y},Yy) = Hy 0 — Ry -y
Cov(Yjipjr1) = bw,, — fv; Dy,
Cov(pjr;pjra) = pjy — pipy-

Consider a 2k - dimensional random vector V' := (Y1,...,Yi,p11,. .., Dk1)-

Clearly the mean vector of V' is py = (ftyys-- - fbyys P15 - - - D) and with Lemma

. . o 2k
6.1, the variance-covariance matrix is Xy = [U%’Jj’}j,j’: X where
:LLY]-J-/ - MYJMYJ/? 1< juj/ < k7
o2 S Wiy Y Pi—k 1<j<kk+1<j <2k
Vil = : )
P mwy gy — B Dk 1<) <kik+1<j<2k;
DG—k)(j —k) — Pj—kDj'—k> E+1<j,5 <2k

Theorem 6.1. The empirical estimator

1 n n n n
ﬁv = ﬁ (Z Yl,i7 ey ZYk,i7 Zpl,’h ey Zpk‘,z)
=1 =1 =1 =1
= (71,n7 s 77k,n7p1,na s 7pk,n)

of the mean vector py has the following asymptotic distribution:

~ 1
py ~ AN (H'V7 Ezv) -
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Proof. Let {V,} be a sequence of i.i.d. V random vectors, then by multivariate

Central Limit Theorem (see, e.g., Serfling, 1980), we have:
_ — 1 — 1
(Yl,n7"'7Yk‘,n7p1,n>"'7pk‘,n) = _Z‘/;’ ~ AN l’l’Vy_EV . [l
n ‘< n

The system of MTuM equations (6.3) can be written as:

_ -~ . ?l,n
Nl(ela CC 7616) = M1 = Pl
: : (6.4)
pe(O1, . 0k) = i = ;::
Lemma 6.2. Consider a function gy : R* — RF for & = (21,29, ..., 7o) defined

by

(@) = (@)@ = ()

bl )
Th41 Lok

where x; # 0, i = k+1,...,2k. Then gy is totally differentiable at any point

g € R2*.
Proof. A proof directly follows from Serfling (1980, Lemma 1.12.2). ]

With the help of Theorem 6.1 and Lemma 6.2, we are now ready to state the

asymptotic distribution of the truncated sample moment vector f.

Theorem 6.2. The asymptotic joint distribution of the truncated sample moment

vector (i1, ..., [x) is given by N (u, %E) with 3 = Dy Xy Dy, =: [Uf-j,}kxk, where

2

2 ]_ (,U/ij/ - ,UYJ,UY], . :uY] (/’LW]-J-/ - /’LYJ/pJ)>
Pj p;

by, (,LLWjj/ — Hy;py (P —pjpj'>>

i p; v;

Proof. See Appendix A. O

Now, with fi = (i1, fix) and go(8) = (g1.6(R), .- -, gre(i)) = O, then again

by the delta method, we have the following main result of this section.
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Theorem 6.3. The MTuM estimator of 0, denoted by 5, has the following asymp-

totic distribution:

6= (0.....0.) NAN(O,%DED) ,

where the Jacobian D is given by (see Theorem 1.1) D = {agj’e = [djj]n

on,

-
and the variance-covariance matrix 3 has the same form as in “Tfjeolz"xel;n 6.2.
Note 6.1. In view of the above derivations, we notice that data trimming and
thus MTM can be interpreted as special cases of data truncation and thus MTuM,
respectively. To see that, let F' be the distribution function of X. For 1 < j < k,
consider F'(t;|0) = a; and F'(T;|@) = 1 —b;. Then, using integration by substitution
with U = F(X), the equation (6.2) becomes

S hy(@) f(x]6) da

0O O = R o) — R0

F(T;]0 _
e hi(F T (]6)) du

t;16)

(6.5a
F(L16) -~ F (10 )
1-b;

L h(F N (u)0)) du
oy , (6.5b)
1— a; — bj
which is equivalent to (3.17). O

Note 6.2. For estimation purposes these two approaches (i.e., MTM and MTuM)
are very different. With the MTuM approach, the limits of integration as well as the
denominator in equation (6.5a) are unknowns, which creates technical complications
when we want to assess the asymptotic properties of MTuM estimators. On the other
hand, with the MTM approach, both the limits of integration and the denominator
in equation (6.5b) are constants, which simplifies the matters significantly. Indeed,
as is evident from complete data examples in Chapter 4 (as well as those presented
by Brazauskas et al., 2009 and Zhao et al., 2018a), MTM leads to explicit formulas
for all location-scale families and their variants, but that is not the case with MTuM.

In view of this, we will consider the MTuM approach further only for some data
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scenarios, but not all. O

6.2 Exponential and Pareto Models

In this section, we derive MTuM and related estimators for the parameter of expo-
nential distribution for completely observed data. For this particular distribution,
we also explore two additional methods: method of censored moments and insurance
payment-type estimators. Several connections between different approaches are es-
tablished. For insurance losses the equivalent (after the logarithmic transformation)
model is Pareto. Thus, the estimators derived in this section can easily be adjusted
for Pareto model. Their asymptotic properties will remain valid as well.
As in Section 4.1, let X ~ Exp(#) with cdf F(z]f) =1 — e~ % and pdf f(z|f) =
e~@, x > 0. Since there is a single parameter, 6, to be estimated, as in Section

1
0
4.1.2, we consider the function h(z) = x.

6.2.1 Method of Truncated Moments

Let Xi,..., X, be i.i.d. random variables defined by (2.1). Consider ¢ and T be the
left and right truncation points, respectively. Then the sample truncated moment

is given by

PE S 1{t< X, < T}
N n S I{t< X; <T}

_ (Y /n
Fn(T) - Fn@)

_ ?n
B Fn(T) - Fn@)
—_ ?n

Pn’

where Y7,Y5,....,Y, ey = X1{t < X < T} and p, := F,(T) — F,(t) with

T
0

p(0) = F(T]0) — F(t|) = e 0 —e 5.
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Theorem 6.4. The mean and the variance of the random variable Y are respectively

given by

py =60 (e’g — e’%> tte T — Te’%,

T t
oL = 26° (r (3; 5) -T <3; 5)) — 3,

where T'(a; x) with o > 0,2 > 0 is the incomplete gamma function defined as

1 T
[(agx) = m/o t* e tdt,

INa) = / t* et dt.
0
Proof. See Appendix A. m

From Theorem 6.2, i ~ AN <“7Y, 2 <(;—% - (1—%,@». Note that the asymptotic
variance of [1 is exactly equal to the approximation through the second order Taylor
series expansion of the ratio of the asymptotic distribution of Y,, and p, as mentioned
in Hayya et al. (1975).

The population version of ji is given by

pe = E[X[t<X <T]

E[Y]
F(T]0) — F(t]0)

0 (e‘g — 6_%> +te~s —Te 7
F(T0) — F(t]0)

where piy = e (0 +1t) —e 7(0+T).

Theorem 6.5. The equation p, = ji has a unique solution gprom'ded that t < p <

#. Otherwise, the solution does not exist.
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Proof. Tt is clear that t < i < T. Also, () = <2U+=c L It " Then, in order

e 60— 7

D+

to establish the result, it is enough to prove the following Statements:
1. p.(0) is strictly increasing,
2. limy o4 p4(0) = t, and

BT

3. limg o0 114 (0) =

First of all, let us establish that p.(0) is strictly increasing.

_t _ T
p(0) = -+ 0.

Lop(l) =

t t t 2
— () (0)°) + e (e o)
t T 2
(=)
t ¢ 2
— e~ (12 + T + 8tTe 5" + 467 ( -5 _ e—%)

492<e T —e %>

t+T

e—[ A(t2 + T?) + ST + 46 ( Tﬂ

LT t—T
e 6 462 <eW — e~ T )

_ 4(t—T)"

- - 2
492<6%—e_%>
() (=)
29 e%_ef%

Therefore, p, () > 0 if and only if (5 T) < sinh® (1), which is true since z <

sinh z for all x > 0 and z > sinh z for all x < 0.
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Further,

te=t — Te™ 7
lim p.(0) = lim |0+ - —
0—0+ 0—0+ e 0 —e 0
6_5 <t — Tet; )
= lim

=t.

) te s —Te @

lim g, (0) = lim |0+ - —
60— 00 —00 €0 —e
y::é . |:1 te_ty Te_Ty}
=" lim |-+

y—0+ Yy e*ty e*Ty

oo [1 teT Wy T
- yli}(l)l—l— _; ety 1 }

. [eT= — 1 4 tyeT= — Ty
= lim

y—0+ | y (eT—y — 1)

[Ty — 1 —ty — (T — t)y + tyeTDy

= lim
y—=0+ | Y (e(T*t)y — 1)
[l 1) @y
o yi%le Y (e(T*t)y — 1) N Y (e(T*t)y — 1)
T —t)yy — ey 41
=t— lim ( Jy—e +
y—0-+ y (eT=ty — 1)
T —t) — (T —t)elT=y

=t— lim ( )~ Je

y=0+ Ty — 1 4 y(T — t)e(T—ty

) —(T — t)%eT—1y
—t— i
yo04 (T — 1)@= 1 y(T — 1)e@—0v 1 (T — )eT—0y

(T —)?
T—t+T—t
t+7T

5

=t+
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Let ¢ := dd—g, then
o

Therefore, by the delta method (see Theorem 1.1), we have that

and hence from Example 4.1, we have

Table 6.1: ARE(@MTUM, é\MLE) for selected ¢ and T for Exp(f = 10).

0 =

po”

te 3 (0+1t)—Te o (0+T)+ pb? — pu, (te_g — Te_%> '
0 ~ AN <9, (0)? (

ARE<§MTuMa ‘/g\MLE) =

2

Oy
np?

92]93

(1—p)uy
np3

)

(0 (o2p— (1 —p)pi3)

Table 6.1 provides numerical illustrations of ARE computation.

Ta - rerioy

t(F(t|9)) 00(.00) 29.96(.05) 23.03(.10) 18.97(.15) 13.86(.25) 7.13(.49) 3.57(.70) 1.63 (.85)

0(.00) 1 AT78 311 216 .109 .021 .003 .000
05105 | .950 443 284 193 .095 .016 .002 .000
1.05¢10) | 900 408 257 172 .082 .012 .001 .000
16315 | .850 373 231 152 .069 .009 .000 -
2.88(.25) | .100 307 182 114 .047 .004 .000 -
6.73(.49) | .H10 161 .080 .042 011 .000 - -
12.04¢70) | .300 057 .019 .006 .000 - - -
18.97(s5) | .150 .009 .001 - - - - -

DiscussioN oF TABLE 6.1: The truncation thresholds ¢t and T" are rounded to two

decimal places; for example, 0.51 ~ F~1(0.05), 18.97 ~ F~1(0.85), etc. The entries

are all smaller than the corresponding entries for MTM. For example, if the lower and

upper truncation thresholds are, respectively, t = F~1(0.05) and T'= F~'(0.95) then

ARE(/H\MTuM, @\MLE) = 0.443 but with similar trimming proportion (i.e., a = 0.05 =

b), ARE(@’\MTM, @\MLE) = 0.918. That is, we loose approximately 52% efficiency by
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going from MTM to MTuM. The reason that MTuM relative efficiency is much lower
than the corresponding MTM is that the trimmed sample size is always constant
given that the trimming proportions are fixed. On the other hand, even if we fix
the truncation thresholds, the truncated sample size is random. O

Note that if X ~ Pareto I («o,z9) with 2o known then Y := log (f—()) ~
Exp(é =: 9). So, estimators of « of the single-parameter Pareto distribution will
share the same AREs with estimators of Exp(6), given that h(z) = log (;—0> The
following result for single-parameter Pareto has been partially derived by Clark

(2013), but can easily be extended using the tools of this section.

