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Abstract

Goodness-of-Fit Testing for Copula-based models with
Applications in Atmospheric Science

by

Albert Rapp

The University of Wisconsin–Milwaukee, 2017
Under the Supervision of Professor Vincent E. Larson

Every elementary probability course discusses how to construct joint distribution functions

of independent random variables but joint distribution functions of dependent random vari-

ables are usually omitted. Obviously, the reason is that things are not as simple as in the

independent case. In this matter, so-called copulas can be an elegant tool to investigate

dependency structures other than independence.

A copula is a convenient function which links the marginal distributions of random variables

to their joint distribution. The beauty here is that one can use suitable copulas to model

any desired dependence structure between any set of random variables without even knowing

their marginal distributions.

In the end, using copulas for modeling comes down to figuring out which copula is suitable

given a set of observations. One way to investigate this is based on goodness-of-fit tests

which are specifically designed for copulas.

Ultimately, this thesis gives an introduction into the necessary theory of copulas and their

goodness-of-fit tests in order to use them to compare popular models for cloud overlap in

atmospheric science.
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Chapter 1

Introduction

A copula is a convenient function which links the marginal distributions of random variables

to their joint distribution. The beauty here is that one can use suitable copulas to model

any desired dependence structure between any set of random variables without even knowing

their marginal distributions. In the end, using copulas for modeling comes down to figuring

out which copula is suitable given a set of observations. One way to investigate this is based

on goodness-of-fit tests which are specifically designed for copulas.

Ultimately, this thesis gives an introduction into the necessary theory of copulas and their

goodness-of-fit tests in order to use them to compare popular models for cloud overlap in

atmospheric science. More precisely, this thesis focuses on establishing a testing methodology

for analyzing the dependence of the amount of cloud ice in two adjacent cloud layers.

In the pursuit to of that goal, chapter 2 outlines the fundamental definitions and the-

orems needed for understanding copulas and their goodness-of-fit tests. Subsequently, this

is followed by chapter 3 which introduces the most prominent models this thesis is going

to investigate. Then, chapter 4 uses these models and the goodness-of-fit tests on data to

establish which model fits the data best. Finally, chapter 5 concludes the thesis with a

summary of the findings.
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Chapter 2

Copula Theory

This introduction to copulas follows the book ”An Introduction to Copulas” by Roger Nelson

[1] closely but only summarizes the key elements which are important for this thesis. It is

worth noting that Nelson focuses on bivariate copulas which is all that is needed here.

However, Nelson also offers explanations as to how to extend copulas to higher dimensions.

The theory of Goodness-of-Fit testing for copulas, which follows after the introduction to

copulas, is based on the corresponding paper by Genest et al. [2].

2.1 Introduction

2.1.1 Preliminaries

This section is designed to introduce the most important terminology to deal with copulas.

Definition 2.1. (H-Volume of a Set) For two nonempty sets S1, S2 Ă R, a mapping

H : S1 ˆ S2 Ñ R̄ and a set B “ rx1, x2s ˆ ry1, y2s Ă S1 ˆ S2, one defines the H-Volume of B

as

VHpBq “ Hpx2, y2q ´Hpx1, y2q ´Hpx2, y1q `Hpx1, y1q.

Definition 2.2. (H-Measure) The mapping H in definition 2.1 is called 2-increasing if

VHpBq ě 0 for all rectangles B whose vertices lie in the domain of H. Also, if H is 2-

increasing, then VHpBq is called H-measure of B.

Definition 2.3. (Groundedness) Suppose for two nonempty sets S1, S2 Ă R and a map-

ping H : S1 ˆ S2 Ñ R̄ there exist minima a1 “ minpS1q and a2 “ minpS2q. Then H is said

2



to be grounded if

Hpx, a2q “ 0 “ Hpa1, yq for all px, yq P S1 ˆ S2.

Definition 2.4. (Margins) Suppose for two nonempty sets S1, S2 Ă R and a mapping

H : S1 ˆ S2 Ñ R̄ there exist maxima b1 “ maxpS1q and b2 “ maxpS2q, then H is said to

have margins F and G which are defined by

F : S1 Ñ R, F pxq “ Hpx, b2q for all x P S1

G : S2 Ñ R, Gpxq “ Hpb1, yq for all y P S2.

Given this new terminology, it is possible to describe a joint distribution function H

without any probabilistic notions:

Definition 2.5. (Joint Distribution Function) A joint distribution function is a function

H with domain R̄2 such that

1. H is 2-increasing

2. Hpx,´8q “ 0 “ Hp´8, yq

3. Hp8,8q “ 1

Thus, H is grounded with margins F and G which are distribution functions as well.

2.1.2 Copulas and Sklar’s Theorem

Now that the necessary terminology is properly introduced, it is time to focus on the essen-

tials of copulas.

Definition 2.6. (Copula) A copula is a function Cpu, vq : r0, 1s2 Ñ r0, 1s which is grounded

and 2-increasing such that

3



1. Cpu, 1q “ u

2. Cp1, vq “ v

for all u, v P r0, 1s.

So, one way to think about a copula is to think of it as a two-dimensional distribution

function with support r0, 1s2 and uniform margins. However, this is not why copulas are

so interesting. The real power of copulas becomes apparent once one introduces Sklar’s

theorem.

Theorem 2.7. (Sklar, [3])

1. If H is a joint distribution function with margins F and G, then there exists a copula

C such that Hpx, yq “ C
`

F pxq, Gpyq
˘

for all x, y P R̄. Additionally, if F and G are

continuous, then C is unique.

2. On the other hand, if C is a copula and F and G are distribution functions, then

Hpx, yq “ CpF pxq, Gpyqq is a joint distribution function with margins F and G

Sklar’s theorem shows that copulas can be used to couple a joint distribution function

to its univariate margins. Thus, copulas can be used to model dependencies between ran-

dom variables by taking their respective distribution functions (which are often known) and

plugging them into a copula. This way, one gets a joint distribution and needs to assess if

this joint distribution fits real world observations. In the continuous case, there is a unique

copula that fits the real joint distribution. Consequently, it comes down to figuring out which

copula to use.

