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ABSTRACT
A MINIMAL TIME SOLUTION TO THE FIRING SQUAD SYNCHRONIZATION

PROBLEM WITH VON NEUMANN NEIGHBORHOOD OF EXTENT 2

by

Kathryn A. Boddie

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Bruce Wade

Cellular automata provide a simple environment in which to study global behaviors. One

example of a problem that utilizes cellular automata is the Firing Squad Synchronization

Problem, first proposed in 1957. This paper provides an overview of the standard Firing

Squad Synchronization Problem and a commonly used technique in solving it. This paper

also provides a statement of a new extension of the Standard Firing Squad Synchronization

Problem to a different neighborhood definition - a Von Neumann neighborhood of extent 2.

An 8 state 651 rule minimal time solution to the extended problem is described, presented

and proven, along with Python code used in running simulations of the solution.
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1 Introduction to The Firing Squad Synchronization Problem

1.1 Background on Cellular Automata

A finite automaton is a machine which follows a set of fixed rules, changing its state ac-

cording to an evolution in discrete time. By state we mean the behavior of the machine

at that time step. The states can be represented by numbers, or as a description of some

property of the machine. For example, in modeling disease, a “state” could be “infected”

or “vaccinated.” Finite automata can be used to model complex systems in areas such as

language recognition and biological modeling, among others [3].

One type of network of finite automata is called cellular automata . Cellular automata

consist of an d-dimensional array of finite automata, a definition of local neighborhood, and

a fixed set of rules. Each finite automaton, often called a cell , uses the rule set to update

its state given its current state and the states of its neighbors. One common neighborhood

type found in various cellular automata is the Von Neumann neighborhood. The Von Neu-

mann neighborhood of a particular cell consists of all cells with taxi-cab distance 1 from

the given cell. Recall that the taxi-cab distance is defined by D(p, q) =
d−1∑
i=0

|pi− qi| where

p = (p0, . . . , pd−1) and q = (q0, . . . , qd−1) are cells in the d-dimensional array.

Cellular automata are interesting to study, not because of the simple rule set, but because

of the varieties of global behavior that can be observed across the entire array [3]. Some

examples of problems using cellular automata, including the Firing Squad Synchronization

Problem (FSSP), have consistent global behavior, regardless of the size of the array, even

though the system runs only on local information [3]. In the case of the FSSP, globally the

array synchronizes with every cell in the same state, regardless of the size of the array.
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1.2 The Standard FSSP

The Firing Squad Synchronization Problem was originally proposed in 1957 by John Myhill

[3]. The standard FSSP uses a finite one dimensional array with Von Neumann neighbor-

hoods in which each cell in the cellular automata is identical, except possibly the cells at the

ends [3]. The end cells could be different due to the fact that they only have neighboring

cells on one side, rather than on both sides. All cells begin in a state called the Quiescent

state, except for one of the end cells, usually taken to be the left end cell, which is in a state

referred to as the General. Then, using a fixed finite number of states and a finite rule set

involving those states, each finite automaton in the array is updated based on the current

state of that cell and the current states of its two neighboring cells [3].

In the standard FSSP, there is a required rule that a Quiescent cell with two Quiescent

neighbors must remain in the Quiescent state in the next time step [3]. This condition guar-

antees that there is no spontaneous state-changing activity - in order for a cell to change

states, some form of information must be received by the finite automaton in question. The

end goal of the standard problem is to have every finite automaton in the array, regardless of

the number of cells in the array, enter a special state referred to as Fire at the same discrete

time step, with no cell entering this Fire state prior to that time step [3]. Having every cell

enter this Fire state at the same time step with no prior firings is called synchronizing the

array. Ideally, this should be done in the smallest number of discrete time steps and with

the least amount of cell states.

A solution to the FSSP is a fixed finite rule set using a fixed finite set of states which

synchronizes all cells in the finite one dimensional array of length n for any size n ∈ N. The

set of states used in the FSSP can differ by solution, but all solutions have the states of

General, Quiescent and Fire amongst others. A minimal time solution is a solution
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in which all cells synchronize in the smallest number of discrete time steps possible. In the

case of the standard FSSP, a minimal time solution is one that finishes in 2n− 2 time steps,

where n is the length of the one dimensional array [3]. The first minimal time solution for

the standard FSSP was found in 1962 by Goto and had over one thousand states in its fixed

set of states [4]. Shortly thereafter, the number of required states for a minimal time solution

was drastically reduced. In 1966, Waksman produced a 16 state minimal time solution and

in 1967 Balzer independently produced an 8 state minimal time solution, both using similar

ideas involving the so-called halving strategy [1, 12]. In 1987, Mazoyer presented a minimal

time solution to the standard FSSP using only 6 states in its fixed set of states [6]. Mazoyer’s

