
University of Wisconsin Milwaukee University of Wisconsin Milwaukee 

UWM Digital Commons UWM Digital Commons 

Theses and Dissertations 

May 2020 

Numerical Solution of a Class of Stochastic Functional Numerical Solution of a Class of Stochastic Functional 

Differential Equations with Financial Applications Differential Equations with Financial Applications 

Laszlo Nicolai Fertig 
University of Wisconsin-Milwaukee 

Follow this and additional works at: https://dc.uwm.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Fertig, Laszlo Nicolai, "Numerical Solution of a Class of Stochastic Functional Differential Equations with 
Financial Applications" (2020). Theses and Dissertations. 2373. 
https://dc.uwm.edu/etd/2373 

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more 
information, please contact open-access@uwm.edu. 

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F2373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2373?utm_source=dc.uwm.edu%2Fetd%2F2373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


NUMERICAL SOLUTION OF A CLASS OF
STOCHASTIC FUNCTIONAL

DIFFERENTIAL EQUATIONS WITH
FINANCIAL APPLICATIONS

by

Laszlo Fertig

A Thesis Submitted in

Partial Ful�llment of the

Requirements for the Degree of

Master of Science

in Mathematics

at

The University of Wisconsin-Milwaukee

May 2020



ABSTRACT

NUMERICAL SOLUTION OF A CLASS OF STOCHASTIC
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH

FINANCIAL APPLICATIONS

by

Laszlo Fertig

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Chao Zhu

After a brief review of the Euler and Milstein numerical schemes and their convergence results

for stochastic di�erential equations (SDEs) and stochastic functional di�erential equations

(SFDEs), the thesis next proposes two speci�c SFDEs. The classical Euler and Milstein

schemes are developed to �nd the numerical solutions of these SFDEs, which are then com-

pared with the Ornstein-Uhlenbeck and a modi�ed Ornstein-Uhlenbeck processes. These

results are further used to build four di�erent but related stochastic models for stock prices.

The �tness of these models is analyzed by comparing real market data. The thesis concludes

with a numerical study for option pricing for stock models with path dependent volatilities.

ii



c© Copyright by Laszlo Fertig, 2020
All Rights Reserved

iii



Dedicated to my parents who always support my academic and personal endeavor and
choices as well as to Jay, Frank and Lars for the special year we had.

iv



TABLE OF CONTENTS

1 Introduction 1

2 Numerical schemes for SDEs and SFDEs 2

3 Two mean SFDEs 10

4 Four models for the stock market 25

4.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Model 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Option Pricing for path-dependent volatility models 41

6 References 44

Appendix R-Code 45

v



LIST OF FIGURES

1 Histograms for the epdf 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Histograms for the epdf 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Histograms for the epdf 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Histograms for the epdf 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Densities for SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Sample and average paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 Error histograms for Amazon stock from 01/24/2020 to 02/24/2020 . . . . . 30
8 Error histograms for Amazon stock from 08/26/2019 to 02/24/2020 . . . . . 31
9 Error histograms for Apple stock from 01/16/2020 to 02/14/2020 . . . . . . 32
10 Error histograms for Apple stock from 08/16/2019 to 02/14/2020 . . . . . . 33
11 Error histograms for Walmart stock from 02/03/2020 to 02/28/2020 . . . . 34
12 Error histograms for Walmart stock from 09/03/2019 to 02/28/2020 . . . . 35
13 Error histograms for Johnson & Johnson stock from 02/03/2020 to 02/28/2020 36
14 Error histograms for Johnson & Johnson stock from 09/03/2019 to 02/28/2020 37
15 Error histograms for Tesla stock from 01/24/2020 to 02/21/2020 . . . . . . 38
16 Error histograms for Tesla stock from 08/26/2019 to 02/24/2020 . . . . . . 39

vi



ACKNOWLEDGEMENTS

First and foremost, I would like to thank Prof. Chao Zhu for giving me the opportunity to

work on this interesting project and for all the helpful feedback.

Secondly, I would like to thank Profs. Stockbridge and Spade for being part of my thesis

committee.

Thirdly, I would like to thank Prof. Boyd for the great support in these crazy and di�cult

times. In situations like this it is important to have a leader like her, who helps everybody

to navigate through the di�culties everybody faces now.

Lastly, I would like to thank the math department and especially Prof. Willenbring for

making this exchange program possible.

vii



1 Introduction

The �eld of SDEs (stochastic di�erential equations) is well-known and there is a lot of

research going on about this topic. The famous Black-Scholes pricing formula where the

underlying stock price is modeled by the Black-Scholes model got Merton and Scholes the

Nobel Prize in 1997 and is a milestone for all stock price models. It is still heavily used in

practice, but nowadays we see more and more evidence that the Black-Scholes model also

has weaknesses. One of those weaknesses is the general weakness of usual SDEs which is that

the future state of a model only depends on the current state of the model and not, as an

example, on a mix of past data and current data. To get rid of this problem we extend the

concept of SDEs to SFDEs (stochastic functional di�erential equations). This allows us to

give more input in our model than just the current data. In comparison to the Black-Scholes

model, a lot of SDEs and especially SFDEs do not have a closed or known distribution.

Hence, we are going to need numerical schemes to handle these models. Our second chapter

exactly deals with this and builds the theoretical foundation for this thesis. We present the

Euler scheme for SDEs and SFDEs and examine under what conditions and in which way

the Euler scheme converges.

This leads to chapter 3 where we introduce two particular SFDEs which are both closely

related to the Ornstein-Uhlenbeck process. We take a look at their Euler and Milstein

schemes, how parameter estimation works in these cases and �nally analyze whether the

distribution of the SFDEs is stable.

Afterwards, in chapter 4, we use one of the previously introduced SFDEs as well as three

other SDEs/SFDEs to model stock prices. As before we �rst show how parameter estimation

works. Moreover, we �t the models to real data and examine which model performs the best

and what important and necessary properties of stock market models are.

Finally, in the last chapter we use one of the SFDEs from chapter 3 for a path-dependent

volatility model similar to the Heston model, present the corresponding Euler schemes and

analyze how option pricing works in this setting.

1



2 Numerical schemes for SDEs and SFDEs

In this chapter we are going to present the Euler and the Milstein scheme for SDEs, the

Euler scheme for SFDEs and observe under what conditions the schemes converge and also

in which way they converge. We should note that this chapter is mostly based on the paper

of Mao [Mao03].

First, we consider the general SDE

dX(t) = a(t,X(t))dt+ b(t,X(t))dW (t), t ∈ [0, T ], X(0) = X0 = Z, (1)

where W is an m−dimensional Wiener process, T > 0, a(·, ·) : [0, T ] × Rn → Rn and

b(·, ·) : [0, T ] × Rn → Rn×m. For the components of a and b we write a = (a1, ..., an) and

b = (b1, ..., bn).

Theorem 2.1

Let T > 0 and a(·, ·) : [0, T ]×Rn → Rn, b(·, ·) : [0, T ]×Rn → Rn×m be measurable functions

satisfying

|a(t, x)|+ |b(t, x)| ≤ C(1 + |x|);x ∈ Rn, t ∈ [0, T ] (2)

for some constant C, (where |b|2 =
∑
|σij|2) and such that

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ D|x− y|; x, y ∈ Rn, t ∈ [0, T ] (3)

for some constant D. Let Z be a random variable which is independent of of the σ− algebra

F (m)
∞ generated by Ws, s ≥ 0 and such that

E[|Z|2] <∞. (4)

2



Then the SDE from equation (1) has a unique t-continuous solution X(t)(ω) with the prop-

erty that X(t)(ω) is adapted to the �ltration FZt generated by Z and Ws; s ≤ t and

E

 T∫
0

|X(t)|2dt

 <∞. (5)

Proof. See [Øks03] Theorem 5.2.1.

In applications it is often the case that �nding an explicit solution for the SDE from

equation (1) is di�cult, and sometimes it is even impossible. Hence, there is the need for

numerical solutions. Therefore, we are next presenting the easiest and most common method

for solving SDEs numerically, the Euler scheme.

First, we de�ne 0 = τ0 < τ1 < ... < τn < ... < τN = T which is our time discretization of

[0, T ] and we also de�ne the equidistant stepsize

∆ := τn+1 − τn. (6)

Then we de�ne the Euler scheme as

Yn+1 = Yn + a(τn, Yn) ·∆ + b(τn, Yn) · (Wτn+1 −Wτn), Y0 = X0. (7)

Then it holds Yn ≈ X(τn) and the Euler scheme provides us with a way to simulate possible

paths of equation (1). We note that for the Euler scheme for SDEs we need to be able to

generate

∆W := Wτn+1 −Wτn . (8)

3



Since W is a Wiener process, it holds that these increments are independent Gaussian with

E(∆W ) = 0, Var(∆W ) = ∆, (9)

i.e. ∆W ∼ N (0,∆).

After we presented the Euler scheme, we are now going to look at conditions when the Euler

scheme converges and in which way. We shall note that there are di�erent possible regularity

conditions, but we choose them so that they correspond strongly to the regularity conditions

in the SFDE case as well as to the conditions for Theorem 2.1.

In addition to the conditions from Theorem 2.1 we need one more condition which is

|a(s, x)− a(t, x)|+ |b(s, x)− b(t, x)| ≤ C(1 + |x|)|s− t|
1
2 (10)

for all s, t ∈ [0, T ] and x ∈ Rn.