Theorem 6.6. Let t and T be the left and right truncation point, respectively, for
X ~ Pareto I(a, zg). Also, define Ayp := T (1 — alog (”“;—0)) — (1 — alog (%0))

and gip(@) = a(TﬁtftQ). Then the equation i = . has a unique solution provided

that lim, o gir(@) < [t < limy 04 ger ().

Proof. See Appendix A. n

6.2.2 Method of Fixed Censored Moments

Let X1, X,,..., X, R Exp(0) random variables. Also, let ¢t and 7" be the left- and

right-hand side censored points (see Section 2.3), respectively. The sample censored
mean is given by

n

=

Define X*™* =t1{X <t} + X1{t < X < T} +T1{X > T} as in Section 2.3. Then

the corresponding population censored moments are:
s = E[X*] = t(1 = 77) + py + Te ™7,
pxeye = B[(X™)?) = 2 (1 — %) + E[Y?] + T% 7.
Thus, 0%.. = fi(x=)2 — p2,. Moreover, setting ji,, = i implies
t+6 (e*% . e*%) — 7
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Theorem 6.7. The equation [i = ji. has a unique solution é\pmvided that t < 1 <

T. Otherwise, the solution does not exist.

Proof. Assume t < 1 < T. Let () =t +6 (e‘é — 6_%>. Now, in order to
have unique solution it is enough to show that p.(#) is strictly increasing with

limg 04 fsx(0) = t and limg_, p124(0) = T'. Clearly,

r
9 .

/ 1 t t
. (60) = i <t6_5 — Te_%> +e b —e”

So,

!

ﬂ
\

Tt (TH)
= T+0<(t+0)(1+ 7 +(g,) +)

< T+ 60 < T+ 0+ a positive term.
Thus, ., (0) > 0 and hence p,.(0) is strictly increasing. Moreover,

lim p1..(0) = t.

0—0+
e‘%—e‘%
lim f1.,(0) = li t
@)= fi
=T—-t+t=T O

Further,

fhes = E[X™]

e+
</~

= u**zt—te_g—i—@(e_ —e >+t€_%—T6_% +Te o

t T
= e =1t+0 (e‘ﬁ —e_?)
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0

= 0 = - =
ph+te o —Te @
Theorem 6.8. For method of censored moments (MCM) with a =
1 — F(T|0), then the following result holds:
ARE(Oucnr,Onre) = AREB@urar, Oviir)-
Proof. From Example 4.6, we know that
0? J(a,1—10)
7 ~ ith A= ———-
wra AN (0.28) i &= e
where
1-b
/ / ® min{u, v} — Y g du
(1—wu)(1l— v)
Therefore,

~ ~ 1 [I(a,1—0)]?
RE(Oyra, Orvie) A T(a,1—1)
On the other hand,

(pf + te 0 — Te7)>2

2
O—X**

ARE Oy, Oriis) =

So, we need to show that,

ARE(@MCM, é\MLE) = ARE(é\MTM> @\MLE)
62[I(a,1 —b)]?

2
O-X**

That is, J(a,1 —b) = 0%2**

F(t|0) and b =

¢ t T T
Oxee = (1 —e )+ 20 [F <3; 5) -T (3; 5)} + T 7 —t* — 2t0p — 6°p?

= 20°(1 —a—b)+20(—0(1 — a)log (1 — a) + Oblog (b))

—60(1—a—"0b)(—20log(1—a)+6(1 —a—10)).

= 2(1—a—0)+2(blog(b) — (1 —a)log(l—a))
—(l—a—-0b)(1—a—0b—2log(1—a))

73



= 2(1—a—b)+2blog (b) — 2(1 — a)log (1 — a)
—(1—a—>b)+2log(l —a)+2log(l—a)
+a(l—a—b)—2alog(l—a)

1 b(1—a—b)—2blog(1 - a)

= (1—a—b)+2blog(b) —2(1 — a)log (1 — a)
+2(1—a—"b)log(l—a)+a(l—a—0)+b(1—-a—10)

= al—a—b)+(1—a—b)log(l—a)
+(1—a—b)—2(1—-a)log(l—a)+(1—a—b)log(l—a)+blog(b)
+b(1—a—b)+blog (b)

= a(l—-a—b)+(1—a—>b)log(l—a)
+(1—a—b)—2(1—-a)log(l—a)+(1-a)log(l—a)—blog(l—a)
+blog (b) + b(1 — a — b) + blog (b)

= al—a—b)+(1—a—b)log(l—a)
—[~(1—a—"b)+(1—a)log (1 —a) - blog (b)]
—b[(a—1+1b)+1log (1 —a) — log (b)]

= (1—a—-"b)la+log(l—a)]—I(a,1—-0)
+(1-=b-1) [a—1+b+log(1_Ta)]

= (1—a-b)fatlog(l—a)]—I(a,1—b)+(1—b—1)I(a,1—b)

= J(a,1—0).

du=(a—1+0b)+log (Ta)

Table 6.2 provides numerical illustrations of ARE computation.

u

O

1-b
where [1(a,1 —b) := /

1—u
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Table 6.2: ARE@\MCM, §MLE) for selected ¢t and T for Fxp(6 = 10).

Ta - reriey
t(F(t|9)) 00(.00) 29.96(.05) 23.03(.10) 18.97(.15) 13.86(.25) 7.13(.49) 3.57(.70) 1.63 (.85)
0(.00) 1 918 847 783 .666 423 238 116
0.51(.05) 1 918 .884 783 .667 425 242 122
1.05(.10) 1 918 .848 785 .669 430 .250 135
1.63¢15 | .999 918 .850 187 672 A37 .260 -

2.88(25 | .995 918 .851 790 .679 .452 .284 -
6.73(49) | .958 .897 .839 786 .688 487 - -
12.04¢70) | .8H7 .824 781 738 .659 - - -
18.97(s5) | .681 .688 .663 - - - - -

DiscussioN OF TABLE 6.2: The truncation thresholds ¢ and 7" are rounded to two
decimal places; for example, 0.51 ~ F~1(0.05), 18.97 ~ F~1(0.85), etc. Due to
Theorem 6.8, this table is identical to ARE (gMTM, gMLE) table which can be found
in Brazauskas et al. (2009). O

6.2.3 Insurance Payment Estimators

Let Xi,...,X, be i.i.d. random variables with common exponential cdf F(-|0).

Define the left- truncated (at ¢) and right-censored (at T') sample moment

ﬁZEXﬂXﬂﬁ<Xmﬂ?+TZLJL&>T}
> i X >t}

X®,
Pn

where X® = X1{t < X < T} +T1{X > T}, p, =1— F,(t), and p = 1 — F(t|6).

The covariance of X® and p; is given as
U§<®p1 = Cov(X®,p1) = puxe (1 — p),
with
E[X®] = py + T(1 = F(T10)),

E[X®*] = E[Y?] + T*(1 — F(T|0)).
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Then, by multivariate Central Limit Theorem, we have

(X%, 00) NAN((MX@) ) 1 [‘ﬁc@ 0Xep D
ny Mn ) ’n U§(®p1 p(l—p)

Then, by the delta method (Theorem 1.1) with a function g(z1, z2) = *, we have

ﬂ:WnNAN(MX@) 1(0§<® _U%{@(l_P))>
P p ‘n\ p? P

The population version of j1 is given by

__E[X7]
He = 1T F@lp)

0 (e‘é — 6_%> +te" @

e

= Mg =

e+

2
9/ . pe

= = .
62 (6’5 - e’%) +40 <te’5 — Te’%> +t2p — tpug

Therefore, again by the delta method, we get:
92]93
(‘9/)2 (PO’% - (1 _p)/@(@) .

Table 6.3 provides numerical illustrations of ARE computation.

ARE(é\MTCMy é\MLE) =

Table 6.3: ARE(@MTCM, é\MLE) for selected ¢t and T for Exzp(f = 10).

Ta = rriey)
t(F(t|9)) 00(.00) 29.96(.05) 23.03(.10) 18.97(.15) 13.86(.25) 7.13(.49) 3.57(.70) 1.63 (.85)
0(.00) 1 918 847 783 .666 423 238 116
0.51¢05) | .950 .868 798 753 .619 .379 197 .076
1.05¢10) | .900 .818 749 .686 572 .336 156 .038

1.63(15) | .850 .769 .700 .638 .525 .293 .116 -
2.88(25) | .7H0 .670 .603 .542 433 .208 .038 -
6.73(49) | .H10 433 371 315 .216 .015 - -
12.04¢70y | .300 .229 173 124 .039 - - -
18.97(85) | .150 087 .040 - - - - -

DiscussioN OF TABLE 6.3: The truncation thresholds ¢ and 7" are rounded to two

decimal places, for example, 0.51 ~ F~1(0.05), 18.97 ~ F~1(0.85), etc. Comparing
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the corresponding entries among Tables 6.1, 6.2, and 6.3; the entries in 6.1 are the
lowest and in 6.2 are the highest. The reason that the entries in Table 6.1 are the
highest is that the observations beyond the truncation thresholds are disregarded
in order to control the influence of extremes in the statistical inference. The MCM
controls such influence of extremes differently, i.e., those observations which are
beyond the thresholds are adjusted to be equal to the corresponding thresholds and
hence increase the efficiency significantly (Table 6.2). MTCM controls the influence
of extremes by disregarding the observations below lower threshold and adjusting
the observations above upper threshold to be equal to the upper threshold which
makes the entries in Table 6.3 in between Table 6.1 and Table 6.2. [

Theorem 6.9. The equation ji = g has a unique solution é\prom'ded that t < <

T. Otherwise, the solution does not exist.

9(67%—6_%>+t5_%
Proof. Assume t < 1 < T. Again, let ug(0) = : . Then in order

e 0

to have unique solution, it is enough to show that ug(6) is strictly increasing with

limg_,04 pg(0) =t and limg_,o pe(0) = T'. Clearly,

t=T

0—ecao (T'—t+0)

s (0) = 7
So,
e (6) > 0
= e%(T—t+9)<8
e T—t+0<fe

T T1)?
— T—t+0<0<1+ t+(;|) +>

0

— T —-t+60<T—1+ 0+ a positive term.
Thus, 115(6) > 0 and hence fig(6) is strictly increasing. Moreover,
li =t.
e () =1
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lim pg(f) = lim [6 — e T + t]

f—00 f—00
-1 (L)
= lim [0—0(1+ +(") o ||+t
0—o00 9 2'
=—t+T+t="T. O

In Figure 6.1, we illustrate how these three approaches - MTuM, MCM, and
MTCM - act on the underlying quantile function and thus data.

MTuM MCM MTCM

15

15

15

. . . . . . . . 15 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

u u u

MTuM - Method of Truncated Moments
MCM - Method of Censored Moments
MTCM - Method of Left Truncated and Right Censored Moments

Figure 6.1: MTuM (left panel), MCM (middle panel), and MTCM (right panel).