With this in mind, one very fundamental fact from probability theory can be expressed

in terms of copulas:

Theorem 2.8. (Independence Copula) If X and Y are continuous random variables,

then X and Y are independent if and only if the copula that couples the marginal distri-

butions, F and G respectively, and the joint distribution H is given by the independence
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copula Cpu, vq “ uv, i.e.

Hpx, yq “ CpF pxq, Gpyqq “ F pxqGpyq.

One very last piece that is needed in this thesis deals with strictly increasing transfor-

mations of random variables

Theorem 2.9. (Invariance under strictly increasing Transformation) Suppose X

and Y are continuous random variables with associated copula CXY , i.e. CXY links the

marginal distributions of X and Y to their joint distribution.

Then, for strictly increasing functions α, β the copula that links αpXq and βpY q is given by

CXY , i.e. the copula is invariant under strictly increasing transformation.

2.2 Goodness-of-Fit Testing

As already mentioned, the main purpose of this thesis is to analyze a data set and figure

out which copula-based model fits this data best. The models that are being used will be

thoroughly introduced in the next chapter. Here, the focus is on establishing a general

testing methodology that allows one to infer which model fits the data best.

In their paper about goodness-of-fit testing, Genest et al. [2] propose a so-called ”blan-

ket test” based on a sample of independent and identically distributed realizations of d-

dimensional random vectors Xi “ pXi1, . . . , Xidq pi “ 1, . . . , nq, where n is the sample size.

They describe the meaning of “blanket test” as not needing any prior “parameter tuning or

other strategies”. In this thesis, only two-dimensional data will be analysed and as such all

subsequent formulas in this section are specifically rewritten for the case d “ 2.

The first step in dealing with data requires a strictly increasing transformation of the

data by using the empirical marginal distribution function

F̂jptq “
1

n

n
ÿ

i“1

1pXij ď tq pj “ 1, 2q

5



to transform the observations into

Uij “
n

n` 1
F̂jpXijq pj “ 1, 2q.

It is worth pointing out that the underlying copula is not affected by this transformation

as established in theorem 2.9. Also, Genest et al. describe the factor
n

n` 1
to be only of

technical nature.

With the transformed observations, also called pseudo-observations, one can compute the

associated empirical copula which is given by

Cnpu1, u2q “
1

n

n
ÿ

i“1

1 pUi1 ď u1, Ui2 ď u2q for u1, u2 P r0, 1s.

So far, there were no hypotheses mentioned which are supposed to be tested. This is due

to the fact that this wasn’t needed because one has to do the previous steps in any case as

the empirical copula is an estimator for the underlying copula as proven by Fermanian et

al. [4]. However, it becomes apparent that there is a need for a hypothesis to move forward.

After all, for testing purposes the empirical copula needs to be “compared” to some copula to

establish how close the empirical copula comes to the underlying copula. So, the hypothesis

that will be tested here is H0 : C P C0, where C represents the underlying copula and C0

represents a parametric family of copulas.

Now that there is a hypothesis which assumes a specific parametric copula family, one

can use the this hypothesis to estimate the family’s parameter(s) θn based on the pseudo-

observations U1, . . . ,Un. The corresponding copula will be denoted by Cθn . As both Cθn

and Cn are two-dimensional functions with support r0, 1s2, one can compute the so-called

empirical process

Cnpu1, u2q “
?
n
`

Cnpu1, u2q ´ Cθnpu1, u2q
˘

for u1, u2 P r0, 1s.

The empirical process now serves as a tool to compute a statistic for testing purposes.

Genest et al. mention two statistics which can be used here, namely versions of the Cramér-

6



von-Mises and Kolmogorov-Smirnov statistics

Sn “

ż

r0,1s2
C2
npu1, u2q dCnpu1, u2q and Tn “ sup

u1,u2Pr0,1s

|Cnpu1, u2q|.

Genest et al. continue by stating that the limiting distributions of these statistics depend

on the null hypothesis and unknown parameter θ which makes it impossible to find values

to compare these statistics to. To overcome this problem, they offer a parametric bootstrap

procedure to compute p-values in order to use these statistics for testing purposes. Also,

their findings show that the statistic Sn is to be preferred over the statistic Tn.

Since the parametric bootstrap will be needed later for the data analysis, it is worth

establishing the procedure here. This is especially useful since many of the copulas which

are of interest in this thesis will need Monte Carlo approximations because the copula cannot

be described by analytical expressions:

1. Based on the pseudo-observations U1, . . . ,Un, compute the empirical copula Cn and

estimate the parameter θn under the null hypothesis. (Chapter 4 states all null hy-

potheses which will be considered as part of this thesis. Each parameter estimation is

implemented as described in chapter 3.)

2. Choose m ě n and

(i) Generate a random sample U˚
1 , . . . ,U

˚
m from the distribution Cθn .

(ii) Approximate Cθn with the empirical copula based on U˚
1 , . . . ,U

˚
m, i.e. compute

B˚mpu1, u2q “
1

m

n
ÿ

i“1

1 pU˚i1 ď u1, U
˚
i2 ď u2q for u1, u2 P r0, 1s.

(iii) Approximate Sn by

Sn “
n
ÿ

i“1

tCnpUi1, Ui2q ´B
˚
mpUi1, Ui2qu

2

3. For some large integer N , repeat for every k P t1, . . . , Nu

(i) Generate a random sample Y˚
1 , . . . ,Y

˚
n from the distribution Cθn and compute

7



their pseudo-observations U˚
1 , . . . ,U

˚
n

(ii) Based on U˚
1 , . . . ,U

˚
n, compute the empirical copula, i.e. compute

C˚npu1, u2q “
1

n

n
ÿ

i“1

1 pU˚i1 ď u1, U
˚
i2 ď u2q for u1, u2 P r0, 1s.

and estimate θ˚n.