We de�ne Y (t) as the continuous-time process by interpolation of our discrete process from

equation (7). Mathematically speaking, we de�ne

Y (t) := Yn +

∫ t

τn

a(τn, Yn)ds+
m∑
j=1

∫ t

τn

bj(τn, Yn)dW j
s (11)

for t ∈ [τn, τn+1], n = 0, 1, ....

Theorem 2.2

Under the conditions from Theorem 2.1 in addition to condition (10) the Euler scheme

converges in the following sense:

E
(

sup
0≤t≤T

|X(t)− Y (t)|2
)
≤ C∆, (12)

where C > 0 is some constant independent of ∆, but may depend on X0, X(t) is the true

solution from equation (1) and Y (t) de�ned as in (11).

4



Proof. See [KP95] Theorem 10.2.2 and Remark 10.2.3.

Remark 2.3

The convergence presented above is just one of several possible convergence results. The

Euler scheme also converges in other senses, but we choose this one to compare it to later

results.

We see that the Euler scheme for SDEs is convergent of order 1
2
which is not similar to

the order of 1 as in the case of the Euler scheme for ODEs. Hence, we observe that by

including stochasticity we lose rate of convergence. On another note, a convergence rate of

1
2
is slow and we want a faster convergence. Therefore, we are next going to present the

Milstein scheme for SDEs.

The Milstein scheme is an extension of the Euler scheme and when we consider the SDE

from equation (1), the Milstein scheme is given by

Yn+1 = Yn + a(τn, Yn) ·∆ + b(τn, Yn) · (Wτn+1 −Wτn)

+
1

2
b(τn, Yn) · b′(τn, Yn) · ((∆W )2 −∆),

Y0 = X0.

So in comparison to the Euler scheme we add the term 1
2
bb′((∆W )2 −∆).

Under certain conditions (see [KP95] Theorem 10.3.5), it is shown (see [KP95] Theorem

10.6.3) that for the Milstein approximation, it holds

E
(

sup
0≤t≤T

|X(t)− Y (t)|
)
≤ C∆, (13)

where C depends on the starting value X0, but not on ∆, Y (t) is our continuous approxima-

tion of the Milstein scheme and X(t) the true solution.

We see that the Milstein scheme has a rate of convergence of 1 and is therefore converging

faster than the Euler scheme with rate 1
2
.

5



So far we just looked at usual SDEs meaning that the functions a and b in equation

(1) just depend on the present value of the process X(t). This also means that the future

state of our system is only determined by the present and not by past values. In many

practical situations, this is not realistic, for example there may be stock prices which depend

on the season of the year. Then if we just look at the current state we might not see this

causality, but once we include past data it becomes obvious. Hence, we need to generalize

our model. This is done by introducing stochastic functional di�erential equations (SFDEs)

which allows exactly what we want: we can give more input (in our case past data) to our

system. Following, we are going to take a look at the Euler scheme for SFDEs and its

convergence.

We write the general SFDE as

dX(t) = f(Xt)dt+ g(Xt)dW (t), t ≥ 0, (14)

with initial data X0 = ξ ∈ LpF0
([−τ, 0];Rn). Here τ > 0 is a �xed and given constant which

determines how far we look into the past. In this case

f : C([−τ, 0];Rn)→ Rn, g : C([−τ, 0];Rn)→ Rn×m,

X(t) ∈ Rn for each t, W (t) is an m−dimensional Wiener process and

Xt = {X(t+ θ) : −τ ≤ θ ≤ 0} ∈ C([−τ, 0];Rn).

This is the general setup for SFDEs. However, in our applications we are only going to look

at 1−dimensional problems, so we can assume m = 1 throughout this thesis. The Euler

scheme for SFDEs is more di�cult than the one for regular SDEs although there are a lot

of similarities. We use the same notations as [Mao03] (except that we still call our Wiener

process W ). Let ∆ ∈ (0, 1) be our constant stepsize given by ∆ = τ/N for some integer

6



N > τ (similar to the SDE case N is the total amount of steps). We call our discrete Euler

approximate solution ȳ(k∆), k ≥ −N and it is given by

ȳ(k∆) = ξ(k∆) −N ≤ k ≤ 0,

ȳ((k + 1)∆) = ȳ(k∆) + f(ȳk∆)∆ + g(ȳk∆)∆Wk k ≥ 0,

where ȳk∆ = {ȳk∆(θ) : −τ ≤ θ ≤ 0} is a C([−τ, 0];Rn)-valued random variable about which

we are going to talk after the comparison between this scheme and the one for the regular

case. Here ∆Wk := W(k+1)∆−Wk∆ is the simulated increment of our Wiener process at time

k. First, we observe large similarities to the regular case, since one time step is the previous

time step plus something dependent on the step size and f plus something dependent on

a Wiener process and g. This is exactly as in the previous case. Additionally, in this case

we set our solution to the starting value for −N ≤ k ≤ 0. What makes this scheme more

di�cult is the term ȳk∆ and this is why we need to take a closer look at it.

ȳk∆(θ) is de�ned as follows:

ȳk∆(θ) = ȳ((k + i)∆) +
θ − i∆

∆
[ȳ((k + i+ 1)∆)− ȳ((k + i)∆)], (15)

for i∆ ≤ θ ≤ (i+1)∆, i = −N,−(N−1), ...,−1.We see that ȳk∆(·) is the linear interpolation

of ȳ((k −N)∆), ȳ((k −N + 1)∆, ..., ȳ(k∆). We can rewrite equation (15) as

ȳk∆(θ) =
∆− (θ − i∆)

∆
ȳ((k + i)∆) +

θ − i∆
∆

ȳ((k + i+ 1)∆).

Hence, it holds

|ȳk∆(θ)| ≤
∣∣∣∣∆− (θ − i∆)

∆
ȳ((k + i)∆)

∣∣∣∣+

∣∣∣∣θ − i∆∆
ȳ((k + i+ 1)∆)

∣∣∣∣
≤ |ȳ((k + i)∆)| ∨ |ȳ((k + i+ 1)∆)|.

7



Therefore, we have

||ȳk∆|| = max
−N≤i≤0

|ȳ((k + i)∆)| for all k ≥ 0.

Now, as for the Euler scheme for SDEs, we look at when this generalized Euler scheme

converges and also in which sense. The following conditions will be needed.

Condition 2.4

Local Lipschitz condition:

For each j ≥ 1, there is a right-continuous nondecreasing function µj : [−τ, 0] → R+ such

that

|f(φ)− f(ψ)|2 ∨ |g(φ)− g(ψ)|2 ≤
∫ 0

−τ
|φ(θ)− ψ(θ)|2dµj(θ),

for φ, ψ ∈ C([−τ, 0];Rn) with ||φ|| ∨ ||ψ|| ≤ j.

Condition 2.5

Linear growth condition:

There is a constant K > 0 such that

|f(φ)|2 ∨ |g(φ)|2 ≤ K(1 + ||φ||2)

for all φ ∈ C([−τ, 0];Rn) and || · || the supremum norm.

Condition 2.6

Initial condition:

X0 ∈ LpF0
([−τ, 0];Rn) for some p > 2.

Remark 2.7

In our applications we are always going to have deterministic starting values meaning that

8



condition (2.6) is always ful�lled.

We are now able to formulate the convergence result for the Euler scheme for SFDEs.

Theorem 2.8

Under Conditions (2.4) - (2.6), the Euler scheme for SFDEs converges in the following sense:

E
(

sup
0≤t≤T

|X(t)− Y (t)|2
)

= O(∆), for all T > 0, (16)

where X(t) is the true solution from equation (14) and Y (t) is de�ned as following: We set

ȳt :=
N∑
n=0

Yn · 1[τn,τn+1)
(t)

and afterwards we are able to de�ne Y (t) as

Y (t) :=


ξ(t), −τ ≤ t ≤ 0,

ξ(0) +
∫ t

0
f(ȳs)ds+

∫ t
0
g(ȳs)dW (s), t ≥ 0.

Remark 2.9

We see that the Euler scheme for SFDEs converges in the same sense as the original Euler

scheme for SDEs. Moreover, the conditions are very much alike, but instead of functions the

conditions are extended to functionals.

9



3 Two mean SFDEs

In this chapter we consider a speci�c type of SFDEs and look at two examples. We are going

to look at their Euler and their Milstein schemes. Furthermore, we examine the convergence

and stability of these SFDEs and look at the existence of an invariant measure from a

numerical point of view.

We consider stochastic functional di�erential equations of the form

dX(t) = f(X(t),T (X)(t))dt+ g(X(t),T (X)(t))dW (t), (17)

where f, g are appropriate functions, W is a Wiener process, X(t) ∈ Rn, the mapping

T : C([0,∞),Rn) 3 X → T (X) ∈ C([0,∞),Rn) (18)

is measurable and T (X)(t) is progressive for each t ≥ 0. For example, we can consider

T (X) of the forms

(i) moving average: T (X)(t) := 1
δ

∫ t
(t−δ)∨0

X(s)ds for some δ > 0,

(ii) running average: T (X)(t) := 1
t

∫ t
0
X(s)ds for t > 0 and T (X)(0) = X0,

(iii) running minimum or maximum: T (X)(t) := infs∈[0,t] X(s) or

T (X)(t) := sups∈[0,t] X(s).