6.2.4 Grouped Data

To protect the privacy of policyholders (e.g., individuals, small businesses, privately
owned companies, local government funds), data vendors and publicly available
databases provide summarized data, in a grouped format. For statistical inference,
we view such data as i.i.d. realizations of a random variable that was subjected to

interval censoring by multiple, say m, contiguous intervals. That is, in the complete
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data case, we observe the following empirical frequencies of X:

I/P\)[Cj_l <X < Cj] = Fn(Cj) — Fn(cj—l) = %, 7=1...,m+1,

where F,, denotes the empirical distribution function, n = Z;njll n; is the sample

size, and the group boundaries satisfy 0 = ¢y < ¢; < -+ < o1 < G < Cpy1 = 00.

Computation of the empirical distribution function at the group boundaries is
clear, but inside the intervals we consider the linearly interpolated empirical cdf as
defined in Klugman et al. (2012). The linearly interpolated empirical cdf, called
“ogive” and denoted by F},, is defined as

Fo(z) = ﬂpn(cj_l) i

Cj — Cj_l Cj — Cj_l

an(Cj), cio1 <z <c¢j j<m. (6.6)

The corresponding linearized population cdf F} is defined by

92 F(c;-1]0) + fj:cc’;llF(ch), ciii<wz<cj j<m

F = ¢j—Cj—1
(@) { F(z|0), T > Cp.

(6.7)
It is important to note that the empirical distribution F), is not defined in the
interval (¢, 1 = 00) as it is impossible to draw a straight line joining two points

(Cm, Fr(cm)) and (0o, 1) unless F,(c,,) = 1. The corresponding density function f,,

called the histogram, is defined as

Fn i) T Fn j— j .
fn(l') = (Cj) (CJ 1) = " , Cj—1 <x < Cj, J < m, (68)
¢ = ¢ n(cj = ¢-1)

where n; is the frequency of the interval (c;_q, ¢;].

The empirical quantile function (the inverse of F,) is then computed as

Fol(s) = oy + 9 ;:(JCJB)(_S ;n i ’;(_‘ij)l)), Fu(cj1) < s < Fu(c;), j <m. (6.9)

Similarly,

cj—cj—1)(s—F(c;—1]0 . ‘
Frsl) = 901+ R S Fleld) <s < Fleld), j<ms
F~1(s]9), s> F(cmlf).

(6.10)
As was the case with individual data, defined by (2.1), the loss variable X
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observed in a grouped format may also be affected by additional transformations:
truncation, interval censoring, coverage modifications. In those cases, the underlying
distribution function would have to be modified accordingly. For example, if m
groups (n observations in total) are provided and it is known that only data above

deductible d appeared, then the distributional assumption is that we observe
@[Cj,1<X§Cj‘X>d}:%, j:1,...,m—|—1,

with the group boundaries satisfying d = ¢y < ¢; < -+ < ¢ < Cpy1 = 00.

By using the empirical cdf (equation 6.6) and pdf (equation 6.8), the sample
truncated moments for a grouped data corresponding to the equation (6.1) is given
by

1 B .
E,(T;) — Fn(tj)/tj hj(z) fo(z)de, 1<j<k (6.11)

0=

Note that F}, is not defined on the interval (¢,,, ¢;,11) as it is impossible to linearly
interpolate a finite point and infinity. As a consequence, and F; ! is not defined on
the interval (F), (¢, ), 1]. Therefore, in order to apply the MTM approach for grouped
sample then we need to make sure that F, (1 —b) < ¢, that is, 1 — b < Fy,(c).
Similarly, it is required to have the condition T' < ¢,, in order to apply MTuM for
grouped data. Here, we analyze MTuM approach for exponential random variable.
Let t and T be the left and right truncation points, respectively. Let us introduce

the following notations:

pi=p;i(0) = F(gl0) )
Py = Pi(0) = F(¢;|0) — F(c;j-1l0)
Pjn = Fu(c))
o5 = Cov(Fy(cy), (Fulcy)) > for 0<j,j' <m+1;0<i<n.
= Couv(p;,pj’)
ij = 1{X; <¢;}
Jij = 1{X; > ¢} )
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Pj(lfpj/)
-

Proposition 6.1. Suppose 1 < j < j' <m. Then Cov(pjn,1 —pjn) = —
Proof. Clearly,

>y i

Pjn = ==
J n )
n
S Ty
_ i=1 %]
1 _pj,7n - -
n

Therefore,

Cov(pjns 1 = pjrn) = Cov (lel 3 izt i )

n n
1 - -
— ECOU <Z I 5, Z Ji,j/)
i=1 i=1
_ % Z Z Cov (I, Jijr)

k=1 i=1

1 n
= Z Cov (1,4, Ji j7)

i=1
1
= ETLCOU (IL]‘, ']1,]")

— % [E(L jJ1) — E(L;)E(J1 )]

= 10— 50— py)]

(1 — pa
:_p.7< p]) D
n

The following corollary is an immediate consequence of Proposition 6.1.

Corollary 6.1. Let (F,(c1),..., Fn.(cm)) be a vector of empirical distribution func-

tion evaluated at the group boundaries vector (cq, ..., cm). Then, (Fy(c1),. .., Fu(cm))
is AN (F,n™'X), where F = (F(c1]0),...,F(cnlf)), X = [U?j,}?j,zl, with o3, =

02 = F(¢|0)(1 — F(cyr|0)) for all j < j'.
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Assume that ¢g < ¢ 1 <t<¢ <c¢ <T <c¢41 <c¢p. Then,
Fn(t) - Aan(CZ—l) + Ban(CZ)a

Fn<T) = AQFn(Cr) + Ban<CT+1).

— =T t—cj— —
where A} := 4L A, .= 481" B = L B, .= T=a
Cl—Cl—1 Cr4+1—Cr Cl—C—1 Cr4+1—Cr
2 2 2 2
: o Cp —t . ci+ci—1 L T —cz
Also, consider wu; := o) Vi T o T sy

Then, after some computation, we get

g#(plﬂw s 7pm,n) = ,1//j

(] (pl,n - pl—l,n) + Z::l—&-l U; (pz,n - pi—l,n) + Zy (pT—l-l,n - pr,n)
A2pr,n + BQpr+1,n - Alplfl,n - Blpl,n

N

7
Note that pg,, = 0. Thus, by the delta method (see Theorem 1.1),

fi~ AN (4= gu(F),n"'D,ED,),

where D, := ((aiif‘n, o aifﬁﬂ),;p) and p := (1, .., Pmy) . Consider 3, :=
D, 3D, Clearly, if 2 <1 <r then
(0, for 1<j<l—2o0rj>r+2
—_“’I?;AlN, for j=1-1;
(ulva,l)H%»BlN fOI_ . l
) j )
99, 1
Opjn Sl fori+1<j<r—1;
—(W_z’"}g_AQN, for j = r;
—ZTH§52N, for j =r+ 1.
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Andif [ =,

(

0, for1<j<l—2o0rj>10+2;
—‘”l@t"‘lN, for j =1—1;
09, _
Opjn ("PZT)H;{(QATBI)N, for j = I;
Z"HE#, for j =1+1.
.

By using equation (6.7), the corresponding population mean is

_ 'Lblf)l(e) + Z:=l+1 ’UZPZ<8) + ZTPTJFI(G) _ N*
Aopr(0) + Bopryr(0) — Aip—1(0) — Bip(0)  H*

ger(6) == p
Conjecture 6.1. The function gy () is strictly increasing.

Proposition 6.2.

: (0
1 0) = —
Gir(r]l%» gtT( ) Al ’
. Ul(Clq - Cz) + E;:Hl Uz‘(Ciﬂ - Ci) + Zr<cr - Cr+1)
lim ger(6) = .
6—c0 —Age, — Bacryr + Arcio1 + Big
Proof. These limits can be established by using L’Hopital’s rule. O

Now, assuming the Conjecture 6.1 is true then with Proposition 6.2, we have

Theorem 6.10. The equation i = g7(0) has a unique solution ) provided that

wi(c—1—c)+D 25y 1 vicim1—ci)+zr(cr—crin)
—Azcr—Bacrp1+A1c_1+Big ’

w
<<

Solve the equation 7i = p for 0, say 0 =: go(f1). Then, again by the delta method,
we conclude that 6 ~ AN (go(p),n CAME ¥,). Note that if both the left- and

t+T

5— = p. So the parameter

right-truncation points lie on the same interval, then 1 =
to be estimated disappears from the equation and hence we do not consider this case

for further investigation. Let




Then, we get a fixed point function as 6 = G(6), where

Cr

AA2—P+AQ \
log( Qﬁ e >

G(6) = —

However, we need to consider the condition ji(As + ()) > P. Therefore, we need to
be careful about the initialization of 6 as the right truncation point 7" cannot be a
boundary point. Because if it was, then A; = 0 and we would not able to divide by
A, in the fixed point function § = G(6).

Now, let us compute the derivative of gy with respect to u, using implicit differ-
entiation.
Case 1: Assume that the two truncation points are in two consecutive intervals,

i.e., assume that { = r. Then ¢ = g,(n) = fJFA, where

A=A+ By — Ay — By,

_er _Cr41 G- _a
B:=A)e 0 +Bye 0 — Aje 0 — Bie 7,

Uup _G-1 _a Zr _cr _Sr41
A= ” c_1e” 0 —ce 0 )+ 7 cre 8 — e 0 ),

i _er _rt1 _a-1 _a
A = 2 Agcre” 0 + Bocppre” "0 — Ajcie” 0 — Bige 0 ).

Case 2: The other case is that the two truncation points are not in two consecutive

intervals, i.e., assume that [ < r. Then 0 = gy(n) = ‘?JFA, where I' := A +

. _G%i—1 _ S
Dot 5 (ci_le T — ce 0) and A, B, A, and A are defined above.

To get Exponential Grouped MLE, consider P;(f) := e Then,

following Hongqi and Lixin (2002), we have, QMLE ~ AN ( ), where
2

I(0) =377, P(0 )<d1nP(9)> . Therefore, Var(QMLE) =L n(e)' Now, by defini-

tion of asymptotic relative efficiency:

Var(é\MLE)
VCLT’(@\MT“M)
()

- (g(m)*%,

ARE(G\MTuMa 5MLE) =
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I~(6)
(9(77))* D, XDy,

Note that after finding the derivative, I(f) can be expressed as

= ?(e~"¢ —e 0
Csi__ c 2
B i cj_le_]Tl — cje_Wj 1
j=1 92 PJ 9)
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Chapter 7

Conclusions and Future Outlook

7.1 Concluding Remarks

In this dissertation, we have re-engineered the well-known class of MTM estimators
and made them applicable to claim severity models that are fitted to truncated,
censored, and insurance payment data. We have first reviewed the most com-
mon types of data transformations that appear in insurance contract specifications
(due to the loss control strategies used to construct the contracts). In particular,
assuming that all observed data satisfy the i.i.d. assumption, we have studied:
the complete data scenario; left- and right-truncated data; left- and right-censored
data; left-truncated, right-censored, and linearly-transformed data (also known as
payment-per-payment variable); and interval-censored and linearly-transformed data
(also known as payment-per-loss variable). Taking into account these data trans-
formations, we have specified the corresponding probability distribution functions,
including cumulative distribution functions, probability density and/or mass func-
tions, and quantile functions. These probability models have then been used to
specify the relevant log-likelihood functions, define sample and population trimmed
moments, and describe the procedure for finding MTM estimators.