(iii) Choose m ě n and

(a) Generate a random sample Y˚˚
1 , . . . ,Y

˚˚
m from the distribution Cθ˚

n
.

(b) Approximate Cθ˚
n

with the empirical copula based on Y˚˚
1 , . . . ,Y

˚˚
m , i.e. com-

pute

B˚˚m pu1, u2q “
1

m

n
ÿ

i“1

1 pY ˚˚i1 ď u1, Y
˚˚
i2 ď u2q for u1, u2 P r0, 1s.

(c) Now, let

S˚n,k “
n
ÿ

i“1

tC˚npU
˚
i1, U

˚
i2q ´B

˚˚
n pU

˚
i1, U

˚
i2qu

2

4. An approximate p-value is given by

1

N

N
ÿ

k“1

1pS˚n,k ą Snq

How this is used for testing purposes will be elaborated further in chapter 4. Also, it

is worth noting that Genest and Rémillard [5] established the validity of this parametric

bootstrap.

8



Chapter 3

Introduction of Copula-based Models

A main objective of this thesis is to compare multiple models to a given data set. A first look

at this data is given by figure 3.1. Each model uses different copulas to model dependencies

between hydrometeors of two adjacent cloud layers. All of these models won’t fit the data

perfectly as these models are idealized but are chosen due to computational simplicity. As

such, every parameter estimation (if the model has a parameter) is designed to take this

mismatch of reality and model into account.

Further, it is worth pointing out that a lot of these copulas are described in the at-

mospheric science literature solely by means of simulation as they often do not have an

analytical form. However, for computational purposes (as in this thesis) the description by

simulation is sufficient. Also, the bootstrap which was introduced in 2.2 can be modified for

copulas which have an analytical form such that bootstrap does not rely on simulations as

intensely as it does now. However, for the purpose of applying the exact same test procedure

to each copula, the bootstrap was not modified for copulas with analytical formulas.

Figure 3.1: Pseudo-observations generated from cloud ice data at heights 10.75 km and 11
km

9



3.1 Independence and Identity Copula

The first two models are based on the independence copula CIpu, vq and on the identity

copula CID, which are described by Ovchinnikov et al. [6]. These two models are very basic

but also extremely contrasting. The model using the independence copula asserts that there

is no dependency between two random variables of interest whereas the other model is based

on the other extreme, namely that the two random variables show perfect positive correlated.

In the atmospheric science literature, this copula is often referred to as maximum copula but

this thesis will refer to it as identity copula. Both models are illustrated in figure 3.2.

Also, it is worth noting that these models do not require any parameter estimations.

Further, both copulas have analytical forms which are given by

CI
pu, vq “ uv and CID

pu, vq “ minpu, vq for u, v P r0, 1s.

Figure 3.2: Scatter plot of 1000 realizations of independence copula (left) and identity copula
(right)

3.2 Independence combined with Identity Copula

Since the previous two copulas were quite extreme, it might be a good idea to mix them.

Räisänen et al. [7] propose using a convex combination of the independence copula CIpu, vq

10



Figure 3.3: Scatter plot of 1000 realizations of the the mixing of identity and independence
copula with parameter α “ 0.25 (left) and α “ 0.75 (right)

and identity copula CIDpu, vq to generate a new copula

Cαpu, vq “ αCID
pu, vq ` p1´ αqCI

pu, vq for u, v P r0, 1s

where α P r0, 1s can be seen as a parameter of this copula describing the probability for

realizations to be on the diagonal. 1000 realizations of this copula with different values

for the parameter α can be seen in figure 3.3. This model is still fairly simple and from

observations pui, viq pi “ 1, . . . , nq, the parameter can be intuitively estimated by

α̂ “
# tpu, vq|u “ vu

n
.

3.3 The Diagonal Band Copula

The so-called diagonal band copula will be the main focus of the data analysis in this thesis.

Therefore, it is vital to introduce it properly. In figure 3.4, one can see a scatter plot of

10000 realizations of this copula and by looking at it, it becomes clear how this copula ended

up with the name diagonal band copula.

11



Figure 3.4: Scatter plot of 10000 realizations of a band diagonal copula with half-width 0.45

To create such a realization Larson and Schanen [8] introduce an easy approach which

consists of just a few simple steps:

1. Generate N realizations of a standard uniform random variable U1, . . . , UN .

2. For each realization Ui pi “ 1, . . . , Nq, generate one realization of a random variable

ε „ Up´δ, δq where δ P r0, 1s is the half-width of the diagonal band copula. Now, set

Vi “ Ui ` ε pi “ 1, . . . , Nq.

3. One quickly realizes that pUi, Viq is not bound to the unit square r0, 1s2 and therefore

cannot be a copula. It is possible to overcome this problem by reflecting Vi along the

line V “ 0 or V “ 1. Consequently, one computes

Ṽi “

$

’

’

&

’

’

%

´Vi , Vi ă 0

1´ Vi , Vi ą 1

The copula’s computational simplicity allows it to be used for practical purposes. How-

ever, in order to answer practical questions like how to estimate the band width from data

or how well a certain diagonal band fits data, it is advisable to derive some mathematical

properties first.

12
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Figure 3.5: Support of a diagonal band copula with half-width δ “ 0.25.