Condition 3.1

Assume that the mapping T is Lipschitz with respect to the sup norm:

‖T (X1)−T (X2)‖t ≤ κ‖X1 −X2‖t, ∀X1, X2 ∈ C([0,∞),Rn), (19)

where κ is a positive constant, and ‖X‖t := sup0≤s≤t |X(s)| is the sup norm on C([0,∞),Rn).

10



We can verify immediately that the moving and running average and running minimum

or maximum operators are Lipschitz. Here we verify that the running average operator

T (X)(t) = 1
t

∫ t
0
X(s)ds is Lipschitz continuous with respect to the sup norm. Indeed, for

any X1, X2 ∈ C([0,∞),R), t > 0 and 0 < s ≤ t, we have

|T (X1)(s)−T (X2)(s)| =

∣∣∣∣1s
∫ s

0

X1(r)dr − 1

s

∫ s

0

X2(r)dr

∣∣∣∣
≤ 1

s

∫ s

0

|X1(r)−X2(r)|dr

≤ 1

s

∫ s

0

sup
u∈[0,t]

|X1(u)−X2(u)|dr

= sup
u∈[0,t]

|X1(u)−X2(u)|

= ||X1 −X2||t.

Taking the supremum over s ∈ [0, t] yields

‖T (X1)−T (X2)‖t ≤ ‖X1 −X2‖t,

showing that T is indeed Lipschitz.

Condition 3.2

Assume also that the functions f, g satisfy the following conditions:

|f(x, x′)|+ |g(x, x′)| ≤ K(1 + |x|+ |x′|), (20)

|f(x, x′)− f(y, y′)|+ |g(x, x′)− g(y, y′)| ≤ K(|x− x′|+ |y − y′|), (21)

for all x, x′, y, y′ ∈ Rn.

We expect that when we suppose that Condition 3.1 and 3.2 hold, the SFDE (17) has a

unique solution.

11



We now introduce the two SFDEs

dX(t) = (X̄t −X(t))dt+ σdW (t), t ∈ [0, T ] (22)

with σ > 0 and X̄t = 1
t

∫ t
0
Xs ds and

dX(t) = (X̄t −X(t))dt+ σX(t)dW (t), t ∈ [0, T ]. (23)

We observe that the SFDEs are very similar to each other, the di�erence is that while the

�rst SFDE has a constant volatility, the second one has a scaling volatility.

We now present the Euler scheme for each of the two SFDEs. With the results from chapter

2 about the Euler scheme for SFDEs, we deduce that the Euler scheme for the �rst SFDE

reads as

Yn+1 = Yn + (Ȳn − Yn) ·∆ + σ ·∆W, Y0 = X0 (24)

where Ȳn = 1
n+1

∑n
i=0 Yi.

Similarly, the Euler scheme for the SFDE from equation (23) is given by

Yn+1 = Yn + (Ȳn − Yn) ·∆ + σ · Yn ·∆W, Y0 = X0. (25)

We have seen that the Milstein scheme is an extension of the Euler scheme. Since we do not

have any convergence results for the scheme in the case of SFDEs we are going to focus on

the Euler scheme. However, for our two speci�c SFDEs we shall present the scheme.

In chapter 2 we have seen that the transition from the Euler scheme for SDEs to the Euler

scheme for SFDEs is rather simple. For the Milstein scheme we see that the transition might

get a little tricky, since we need the derivative of b (or in the SFDE case of g). However, this

transition is only di�cult if we use functionals for the stochastical part of the SFDE and in

12



this thesis we are only going to look at SFDEs where we only model the non-stochastic part,

f , by a functional.

In the case of the SFDE from equation (22) the Milstein scheme is very easy, since g ≡ σ

and hence g′ = 0. Therefore, for this SFDE the Milstein scheme is the same as the Euler

scheme.

The Milstein scheme for the SFDE from equation (23) is not the same as the Euler scheme,

since it is given by

Yn+1 = Yn + (Ȳn − Yn) ·∆ + σ · Yn ·∆W +
1

2
σ2 · Yn · ((∆W )2 −∆), Y0 = X0. (26)

There is a very famous family of SDEs called Ornstein-Uhlenbeck processes (OU processes)

which is closely related to our two SFDEs above. It is given by

dX(t) = θ(µ−X(t))dt+ σdW (t), X0 = a, (27)

where µ is called the mean-reversion level and it is the value around which the SDE evolves,

θ is called the mean-reversion speed and indicates how fast and strong the SDE evolves

around µ and σ determines the impact of randomness. The OU process has an explicit

solution which is given by

X(t) = µ+ (a− µ) exp(−θt) + σ

∫ t

0

exp(−θ(t− s))dWs.

We now show how we come up with this explicit solution. We rewrite (27) as

dX(t) + θX(t)dt = θµdt+ σdW (t).

Multiply both sides of the equation by eθt to obtain

eθtdX(t) + θeθtX(t)dt = θµeθtdt+ σeθtdW (t).

13



By the integration by parts formula, we have

d(eθtX(t)) = eθt(dX(t) + θX(t)dt).

Thus

d(eθtX(t)) = θµeθtdt+ σeθtdW (t).

Now integrating both sides of the equation gives

eθtX(t)−X(0) =

∫ t

0

θµeθsds+

∫ t

0

σeθsdW (s) = µ(eθt − 1) +

∫ t

0

σeθsdW (s).

Then it follows that

X(t) = µ+ (X(0)− µ)e−θt +

∫ t

0

σeθ(s−t)dW (s).

The stochastic integral has mean zero and hence E[X(t)] = µ+(X(0)−µ)e−θt. In particular,

this shows that µ is the long-term mean of the Ornstein�Uhlenbeck process.

Next we use the method in [KT81], Section 15.5 to determine the stationary distribution of

(27). Let

s(x) := exp

{
−
∫ x

0

2θ(µ− y)

σ2
dy

}
= exp

{
− 2θµ

σ2
x+

θ

σ2
x2

}
, x ∈ R,

and

m(x) :=
1

σ2s(x)
=

1

σ2
exp

{
2θµ

σ2
x− θ

σ2
x2

}
, x ∈ R.

Note that m(x) > 0 and
∫∞
−∞m(x)dx < ∞, it follows that the stationary density of (27) is

given by Cm(x), where C is the normalizing constant so that
∫∞
−∞Cm(x)dx = 1.

14



There is a SDE which is closely related to the SFDE from equation (23) given by

dX(t) = θ(µ−X(t))dt+ σX(t)dW (t), X0 = a, (28)

with the same explanations as for the OU process. This SDE does not have a constant

volatility, but a scaling volatility as the SFDE from (23). Additionally, also this SDE has an

explicit solutions which is given by

X(t) =
a

M(t)
+ θµ

∫ t

0

M(s)

M(t)
ds,

where M(t) = exp((θ + σ2

2
)t − σW (t)). Again, we are going to show how we derive the

explicit solutions in this case. To derive the solution of (28), we consider the auxilliary

process M(t) := eY (t), where Y (t) := (θ + 1
2
σ2)t− σW (t). Consider the function f(x) = ex.

We have f ′(x) = f ′′(x) = f(x). Thus by Itô's formula, we have

dM(t) = df(Y (t)) = f ′(Y (t))dY (t) +
1

2
f ′′(Y (t))σ2dt = M(t)(θ + σ2)dt− σM(t)dW (t).

Then using the integration by parts formula, we obtain

d(X(t)M(t)) = X(t)dM(t) +M(t)dX(t) + d[M,X]t

= X(t)M(t)(θ + σ2)dt−X(t)σM(t)dW (t)

+M(t)θ(µ−X(t))dt+M(t)σX(t)dW (t)− σ2X(t)M(t)dt

= θµM(t)dt.

Then it follows that

M(t)X(t)−M(0)X(0) =

∫ t

0

θµM(s)ds,

15



and hence

X(t) =
X(0)

M(t)
+ θµ

∫ t

0

M(s)

M(t)
ds

= X(0)e−(θ+ 1
2
σ2)t+σW (t) + θµ

∫ t

0

e−(θ+ 1
2
σ2)(t−s)+σ(W (t)−W (s))ds.

Since W (t) ∼ N (0, t) and W (t) −W (s) ∼ N (0, t − s), one can use the moment generating

function of a normal random variable to see that

E[e−
1
2
σ2t+σW (t)] = E[e−

1
2
σ2(t−s)+σ(W (t)−W (s))] = 1.

Then we have

E[X(t)] = X(0)e−θt + θµ

∫ t

0

e−θ(t−s)ds = µ+ (X(0)− θµ)e−θt.

Similar to calculations for the process (27), the process (28) also has a stationary density

function given by

Cm(x) =
C

σ2
exp

{
− 2θµ

σ2x

}
x−2− 2θ

σ2 , x > 0,

where C > 0 is the normalizing constant so that
∫∞

0
Cm(x)dx = 1. Note that this is the

inverse gamma distribution.

When we compare the two regular SDEs to our two SFDEs we see that we implicitly chose

θ = 1.We also observe that while our SDEs evolve around µ, our SFDEs evolve around their

mean. Additionally, the �rst SFDE (22) also has a constant volatility just like the OU pro-

cess, while on the other hand our second SFDE (23) has scaling volatility like the SDE from

equation (28). Hence, we observe that the two SDEs are closely related to our two SFDEs.