Further, asymptotic normality theorems have been established for MLE and
MTM estimators under all data scenarios and probability models. Consistency of
the estimators followed directly from those theorems. Robustness and computational

aspects of these estimators have also been discussed. Moreover, several analytic ex-
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amples based on the exponential and normal distributions have been fully worked
out. Furthermore, these estimators have been implemented for the single-parameter
Pareto and lognormal models that were fitted to Norwegian fire claims data for the
year 1983. Then the effects of model fitting on insurance contract pricing have been
investigated. In addition, in Chapter 6 we have explored a number of methodological
extensions of the newly designed MTM estimators for complete, grouped and expo-
nentially distributed random variables. Specifically, we have constructed truncated,
censored, and insurance payment-type estimators and proved a series of theoretical
results about estimators’ existence and asymptotic normality. Our analysis has es-
tablished new connections between data truncation, trimming, and censoring, which
paves the way for more effective modeling of non-linearly transformed loss data.
Finally, the results of this dissertation motivate open problems and generate sev-
eral ideas for further research. First, it is of interest to investigate the finite-sample,
not only asymptotic, performance of the newly proposed estimators. Second, the
results of Chapter 6 are limited to complete, grouped, and exponentially distributed
data, but they could be extended to more general situations and models. Third,
additional analysis involving risk measures could be undertaken as well. Finally, all
the data scenarios considered in this dissertation are based on the i.7.d. assumption,
which is a reasonable assumption but not the only one to consider. Some of these

problems are discussed in more detail in Section 7.2.

7.2 Future Outlook
7.2.1 Simulation Studies

Asymptotically all the estimators developed in Chapters 4 and 6 are consistent and
unbiased, but they might be biased when applied to finite samples. To assess the
finite-sample performance of those estimators, Monte Carlo simulations is a standard
tool.

By conducting simulation studies, we will aim to determine what sample size

is needed to assure that the asymptotic properties of MLE and MTM estimators
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become valid, under all data scenarios and for selected probability distributions. In
particular, we will first study estimators’ bias and relative efficiency with respect
to the asymptotic performance of MLE for exponential (Pareto I) and normal (log-
normal) models. The main reason why MLE should be used as a benchmark is its
optimal asymptotic performance in terms of variability (of course, with the usual
caveat of “under certain regularity conditions”).

Further, predictive modeling is an emerging set of techniques applied in actuarial
practice. Scenario simulations are often employed in this area. For example, stress-
testing capital allocations via risk measures such as value-at-risk (VaR; which is a
quantile of the underlying loss distribution) and tail-VaR (which is a conditional
tail expectation) is achieved using simulations. Thus, it is of interest to see how the
redesigned MTM estimators and their variants will perform in this context.

Finally, investigation of the estimators’ performance for grouped data is also of
interest, as more data being released to the end user in grouped format to protect
the privacy of customers and clients. Simulation of this type of data might be an
especially challenging task because the empirical quantiles are not well-defined in

the last (infinite) interval (see Section 6.2.4).

7.2.2 Non t.2.d. Data

As mentioned in Section 2.1, the i.7.d. assumption is reasonable, and all the esti-
mators developed in this dissertation are based on that assumption, but there exist
practical situations when it may be violated. This occurs when data sets contain
some explanatory information about the underlying risk variable. For example,
homeowners insurance claims database would keep track of not only loss amounts,
but various property related characteristics such as location, age and construction
type, replacement cost, distance to a body of water, etc. This additional infor-
mation, if properly taken into account, can improve the accuracy of estimates and
predictions. However, it violates the identical distribution assumption in the 7.7.d.
statement and makes losses heterogenous. For such data, regression type models

need to be employed.
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Further, losses may not be independent (e.g., if a group of insured properties
were located in close proximity of each other, or if one policyholder insured multiple
properties). To address this issue, actuaries use copulas which proved to be a suffi-
ciently flexible tool for handling dependent data (see Frees and Valdez, 1998, for a
thorough review of copulas).

Without a doubt, statistical models such as regression, copulas or, more gener-
ally, Generalized Linear Models offer sufficient flexibility to handle non i.7.d. data.
However, if loss data were affected by coverage modifications, these models would
require significant revisions. Moreover, the rich structure gained by introducing
more parameters, makes such models vulnerable to model misspecification. This
serves as additional motivation for development of robust model-fitting procedures.

These topics will be pursued in the future.

89



1]

BIBLIOGRAPHY

Brazauskas, V. (2009). Robust and efficient fitting of loss models: diagnostic
tools and insights. North American Actuarial Journal, 13(3), 356-369.

Brazauskas, V., Jones, B.L., and Zitikis, R. (2007). Robustification and
performance evaluation of empirical risk measures and other vector-valued

estimators. METRON-International Journal of Statistics, 65(2), 175-199.

Brazauskas, V., Jones, B.L., and Zitikis, R. (2009). Robust fitting of claim
severity distributions and the method of trimmed moments. Journal of Sta-

tistical Planning and Inference, 139(6), 2028-2043.

Brazauskas, V. and Kleefeld, A. (2009). Robust and efficient fitting of the
generalized Pareto distribution with actuarial applications in view. Insurance:

Mathematics € Economics, 45(3), 424-435.

Brazauskas, V. and Kleefeld, A. (2011). Folded and log-folded-t distributions
as models for insurance loss data. Scandinavian Actuarial Journal, 2011(1),

59-74.

Brazauskas, V. and Serfling, R. (2000). Robust and efficient estimation of
the tail index of a single-parameter Pareto distribution. North American

Actuarial Journal, 4(4), 12-27.

Brazauskas, V. and Serfling, R. (2003). Favorable estimators for fitting Pareto
models: a study using goodness-of-fit measures with actual data. ASTIN

Bulletin, 33(2), 365-381.

Casella, G. and Berger, R.L. (2002). Statistical Inference. Second edition.
Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA.

90



[9]

[10]

[11]

[12]

[13]

[14]

[19]

Chernoff, H., Gastwirth, J.L., and Johns, Jr., M.V. (1967). Asymptotic distri-
bution of linear combinations of functions of order statistics with applications

to estimation. Annals of Mathematical Statistics, 38(1), 52-72.

Clark, D.R. (2013). A note on the upper-truncated Pareto distribution. Ca-

sualty Actuarial Journal E-Forum.

Cohen, Jr.; A.C. (1950). Estimating the mean and variance of normal pop-
ulations from singly truncated and doubly truncated samples. Annals of

Mathematical Statistics, 21(4), 557-569.

Ergashev, B., Pavlikov, K., Uryasev, S., and Sekeris, E. (2016). Estimation
of truncated data samples in operational risk modeling. The Journal of Risk

and Insurance, 83(3), 613-640.

Frees, E. (2017). Insurance portfolio risk retention. North American Actuarial

Journal, 21(4), 526-551.

Frees, E.W. and Valdez, E.A. (1998). Understanding relationships using
copulas. North American Actuarial Journal, 2(1), 1-25.

Hampel, F.R. (1968). Contributions to the Theory of Robust Estimation.
Thesis (Ph.D.)-University of California, Berkeley.

Hampel, F.R. (1974). The influence curve and its role in robust estimation.

Journal of the American Statistical Association, 69, 383-393.

Hayya, J., Armstrong, D., and Gressis, N. (1975). A note on the ratio of two
normally distributed variables. Management Science, 21(11), 1338-1341.

Hongqi, X. and Lixin, S. (2002). Asymptotic properties of MLE for Weibull
distribution with grouped data. Journal of Systems Science and Complexity,

15(2), 176-186.

Huber, P.J. (1964). Robust estimation of a location parameter. Annals of
Mathematical Statistics, 35(1), 73-101.

91



[20]

[21]

[22]

[20]

[27]

28]

[29]

[30]

Huber, P.J. and Ronchetti, E.M. (2009). Robust Statistics. Second edition.
John Wiley & Sons, Inc., Hoboken, NJ.

Johnson, N.L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate
Distributions. Vol. 1. Second edition. John Wiley & Sons, Inc., NY.

Kleefeld, A. and Brazauskas, V. (2012). A statistical application of the quan-
tile mechanics approach: MTM estimators for the parameters of ¢t and gamma

distributions. FEuropean Journal of Applied Mathematics, 23(5), 593-610.

Klugman, S.A., Panjer, H.-H., and Willmot, G.E. (2012). Loss Models: From
Data to Decisions. Fourth edition. John Wiley & Sons, Inc., Hoboken, NJ.

Klugman, S.A. and Parsa, A.R. (1993). Minimum distance estimation of loss
distributions. Proceeding of the Casualty Actuarial Society, LXXX, 250-270.

Lee, G.Y. (2017). General insurance deductible ratemaking. North American
Actuarial Journal, 21(4), 620-638.

Maronna, R.A., Martin, R.D., and Yohai, V.J. (2006). Robust Statistics:
Theory and Methods. John Wiley & Sons, Ltd., Chichester.

Pielke, Jr., R.A. and Landsea, C.W. (1998). Normalized hurricane damages
in the United States: 1925-1995. Weather and Forecasting, 13, 621-631.

Reynkens, T., Verbelen, R., Beirlant, J., and Antonio, K. (2017). Modelling
censored losses using splicing: A global fit strategy with mixed Erlang and

extreme value distributions. Insurance: Mathematics and Economics, 77, 65

~ 7.

Serfling, R. (2002). Efficient and robust fitting of lognormal distributions.
North American Actuarial Journal, 6(4), 95-109.

Serfling, R.J. (1980). Approzimation Theorems of Mathematical Statistics.
John Wiley & Sons, Inc., NY.

92



[31]

[32]

[36]

[37]

[38]

Shah, S.M. and Jaiswal, M.C. (1966). Estimation of parameters of doubly
truncated normal distribution from first four sample moments. Annals of the

Institute of Statistical Mathematics, 18, 107-111.

Tukey, J.W. (1960). A survey of sampling from contaminated distributions.
Contributions to Probability and Statistics, pages 448-485. Stanford Univer-
sity Press, Stanford, CA.

van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge University

Press, Cambridge.

Verbelen, R., Gong, L., Antonio, K., Badescu, A., and Lin, S. (2015). Fitting
mixtures of Erlangs to censored and truncated data using the EM algorithm.

ASTIN Bulletin, 45(3), 729758.

Wasserman, L. (2004). All of Statistics: A Concise Course in Statistical

Inference. Springer-Verlag, NY.
Wasserman, L. (2006). All of Nonparametric Statistics. Springer, NY.

Zhao, Q., Brazauskas, V., and Ghorai, J. (2018a). Robust and efficient fitting
of severity models and the method of Winsorized moments. ASTIN Bulletin,
48(1), 275-3009.

Zhao, Q., Brazauskas, V., and Ghorai, J. (2018b). Small-sample performance
of the MTM and MWM estimators for the parameters of log-location-scale
families. Journal of Statistical Computation and Simulation, 88(4), 808-824.

93



Appendix A

Proofs and Additional Details

Additional Cases for Note 3.4:

Case 2: 0<a<F(t)<1-b<F(I)<L ~v o Fm 1o  r1) 1

a

[ mE = moEde) —a+ [ o)

Case3OSF(t)§a<F(T)§1—b§17‘é Fl(t) : FX(T) 1lb 11~

a

1-b F(T|6)
[ omEd@yas = [ b o) du by(1)(1 - b~ F(TI6))

|

Case 4: 0<a<F(t)<F(I)<1-b<1;, 4 Fg Fa) 1ob 1
1-b F(16) F(T|0)
[t = [ new)des [ ) da
a a F(t]0)

1-b
o[ (R ) du
F(T|0)

F(t19) F(T6)
:/ hj(t)du+/ by (F(u]0)) du

F(t]9)
1-b
F(T|0)
F(T|0)
= By O)(F(H0) - a) + / by (F~(u]0)) du
F(t))

+h;(T)(1—b— F(T0)).
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| mE e = h@a-a-b),

It is important to note that the MTM approach does not work in both Cases
5 and 6 as those integral are constants rather than functions of parameters to be

estimated.