6 state minimal time solution, which used a technique of dividing the one dimensional array

into thirds rather than halving, remains the minimal time solution with least number of

states discovered as of today [3, 6]. Many years later, in 2004, Noguchi examined Waks-

man’s and Balzer’s minimal time solutions and, using the same halving strategy, presented

a different 8 state minimal time solution which used fewer rules than Balzer’s previous 8

state solution [7]. Although Noguchi’s 8 state minimal time solution uses two more states

than Mazoyer’s 6 state minimal time solution, it required the same number of rules (119)

[7]. All of the above mentioned are true minimal time solutions which work for any finite

one dimensional array, regardless of the length n of the array.

Work has also been done to find the minimum number of states required in a minimal time

solution for the standard FSSP. Balzer wrote an algorithm and claimed to show there was

no 4 state minimal time solution, but the algorithm was found to be flawed at a later date

[1]. However, Sanders reworked the algorithm in 1993 and the program indicated, through

a brute-force simulation of every possible combination of arranging 4 states into rules, that

there was no 4 state minimal time solution, although a formal proof was not provided [8].

In 1999, Settle proved that no 3 state solution to the standard FSSP exists, regardless if

considering only minimal time solutions or not, and formally proved the non-existence of 4
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state minimal time solutions with three particular properties [9]. Yunès discovered a 4 state

non-minimal time partial solution for squads of size n = 2k which requires 2k+1 − 1 time

steps [13]. Umeo and Yanagihara discovered a 5 state non-minimal time partial solution for

squads of size which requires 3n − 3 time steps [11]. It is unknown whether a complete 5

state solution (either minimal time or not) exists, however Settle also proved that there is

no minimal time 5-state solution which has six particular properties [3, 9].

1.3 The Halving Strategy

In 1966 and 1967, Waksman and Balzer independently found minimal time solutions to the

standard Firing Squad Synchronization Problem, with 16 and 8 states, respectively, using

the same technique of the halving strategy [1, 12]. Later, in 2004, Noguchi found a different

8 state minimal time solution with different, and fewer, rules than Balzer [7].

The general idea of the halving strategy is to repeatedly find the middle cell (if n is odd) or

middle cells (if n is even) of the one dimensional array of n finite automata. In general, the

finding of the middle cell(s) is achieved by generating a “fast” signal and a “slow” signal,

both generated by the original General [1, 2, 12]. These signals can be visualized as a “wave”

starting from the General and propagating cell by cell across the array. The “fast” signal

travels from the General to the finite automaton at the opposite end of the array. When

this “fast” signal reaches the far end, that end cell enters the General state and then sends

a return “fast” signal back to the original General. On the return path, the “fast” signal

then intersects the “slow” signal at the middle of the array [1, 2, 12]. When the “fast” and

“slow” waves intersect, the middle cell(s) enters the General state. At this time, we have the

original General on the left end, the General created on the far right end, and the General

or Generals in the middle.
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After the first division, the same technique is repeated on the two smaller sub-arrays of

size
⌈n

2

⌉
, using the new Generals to generate new “fast” and “slow” signals, to find the

middle cell(s) of the sub-arrays [1, 2, 12]. This is continued iteratively until no more divi-

sions can be made. At each point of division - the half, quarter, eighth and so on points

of division, the cell(s) enters the General state [1, 2, 12]. After the array has been suc-

cessively divided completely, every finite automaton will be in the General state and then

the following discrete time step will result in all cells simultaneously entering the Fire state

[1, 2, 12].

1.4 Waksman’s 16-state Solution

Waksman’s minimal time solution to the standard FSSP uses 16 states in its fixed set of

states and its rule set contains a rule that many other solutions also use - each cell will enter

the Fire state if and only if its current state is General and both its left and right neighbors

are also in the General state (or in the case of being on the end of the array, that its only

neighbor is also in the General state) [12].

Waksman’s solution uses three types of signals- the A signal, which moves one cell per

unit of time, the R signal, which is generated by the A signals and move in the opposite

direction one cell per unit of time, and the B signal, which initially moves one cell per every

three units of time after encountering an R signal [12].