What we take a look of now is, how we can estimate the parameter σ in equation (22).

16



Possibly, there are several ways for this estimation, e.g. an MLE-estimator, but we choose

an intuitive one. When we solve equation (24) for σ, we deduce

σ =
Yn+1 − Yn − (Ȳn − Yn)∆

∆W
. (29)

Since σ > 0 has to hold we can take the absolute value of the right hand side. The larger

problem is that we would divide by |∆W | which is random and would not make any sense

for an estimation. To solve this problem we take the expected value of |∆W |. Hence, we can

de�ne

σn :=
|Yn+1 − Yn − (Ȳn − Yn)∆|

E|∆W |
=
|Yn+1 − Yn − (Ȳn − Yn)∆|√

2∆
π

, (30)

since it holds

E(|∆W |) =

∫ ∞
−∞
|x| 1√

2π∆
exp

(
− x2

2∆

)
dx =

√
2∆

π
.

Afterwards, we use Monte Carlo simulation to estimate σ as

σ̂ =
1

N

N−1∑
n=0

σn. (31)

We are testing this procedure by simulating paths with the Euler scheme for known σ and

afterwards control whether our estimated σ̂ is close to the true σ. These numerical tests show

that this is a good estimate for σ, when we are given data Y0, Y1, ...YN .

We now want to estimate σ for the SFDE from equation (23). The estimation of σ is very

similar to what we did in equations (30) and (31).

17



Hence, we de�ne

σn :=
|Yn+1 − Yn − (Ȳn − Yn)∆|

Yn · E|∆W |
=
|Yn+1 − Yn − (Ȳn − Yn)∆|

Yn ·
√

2∆
π

(32)

and as before estimate σ as the mean over all σn. Also in this case, our numerical tests which

we used also in the previous application show that this is a good and reasonable estimation

for σ.

So far in this chapter we presented the Euler scheme and the Milstein scheme for two

similar SFDEs. We now want to take a numerical look at the distribution of those SFDEs.

Especially, we are interested in the fact whether these distributions are stable, stationary

and converge at some point and thereby an invariant measure exists.

We have seen that the two SDEs from (27) and (28) possess a stationary distribution and

hence an invariant measure exists. Since our SFDEs are very similar our �rst guess is that

our distributions also have stationary distributions.

We are not going to give a proof of the existence of an invariant measure, but we take a look

at it from a numerical point of view. This is done by simulating paths of each SFDE and

then calculating the estimated probability density function (epdf) for di�erent time steps.

Then we compare the epdf of di�erent time steps to each other and if the epdf does not

change much this indicates that the true distribution converges to a stationary distribution.

We simulate 10000 paths for each SFDE to determine the corresponding epdf.

18



Histogram of values at time step 600

value

F
re

q
u

e
n

c
y

499.7 499.8 499.9 500.0 500.1 500.2 500.3

0
5

0
0

1
5

0
0

2
5

0
0

(a) Histogram corresponding to the epdf at
timestep 600

Histogram of values at time step 800

value

F
re

q
u

e
n

c
y

499.7 499.8 499.9 500.0 500.1 500.2 500.3

0
5

0
0

1
5

0
0

2
5

0
0

(b) Histogram corresponding to the epdf at
timestep 800

Histogram of values at time step 999

value

F
re

q
u

e
n

c
y

499.7 499.8 499.9 500.0 500.1 500.2 500.3

0
5

0
0

1
5

0
0

2
5

0
0

(c) Histogram corresponding to the epdf at
timestep 999

Histogram of values at time step 1000

value

F
re

q
u

e
n

c
y

499.7 499.8 499.9 500.0 500.1 500.2 500.3
0

5
0

0
1

5
0

0
2

5
0

0

(d) Histogram corresponding to the epdf at
timestep 1000

Figure 1: Histograms from di�erent time steps 1

We consider the SFDE from equation (22) with parameters σ = 0.2 and X0 = 500.

Additionally, we look at a time period of 100 years discretized in 1000 time steps. We use an

equidistant stepwidth which is then given by 100/1000 = 0.1. We are going to approximate

the pdf's X600 (df of the SFDE at time step 600), X800 (df of the SFDE at time step 800),

X999 (df of the SFDE at time step 999) and X1000 (df of the SFDE at time step 1000 which

is also the last step). The corresponding R-code can be found in the appendix (program 1).

The plots from �gure (1) show that the histograms and therefore the epdfs and the distri-

bution functions do not change much from one time step to the other. Hence, we conclude

that the distribution function of the SFDE from equation (22) is stationary and therefore

the SFDE has an invariant measure.

19



Histogram of values at time step 600

value

F
re

q
u

e
n

c
y

300 400 500 600 700

0
5

0
0

1
5

0
0

2
5

0
0

(a) Histogram corresponding to the epdf at
timestep 600

Histogram of values at time step 800

value

F
re

q
u

e
n

c
y

300 400 500 600 700

0
5

0
0

1
5

0
0

2
5

0
0

(b) Histogram corresponding to the epdf at
timestep 800

Histogram of values at time step 999

value

F
re

q
u

e
n

c
y

300 400 500 600 700

0
5

0
0

1
5

0
0

2
5

0
0

(c) Histogram corresponding to the epdf at
timestep 999

Histogram of values at time step 1000

value

F
re

q
u

e
n

c
y

300 400 500 600 700
0

5
0

0
1

5
0

0
2

5
0

0

(d) Histogram corresponding to the epdf at
timestep 1000

Figure 2: Histograms from di�erent time steps 2

We now do the same thing for the SFDE from equation (23) with the same parameters

as for the other SFDE (σ = 0.2, X0 = 500, 100 years, 1000 time steps). The corresponding

R-code can be found in the appendix (program 2).

These plots from �gure (2) show that there is much larger deviation around the starting

value compared to the previous SFDE. However, we see that the histograms do not di�er

much from each other which indicates, that again, the distribution is stationary and an in-

variant measure exists.

To compare results, we also show the corresponding histograms for the SDEs (27) and (28).

We start with the OU process. To have the best possible comparison we choose the same

parameters as before and additionally we choose µ = 500, since the SFDE from (22) with

our parameters evolves around 500 and we want the same for OU process. (same program

20



Histogram of values at time step 600

value

F
re

q
u

e
n

c
y

499.7 499.8 499.9 500.0 500.1 500.2 500.3

0
5

0
0

1
5

0
0

2
5

0
0

(a) Histogram corresponding to the epdf at
timestep 600

Histogram of values at time step 800

value

F
re

q
u

e
n

c
y

499.7 499.8 499.9 500.0 500.1 500.2 500.3

0
5

0
0

1
5

0
0

2
5

0
0

(b) Histogram corresponding to the epdf at
timestep 800

Histogram of values at time step 999

value

F
re

q
u

e
n

c
y

499.7 499.8 499.9 500.0 500.1 500.2 500.3

0
5

0
0

1
5

0
0

2
5

0
0

(c) Histogram corresponding to the epdf at
timestep 999

Histogram of values at time step 1000

value

F
re

q
u

e
n

c
y

499.7 499.8 499.9 500.0 500.1 500.2 500.3
0

5
0

0
1

5
0

0
2

5
0

0

(d) Histogram corresponding to the epdf at
timestep 1000

Figure 3: Histograms from di�erent time steps 3

as program 1 from the appendix, instead of "mean(process)" we write "500")

Figure (3) looks very similar to �gure (1). They both evolve around 500 very closely and

we again see that the distribution does not change much from one step to the other which

makes sense since we have seen that we have a stationary distribution.

21



Histogram of values at time step 600

value

F
re

q
u

e
n

c
y

300 400 500 600 700

0
5

0
0

1
5

0
0

2
5

0
0

(a) Histogram corresponding to the epdf at
timestep 600

Histogram of values at time step 800

value

F
re

q
u

e
n

c
y

300 400 500 600 700

0
5

0
0

1
5

0
0

2
5

0
0

(b) Histogram corresponding to the epdf at
timestep 800

Histogram of values at time step 999

value

F
re

q
u

e
n

c
y

300 400 500 600 700

0
5

0
0

1
5

0
0

2
5

0
0

(c) Histogram corresponding to the epdf at
timestep 999

Histogram of values at time step 1000

value

F
re

q
u

e
n

c
y

300 400 500 600 700
0

5
0

0
1

5
0

0
2

5
0

0

(d) Histogram corresponding to the epdf at
timestep 1000

Figure 4: Histograms from di�erent time steps 4

Next, we present the histograms for the SDE (28). We take the same parameters as

in the OU process case. (same program as program 2 from the appendix, instead of

"mean(process)" we write "500"). We observe that the histograms from �gure (4) are very

much alike to the histograms from �gure (2). They both have a much larger deviation around

500 when compared to �gures (1) and (3). As before, we see that the distribution does not

change much from one time step to the other showing that this distribution is indeed sta-

tionary.

22



0.5 1.0 1.5

0
.0

0
.4

0
.8

1
.2

Densities

x

f(
x
)

(a) Densities OU process

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

Densities

x

f(
x
)

(b) Densities for SDE (28)

Figure 5: Densities for SDEs

Additionally to the previous plots, we want to compare the theoretical stationary densities

from the SDEs (27) and (28) to the densities we observe when computing paths with the

Euler scheme. For simpli�cation, we take di�erent parameters than for the histograms. For

the constants from the OU process we take θ = 1, µ = 1, σ = 0.4, X0 = 500 and for the

SDE from equation (28) we take θ = 1, µ = 1, σ = 1, X0 = 500. In both cases, we have

N = 1000, T = 100 and simulate 10001 paths (exemplary R-code, see program 3).