3.3.1 The Density of the Diagonal Band Copula

To get a better understanding of the diagonal band copula, it is a good idea to have a look at

its support. Figure 3.5 shows the support of a diagonal band copula with half-width δ “ 0.25

and the figure also shows how the support can be split into the following 5 areas:

A “
 

pu, vq|u P r0, δs, v P r0, δ ´ us
(

B1 “
 

pu, vq|u P r0, δs, v P rδ ´ u, δ ` us
(

B2 “
 

pu, vq|u P pδ, 1´ δq, v P ru´ δ, u` δs
(

B3 “
 

pu, vq|u P r1´ δ, 1s, v P ru´ δ, 2´ δ ´ us
(

C “
 

pu, vq|u P r1´ δ, 1s, v P r2´ δ ´ u, 1s
(

To derive a density for the band diagonal copula it is reasonable to assume that the density

is constant within A,B1, B2, B3 and C, respectively. Further, one may assume that the

density is constant within B “ B1 Y B2 Y B3. Similarly, the density’s value within A is the

same as within C but is twice the value within B1 due to the reflection in the last step of

the previous algorithm. Consequently, finding the copula’s density is possible by finding a

13



constant c ě 0 such that

cδpu, vq “

$

’

’

&

’

’

%

2c , pu, vq P A or pu, vq P C

c , pu, vq P B

and

ż

r0,1s2
cδpu, vqdpu, vq “ 1.

By simple calculations one easily finds that c “
1

2δ
and gets

cδpu, vq “

$

’

’

’

&

’

’

’

%

1

δ
, pu, vq P A or pu, vq P C

1

2δ
, pu, vq P B

if δ ą 0.

Interestingly, δ “ 1 reduces this to c1pu, vq “ 1 for pu, vq P r0, 1s2 which implies that this is (in

some way) a generalization of the independence copula. Further, for δ “ 0 it is not possible

to derive a density because its support would be given by D “
 

pu, vq P r0, 1s2 | u “ v
(

and one would have to find a constant c ě 0 such that
ş

D
c dpu, vq “ 1. However, one can

see that if V “ U the dependence between the two random variables can be described by

a diagonal band copula with half-width 0. Consequently, the diagonal band copula can be

seen as a generalization of the identity copula too.

3.3.2 Estimating the band half-width

To estimate a copula’s parameter(s) from a data sample pXi1, Xi2q pi “ 1, . . . , nq Genest et

al. [2] propose maximizing the log pseudo-likelihood function `pδq which is given by

`pδq “
n
ÿ

i“1

log
!

cδ

´

F̂1pXi1q, F̂2pXi2q

¯)

where

F̂jptq “
1

n

n
ÿ

i“1

1pXij ď tq pj “ 1, 2q
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are the empirical marginal distribution functions. However, in this case using this approach

isn’t feasible as the density’s support is dependent on the parameter δ. This leads to the

fact that this method can only be used to determine when all data points are within a band

with half-width δ.

Looking at the data in figure 3.1, it becomes apparent that the pseudo-observations are

highly concentrated around the line from p0, 0q to p1, 1q. In fact, Larson et al. [6] found that

the amount of pseudo-observations increases towards this line. Of course, this implies that

the band diagonal model won’t fit the data perfectly but, as already stated in the beginning

of this chapter, the computational ease of this model makes it attractive to use anyways. So,

the goal here is to find a diagonal band with half-width δ such that the band is as narrow as

possible but also includes significantly many observations. Consequently, to figure out which

half-width δ is suitable in order for a ”significant” amount of the data points to be within

the band, a different approach needs to be found. A (very unintuitive) approach is given by

the following algorithm:

1. For δ P r0, 1s count how many data points fall within the area AY B2 Y C and define

Lpδq to be equal to this number.

2. Find a local maximum Lmax of Lpδq and define δ̂ such that Lpδ̂q “ Lmax.

As δ increases, the areas of A and C increase, whereas the area of B2 increases at first but

decreases once the underlying half-width δ is reached. Consequently, this algorithm tries to

find the moment for which the increase in the area of A Y C does not compensate for the

decrease in the area of B2. In other words, the algorithms determines when an increase in

the band’s half-width doesn’t allow for a significant increase in the amount of data points

within the band.

In figure 3.6 one can see that the graphs of Lpδq look substantially different for different

underlying half-widths. If the real half-width is less than 0.5, then the graph looks as in the

figure on the left, whereas the graph looks as in the figure on the right if the real half-width

15



is greater than or equal to 0.5. Consequently, δ̂ in the above algorithm delivers an estimate

for the real half-width δ if δ is less than 0.5 but not if δ is greater than or equal to 0.5.

Figure 3.6: Lpδq computed for 10000 realizations of a diagonal band copula with a half-width
of 0.32 (left) and a half-width of 0.73 (right)

To account for this, the above algorithm needs to be changed in a couple of ways. First,

the algorithm needs to determine if the underlying half-width is greater than or equal to 0.5

or not. In the latter case, the approach using a local maximum yields good results and in

the former case, the algorithm needs to find a “significant” change in the slope of Lpδq for

δ P r0.5, 1s. In this thesis, the detection of the slope change is implemented by a combination

of linear interpolation and minimal distance between interpolation and data. Concretely, the

adjusted algorithm looks like this:

1. For δ P r0, 1s count how many data points fall within the area AY B2 Y C and define

Lpδq to be equal to this number.

2. Find a local maximum Lmax of Lpδq and check if LpLmaxq is greater than
n

2
where n is

the number of observations.

(a) If LpLmaxq ą
n

2
, then Lpδq looks like the left graph in figure 3.6. Consequently,

define δ̂ such that Lpδ̂q “ Lmax.
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(b) If LpLmaxq ď
n

2
, then Lpδq looks like the graph on the right side of figure 3.6.

Therefore, δ is greater than or equal to 0.5. Now,

• For every δ P r0.5, 1s, define function yδpxq by linearly interpolating the three

points
`

0.5, Lp0.5q
˘

,
`

δ, n ¨ δ
˘

,
`

1, n
˘

.

• Compute distance between interpolation and data by calculating

dpδq “

ż 1

0.5

`

Lpxq ´ yδpxq
˘2
dx

and choose

δ̂ “ arg min
δPr0.5,1s

dpδq.

.

To test this algorithm’s accuracy, a simulation study was implemented which simulates

1000 runs of n realizations of a diagonal band copula and estimates its parameter afterwards.