All four possible scenarios for Section 6.1.2

Scenario 1: t; <t; <T; <1}

A

In this case,
Yijr = hiy (X)W{t550 < X < T} = hyyr (X)1{ty < X < T},
Wjj’ = Zj]l{tj/ <X < T‘]},

Scenario 2: t; <t; <T; <Tj

A

In this case,
Y= hjyp (X)U{t;y < X <Tjp} = hp(X)U{t;y < X < Ty},
Wijr = Z;l{ty < X < Ty},

Wi = Zpl{ty < X < Ty}
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Scenario 3: t; <t; <T; <Tj

In this case,
Yijr = hiy (X)U{ty < X < Ty} = hyp (X)U{t; < X < T},
Wiy = Zil{t; < X <Tj},
VVj’j = Zj/]l{tj < X< T]}

Scenario 4: t; <t; <T; <Tj

In this case,
Yijr = Ry (X)Wt < X < Ty} = hyp(X)1{t; < X < Ty},
Wjj’ = Z]]l{t] <X S 7}/},

lej = Zj/]l{tj < X< 7}/}

Therefore,
w,, = ElYjy] = E[W;y]
F(T,;/6) F(T, ,|o)
= hiy (F~'(ul0)) du, = F~(u]6)) du.
F(t;;10) F(t;;/16)

Proof of Theorem 6.2:

Clearly, gv (py) = (%, ce %) =: (1, ., ) = p. From Lemma 6.2, it follows

that
dg;
81:]-/

Dy = [ = [dv jj'ljxan »

w:“V] kx2k
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where

(1
—, if1<j=j <k
Dy
dv jj = —”—?, if j' —j=Fk;
pj
L0, otherwise.

Now, with an application of the delta method (see Theorem 1.1) corresponding

with the function gy above, (see Serfling, 1980, §3.3 Theorem A), we have

(H1s - k) ~ AN <9V(Nv) = W, %DVEVD{/) : [
Proof of Theorem 6.4:
The r.v. Y can be expressed in the form of
Y=XAT-TI{T < X <o} - XAt+tl{t < X < c0}.
Define, I, := 1{a < X < b}. Therefore,
py = E[Y]
=E[X AT|-E[TIr] — EX At] + E[tl; ]
=0(1 — e_%) —Te 7 — o(1 — 6_%) 4 te"d
=0 (e‘é - e_%> + te=0 —Te 0.

Since

Y=XANT-TIH{T < X < oo} — X ANt +1t1{t < X < o0},

then
Y2 = (XATP?+ (XA + T Ipoe + 1200 — 2T (X AT) 100 —2(X AT)(X At)
+2L(X AT ) oo +2T(X AT ) 700(X At) = 2tT ] oo 700 — 28(X A1) 11 o0

= (XATP? = (XAt =2t [XAT — X ANt] +T?I1 00 + 21 0o — 2T 7 oo
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+ 2t (XL + Tlr o) + 2T 11 o0 — 2tT I o0 — 2671 o
= (XAT? = (XAt) =2t [X AT = X ANt] = T?Ip oo — L1 o0
+ 2t (XLir +Tlro) .
Since X ~ Fxp(f) then E[Y?] is computed as below:
Hyz = E[YQ]
= E[(XAT)’] —E[(X At)’] =2t [E[X AT) — E[X At]] - T°E[I7,)

— B[l 0] + 2t (E[X ;7] + TE[I750))

= 262F( §)+T2 —7 — 20°T ( 2)—1&2@5

Therefore,

T t
oy = fiy2 — uy—292<F(;§)—F<3;5))—p§/. [

Proof of Theorem 6.6:

Note that the parameter vector is given by @ = (a, x¢) with 25 known in advance.

The population version of ji is given by

e = ER(X)t <X <T)
ER(X)1{t < X <T}]
F(T10) — F (1)

[F h(z)f(x]6) da
F(T|0) — F(t]0)

Jodioy) h(F =" (u]8)) du
F(T6) — F(1[6)
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fF tﬂﬂ log (1 — u) du

a(F(T16) — F(t]6))

< |F(116) = F(T16) + (1 = F(110)) log (<) — a(1 = F(T10)) log (72 )|

- [ () e () e (2) o () e

a(Te —to)
Now, to establish the proof of the statement, it is enough to prove that the function

ger is strictly decreasing with respect to a. For that,

/ dger (o
dir(a) = 2T

_ (T1)*a? (log (%))" — (T2 — °)?
a?(Te — t)? '

Now, in order to show that g,,(c) < 0, it is enough to establish (7t)*a? (log (%))2 -
(T —t*)* < 0 which is equivalent to establish that (Tt)2alog (1) < T —¢*. Now,

(o7 T
(Tt)2alog <?> <T*—t*

(5= -(0)
(£)<oom (5o ()
== log( ><smh (—log (% )

But we know that x < sinhz for all > 0, therefore, g,,-(c)

<~ «alog

Sl !

— alog

0 for all @ > 0 which
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implies that g;r is strictly decreasing. Also, note that

i, gup(a) — (28T = (08(0))” = 21og(T) log (5) + 2log(t) s ()
s S 2log (%) ;

: x
C}l_{f)lo gir(a) = —log <70>

100



© 0N TR W N

[ T S
N OOk W N = O

36
37
38
39
40
41
42
43
44

Appendix B

MATLAB Code for Exponential
ARE Computation

function [ARE, Ft, FT] = Exp MTuM-MLE_ARE(t, T, theta)
% This program evaluates the asymptotic relative efficiency of MIuM for

% Exponential complete data w.

%
%
9 70
%
(T'U
%
%
%
CrU

%

INPUT:

t: Vector of left truncation

T:

theta: Parameter of Exp(theta)
OUTPUT:

ARE:

Read carefully!

Ft: Truncated proportion

FT: Truncated proportion

Ft: Truncated proportion

FT: Truncated proportion

r

.t. MLE.

points

Vector of right truncation points

A (length(t)+2) x (length(T)+2) matrix as below

on
on
on
on

% External Programs Called: Non!

the
the
the
the

left tail.
right tail.
left tail.
right tail.

AREMatrix = zeros (length(t),length(T));
for i =
horARE = nan(1,length(T));

for

1:length (t)

j = l:length(T)

p = FExp(T(j), theta) — FExp(t(i), theta);

et = exp(—t(i)/theta);
eT = exp(—T(j)/theta);

MeanY = thetax(et—eT) + t(i)xet — T(j)=*eT;
EY2 = 2x(theta "2) *(gammainc ((T(j)/theta) ,3) — gammainc((t(i)/theta) ,3));

parametrization of incomplete gamma function

% Please note that the

% opposite in MATLAB and KPW.

popMu = MeanY/p;
VarY = EY2 — MeanY " 2;

% The following is the

derivative of g_{\theta}
A2 :)t(i)*exp(—t(i)/theta)*(theta+t(i)) — T(j)*exp(—T(j)/theta)=*(thetatT(j)

is

just

+ é.ti’letaA2)*p — popMusx*(t(i)*exp(—t(i)/theta) — T(j)*exp(—=T(j)/theta));
gThetaDer = (theta"2)*p/A2;

format short

AA = (gThetaDer"2)*(VarY*p — (1 — p)*MeanY "2);
ARE1 = round (1000 ((theta"2)*(p~3))/AA)/1000;

if (i) < T(j)
horARE(j) = ARE1;
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45 end

46 end

47 AREMatrix (i ,:) = horARE;
48 end

49

50 Ft = round (100*(FExp(t, theta)))/100;

51 FT = round(100%(1—FExp(T, theta)))/100;

52 TT = [[nan nan Inf T(2:length(T))]; [nan nan FT]];
53 tt = [t Ft’];

54

55 ARE = [TT;[tt AREMatrix]];

56

57 end

58

59 9% —————— Auxiliary Functions —————— %%%
60

61 function distF = FExp(x, theta)
62 distF = l—exp(—x/theta);
63 end

function [ARE, Ft, FT] = Exp MTuMWin MLEARE(t, T, theta)
% This program evaluates the asymptotic relative efficiency of MIuM through
% Winsorized approach for Exponential complete data w.r.t. MLE.

© 00 N0 A W N
o
>

INPUT:

% t: Vector of left truncation points

% T: Vector of right truncation points

%  theta: Parameter of Exp(theta)
10 % OUTPUT:
11 % ARE: A (length(t)+2) x (length(T)+2) matrix as below
12 % Read carefully!
13 % Ft: Truncated proportion on the left tail.
14 % FT: Truncated proportion on the right tail.
15 %
16 % External Programs Called: Non!
17

18 AREMatrix = zeros (length (t),length(T));
19 for i = l:length(t)

20 horARE = nan(1,length(T));

21 for j = 1:length(T)

22 et = exp(—t(i)/theta);

23 eT = exp(—T(j)/theta);

24 MeanY = thetax(et—eT) + t(i)*xet — T(j)*eT;

25 EY2 = 2xtheta "2%(gammainc ((T(j)/theta) ,3) — gammainc((t(i)/theta) ,3));
26 % Please note that the parametrization of incomplete gamma function is just
27 % opposite in MATLAB and KPW.

28

29 popMu = t(i)*FExp(t(i),theta) + MeanY + T(j)*(1—FExp(T(j),theta));

30 popMu2 = t (i) "2*FExp(t(i),theta) + EY2 4+ T(j) 2%(1-FExp(T(j) ,theta));
31 popVar = popMu2 — popMu~2;

32 % The following is the derivative of g_{\theta}

33 Al = exp(—t(i)/theta)*(thetat+t(i)) — exp(—T(j)/theta)*(thetat+T(]));
34 gThetaDer = theta/Al;

35

36 format short

37 AA = (gThetaDer "2)*(popVar);

38 ARE1 = round (1000*((theta"2)/(AA)))/1000;

39

40 if t(i) < T(j)

41 horARE(j) = ARE1;

42 end

43 end

44 AREMatrix (i ,:) = horARE;

45 end

46

47 Ft = round (100%(FExp(t, theta)))/100;
48 FT = round(100%(1—FExp(T, theta)))/100;

102



49
50
51
52
53
54
55
56
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59
60

© 00 N O AR W N

ARR R R R R R R R W W W W W W W W W WNN NN NNNNNNR R R R R e e e
© 0 N O U R WO OO0 REWN O © OO0 RWN RO © OO Ok WN = O

50
51
52
53
54
55

TT
tt

[[nan nan Inf T(2:length(T))];
[t7 Ft’];

ARE = [TT;[tt AREMatrix]];

end

%WeVlo ————————— Auxiliary Functions
function distF = FExp(x, theta)

distF = 1—(exp(—x/theta));
end

[nan nan FT]];

function [ARE, Ft, FT] = Exp MTuMLTRCMLEARE(t, T, theta)

O,

% truncated and right censored Exponential data w.r.t.
%

% INPUT:

% t: Vector of left truncation points

% T: Vector of right truncation points

%  theta: Parameter of Exp(theta)

left tail.
right tail.

o This program evaluates the asymptotic relative efficiency

MLE.

% OUTPUT:

%  ARE: A (length(t)+2) x (length(T)+2) matrix as below
% Read carefully!

% Ft: Truncated proportion on the

% FT: Truncated proportion on the

%

% External Programs Called: Non!