The thin blue and black lines show approximated densities from two consecutive time steps

(here time steps 999 and 1000) and the large red line shows the theoretical density.

We observe that in both cases the theoretical density is close to our approximated densities.

To get even closer to the theoretical density, we could consider the Milstein scheme or raise

N or T.

23



0 20 40 60 80 100

4
9

9
.6

5
0

0
.0

5
0

0
.4

t

P
ro

c
e

s
s

(a) Paths for SFDE from (22)

0 20 40 60 80 100

3
0

0
4

0
0

5
0

0
6

0
0

7
0

0

t

P
ro

c
e

s
s

(b) Paths for SFDE from (23)

0 20 40 60 80 100

4
5

0
4

7
0

4
9

0

t

P
ro

c
e

s
s

(c) Paths for OU process

0 20 40 60 80 100

2
0

0
3

0
0

4
0

0
5

0
0

t

P
ro

c
e

s
s

(d) Paths for SDE from (28)

Figure 6: Sample and average paths

Lastly, to get a feeling for how our SDEs and SFDEs behave, we show plots of the average

path (MC path with 1000 simulations) and one speci�c path for each of the four models.

We always use the Euler schemes to simulate paths (exemplary R-code, see program 4)

The average path is always going to be blue and the speci�c path red. We use N = 1001, T =

100, σ = 0.2, θ = 1 and a starting value of 500. Additionally, for the OU process we use

µ = 450 and for the SDE from (28) we take µ = 300.

24



4 Four models for the stock market

In this chapter we consider four models based on SDEs and SFDEs and look at how each of

these models �t real data from the stock market.

4.1 Model 1

First, we are going to introduce the four models. The �rst models are based on the famous

Black-Scholes SDE:

dX(t) = µX(t)dt+ σX(t)dW (t), X0 = Xt0 , (33)

with µ ∈ R and σ > 0. The Euler scheme of the Black-Scholes SDE is given by:

Yn+1 = Yn + µ · Yn ·∆ + σ · Yn ·∆W, Y0 = X0. (34)

The �rst models are based on the same SDE, but we are going to use di�erent estimators

for µ and σ.

The �rst estimation is based on a numerical scheme for estimating µ and σ, very similar to

how we estimated σ in chapter 2. We know that E(∆W ) = 0 holds. Hence, in expectation

we can omit σ · Yn ·∆W in equation (34) and afterwards solve for µ. We deduce

µ =
Yn+1 − Yn
Yn ·∆

.

We now do this for every time step n which gives sense to the de�nitions

µn :=
Yn+1 − Yn
Yn ·∆

as well as µ̂ :=
1

N

N−1∑
n=0

µn.

To estimate σ in this case, we proceed as in chapter 3 meaning that we take the absolute

value and solve for σ. Since σ now depends on µ and we usually do not know the true value

25



of µ we replace µ by µ̂. Concluding, we set

σn :=
|Yn+1 − Yn − µ̂Yn∆|
|Yn| E(|∆W |)

=
|Yn+1 − Yn − µ̂Yn∆|

|Yn|
√

2∆
π

,

with our knowledge about E(|∆W |). As before, we de�ne

σ̂ :=
1

N

N−1∑
n=0

σn.

These estimators for µ and σ are speci�c for the Euler scheme.

In the plots we refer to this model as "Black-Scholes with Euler".

4.2 Model 2

Following, we consider a theoretical approach to estimate µ and σ in the Black-Scholes SDE.

It is known that in the Black-Scholes model, it holds

ln

(
Yn+1

Yn

)
∼ N (µ− σ2

2
∆, σ2∆)

where Yn is given as in equation (34). This leads to the following procedure for estimating

µ and σ based on the MLE for the lognormal distribution. We set

Xn := ln

(
Yn+1

Yn

)
, X̄ := mean(X0, X1, ..., XN−1) and std(X) :=

√
Var(X0, X1, ..., XN−1).

We now have to annualize these values. Therefore, we de�ne

X̄a := T · X̄ and std(X)a :=
√
T · std(X).

26



The estimators for µ and σ are now given by

µ̂ := X̄a +
(std(X)a)

2

2
and σ̂ := std(X)a.

This concludes the parameter estimation process of our two SDEs related to the Black-

Scholes equation.

In the plots we refer to this model as "Black-Scholes theoretical".

4.3 Model 3

The third model what we are going to �t to real data is going to be the SFDE from equation

(23). We already know from chapter 3 how the parameter estimation works for this process.

In the plots we refer to this model as "MeanSDE with Euler".

4.4 Model 4

The fourth and �nal model we introduce is a mix between the Black-Scholes SDE and the

SFDE from equation (23). It has a dependence on the mean of the process as well as a

dependence on a constant growing factor like in the Black-Scholes model. The SFDE is

given by

dX(t) = (X̄t −X(t) + µX(t))dt+ σ X(t)dW (t). (35)

We deduce the corresponding Euler scheme as

Yn+1 = Yn + (Ȳ − Yn + µ Yn) ∆ + σ Yn∆W. (36)

27



Similarly to how we performed the parameter estimation for the �rst model, we estimate the

parameter in this case. Therefore, our estimators for µ and σ for this model are given by

µn :=
Yn+1 − Yn − (Ȳ − Yn)∆

∆ Yn
, µ̂ :=

1

N

N−1∑
n=0

µn

and

σn :=
|Yn+1 − Yn − µ̂Yn∆|

|Yn|
√

2∆
π

, σ̂ :=
1

N

N−1∑
n=0

σn.

In the plots we refer to this model as "MeanSDE2 with Euler".

4.5 Data Analysis

We now have four models for the stock market and we know how to estimate the parameters

for each one of these models. Now, we are going to apply this theory to real data observed on

the American stock market. Therefore, we get the stock prices of companies (we always take

the closing price for which the stock was traded on that day) and estimate our parameters

for each model with these data. Afterwards, we simulate 10000 paths of each model with the

estimated parameters. We somehow have to determine which models are good and which

ones are bad. For each of our simulated paths, we therefore consider the supremum-metric

sup
0≤n≤N

(|Xn − Yn|),

where Xn(= X(n)) are the true and observed data, Yn are the values from our simulated

paths, N is the index of our last value (e.g. XN is the last observed data) and n our time

index (e.g. X5 is the observed data of day 5). We calculate the supremum-metric for each

path and each model. Afterwards, we plot histograms showing how often a certain error

occured. If there is a high frequency of small errors and a low frequency of large errors, we

28



conclude that this model is a good model, otherwise it is a bad model. Additionally, we

calculate the average error of each model to its respective paths and it is calculated as the

average over all the error data in one histogram. We consider some di�erent stocks, but we

always look at data of one month as well as data of six months for the same stock to see how

well each model does for di�erent lengths of time. We assume that one year has 252 trading

days. This information is important in that it determines our stepwidth ∆. Moreover, we

consider an equidistant partition, since our data are always exactly one day apart from each

other. Hence, ∆ is constant and the same for each time step. On a short note we should

say that we got all our data from the o�cial NASDAQ website (www.nasdaq.com). The

corresponding R-code to these simulations can be found in the appendix (program 5).

29



Error for Black−Scholes with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 100 200 300 400

0
5

0
0

1
5

0
0

2
5

0
0

(a) Histogram for Model 1, meanerror = 269.02

Error for Black−Scholes theoretical

Error from the true path

F
re

q
u

e
n

c
y

0 100 200 300 400

0
5

0
0

1
5

0
0

2
5

0
0

(b) Histogram for Model 2, meanerror = 298.45

Error for MeanSDE with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 100 200 300 400

0
5

0
0

1
5

0
0

2
5

0
0

(c) Histogram for Model 3, meanerror = 289.58

Error for MeanSDE2 with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 100 200 300 400

0
5

0
0

1
5

0
0

2
5

0
0

(d) Histogram for Model 4, average error =
268.15

Figure 7: Error histograms of our four models considering the Amazon stock prices from 01/24/2020
to 02/24/2020

When we evaluate the four histograms for Amazon stock prices for one month (�gure (7)),

we observe that our last model is the best one closely followed by our �rst model. The second

and the third model do not compare very well to the other two.

30



Error for Black−Scholes with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800

0
1

0
0

0
3

0
0

0

(a) Histogram for Model 1, average error =
338.97

Error for Black−Scholes theoretical

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800

0
1

0
0

0
3

0
0

0

(b) Histogram for Model 2, average error =
375.79

Error for MeanSDE with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800

0
1

0
0

0
3

0
0

0

(c) Histogram for Model 3, average error =
420.17

Error for MeanSDE2 with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800
0

1
0

0
0

3
0

0
0

(d) Histogram for Model 4, average error =
320.78

Figure 8: Error histograms of our four models considering the Amazon stock prices from 08/26/2019
to 02/24/2020

As for the one month stock prices we see that in the six month case (�gure (8)) our last

model performs the best, followed by our �rst model. The second and third model behave

much worse.