The mean of the estimated parameters is then compared to the real parameter. Figure 3.7

shows the results of this study for n “ 1000 and n “ 2000. Evidently, the algorithm delivers

good results if the underlying half-width is less than 0.5. Around half-widths of 0.5, the

algorithms shows significant estimation errors and the error for higher half-widths is lower

than the error around half-widths of 0.5 but still increases with increasing half-width. It is

also worth noting that the increase in the amount of data decreased the error around 0.5

but did not significantly affect the rest.

A look at the data in figure in figure 3.1 shows that the data can be described by a

diagonal band copula with an half-width less than 0.5. For future purposes it might be

interesting to see how the detection of the slope change can be improved by means other

than linear interpolation. However, for the purposes of this thesis, the algorithm is sufficient.
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Figure 3.7: Simulation study to test algorithm’s accuracy with the number of observations
being n “ 1000 (on the left) and n “ 2000 (on the right). The graphs show mean absolute
error (MAE, in blue), mean squared error (MSE, in red) and its square root (in black).

3.4 Diagonal band combined with Identity Copula

As already mentioned, the concentration of observations increases towards the line from

p0, 0q to p1, 1q. Consequently, Vincent Larson suggested (during regular meetings as part of

this thesis) that it might be beneficial to combine the diagonal band copula with the identity

copula to account for this phenomena. Again, one can use a convex combination to combine

identity copula CIDpu, vq and diagonal band copula Cδpu, vq:

Cα,δpu, vq “ αCID
pu, vq ` p1´ αqCδpu, vq for u, v P r0, 1s

where α P r0, 1s is the parameter describing the probability for realizations to be on the line

from p0, 0q to p1, 1q and δ P r0, 1s is the parameter describing the diagonal band’s half-width.

The effect of using different α is depicted in figure 3.8.

Estimation of the two parameters α and δ is straightforward and can be done separately

from each other by using the estimators given in sections 3.2 and 3.3.
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Figure 3.8: 1000 realizations of the combination of identity and diagonal band copula for
δ “ 0.4 and α “ 0.2 (left) or α “ 0.8 (right)
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Chapter 4

Data Analysis

4.1 Testing Methodology

As part of this analysis, the approach described in section 2.2 is applied to different null

hypotheses which each correspond to one of the models described in chapter 3. This means

that the following null hypotheses will be tested:

H
p1q
0 : C P C1 “ tCID

u

H
p2q
0 : C P C2 “ tCI

u

H
p3q
0 : C P C3 “ tCα|α P p0, 1qu

H
p4q
0 : C P C4 “ tCδ|δ P p0, 1qu

H
p5q
0 : C P C5 “ tCα,δ|α P p0, 1q, δ P p0, 1qu

In fact, each hypothesis will be tested multiple times and will be rejected each time if

the approximated p-value (as described in section 2.2) has a value of 0.05 or less. Depending

on how many times the hypotheses are tested we get a percentage of how many times each

hypothesis was rejected.

Given the fact that each test procedure relies on generating random samples, even if

the data’s underlying copula were in fact described by one of the null hypotheses, then the

rejection percentage still would not be zero percent. However, as already stated multiple

times, all of the models won’t fit perfectly and as such, a deviation of the rejection percentage

from zero is to be expected. Consequently, an intuitive benchmark to judge which of the

models describes the data best is to compare the rejection percentages to figure out which

hypothesis is rejected least often.
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Figure 4.1: Pseudo-observations generated from cloud ice data at heights 10.75 km and 11
km

As part of this thesis, the models are tested on the data which was already illustrated in

figure 3.1. For convenience this figure is restated here in figure 4.1. This data set consists of

around 16000 data points and unfortunately it is computationally impossible to test all 16000

data points simultaneously. So, instead the tests are performed using random samples from

the data of size 50. As the time it takes to run these tests increase more than quadratically

with increasing sample size, the data size of 50 was chosen to ensure that as many data

points can be tested within a reasonable amount of time.

Once 50 data points are randomly sampled from the data, the hypotheses are tested 200

times each and the p-value of each test is computed using the parametric bootstrap described

in section 2.2 while using N “ 200 repetitions as part of the bootstrap. Here, one should

point out that all of these numbers are rather low due to the absence of sufficient computing

resources and are mainly chosen this way to ensure the availability of results within the given

time frame of this thesis.

As Genest et al. [2] point out, the lack of computing resources is especially unfortunate

here because there are no closed formulas for the some of copulas this thesis looks at and

one has to rely on simulating a lot of samples as part of the bootstrap. Nevertheless, the

described test was run 260 times and the rejection rates after each test gave birth to the box

plot in figure 4.2 and the average rejection rates in table
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Figure 4.2: Box plot of the rejection rates of each model for 260 test runs

Model Average rejection rate Average p-value

Independence 94.86% 0.0103

Identity 5.01% 0.4650

Independence / Ident. 80.11% 0.0445

Diagonal Band 4.91% 0.4849

Diagonal Band / Ident. 4.73% 0.4916

Table 4.1: Average rejection rates and average p-values

4.2 Test Results and Model Improvement

Looking at the results in figure 4.2, one clearly notices that the independence copula is the

worst choice among the models. Intuitively, this isn’t much of a surprise as figure 4.1 clearly

shows a concentration of the pseudo-observations around the main diagonal and one could

have immediately concluded that no dependency between the cloud ice of adjacent cloud
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layers is unlikely.

Similarly, it doesn’t come as a surprise that mixing the independence copula with the

identity copula improved the model by lowering its average rejection rate and increasing the

average p-value as seen in table 4.1. Further, judging by figure 4.2 and table 4.1, it seems like

mixing a copula with the identity copula improves the fit for this data since it improved not

only the independence copula but also the diagonal band copula. Specifically, the mixture

of identity and diagonal band copulas has a lower average rejection rate, a higher average

p-value than the diagonal band copula and in figure 4.2, one can see that adding the identity

copula also lowered the variation among rejection rates.

Consequently, one could argue, given the results, that the mixture of diagonal band and

identity copula is the best fit (among these choices) for this data. Again, these results need

to taken with a grain of salt due to the low sample size and number of repetitions. However,

a couple of test runs with a higher sample size didn’t seem to alter the general implications

of the above calculations. For the future and with more computational power, it would be

interesting to see if these results still hold true when sample size and amount of repetitions

are increased.