AREMatrix = zeros (length(t),length(T));

for i = 1:length(t)
p = 1-FExp(t(i),theta);
horARE = nan(1,length(T));
for j = 1l:length(T)
et = exp(—t(i)/theta);
eT exp(—=T(j)/theta);
EY = thetax(et—T) + t(i)x*et

— T(j)xeT;

of left

EY2 = 2xtheta " 2x(gammainc ((T(j)/theta) ,3) — gammainc((t(i)/theta) ,3));

% Please note that the parametrization of incomplete gamma function

% opposite in MATLAB and KPW.

EW = EY + T(j)*(1-FExp(T(j),theta));
EW2 = EY2 + T(j) "2%(1—-FExp(T(j),theta));

VarW = EW2 — EW™ 2;
popMu = EW/p;

% s12 = EY4T(j)*exp(—T(j)/theta)EWsxexp(—t(i)/theta);

popVar = (VarW/p~2) — (EW"2x(1-p)/p"3);

% The following is the derivative of g_{\theta}

A2 = theta=*((t(i)*exp(—t(i)/theta)) — (T(j)=*exp(—T(
theta "2x(exp(—t(i)/theta)—exp(—T(j)/theta)) + t

gThetaDer = (theta 2xp) /(A2—t (i )*popMux*p) ;

format short
AA = (gThetaDer "2) x(popVar)

)

AREl = round (1000x((theta~2)/(AA)))/1000;

ift(i) < T(j)
horARE(j) = ARE1;

end
end
AREMatrix (i ,:) = horARE;
end
Ft = round (100%(FExp(t, theta)))/100;

FT = round (100%(1—FExp(T, theta)))/100;

TT

[[nan nan Inf T(2:length(T))];

[nan nan FT]];
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56
57
58
59
60
61
62
63
64
65
66

tt = [t’ Ft’];

ARE = [TT;[tt AREMatrix]];

end

Welo ———————— — Auxiliary Functions

function distF = FExp(x, theta)

distF
end

1—(exp(—x/theta));
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Appendix C

MATLAB Code for Real Data
Illustrations

function [Estimators, KS.GOF, AD.GOF, PPrem, LNPrem]| =
RealDataIllustratlonsB(YY ETH, LNTH a,b, dataDed polDed pLim,c, SigLevel ,dmu,
n_pVal)

% Typical Run:
% a = [10"—7 10°—=7 10°—=7 10"—=7 .05 0.10 0.25];
% b = [10"-=7 0.05 0.10 0.25 .05 0.10 0.25];
% [Estimators , KS.GOF, AD.GOF, PPrem, LNPrem] =
% RealDatalllustrationsB (83,1,0,a,b,500,1500,14000,0.8,0.05,1000,10"3)
tic
h = waitbar (0, Please wait ... );
0; 07
3 0
% INPUT:
% YY: Year.
%  ETH: Threshold for Pareto I distributions.
%  LNTH: Threshold for Lognormal distributions.
% a: Left side trimming proportion vector.
% b: Right side trimming proportion vector.
% NOTE: a and b should be of same length.
% dataDed: Observed left truncation, deductible.
% polDed: Researcher produced deductible. Note that this is not
% coming from the data.
% pLim: Researcher produced policy limit. Note that this is not
% coming from the data.
% NOTE: All dataDed, polDed, and pLim should be in thousand not
% million .
% c: Co—insurance factor.
% SigLevel: Significance level for confidence interval construction.
% dmu: Data measure unit. For example, for NFC it is 1000.
% n_pVal: Total iteration for p—value calculation.
%
% OUTPUT:
% Estimators: A leangth (a)—by—3 matrix. See the matrix for details.
% KS_GOF: KolmogorovSmirnov goodness—of—fit statistics.
% AD_GOF': Anderson—Darling goodness—of—fit statistics.
% PPrem: Pareto I based and empirical premiums with ClIs.
% LNPrem: Lognormal based and empirical premiums with CIs.
%
% External Function Called: Non! See auxiliary functions!
9 0(7
x = importdata(’'nfc.txt’); % This is the entire data set.
xYY = x(x(:,2) = YY); % This can extract required data for a particular year.
lenD = sum(xYY = dataDed);
if lenD > 0
for dataDegroup = 1:lenD
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45 xYY(dataDegroup) = dataDed+(dataDed+0.5—dataDed)*dataDegroup/(lenD+1);
46 end

47 end

48

49 n = length (xYY);

50

51 disp(sprintf(’ USEEIEE USIEIEISrEIE " AR ) )

52 disp (sprintf(’Year = 19%d: %d data (%dth) are dcoroupcd\n ,YY,lenD ,dataDed) ) ;
53 disp (sprintf(’Sample Size: n = %d \n’,length (xYY)));

54 disp (sprintf(’ At A e A )

55

56 10 = zeros(length(a),1); Il = zeros(length(a),1); J = zeros(length(a),1);
57 for i = 1l:length(a)

i 10 (1) = b(i).*(1-log (b(i)))+(1-a(i)) .+(log(1-a(i)) ~1);

59 I1(i) = (a(i)+b(i)—1) + log((1—a(i))./b(i)

0 J(1) = (ob(i)oa(i)) s (a(i)tlog(1-a(i))) — 10(i) +(b(i)).«11(i);

61 end

62

63 aData = sort (xYY.xdmu);

64 % This is the sorted and scalled (by dmu) datal

65 uData = Inf;

66 expData = log(aData./ETH); % Log Transformation of the data.

67 dExp = log((dataDed.xdmu)./ETH); % Deductible in terms of Exponential.
68 uExp = log ((uData.xdmu)./ETH); % Policy limit in terms of Exponential.
69

70 figure(1);

71 histogram (xYY./1000, FaceColor’,’b’);

72 xlabel(’Losses (million)’, Interpreter’,’Latex’,’FontSize’, 11);
73 ylabel(’Frequency’, ’Interpreter’,’Latex’,’FontSize’, 11);
74

75 figure (2)
76 histogram (log (xYY.*1000), FaceColor’,’b’);
77 xlabel (’Log(Actual Losses)’ "Interpreter’,’Latex’,’FontSize’, 11);

78 ylabel(’Frequency’, ’Interpreter’,’Latex’,’FontSize’, 11);

79

CIO Yo
81 % Model Fitting %
82 ¢ Z

83 % Pareto I MLE fit!

84 thetaHatMLEExp = mean(expData)—dExp;

85 alphaHatMLE = 1./thetaHatMLEExp;

86

87 % Lognormal MLE Fit

88 nData = log(aData—LNTH); % Normal data.

89 dNormal = log(dataDed.+*dmu-LNTH) ;

90 uNormal = log (uData.+*dmu-LNTH) ;

91 mulMLEHatLN = mean(nData) ;

92 mu2MLEHatLN = mean ((nData)."2);

93 Z = Q(tz) (2.*xnormpdf(tz)./(erfc(tz./sqrt(2)))); % This is Z1 from Cohen (1950)!
94 opt = optimoptions(@fsolve, Display’, off’);

95 A_EPUS = ((mu2MLEHatLN-mulMLEHatLN."2) ./ ((mulMLEHatLN-dNormal)."2));
96 G = @(t)(erfc(t./sqrt(2)).xpower(2«normpdf(t) — t.xerfc(t./sqrt(2)), —1)...
97 .k (erfc(t./sqrt(2)).xpower(2xnormpdf(t) — t.xerfc(t./sqrt(2)), —1) — t));

98 MLEobjFun = @Q(t) (G(t)—1-A_EPUS);

99 tz0 = (dNormal-mulMLEHatLN) ./ ( sqrt (mu2MLEHatLN—mulMLEHatLN."2) ) ;
100 tzHat = fsolve (MLEobjFun, tz0, opt);

101 sigmaMLEHatLN = (mulMLEHatLN—-dNormal)./(feval (Z,tzHat)—tzHat);
102 thetaMLEHatLN = dNormal — sigmaMLEHatLN.xtzHat ;

103 MLESol = [thetaMLEHatLN sigmaMLEHatLN ];

104 an = floor (a.*n);
105 bn = floor (b.*n);
106

107 % MIM Fitting .

108 % First, Exponential Fit!

109 muHatExp = zeros(length(a),1); % Sample trimmed mean vector.

110 ExpThetaHat = zeros(length(a),1); % Exponential trimmed estimated vector.
111 for i = 1l:length(a)

112 muHatExp (i) = (1./(n—an(i)—bn(i))).*xsum(expData((an(i)+1):(n-bn(i))));
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113
114
115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132

134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152

154
155
156
157
158
159

161
162
163
164
165
166

168
169
170
171
172

174
175

176

ExpThetaHat (i) = —((muHatExp(i)—dExp).x(1—a(i)—b(i)))./10(i);
end
% Second, Normal Fit!
thSgHat = zeros(length(a),2); % Lognormal trimmed estimated vector.
LNMoments = zeros (length(a) ,2);
for i = 1:length(a)
mulHatLN = (1./(n—an(i)-b
mu2HatLN = (1./(n—an(i)-b
thetaO0 = mulHatLN;
sigma0 = sqrt (mu2HatLN—mulHatLN."2) ;
x0 = [theta0 sigma0];

n(i))).xsum(nData((an(i)+1):(n=bn(i))));
n(i))).+sum((nData((an(i)+1):(n=bn(i))))."2);

MTMobjFun = @(x)OnlyLeftTruncatedNormalMTM2Eqns (x,dNormal , [ mulHatLN mu2HatLN] , a

(1),b(i));
MTMSol = fsolve (MTMobjFun, x0, opt);
LNMoments(i,:) = [mulHatLN mu2HatLN];
thSgHat (i ,:) = MTMSol;

end

0 07

% Calculation of Klmogorov—Smirnov and Anderson—Darling Test Statistics
% and p—values for Exp and Normal Fitting!
o,

%o

KS_.TS = zeros(length(a) ,2);
% KS—test statistic matrix.
% First column represents for Exponential model.
% Second column represents for Normal model.
AD.TS = zeros(length(a),2);
% AD-test statistic matrix.
% First column represents for Exponential model.
% Second column represents for Normal model.
for i = 1:length(a)
FExpMTMFitted = @Q(x) ((exp(—dExp./ExpThetaHat(i)) — exp(—x./ExpThetaHat(i)))
./ exp(—dExp./ExpThetaHat (i)));
FNormalMTMFitted = @Q(x) ((normcdf ((x—thSgHat(i,1))./thSgHat(i,2) )—normecdf ((
dNormal—thSgHat (i,1))./thSgHat(i,2))) ...
./(1—normcdf ((dNormal—thSgHat (i,1))./thSgHat(i,2))));
KS_ExpBase = KolmogorovSmirnovTS (FExpMTMFitted , expData) ;
KS_NormalBase = KolmogorovSmirnovTS (FNormalMTMFitted ,nData) ;
AD_ExpBase = AndersonDarlingTS (FExpMTMFitted , expData’ ,dExp,uExp) ;
AD_NormalBase = AndersonDarlingTS (FNormalMTMFitted ,nData’ ,dNormal ,uNormal) ;
KS_TS(i,:) = [KS_ExpBase KS_NormalBase];
AD_TS(i,:) = [AD_ExpBase AD_NormalBase];

end
0 0;
0

% Calculation of p—values:
ExpKSADpArray = zeros(n_pVal,2,length(a));
NormalKSADArray = zeros(n_pVal,2,length(a));
% This is the array of dimension ”"n_pVal-by—2—by—length(a)”, that is, there
% will be length(a) many matrices where the first column represents the
% KS—test value and the second column represent the AD-test value.
ExpKSADpValMatrix = zeros (length(a) ,2);
NormalKSADpValMatrix = zeros(length(a) ,2);
% This will produce the KS and AD final values.
for j = 1l:n_pVal
uRand = rand(n,1);
for i = l:length(a)
expSimData = dExp + ExpVaR(uRand, ExpThetaHat(1i));
% Left truncated Exp quantile.
expSimSData = sort (expSimData) ;
muHatpVal = (1./(n—an(i)—bn(i))).*sum(expSimSData((an(i)+1):(n-bn(i))));
thetaHatpVal = —((muHatpVal-dExp).x(1—a(i)—b(i)))./10(i);
FExpMTMFittedpVal = @Q(s) ((exp(—dExp./thetaHatpVal) — exp(—s./thetaHatpVal))
./exp(—dExp./thetaHatpVal));

nSimData = thSgHat (i,1)+thSgHat(i,2).*norminv(uRand+(1—uRand) .*normedf ((
dNormal—thSgHat (i ,1))./thSgHat(i,2)));
nSimSData = sort (nSimData) ;
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177 mulHatLNpVal = (1./(n—an(i)—bn(i))).*sum(nSimSData((an(i)+1):(n—bn(i))));