31



Error for Black−Scholes with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 20 40 60 80 100

0
1

0
0

0
3

0
0

0

(a) Histogram for Model 1, average error =
29.68

Error for Black−Scholes theoretical

Error from the true path

F
re

q
u

e
n

c
y

0 20 40 60 80 100

0
1

0
0

0
3

0
0

0

(b) Histogram for Model 2, average error =
32.68

Error for MeanSDE with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 20 40 60 80 100

0
1

0
0

0
3

0
0

0

(c) Histogram for Model 3, average error =
31.31

Error for MeanSDE2 with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 20 40 60 80 100
0

1
0

0
0

3
0

0
0

(d) Histogram for Model 4, average error =
29.46

Figure 9: Error histograms of our four models considering the Apple stock prices from 01/16/2020
to 02/14/2020

Figure (9) shows the Apple stock prices for one month and we observe that all of our

models perform very similarly.

32



Error for Black−Scholes with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 50 100 150 200 250 300

0
1

0
0

0
2

0
0

0
3

0
0

0

(a) Histogram for Model 1, average error =
46.08

Error for Black−Scholes theoretical

Error from the true path

F
re

q
u

e
n

c
y

0 50 100 150 200 250 300

0
1

0
0

0
2

0
0

0
3

0
0

0

(b) Histogram for Model 2, average error =
48.20

Error for MeanSDE with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 50 100 150 200 250 300

0
1

0
0

0
2

0
0

0
3

0
0

0

(c) Histogram for Model 3, average error =
131.90

Error for MeanSDE2 with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 50 100 150 200 250 300
0

1
0

0
0

2
0

0
0

3
0

0
0

(d) Histogram for Model 4, average error =
43.50

Figure 10: Error histograms of our four models considering the Apple stock prices from 08/16/2019
to 02/14/2020

Figure (10) shows that all models perform similarly except the third model which behaves

much worse than the other ones.

33



Error for Black−Scholes with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 5 10 15 20 25 30

0
5

0
0

1
5

0
0

2
5

0
0

(a) Histogram for Model 1, average error =
11.30

Error for Black−Scholes theoretical

Error from the true path

F
re

q
u

e
n

c
y

0 5 10 15 20 25 30

0
5

0
0

1
5

0
0

2
5

0
0

(b) Histogram for Model 2, average error =
11.08

Error for MeanSDE with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 5 10 15 20 25 30

0
5

0
0

1
5

0
0

2
5

0
0

(c) Histogram for Model 3, average error =
13.35

Error for MeanSDE2 with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 5 10 15 20 25 30
0

5
0

0
1

5
0

0
2

5
0

0

(d) Histogram for Model 4, average error =
11.20

Figure 11: Error histograms of our four models considering the Walmart stock prices from
02/03/2020 to 02/28/2020

When we look at the one month data from Walmart (�gure (11)) we see that our third

model performs the worst while the other three models are very close to each other.

34



Error for Black−Scholes with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
5

0
0

1
5

0
0

2
5

0
0

(a) Histogram for Model 1, average error =
15.82

Error for Black−Scholes theoretical

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
5

0
0

1
5

0
0

2
5

0
0

(b) Histogram for Model 2, average error =
16.37

Error for MeanSDE with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
5

0
0

1
5

0
0

2
5

0
0

(c) Histogram for Model 3, average error =
17.51

Error for MeanSDE2 with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40 50
0

5
0

0
1

5
0

0
2

5
0

0

(d) Histogram for Model 4, average error =
15.35

Figure 12: Error histograms of our four models considering the Walmart stock prices from
09/03/2019 to 02/28/2020

Similar to the previous plots, we observe in �gure (12) that our fourth model performs

the best, closely followed by our �rst model, afterwards our second model and last our third

model.

35



Error for Black−Scholes with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40

0
5

0
0

1
5

0
0

2
5

0
0

(a) Histogram for Model 1, average error =
12.83

Error for Black−Scholes theoretical

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40

0
5

0
0

1
5

0
0

2
5

0
0

(b) Histogram for Model 2, average error =
13.61

Error for MeanSDE with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40

0
5

0
0

1
5

0
0

2
5

0
0

(c) Histogram for Model 3, average error =
21.10

Error for MeanSDE2 with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40
0

5
0

0
1

5
0

0
2

5
0

0

(d) Histogram for Model 4, average error =
12.72

Figure 13: Error histograms of our four models considering the Johnson & Johnson stock prices
from 02/03/2020 to 02/28/2020

When we observe the di�erent histograms from �gure (13) which show how our models

compare to each other for the one month stock price from Johnson & Johnson, we see that

our �rst and our fourth model perform the best, closely followed by our second model while

our third model performs really bad.

36



Error for Black−Scholes with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
1

0
0

0
3

0
0

0

(a) Histogram for Model 1, average error =
23.31

Error for Black−Scholes theoretical

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
1

0
0

0
3

0
0

0

(b) Histogram for Model 2, average error =
25.69

Error for MeanSDE with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
1

0
0

0
3

0
0

0

(c) Histogram for Model 3, average error =
23.17

Error for MeanSDE2 with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 10 20 30 40 50
0

1
0

0
0

3
0

0
0

(d) Histogram for Model 4, average error =
22.97

Figure 14: Error histograms of our four models considering the Johnson & Johnson stock prices
from 09/03/2019 to 02/28/2020

The six month stock prices from Johnson & Johnson (�gure (14)) show that again our

fourth model performs the best, directly followed by our third and �rst model. We see that

for this data our second model performs the worst.

37



Error for Black−Scholes with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800

0
5

0
0

1
5

0
0

2
5

0
0

(a) Histogram for Model 1, average error =
275.04

Error for Black−Scholes theoretical

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800

0
5

0
0

1
5

0
0

2
5

0
0

(b) Histogram for Model 2, average error =
315.73

Error for MeanSDE with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800

0
5

0
0

1
5

0
0

2
5

0
0

(c) Histogram for Model 3, average error =
422.22

Error for MeanSDE2 with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800
0

5
0

0
1

5
0

0
2

5
0

0

(d) Histogram for Model 4, average error =
273.14

Figure 15: Error histograms of our four models considering the Tesla stock prices from 01/24/2020
to 02/21/2020

In �gure (15) which shows the error plots for the one month Tesla stock price, we observe

the same things as before. Our fourth and our �rst model perform the best, followed by our

second model and last our third model.

38



Error for Black−Scholes with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800 1000

0
1

0
0

0
2

0
0

0
3

0
0

0

(a) Histogram for Model 1, average error =
264.90

Error for Black−Scholes theoretical

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800 1000

0
1

0
0

0
2

0
0

0
3

0
0

0

(b) Histogram for Model 2, average error =
309.28

Error for MeanSDE with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800 1000

0
1

0
0

0
2

0
0

0
3

0
0

0

(c) Histogram for Model 3, average error =
739.24

Error for MeanSDE2 with Euler

Error from the true path

F
re

q
u

e
n

c
y

0 200 400 600 800 1000
0

1
0

0
0

2
0

0
0

3
0

0
0

(d) Histogram for Model 4, average error =
244.64

Figure 16: Error histograms of our four models considering the Tesla stock prices from 08/26/2019
to 02/24/2020

Figure (16) is very similar to what we have seen for the other plots meaning that our

fourth model is the best and the third model performs the worst.

To summarize, we observe that overall our fourth model performs the best, followed by

our �rst model, then our second model and �nally our third model. We can draw several

conclusions by this order. The most important is that the mean SFDE from model 3 is not

a good model for the stock price, especially for long term projections. This leads to the next

important aspect. When modelling stock prices it is necessary to have a parameter or some-

thing else to model stock prices over a long period of time, for example the simplest thing

we can do is introducing the term µX(t) (as in model 1, 2, 4) which models a percentage

change compared to the current value. However, we see that for short term modelling model

3 holds up relatively well and additionally we observe that our fourth model is the best in

39



almost all cases which suggests that there indeed exists some "evolving around its mean"

behaviour of stocks.

Finally, we observe that our �rst model performs signi�cantly better than our second model

although the models are based on the same SDE and we just estimated the parameters

di�erently. It makes sense that the parameters estimated based on the Euler scheme per-

form better than the theoretical ones, since we are simulating paths with the Euler scheme

afterwards and the parameters from model 1 are optizmised for exactly that.

40



5 Option Pricing for path-dependent volatility models

In this chapter we are going to use the SFDE from chapter 2 as a volatility model similarly

to the Heston model. We are going to look at a numerical scheme to �nd option prices of

any kind for our model and compare those results to other models.

Previously, in chapter 4 we used an SFDE which is evolving around its mean for modelling

the stock market. We now present a model where the volatility is modelled by its own SFDE

and is not assumed constant anymore. The model reads as

dX(t) = µX(t)dt+ σ(t)X(t)dWX(t), where σ(t) = f(Z(t)) and (37)

dZ(t) = κ(Z̄t − Z(t))dt+ ξdWZ(t), (38)

where µ ∈ R, κ > 0, ξ > 0, WX(t) and WZ(t) are Wiener processes with correlation ρ and

f is a di�erentiable function. We see that that the volatility is not constant anymore, but

σ(t) evolves now.

We observe that this model is similar to the Heston model which is given by

dX(t) = µX(t)dt+ σ(t)X(t)dWX(t), where σ(t) = f(Z(t)) and (39)

dZ(t) = κ(θ − Z(t))dt+ ξdWZ(t), (40)

with the same assumptions as the previous model and additionally θ ∈ R.