Finally, for the sake of some form of sanity checks, it is worth to have a look at the

empirical copulas of the different models and the data to see if there is indeed a difference

which the results account for. Specifically, it might be of interest to understand why the

diagonal band copula seems to be so much better than the mixture of independence and

identity copula. After all, one might say that they follow the same idea by saying that it is

important to incorporate the main diagonal in the model and allowing some deviation from

this line.
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Figure 4.3: Empirical Copula observed from data (left) and from identity / independence
copula (right) for sample size 50

To understand this one has to see two things. First, the estimation of the parameter α

of the identity / independence copula, as introduced in section 3.1, yields very low values for

α. Consequently, this model offers only a marginal deviation from the independence copula

itself. As observable in figure 4.2, this has effects on the rejection rates but is still not enough

to significantly improve the model.

Second, one should look at the empirical copulas. For that reason, figure 4.3 shows the

empirical copula observed from data next to the empirical copula derived from simulations

of the identity / independence. Obviously, one should do the same using the diagonal band

copula which is shown in figure 4.4. Looking at these two figures, one can already see

substantial differences and notice that the empirical copula of the diagonal band copula

looks more similar to the data than the empirical copula of the independence / identity

copula.

Here one has to compute the empirical copula only once (as opposed to multiple times as

part of hypotheses testing), one can even compare empirical copulas for larger sample sizes.
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Figure 4.4: Empirical Copula observed from data (left) and from diagonal band copula
(right) for sample size 50

However, one needs to change the angle from which to look at this because one wouldn’t

be able to clearly see differences otherwise. For this purpose, figure 4.5 shows the empirical

copulas for different sample sizes by looking at them from the side. Consequently, it becomes

apparent that the empirical copula derived from data looks more like that of the diagonal

band copula even for larger sample sizes.

As already discussed, the underlying cause for the poor performance of this copula is the

low estimate of α. So, this begs the question if the idea of combining the independence and

identity copula is a hopeless endeavor altogether or if the issues can be fixed by using higher

values of α. Obviously, for α “ 1 this model simply reduces to the identity copula (which

has shown to have reasonable rejection rates) but it might be possible to find a higher value

for α which is below 1 to allow for deviations from the main diagonal and, more importantly,

make this model a better fit.

A different approach to estimate α is introduced by Hogan and Illingworth [9] who assert
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Figure 4.5: Empirical Copula observed from data (top), from independence / identity copula
(middle) and from diagonal band copula (bottom) for sample sizes 50 (left) and 1000 (right)

that α can be estimated using

α̂ “ exp

ˆ

´
∆z

∆z0

˙

where ∆z is the level separation given by the data and ∆z0 corresponds to a so-called

decorrelation distance which needs to be estimated.

Ovchinnikov et al. [6] establish that it is feasible to reduce the estimation of ∆z0 to

solving

R “ exp

ˆ

´
∆z

∆z0

˙

where R is the rank-based correlation coefficient of the data. Consequently, another estimate

of α is given by

α̂ “ R.

For the complete data set, this approach delivers α̂ “ 0.9309. The results of this new
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Figure 4.6: Updated box plot using only the relevant copulas and the alternative approach
for α

approach are depicted in figure 4.6 and table 4.2. One has to point out that the tests using

the new approach for α were not run with the same random samples as the previous tests.

Therefore, a variation in their rejection rates and in their p-values might partly be due to

effects relating to different random samples. However, the strong improvement of the mixture

of identity and independence copula is mainly a result of estimating α differently.

Using the same (simple) benchmark as before, one would have to argue that, given these

new results, the best fit is given by the mixture of independence and identity model using

the alternative estimation of α. However, one should mention that it might be beneficial to

take other considerations into account when ranking the performance of these models. This

is nicely demonstrated by the rejection rates of the identity copula.

Looking at the low average rejection rate of the identity copula one might be tempted

to say that it is a nice fit to the data. Intuitively, this cannot be correct, so obviously one

should find out what is happening here. The most promising theory here is that the test

statistic Sn is not sensitive enough to the degenerative nature of the identity copula as it
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Model Average rejection rate Average p-value
Independence 94.86% 0.0103

Identity 5.01% 0.4650
Independence / Ident. 80.11% 0.0445

Independence / Ident. (new) 3.89% 0.4945
Diagonal Band 4.91% 0.4849

Diagonal Band / Ident. 4.73% 0.4916
Diagonal Band / Ident. (new) 5.05% 0.4659

Table 4.2: Updated average rejection rates and average p-values

only sums the squared errors of empirical copulas. Figure 4.7 compares different simulations

of the independence, identity and diagonal band copula to a random sample of size 50. The

simulations of the diagonal band copula show that deviations of simulations and data are

normal, however due to the nature of the data, the points of the random sample are more

likely drawn to be close to the main diagonal. Consequently, the sum of deviations when

using the identity copula is not much different than the sum of deviations when using the

diagonal band copula. Thus, the tests show similar rejection rates for these two. So, a

different test statistic which is more sensitive to this might me more helpful here. In fact,

the Kolmogorov-Smirnov statistic might actually be beneficial because it uses the maximum

deviation.
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Figure 4.7: Comparing different simulations (independence in green, diagonal band in black
and identity in red) to one data sample (in blue)
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Chapter 5

Summary

Introducing copulas and their goodness-of-fit tests, this thesis established a testing method-

ology for comparing different models of dependency between quantities of interest. In this

matter, copulas have proven themselves as a valuable tool because they made it possible

to make inferences on the dependence structure without having to look at the marginal

distributions.

In fact, this thesis showed that the established methods could be applied to a data set

from the field of atmospheric science by offering copulas as a means to model cloud overlap.