178 mu2HatLNpVal = (1./(n—an(i)—bn(i))).*sum((nSimSData((an(i)+1):(n—bn(i))))
2);

179 thetaOpVal = mulHatLNpVal;

180 sigmaOpVal = sqrt (mu2HatLNpVal-mulHatLNpVal."2) ;

181 x0pVal = [thetaOpVal sigmaOpVal];

182 MTMobjFunpVal = @(x)OnlyLeftTruncatedNormalMTM2Eqns (x,dNormal , [ mulHatLNpVal

mu2HatLNpVal] ,a(i),b(i));

183 MTMSolpVal = fsolve (MTMobjFunpVal, x0pVal, opt);

184 thSgHatpVal = MTMSolpVal;

185 FNormalMTMFittedpVal = @(x) ((normcdf ((x—thSgHatpVal(1))./thSgHatpVal(2))—
normcdf ((dNormal—thSgHatpVal(1))./thSgHatpVal(2))) ..

186 ./(1—normcdf ((dNormal—thSgHatpVal(1))./thSgHatpVal(2))));

187

188 ExpKSADpArray (j,1,i) = KolmogorovSmirnovTS (FExpMTMFittedpVal, expSimSData) ;

189 ExpKSADpArray(j,2,i) = AndersonDarlingTS (FExpMTMFittedpVal, expSimSData’,
dExp,uExp) ;

190

191 NormalKSADArray (j,1,1i) = KolmogorovSmirnovTS (FNormalMTMPFittedpVal,nSimSData
)

192 NormalKSADArray (j,2,1i) = AndersonDarlingTS (FNormalMTMFittedpVal,nSimSData’ ,
dNormal ,uNormal) ;

193 end

194 waitbar (j/n-pVal);

195 end

196 for i = l:length(a)

197 KSEntryExp = (sum(ExpKSADpArray(:,1,i) > KS.'TS(i,1)))./n_pVal;

198 ADEntryExp = (sum(ExpKSADpArray (:,2,1) > AD.TS(i,1)))./n-pVal;

199

200 KSEntryN = (sum(NormalKSADArray (:,1,1) > KS.TS(i,2)))./n_pVal;

201 ADEntryN = (sum(NormalKSADArray (:,2,1) > AD.TS(i,2)))./n_pVal;

202

203 ExpKSADpValMatrix(i,:) = [KSEntryExp ADEntryExp];

204 NormalKSADpValMatrix (i ,:) = [KSEntryN ADEntryN];

205 end

206

207 U 7o

208 % Premium Calculation! %

209 1 7o

210 % Emperical premium.

211 % Left truncated data with introduced deductible.
212 XYYT = xYY(xYY > polDed);

213 nl = length (xYYT);

214 % Left truncated and right censored data.

215 xYYTC = zeros(nl,1l);

216 for i = 1:length (xYYT)

217 if (xYYT(i) <= pLim)
218 xYYTC(i) = xYYT(1i);
219 else

220 xYYTC(i) = pLim;

221 end

222  end

223 dataTC = xYYTC.xdmu;

224 dedPrem = polDedxdmu; % Policy deductible level.

225 polLimPrem = pLim.sxdmu;

226 EmTCPrem = mean(c.* (dataTC—dedPrem) ) ;

227 EmVar = (mean ((dataTC—dedPrem)."2) —((mean(dataTC—dedPrem))."2))./nl;
228  EmPremLow = EmTCPremtnorminv (SigLevel./2) .xsqrt (EmVar) ;

229 EmPremUp = EmTCPremtnorminv(l—(SigLevel./2)).*xsqrt (EmVar) ;
230 EmPremVec = [EmPremLow EmTCPrem EmPremUp];

231

232 alphaHat = 1./ExpThetaHat;

233 PPVec = zeros(length(a),3);

234 PLNVec = zeros(length(a),3);

235 for i = 1:length(a)

236 % Probability of beging bigger than deductible.
237 pPareto = (ETH./dedPrem)." alphaHat (i)}
238 pLN = 0.5.%erfc ((log(dedPrem—LNTH)—thSgHat (i,1))./(thSgHat(i,2).*xsqrt(2)));
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269

271
272
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274
275
276

277
278
279
280
281
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284
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286
287
288
289

291

292

293

294

295

296

[ParetoXminU, LNXminU] = ParetoLogNormalXminX (ETH, alphaHat (i) ,thSgHat(i,1),
thSgHat (i,2) ,polLimPrem,2) ;

[ParetoXminD, LNXminD] = ParetoLogNormalXminX (ETH, alphaHat (i) ,thSgHat (i ,1),
thSgHat (i,2) ,dedPrem,2) ;

deltaDer = ParetoPDDer (alphaHat (i) ,dedPrem, polLimPrem,c);

DVar = (1./n).x(J(i)./(I0(i)."2)).x(alphaHat(i)."2) .%(deltaDer."2);
PremiumParetoEst = c.*(ParetoXminU (1)—ParetoXminD (1)) ./pPareto;
PremuimParetoCILow = PremiumParetoEst+norminv (SigLevel./2) .xsqrt (DVar);
PremuimParetoCIUp = PremiumParetoEst+norminv(1—(SigLevel./2)).*sqrt (DVar);

[, 7, 7, LNPremVarDelta] = ...
MTMSigmaDForPPData(thSgHat (i ,1) ,thSgHat(i,2) ,a(i),b(i),c,log(dedPrem) ,log(
polLimPrem) ,LNMoments(i,1) ,LNMoments(i,2));
LNPremVar = LNPremVarDelta./n;
PremiumLNEst = c¢.% (LNXminU(1)—LNXminD (1) )./pLN;
PremuimLNCILow = PremiumLNEst+norminv(SigLevel./2) .xsqrt (LNPremVar) ;
PremuimLNCIUp = PremiumLNEst+norminv(1—(SigLevel./2)).xsqrt (LNPremVar) ;

PPVec(i,:) = [PremuimParetoCILow PremiumParetoEst PremuimParetoCIUp ];
PLNVec(i,:) = [PremuimLNCILow PremiumLNEst PremuimLNCIUp];
end
C 07
% Preparation for Plots! %
07 (%
ffs = 10; % Universal Figure Font Size!
for w= 1:n
sql(w) = (w—0.5)./n; % Standard quantile level — (i—.5)/n.
eQ(w) = dExp + ExpVaR(sql(w),1); % Standard truncated Exp quantile.
nQ(w) = norminv(sql (w)+(1—sql(w)).*normcdf(dNormal)); % Standard truncated
normal quantile.
end

fittedDataExp = zeros(n,length(a));
% This "n—by—length (a)” matrix stores the fitted data along columns.
fittedDataN = zeros(n,length(a));
% This "n—by—length (a)” matrix stores the fitted data along columns.
for i = 1l:length(a)
fittedDataExp (:,1) = dExp + ExpVaR(sql ,ExpThetaHat(i));
fittedDataN (:,1) = thSgHat(i,1) + thSgHat(i,2).*norminv(sql4+(1—sql).*normcdf ((
dNormal—-thSgHat (i,1))./thSgHat(i,2)));

end
07 7o
% Quantile—quantile plots! %
07 07
0
xla = 13; xrb = 19;
xVall = (xla):0.001:(xrb—1.0);
xVal2 = (xla):0.001:(xrb);
xValL = length (xVal2);
for i = 1:length(a)
figure (0.xlength (a)+i+2)
subplot (1,2,1); axis equal;
plot (fittedDataExp (:,1), sort(expData),’«b’); hold on;
line (xVal2,ones(xValL,1) .xlog (dedPrem./ETH) , LineStyle’,’—’, Color’, green’,’
LineWidth’,1.0); hold on;
line (xVal2,ones(xValL,1) .xlog (polLimPrem./ETH) , LineStyle’,’— ’Color’, green’

, ’LineWidth’ ,1.0); hold on;

line (xVall ,xVall, Color’, red’, LineWidth’ ,1.5); hold off;

xlim ([xla xrb]); ylim ([xla xrb]);

text (17.4,log (dedPrem./ETH) 40.20, $\log (d"{*}/x-{0})$’, Interpreter’, Latex’,’
FontSize’, ffs);

text (17.5,log (polLimPrem./ETH) 4+0.20, '$\log (u/x-{0})$ ", Interpreter’, Latex’,’
FontSize’, ffs);

xlabel ([ ' MIM’ num2str(i)’ ’ Fitted Exponential Quantiles’], ’Interpreter’,’
Latex’,’FontSize’ , ffs);
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ylabel ("$\log\left (\frac{data}{x-{0}}\right)$’, ’'Interpreter’,’Latex’,’FontSize
L Efs) s

subplot (1,2,2);

plot (fittedDataN (:,i), sort(nData),’*«b’); hold on;

line (xVal2,ones(xValL,1) .xlog (dedPrem) , LineStyle’,’— 7, Color’, "green’,’
LineWidth’,1.0); hold on;
line (xVal2,ones(xValL,1) .xlog (polLimPrem) , LineStyle’,’—’,"Color’, green’,’

LineWidth’,1.0); hold on;
line (xVall,xVall, Color’,’red’, LineWidth’ ,1.5); hold off;
xlim ([xla xrb]); ylim ([xla xrb]);
text (fittedDataN (1,1) —0.0,log (dedPrem) +0.20, ' $\log (d"{«})$’, Interpreter’,’
Latex’, FontSize’, ffs);
text (fittedDataN (1,i) —0.0,log (polLimPrem)+0.20, $\log(u)$’, Interpreter ', Latex
", FontSize’ , ffs);
xlabel ([ MIM’ num2str(i)’ ’ Fitted Normal Quantiles’], ’Interpreter’,’Latex’,’
FontSize’, ffs);
ylabel (’$\log\left (data\right)$’, ’Interpreter’,’Latex’,’FontSize’ ,ffs);
end
format long
Estimators = [alphaHatMLE MLESol; 1./ExpThetaHat thSgHat|;
KS.GOF = round (1000.%[KS_TS ExpKSADpValMatrix])./1000;
AD.GOF = round (1000.x[AD_TS NormalKSADpValMatrix])./1000;
PPrem = ([EmPremVec;PPVec]) ./dmu;
LNPrem = ([EmPremVec;PLNVec]) ./dmu;

delete (h);

toc;

end

07 [70
% Auxiliary Functions! %

07 [0

function ExQ = ExpVaR(u, theta)
ExQ = —theta.xlog(l—u);
end

function f = OnlyLeftTruncatedNormalMTM2Eqns(x,d,muHat,a,b)
clFun = @(x,y,u) (norminv (u+(l—u).*xnormecdf ((d—x)./y)));

c2Fun = Q(x,y,u) ((norminv (u+(1—u) .*normedf ((d—x)./y)))."2);
cl = Q(x,y)((1./(1l—a—b)).xintegral (@Q(u)clFun(x,y,u),a,l1—b));
c2 =Q(x,y)((1./(1—a—b)).xintegral (Q(u)c2Fun(x,y,u),a,1—b));

fl = x(1)—muHat(1)4+cl(x(1),x(2)).*xx(2);

2 (x(2).72) .x(c2(x(1),x(2))—((c1(x(1),x(2)))."2))—muHat(2) +((muHat(1))."2);
f = [f1;f2];

end

function [ParetoXminx, LNXminx] = ParetoLogNormalXminX (theta ,alpha ,mu,sigma, x,k)

% This program computes the expectation of X minimum x for single parameter
% Pareto with parameters alpha and theta, and for lognormal with parameters
% mu and sigma. You may see the formulas from KPW.