Next, we are going to present the Euler scheme for the model from equations (38) and

(40). Therefore, we need to simulate two normal random variables with a given correlation

coe�cient. We know that ∆W ∼ N (0,∆) holds. Hence, we �rst simulate two independent

random variables X ∼ N (0,∆) and Y ∼ N (0,∆). Afterwards, we set Z := ρX +
√

1− ρ2Y.

Then it holds Z ∼ N (0,∆) as well as

Cov(X,Z) = Cov(X, ρX +
√

1− ρ2Y ) = Cov(X, ρX) + Cov(X,
√

1− ρ2Y )

= ρCov(X,X) = ρVar(X) = ρ∆,

41



since X and Y are independent. Therefore,

Cor(X,Z) =
Cov(X,Z)√

Var(X) · Var(Z)
=

ρ∆√
∆ ·∆

= ρ.

We see that now X and Z are going to be our realizations of our correlated Wiener processes,

since both of them are N (0,∆) distributed and have the desired correlation.

We are now able to write down the Euler scheme for our two models from this chapter. We

note that the models from equations (38) and (40) are incomplete models, hence the Euler

scheme is not providing us the unique fair value of an option, but rather a value in the

non-arbitrage range. We start with the Euler scheme for the model from equation (38). It

reads as

Yn+1 = Yn + µYn∆ + f(νn)Yn∆W Y , Y0 = X0

νn+1 = νn + κ(ν̄n − νn)∆ + ξ∆W ν , ν0 = Z0.

The Euler scheme for the model from equation (40) looks very similar. It is given by

Yn+1 = Yn + µYn∆ + f(νn)Yn∆W Y , Y0 = X0

νn+1 = νn + κ(θ − νn)∆ + ξ∆W ν , ν0 = Z0.

In both schemes ∆W Y and ∆W ν are realized as stated above. We want to take a look at

option pricing for these two models. Therefore, we �x the parameters in the models and

simulate the underyling paths by using the Euler schemes. As option we choose a basic call

option where the fair price of an option is given by

Price of a call option = exp(−rT )E(max{0, ST −K}|S0 = y), (41)

where r is the risk free interest rate, T is the maturity of the option in years, S is the price

of the underlying asset and y is the current value of the stock.

42



For our simulation we set f(x) = exp(x), S0 = 100, K = 100, r = µ = 0.1, ρ = 0.3, κ =

1, T = 2, ξ = 0.1, N = 100, θ = −1.5 and ν0 = −1.5. We have to choose θ = ν0 to compare

the results correctly, since we saw in chapter 2 that the the volatility modeling SFDE from

equation (38) evolves around ν0 and the volatility modeling SDE from equation (40) evolves

around θ. So in order to get comparable results for the option price and the volatility the

two volatility models have to evolve around the same value.

As a reference for both models we use the Black-Scholes model with the Euler scheme with �t-

ting parameters and the Black-Scholes pricing formula. In order to obtain the price of the call

option for each model we simulate 100000 paths of the underlying SFDE and check for each

path seperately what the fair price would have been by calculating exp(−rT ) max{0, ST−K}.

Afterwards, we use Monte Carlo simulation to approximate the expectation given in equation

(41). The corresponding R-code can be found in the appendix (program 6). Using the �xed

parameters from above, yields:

For model from equation (38): 22.34

For model from equation (40): 22.31

For Black-Scholes model with Euler scheme: 22.55

For Black-Scholes pricing formula: 22.65

We see that the prices do not di�er very much from each other which is reasonable, since a

model should not be really far away from the Black-Scholes model and all four methods are

closely related. We are not going to present more examples with di�erent parameters, but

our simulations show that the relative distance between the four options di�ers not much,

even for other option types.

A better approach for testing how good our two models introduced in this chapter really are,

would be to calibrate the two models with real data from the stock market and afterwards do

testing. Sadly, this is not an easy task and we neither had the time nor the data to perform

such a calibration.

43



6 References

[KP95] Peter E Kloeden and Eckhard Platen. Numerical solution of stochastic di�erential

equations, volume 2. Springer Science & Business Media, 1995.

[KT81] Samuel Karlin and Howard E Taylor. A second course in stochastic processes.

Elsevier, 1981.

[Mao03] X. Mao. Numerical solutions of stochastic functional di�erential equations. London

Mathematical Society, 2003.

[Øks03] Bernt Øksendal. Stochastic di�erential equations. In Stochastic di�erential equa-

tions. Springer, 2003.

44



Appendix R-Code

Program 1

1 n <- 1000

2 theta1 <- 1

3 sigma <- 0.2

4 start <- 500

5

6 y600 <- rep(0, 10000)

7 y800 <- rep(0, 10000)

8 y999 <- rep(0, 10000)

9 y1000 <- rep(0, 10000)

10 process <- c()

11 process [1] <- start

12 T <- 100

13 h <- T/n

14

15 for (i in 1:10000) {

16 process <- c()

17 process [1] <- start

18

19 for (k in 1:(n-1)) {

20 process[k+1] <- process[k]

21 + theta1 * (mean(process)-process[k])*h

22 + sigma * rnorm(1, 0, sqrt(h))

23

24 }

45



25

26 y600[i] <- process [600]

27 y800[i] <- process [800]

28 y999[i] <- process [999]

29 y1000[i] <- process [1000]

30

31 }

32

33 hist(y600 , main = "Histogram of values at time step 600",

34 ylab = "Frequency", xlab = "value", xlim = c(499.7 , 500.3) ,

35 ylim = c(0, 2500))

36 hist(y800 , main = "Histogram of values at time step 800",

37 ylab = "Frequency", xlab = "value", xlim = c(499.7 , 500.3) ,

38 ylim = c(0, 2500))

39 hist(y999 , main = "Histogram of values at time step 999",

40 ylab = "Frequency", xlab = "value", xlim = c(499.7 , 500.3) ,

41 ylim = c(0, 2500))

42 hist(y1000 , main = "Histogram of values at time step 1000",

43 ylab = "Frequency", xlab = "value", xlim = c(499.7 , 500.3) ,

44 ylim = c(0, 2500))

Program 2

1 n <- 1000

2 theta1 <- 1

3 sigma <- 0.2

4 start <- 500

46



5

6 y600 <- rep(0, 10000)

7 y800 <- rep(0, 10000)

8 y999 <- rep(0, 10000)

9 y1000 <- rep(0, 10000)

10 process <- c()

11 process [1] <- start

12 T <- 100

13 h <- T/n

14

15 for (i in 1:10000) {

16 process <- c()

17 process [1] <- start

18

19 for (k in 1:(n-1)) {

20 process[k+1] <- process[k]

21 + theta1 * (mean(process)-process[k])*h

22 + sigma * process[k] * rnorm(1, 0, sqrt(h))

23

24 }

25 y600[i] <- process [600]

26 y800[i] <- process [800]

27 y999[i] <- process [999]

28 y1000[i] <- process [1000]

29

30 }

31

47



32 hist(y600 , main = "Histogram of values at time step 600",

33 ylab = "Frequency", xlab = "value", xlim = c(300, 700),

34 ylim = c(0, 2500))

35 hist(y800 , main = "Histogram of values at time step 800",

36 ylab = "Frequency", xlab = "value", xlim = c(300, 700),

37 ylim = c(0, 2500))

38 hist(y999 , main = "Histogram of values at time step 999",

39 ylab = "Frequency", xlab = "value", xlim = c(300, 700),

40 ylim = c(0, 2500))

41 hist(y1000 , main = "Histogram of values at time step 1000",

42 ylab = "Frequency", xlab = "value", xlim = c(300, 700),

43 ylim = c(0, 2500))

Program 3: Here for the OU process, the R-code for the OU related proces is similar

1 n <- 1000

2 theta1 <- 1

3 sigma <- 0.4

4 start <- 500

5 y5 <- rep(0, 10001)

6 y6 <- rep(0, 10001)

7 y50 <- rep(0, 10001)

8 y999 <- rep(0, 10001)

9 y1000 <- rep(0, 10001)

10 mu <- 1

11 process <- c()

12 process [1] <- start

48



13 T <- 100

14 h <- T/n

15

16 for (i in 1:10001) {

17 process <- c()

18 process [1] <- start

19

20 for (k in 1:(n-1)) {

21 process[k+1] <- process[k]

22 + theta1 * (mu-process[k])*h

23 + sigma * rnorm(1, 0, sqrt(h))

24

25 }

26 y5[i] <- process [5]

27 y6[i] <- process [6]

28 y50[i] <- process [50]

29 y999[i] <- process [999]

30 y1000[i] <- process [1000]

31

32 }

33

34

35 a <- (2*theta1*mu)/(sigma*sigma)

36 b <- theta1/(sigma ^2)

37 x <- seq(0, 2, 0.0002)

38 C <- 2295.384564755

39 truedens <- (1/(sigma ^2))*(1/C)*exp(a*x-b*x^2)

49



40

41

42 plot(x, truedens , col= "red", xlim= c(0.2, 1.8)

43 , main= "Densities ", ylab = "f(x)")

44 lines(density(y999), col = "blue")

45 lines(density(y1000))

Program 4: Speci�c Code for simulating the paths for the OU related process, the R-codes

for the two SFDE's and the OU process are similar

1 n <- 1001

2 theta1 <- 1

3 sigma <- 0.2

4 start <- 500

5 m <- 1001

6 mu <- 300

7 process <- c()

8 process [1] <- start

9 T <- 100

10 h <- T/n

11 x <- seq(0, 100, 0.1)

12 P <- matrix(0, m, n)

13 P[,1]= start

14

15

16 for (i in 1:m) {

17 process <- rep(0, 1001)

50



18 process [1] <- start

19

20 for (k in 1:(n-1)) {

21 process[k+1] <- process[k]

22 + theta1 * (mu-process[k])*h

23 + sigma * process[k] * rnorm(1, 0, sqrt(h))

24 P[i, k+1] = process[k+1]

25 }

26

27 }

28

29

30

31 middleprocess <- rep(0, n)

32 for (j in 1:(n)) {

33 middleprocess[j] <- mean(P[2:m,j])

34 }

35

36

37 plot(x, middleprocess , type = "l", col = "blue", xlab = "t"

38 , ylab = "Process", ylim = c(200, 550))

39 lines(x, P[1,], col = "red")

Program 5: One example of R-Code evaluating our models for stocks (in this case we use

the one month Amazon data). The other codes used in chapter 4 are the same except for

the given data.