As part of this application, this thesis used the data at hand to compare prominent models

which are frequently used to model cloud overlap. The results from that comparison showed

that goodness-of-fit tests are able to offer some insight into how well a model fits the data

but it also showed that the rejection rates of said tests cannot tell the whole truth and should

not be the only consideration when determining which model to use.

One should point out that using copula-based goodness-of-fit tests also came with some

complications. First, it turned out to be extremely computationally expensive to test copulas

which don’t have a closed analytical form. Second, estimating the copula’s parameter is a

vital step in the test and showed that different methods of estimation can lead to (vastly)

different results.

Nevertheless, copulas model dependencies in a very elegant way and if one is solely

interested in the dependence structure between quantities, copulas are a worthwhile tool to

investigate that despite the computational intensity for testing purposes.
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Probabilités et Statistiques 44, No. 6 (2008), pp. 1096–1127.

[6] Mikhail Ovchinnikov, Kyo-Sun Sunny Lim, Vincent E. Larson, May Wong, Katherine

Thayer-Calder, Steven J. Ghan. “Vertical Overlap of probability density functions of

cloud and precipitation hydrometeors”. In: Journal of Geophysical Research: Atmo-

spheres 121, Issue 21 (November 2016).
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Appendix: Matlab-Codes

Simulation Routines

Listing 1: Simulation of diagonal band copula

1 function [U1,U2]= DiagonalBand(N,delta_U)

2 %Variables: delta_U = band half -width

3 % N = number of simulations

4 % U1 = realizations of U(0,1)

5 % U2 = realizations of U(-delta_U ,delta_U)

6

7

8 %Simulate the Realizations

9 U1=rand(N,1);

10 U2=U1+unifrnd(-delta_U ,delta_U ,N,1);

11

12 %Mirror those that are outside of unit square

13 upper_end =(U2 >1)*2-(U2 >1).*U2;

14 lower_end=-(U2 <0).*U2;

15 U2=lower_end +(U2 >=0 & U2 <=1).*U2+upper_end;

16 end
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Listing 2: Simulation of identity / diagonal band copula

1 function [U1,U2] = MaxDiagonal(N,delta_U ,alpha)

2 %Variables: delta_U = band half -width

3 % N = number of simulations

4 % alpha= probability to use maximum

5 % U1 = realizations of U(0,1)

6 % U2 = result of mixing

7

8 %Simulate the Realizations

9 U1=rand(N,1);

10 %Create dummy to determine for each case if we use max or rand

11 dummy=rand(N,1);

12 U2=(dummy >alpha).*(U1+unifrnd(-delta_U ,delta_U ,N,1))+...

13 (dummy <= alpha).*U1;

14

15 %Mirror those that are outside of unit square

16 upper_end =(U2 >1)*2-(U2 >1).*U2;

17 lower_end=-(U2 <0).*U2;

18 U2=lower_end +(U2 >=0 & U2 <=1).*U2+upper_end;

19 end
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Listing 3: Simulation of identity / independence copula

1 function [U1,U2]= MaxRand(N,alpha)

2 %Variables: N = Number of Simulations

3 % U1 = N realizations of U(0,1)

4 % U2 = N realizations of Mixing U1(rand) and max

5 % alpha = probability to use max approach

6

7 %Create first uniformly random realizations

8 U1=rand(N,1);

9 %Create dummy to determine for each case if we use max or rand

10 dummy=rand(N,1);

11 %Mix max and rand according to dummy variable

12 U2=(dummy <=alpha).*U1+(dummy >alpha).*rand(N,1);

13 end
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Auxillary Routines

Listing 4: Compute pseudo observations

1 function [U1,U2]= ComputePseudoObservations(data1 ,data2)

2 %Computes pseudoobservations of the copula

3

4 [f1 ,x1]=ecdf(data1);

5 [f2 ,x2]=ecdf(data2);

6

7 n=length(data1);

8 U1=zeros(n,1);

9 U2=zeros(n,1);

10

11 for i=1:n

12 U1(i)=n/(n+1)*f1(find(x1== data1(i) ,1));

13 U2(i)=n/(n+1)*f2(find(x2== data2(i) ,1));

14 end

15 end
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The following code was published online by Robert Kopocinski [10].

Listing 5: Computation of empirical copula

1 function ecop = ecopula(x)

2 %ECOPULA Empirical copula based on sample X.

3 %ECOP = ECOPULA(X) returns bivariate empirical copula.

Extension to n dimensional empirical copula is

straightforward.

4 %Written by Robert Kopocinski , Wroclaw University of Technology

, for Master Thesis: "Simulating dependent random variables

using copulas. Applications to Finance and Insurance ".Date:

2007/05/12

5 %

6 %Reference:

7 %[1] Durrleman , V. and Nikeghbali , A. and Roncalli , T. (2000)

Copulas approximation and new families , Groupe de

Recherche Operationnelle Credit Lyonnais

8

9 [m n] = size(x);

10 y = sort(x);

11 ecop=zeros(m,m);

12

13 for i=1:m

14 for j=1:m

15 ecop(i,j) = sum( (x(:,1) <=y(i,1)).*(x(:,2) <=y(j,2)) )/m

;

16 end

17 end
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Listing 6: Evaluation of empirical copula

1 function [C_val] = EvaluateEcop(C,x,y,x_i ,y_j)

2 %Evaluates Empirical Copula C which has grids x & y at the

points x_i , y_j

3 x=sort(x);

4 y=sort(y);

5 x_tmp=find(x<=x_i ,1,’last’);

6 y_tmp=find(y<=y_j ,1,’last’);

7 if isempty(x_tmp) || isempty(y_tmp)

8 C_val =0;

9 else

10 C_val=C(x_tmp ,y_tmp);

11 end

12 end

Listing 7: Approximate test statistic

1 function S= ApproxS(C_n ,C1 ,C2,B_n ,B1 ,B2)

2 %Approximatex S_n by finding maximal absolute difference of emp

. copulas. C_n and B_n evaluated at (C1 ,C2)

3 S=0;

4 n=length(C1);