ParetolExpVec = zeros(k,1);
LNExpVec = zeros(k,1);
for i = 1:k
ParetolExpVec(i) = ((alpha.x(theta.”i))./(alpha—i)) — ..
((i.*(theta.” alpha))./((alpha — i).x(x." (alpha—i))))
LNExpVec(i) = exp(i.xmu+((i.*sigma)."2)./2).%0.5.%xerfc(—
sigma.”2))./(sigma.xsqrt(2))) ...
+ (x.71).%(0.5.xerfc ((log(x)—mu)./(sigma.xsqrt(2))));

’(log(x)—mu—i k(

end
ParetoXminx = ParetolExpVec;
LNXminx = LNExpVec;

end

function KSTestSTAT = KolmogorovSmirnovTS (ModelDis ,x)

0 07

% This program computes the Kolmogorov—Smirnov Test Statistics for
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358 % individual data.

359 %

360 Y% INPUT:

361 % ModelDis : Fited distribution function.

362 % X : Sample left truncated and right censored data.

363 %

364 0 OUTPUT:

365 %  KSTestSTAT: KS test statistics.

366 70

367 n = length (x);
368 FStarVec = feval (ModelDis, sort(x));
369 KS_Matrix = zeros(n,6);

370 for i = 1l:n

371 KS_Matrix(i,1) = FStarVec(i);

372 KS_Matrix(i,2) = (i—1)./n;

373 KS_Matrix(i,3) = i./n;

374 KS_Matrix (i,4) = abs(KS_Matrix(i,1) — KS_Matrix(i,2));
375 KS_Matrix (i,5) = abs(KS_-Matrix(i,1) — KS_Matrix(i,3));
376 KS_Matrix (i ,6) = max(KS_-Matrix(i,4) ,KS_Matrix(i,5));
377  end

378 KSTestSTAT = max(KS_-Matrix (:,6));

379  end

380

381 function ADTestSTAT = AndersonDarlingTS (ModelDis,x,t,T)
382 9 Z

383 % This program computes the Anderson—Darling Test Statistics for
384 % individual data which is either both sides truncated, OR, left truncated
385 % and right censored, OR, single left rtuncated.

386 0

387 % INPUT:

388 % ModelDis : Fited distribution function.

389 % X: Sample data, should be in a row vector form.

390 % t: Left truncation or deductible.

391 % T: Right truncation and/or censored point, policy limit.
392 %

393 % OUTPUT:

394 %  ADTestSTAT: AD test statistics.

395 Z)
396

397 n = length (x);

308 xx = [t x T];

399 xxx = unique(xx);

400 k = length (xxx);

401 FnX = @Q(w) ((sum(x <= w))./n);

402 % ’FnX’ is Empirical Distribution function of x.
403 ZeroToK = zeros(k—1,1);

404 OneToK = zeros(k—2,1);

405 for j = 1:(k-1)

406 if (ModelDis(xxx(j+1)) "= 1)

407 ZeroToK(j) = ((1-FnX(xxx(j)))."2).*(log(l—ModelDis(xxx(j))) — log(l—
ModelDis (xxx (j+1))));

408 else

409 ZeroToK (j) = ((1-FnX(xxx(j)))."2).xlog(1—ModelDis(xxx(j)));

410 end

411 end

412 for j = 1:(k—-2

413 OneToK(j) = ((FnX(xxx(j+1)))."2).*xlog(ModelDis(xxx(j+2))./ModelDis(xxx(j+1)));

414  end

415 ADTestSTAT = —n.* ModelDis(T) + n.ssum(ZeroToK) + n.xsum(OneToK) ;
416 end

417

418 function ParetoPremDelta = ParetoPDDer(alpha,d,u,c)

419 ParetoPremDelta = —(c.*xd)./((alpha—1).72) ...

420 +((c.*d)./(alpha—1)).%((d./u)." (alpha—1)).%((1./(alpha—1))—log(d./u));
421  end

422

423 function [SigmaMatrix, DMatrix, Prod, PremVar] = MTMSigmaDForPPData(theta ,sigma,a,b
,¢,d,u,mul,mu2)
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dz = (d—theta)./sigma;
% Calculation of the trimmed moments variance—covariance matrix.
hl = Q(x,y) ((min(x,y)—x.*y)./(normpdf(norminv (y+(1—y) .*normcdf(dz))) .+ normpdf(
norminv (x+(1—x) .*normcdf(dz)))));
h2 = @Q(x,y) (((min(x,y)—x.*y).*norminv (x+(1—x) .*normcdf(dz)))
./ (normpdf(norminv (y+(1—y) .*normcdf(dz))) .* normpdf(norminv (x+(1—x) .* normcdf (dz)
h3 = @Q(x,y) (((min(x,y)—x.*y).*norminv (x+(1—x) .*normedf(dz)) .* norminv (y+(1—y) . *
normcdf(dz))) .
./ (normpdf(norminv (y+(1—y) .*normcdf(dz))) .*normpdf(norminv (x+(1—x) .* normcdf(dz)

)))) 5

sigmall2 = ((sigma.”2).x((1—normecdf(dz))."2)./((1—a—b)."2)).xintegral2(hl,a,1—b,a
sigmal22 = 2.xtheta.xsigmall2 + (2.x(sigma."3).%((1—normedf(dz))."2)./((1—a—b)."2))
.xintegral2(h2,a,1-b,a,1—b);
sigma222 = 4.x(theta."2).xsigmall2 + ...
(8.xtheta.x(sigma.”3).x((1—normecdf(dz))."2)./((1—a—b)."2)).xintegral2 (h2,a,1-b,
a,1-b) + ...
(4.%(sigma."4).%((1 —normedf(dz))."2)./((1l—a—b)."2)).xintegral2 (h3,a,1—b,a,1—-b);

% Calculation of ck’s
fcl = Q(x) (norminv (x+(1—x) .*normecdf(dz)));
fc2 = Q(x) ((norminv (x+(1—x) .*normcdf(dz)))."2);

cl (1./(1—a—b)).xintegral (fcl ,a,1—b);
c2 = (1./(l—a—b)).xintegral (fc2 ,a,1—-b);

% Calculation of derivatives of ck’s

fdel = Q(x)((1—x)./normpdf(norminv (x+(1—x) .*normcdf(dz))));

fde2 = @Q(x) (((1—x) .*norminv (x+(1—x) .*normedf(dz)))./normpdf(norminv (x+(1—x) . *
normcedf(dz))));

dclt = —((normpdf(dz))./(sigma.x(1—a—b))).xintegral (fdcl ,a,1—b); % Derivative of cl
w.r.t. theta.

dcls = —(((d—theta).*normpdf(dz))./((sigma."2).x(1—a—b))).*xintegral(fdcl ,a,1-=b); %
Derivative of ¢l w.r.t. sigma.

dc2t = —((2.*normpdf(dz))./(sigma.x(1—a—b))).xintegral (fdc2,a,1—b); % Derivative of
c2 w.r.t. theta.

dc2s = —((2.x(d—theta).*normpdf(dz))./((sigma."2).%x(1—a—b))).xintegral (fdc2,a,1—b);

% Derivative of ¢2 w.r.t. sigma.

% Calculation of fl11, f12, f21, and f22.
fl11 = l14sigma.xdclt;

f12 = cl4sigma.xdcls;

f21 = dc2t —2.xcl.xdclt;

f22 = dc2s—2.xcl.*xdcls;

% Calculation of the gradient matrix, D.
K= 0.5.%(sqrt ((c2—cl.72)./(mu2—mul."2)));
d21 = —(K.*(2.%f11 .*+mul.*(c2—cl.”2)+f21 .%(mu2—mul."2))) ...

/(11 0% ((c2—cl.72).72)4K. * (mu2-mul. " 2) . % (f11.%xf22—-f12 .%f21));
422 = (K. f11.%(c2—c1.72)) ...

J(f11 0% ((c2—cl.72) .7 2)4K. * (mu2-mul. " 2) . % (f11.xf22—-f12.%f21));
d1l = (1—f12.%d21)./f11;
d12 = —(f12.%d22)./f11;

PremDeltaMatrix = LNPremGradientVec(theta ,sigma,d,u,c);

SigmaMatrix = [sigmall2 sigmal22; sigmal22 sigma222];
DMatrix = [d11 d12; d21 d22];

Prod = (DMatrix*SigmaMatrixxDMatrix ) ;

PremVar = (PremDeltaMatrix*Prod«PremDeltaMatrix ’) ;
end

function PremiumDeltaMat = LNPremGradientVec(theta ,sigma,d,u,c)

Tz = (u—theta)./sigma;
tz = (d—theta)./sigma;
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480 KOt = l1—normecdf(tz);

481 KOT = l1—normcdf(Tz);

482 H1 = normcdf(Tz—sigma)—normecdf(tz—sigma) ;

483

484 dHI1t = —(1./sigma).*normpdf(Tz—sigma)+(1./sigma).*normpdf(tz—sigma);

485 dKOTt = (1./sigma).xnormpdf(Tz);

486 dKOtt = (1./sigma).xnormpdf(tz);

487

488 dgt = c.x(((exp(theta+0.5.xsigma."2).xHl+exp(theta+0.5.xsigma."2) .xdH1t+u.+dKOTt—d
.+ dKOtt) .« KOt

489 —(exp (theta+0.5.xsigma."2) .xHl4u.*K0T—d .« KO0t) .* dKO0tt) ./ (KO0t."2) ) ;
490
491 dH1s = —normpdf(Tz—sigma) . ((Tz./sigma)+1)+normpdf(tz—sigma) .x((tz./sigma)+1);

492 dKO0Ts = (Tz./sigma) .*normpdf(Tz);

493  dKOts (tz./sigma) .*xnormpdf(tz);

494

495 dgs = c.*(((sigma.xexp(theta+0.5.xsigma."2).xHl+exp (theta+0.5.xsigma.”2) .xdHlstu.x*
dKO0Ts—d.*dKO0ts) .« KOt

496 —((exp(theta+40.5.xsigma.”2) .xHl4+u.+K0T—d.*xKO0t) .*dKO0ts) )./ (KO0t."2));
497

498 PremiumDeltaMat = [dgt dgs];

499 end
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