51



1 rm(list = ls())

2 setwd("C:/Users/Laszlo/Desktop/MA/Datenauswertung/Data")

3 data = read.csv("Amazon1M.csv")

4 x <- data[,2]

5 n <- length(x)

6 #assumption 252 trading days , we have 21 days

7 T <- n/252

8 h <- T/n

9 #eulerBS , parameters: myu1 , sigma1

10 myuvec1 <- rep(0, n-1)

11 sigmavec1 <- rep(0, n-1)

12 for (k in 1:(n-1)) {

13 myuvec1[k] <- (x[k+1]-x[k])/(x[k]*h)

14 }

15 myu1 <- mean(myuvec1)

16 for (k in 1:(n-1)) {

17 sigmavec1[k] <-(abs(x[k+1]-x[k]-myu1*x[k]*h))

18 /(x[k]*sqrt ((2*h)/pi))

19 }

20 sigma1 <- mean(sigmavec1)

21

22 #eulertheoretical , Parameters: myu2 , sigma2

23 logreturn <- rep(0, n-1)

24 for (i in 1:(n-1)) {

25 logreturn[i] <- log(x[i+1]/x[i])

26 }

27 mean <- mean(logreturn)

52



28 std <- sd(logreturn)

29 meanannualized <- 252*mean

30 stdannualized <- std*sqrt (252)

31 myu2 <- meanannualized + (stdannualized ^2)/2

32 sigma2 <- stdannualized

33

34 #MeanSDE , parameters sigma

35 meanprocess <- rep(0,n)

36 meanprocess [1] <- x[1]

37

38 for (i in 2:n) {

39 meanprocess[i] <- (meanprocess[i-1]*(i-1)+x[i])/i

40 }

41 sigmavec3 <- rep(0,n-1)

42 for (k in 1:(n-1)) {

43 sigmavec3[k] <- abs((x[k+1]-x[k]

44 -(meanprocess[k]-x[k])*h)/x[k])

45 }

46 sigma3 <- mean(sigmavec3)/sqrt ((2*h)/pi)

47

48 #MeanSDE2 , parameters sigma , myu

49 myuvec4 <- rep(0, n-1)

50 sigmavec4 <- rep(0, n-1)

51 for (k in 1:(n-1)) {

52 a <- (x[k+1]-x[k])/h

53 b <- a - meanprocess[k]+x[k]

54 myuvec4[k] <- b/x[k]

53



55 }

56 myu4 <- mean(myuvec4)

57

58 for (k in 1:(n-1)) {

59 sigmavec4[k] <-

60 (abs(x[k+1]-x[k]-( meanprocess[k]-x[k]+myu4*x[k])*h))

61 /(x[k]*sqrt ((2*h)/pi))

62 }

63 sigma4 <- mean(sigmavec4)

64

65

66 #eulerBS error estimation

67 error1 <- rep(0, 10000)

68

69 for (k in 1:10000) {

70 process1 <- rep(0, n)

71 process1 [1] <- x[1]

72 for (i in 2:n) {

73 process1[i] <- process1[i-1]

74 + myu1*process1[i-1] * h

75 + sigma1*process1[i-1]*rnorm(1, 0, sqrt(h))

76 }

77 error1[k] <- max(abs(x-process1 ))

78 }

79

80 #eulertheoretical error estimation

81 error2 <- rep(0, 10000)

54



82

83 for (k in 1:10000) {

84 process2 <- rep(0, n)

85 process2 [1] <- x[1]

86 for (i in 2:n) {

87 process2[i] <- process2[i-1]

88 + myu2*process2[i-1] * h

89 + sigma2*process2[i-1]*rnorm(1, 0, sqrt(h))

90 }

91 error2[k] <- max(abs(x-process2 ))

92

93 }

94 #eulermeanSDE error estimation

95 error3 <- rep(0, 10000)

96

97 for (k in 1:10000) {

98 process3 <- c()

99 process3 [1] <- x[1]

100 for (i in 2:n) {

101 process3[i] <- process3[i-1]

102 +(mean(process3)-process3[i-1])*h

103 +sigma3*process3[i-1]*rnorm(1, 0, sqrt(h))

104 }

105 error3[k] <- max(abs(x-process3 ))

106 }

107

108 #eulermeanSDE2 error estimation

55



109 error4 <- rep(0, 10000)

110

111 for (k in 1:10000) {

112 process4 <- c()

113 process4 [1] <- x[1]

114 for (i in 2:n) {

115 process4[i] <- process4[i-1]

116 +(mean(process4)-process4[i-1]+ myu4*process4[i-1])*h

117 +sigma4*process4[i-1]*rnorm(1, 0, sqrt(h))

118 }

119 error4[k] <- max(abs(x-process4 ))

120 }

121

122 hist(error1 , main = "Error for Black -Scholes with Euler",

123 xlab = "Error from the true path", ylab = "Frequency",

124 xlim = c(0, 400), ylim = c(0, 2800))

125 hist(error2 , main = "Error for Black -Scholes theoretical",

126 xlab = "Error from the true path", ylab = "Frequency",

127 xlim = c(0, 400), ylim = c(0, 2800))

128 hist(error3 , main = "Error for MeanSDE with Euler",

129 xlab = "Error from the true path", ylab = "Frequency",

130 xlim = c(0, 400), ylim = c(0, 2800))

131 hist(error4 , main = "Error for MeanSDE2 with Euler",

132 xlab = "Error from the true path", ylab = "Frequency",

133 xlim = c(0, 400), ylim = c(0, 2800))

134

135 meanerror1 <- mean(error1)

56



136 meanerror2 <- mean(error2)

137 meanerror3 <- mean(error3)

138 meanerror4 <- mean(error4)

Program 6

1 n <- 100

2 S <- rep(0, n)

3 S[1] <- 100

4 nyu <- c()

5 nyu [1] <- -1.5

6 r <- 0.1

7 rho <- 0.3

8 T <- 2

9 kappa <- 1

10 xi <- 0.1

11 h <- T/n

12 strike <- 100

13

14 estimate1 <- rep(0, 100000)

15 for (k in 1:100000) {

16 nyu <- c()

17 nyu [1] <- -1.5

18 S <- rep(0, n)

19 S[1] <- 100

20 x1<-rnorm (100,0,sqrt(h))

21 y1<-x1*rho+sqrt(1-rho ^2)*rnorm (100,0,sqrt(h))

57



22 for (i in 2:n) {

23 S[i] <- S[i-1]+r*S[i-1]*h+exp(nyu[i-1])*S[i-1]*x1[i]

24 nyu[i] <- nyu[i-1]+ kappa*(-nyu[i-1]+ mean(nyu))*h+xi*y1[i]

25 }

26 estimate1[k] <- max(0, S[n]-strike)

27 }

28 callprice1 <- mean(estimate1)*exp(-r*T)

29

30 estimate2 <- rep(0, 100000)

31 for (k in 1:100000) {

32 nyu <- c()

33 nyu [1] <- -1.5

34 S <- rep(0, n)

35 S[1] <- 100

36 x2<-rnorm (100,0,sqrt(h))

37 y2<-x2*rho+sqrt(1-rho ^2)*rnorm (100,0,sqrt(h))

38 for (i in 2:n) {

39 S[i] <- S[i-1]+r*S[i-1]*h+exp(nyu[i-1])*S[i-1]*x2[i]

40 nyu[i] <- nyu[i-1]+ kappa*(-nyu[i-1]+ nyu [1])*h+xi*y2[i]

41 }

42 estimate2[k] <- max(0, S[n]-strike)

43 }

44 callprice2 <- mean(estimate2)*exp(-r*T)

45

46 estimate3 <- rep(0, 100000)

47 for (k in 1:100000) {

48 S <- rep(0, n)

58



49 S[1] <- 100

50 for (i in 2:n) {

51 S[i] <- S[i-1]+r*S[i-1]*h+

52 exp(nyu [1])*S[i-1]*rnorm(1, 0, sqrt(h))

53

54 }

55 estimate3[k] <- max(0, S[n]-strike)

56 }

57 callprice3 <- mean(estimate3)*exp(-r*T)

59


	Numerical Solution of a Class of Stochastic Functional Differential Equations with Financial Applications
	Recommended Citation

	tmp.1595470323.pdf.BErqE