5 for i=1:n

6 C=EvaluateEcop(C_n ,C1,C2 ,C1(i),C2(i));

7 B=EvaluateEcop(B_n ,B1,B2 ,C1(i),C2(i));

8 S=S+(C-B)^2;

9 end

10 end
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Estimation Routines

Listing 8: Estimation of alpha

1 function [alpha] = EstimateAlpha(data1 ,data2)

2 %Use small delta to detect small deviations from diagonal

3 eps =0.0005;

4 n=length(data1);

5 alpha=sum(data1 <=data2+eps & data1 >=data2 -eps)/n;

6

7 end

Listing 9: Estimation of delta

1 function [delta] = EstimateDelta(data1 ,data2)

2 %Estimates half -width delta by calculating number of

oberservations

3 %in (A|B2|C) and either using local maximum or linear

Interpolation

4

5 n=length(data1);

6 [U1 , U2]= ComputePseudoObservations(data1 ,data2);

7 u=(n+1)/n*U1;

8 v=(n+1)/n*U2;

9

10 delta =0;

11 n_max =0;

12 delta_step =0.001;

13 deltas =0: delta_step :1;

14 numb_in_band=zeros(1,length(deltas));
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15

16 for i=1: length(deltas)

17 theta_tmp=deltas(i);

18 A=(u >= 0 & u<= theta_tmp) .* (v >=0 & v <= theta_tmp -u)

;

19 C=(u >= 1-theta_tmp & u<=1) .* (v >=2-theta_tmp -u & v

<=1);

20 B2=(u > theta_tmp & u<1-theta_tmp) .* (v >=u-theta_tmp

& v <= theta_tmp+u);

21 numb_in_band(i)=sum(A | B2| C);

22

23 if numb_in_band(i)>n_max && theta_tmp <=0.5

24 n_max=numb_in_band(i);

25 first_max=theta_tmp;

26 end

27 end

28

29 if numb_in_band(deltas == first_max) <0.49*n

30 %limit data to thetas >= x_cutoff (maybe not 0.5 to

consider bad data)

31 x_cutoff =0.5;

32 numb_in_band=numb_in_band(deltas >= x_cutoff);

33 deltas=deltas(deltas >= x_cutoff);

34

35 %Arbitrary high number to start with

36 diff_min =9999999999;

37
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38 %Interpolate linearly and find minimal deviation

39 diff_tmp=zeros(length(deltas) ,1);

40 for i=1: length(deltas)

41 xi= [x_cutoff deltas(i) 1];

42 yi1=linspace(numb_in_band (1),numb_in_band(i),

length(x_cutoff:delta_step:xi(2)));

43 yi2=linspace(deltas(i)*n,numb_in_band(end),

length(xi(2)+delta_step:delta_step:xi(3)));

44 yi=[yi1 ,yi2];

45 diff_tmp(i)=sum(( numb_in_band -yi).^2);

46 if diff_tmp(i) < diff_min

47 diff_min=diff_tmp(i);

48 delta=xi(2);

49 end

50 end

51 else

52 delta=first_max;

53 end

54 end
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Test Routines

All test routines are basically the same. Every routine just needs to be adjusted to the

corresponding model and the associated parameter estimation. For the sake of avoiding

repetition and the fact that all necessary changes are obvious, only the routine for the

diagonal band copula is shown.

Listing 10: Test routine for diagonal band copula

1 function [p_sum , count_rejections ]= TestData1(fileID ,U1,U2 ,

N_simulations ,data_length ,N_pvalue)

2 %Step 1

3 delta=EstimateDelta(U1 ,U2);

4 C_n=ecopula ([U1 U2]);

5 %

-------------------------------------------------------------------

6 count_rejections =0;

7 p_sum =0;

8 tic

9 for simulation_run =1: N_simulations

10

11 %Step 2 in Bootstrap

12 [V1 , V2]= DiagonalBand(data_length ,delta);

13 B_star=ecopula ([V1 V2]);

14 S=ApproxS(C_n ,U1,U2,B_star ,V1,V2);

15

16 %Step 3 in Bootstrap

17 count_pvalue =0;
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18 for k=1: N_pvalue

19 %Step 3a

20 [Y1_star ,Y2_star ]= DiagonalBand(data_length ,

delta);

21 %Step 3b without estimation part

22 [U1_star ,U2_star ]= ComputePseudoObservations(

Y1_star ,Y2_star);

23 C_star=ecopula ([U1_star ,U2_star ]);

24 delta_star=EstimateDelta(U1_star ,U2_star);

25 %Step3c

26 [Y1_d_star ,Y2_d_star ]= DiagonalBand(data_length ,

delta_star);

27 B_d_star=ecopula ([Y1_d_star ,Y2_d_star ]);

28 S_star=ApproxS(C_star ,U1_star ,U2_star ,B_d_star ,

Y1_d_star ,Y2_d_star);

29 if S_star > S

30 count_pvalue=count_pvalue +1;

31 end

32 end

33 p_value=count_pvalue/N_pvalue;

34 p_sum=p_sum+p_value;

35 %Reject Nullhypothesis if p-value < 0.05

36 if p_value <0.05

37 count_rejections=count_rejections +1;

38 end

39 end

40 time=toc;
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41 fprintf(fileID ,’Used model: Diagonalband with parameter %1.2f \

n’,delta);

42 fprintf(fileID ,’Samplesize: %i \n’,data_length);

43 fprintf(fileID ,’Number of simulations per model: %i \n’,

N_simulations);

44 fprintf(fileID ,’Number of simulations per p-value: %i \n’,

N_pvalue);

45 fprintf(fileID ,’Percentage of rejections: %1.2f \n’,

count_rejections/N_simulations);

46 fprintf(fileID ,’Averarge p_value: %1.2f \n’,p_sum/N_simulations

);

47 fprintf(fileID ,’Time: %i minutes and %i seconds \n’,floor(time

/60),mod(floor(time) ,60));

48 end
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