Waksman A signals are represented by eight different Aijk states, four for a variation which

generates an R signal with no delay and four for a variation which generates an R signal

after a one time unit delay[12]. Different Aijk states are used to denote whether the signal is

moving to the right or the left and also indicating whether the cell being occupied is an even

or odd distance from the General which generated it [12]. The subscript i ∈ {0, 1} represents

the time delay in generating an R signal. The subscript j ∈ {0, 1} represents the direction
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Figure 1.1: Length 11 Squad Simulation - Waksman Solution

the signal is traveling across the array with 0 representing left and 1 representing right. The

subscript k ∈ {0, 1} represents whether the current finite automaton is an even (k = 0)

distance or odd (k = 1) distance from the General which generated it - starting the count

on the generating machine. For instance, a finite automaton directly next to the General

which generated the Aijk signal received would have the subscript k = 0 - the General itself

is the first machine in this count and the cell receiving the signal is the second [12]. For

example, a finite automaton in state A011 indicates that this cell will have a 0 unit time

delay in generating an R signal, that this A signal is moving to the right, and that the cell
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containing this signal is an odd distance from the General which generated the A signal [12].

The solution has two different R signal states, R0 and R1 indicating the direction of move-

ment - 0 represents movement to the left and 1 represents movement to the right [12]. There

also are two different B signal states, one which moves forward upon meeting an R signal

and allows the R signal to continue, B0, and one which moves forward upon meeting an R

signal without allowing the R signal to continue, B1 [12]. The first B signal will remain in

one position for three units of time prior to meeting an R signal, due to the A signals having

a delay in generating R signals every other time step [12]. Upon meeting an R signal, a

B signal will switch from its current type of B signal state to the other type of B signal

state. Since only one of the B signal states allows the R signals to continue to propagate,

this results in progressively “slower” B signals, with the k-th B signal remaining in place

2k+1 − 1 units of time prior to meeting an R signal [12].

Waksman’s solution is unusual in that it has two different General states, which he de-

notes as P0 and P1 and refers to as “preterminal states” [12]. We will refer to these two

General states as G0 and G1, to more closely resemble the same notation of other solutions.

The only difference between the different General states is which type of A signal they

generate - Gi generates the A signal with an i time unit delay in R signal generation. The

remaining two states are the Fire, or “terminal state”, which we will denote as F , and the

Quiescent state, denoted by Q [12].

When an A signal intersects a B signal, a new General is generated at the intersection.

These signals find the midpoint of the firing squad array as the A signals move one cell per

unit of time and the B signals move one cell per three units of time, resulting in the signals

meeting at the midpoint as the A signal is returning from the endpoint opposite the original

General, when the A signal has traveled
3

2
the length of the squad. Since the B signal

7



travels at one third of the speed of the A signal, it has traveled
1

2
the length of the squad.

Once a new General is created, the process repeats with the new General creating its own

signals on the new sub-array.

Waksman’s transition tables are found below. Rows are labeled by left neighbor states,

columns are labeled by right neighbor states. Note that ∗ refers to the end of the array

(no machine) and that X will stand for all other states not explicitly mentioned in that

particular table. If only the main letter of a state with multiple variations is listed, then the

rule applies for all variations of that state (ex: listing B instead of both B0 and B1). For an

example on how to read the tables, to find the new state of a machine currently in state Q

with left neighbor R1 and right neighbor Q, go to the table with Q in the upper left corner,

move across the R1 row until you reach the Q column and read that the new state should

be R1. This can be denoted by (R1, Q,Q)→ R1.

Table 1.1: Waksman’s Transition Tables
Q A000 A001 A100 A101 A010 A011 A110 A111 Q B R0 R1 G0 G1 ∗
Q A001 A000 A101 A100 R0 Q Q Q Q Q R0 Q A000 A100 Q
B A001 A000 A101 A100 R0 Q Q Q Q Q R0 Q Q Q
R0 A001 A000 A101 A100 Q Q Q Q Q Q A000

R1 A001 A000 A101 A100 R1 R1 R1 R1

G0 B0 A010 Q R0 Q G0 G0

G1 B0 A110 Q R0 Q G0 G0

A000 R1 R1

A001 Q Q Q B0

A100 Q Q
A101 Q Q
A010 A011 A011 G0

A011 A010 A010 G1

A110 A111 A111 G0

A111 A110 A110 G1

∗ G0 G1 G0 G1 Q A000
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B0 X G A000 A100 A001 A101 R0

X B0 B0 G0 G1 G1 G0 R0

G B0 G0 R0

A010 G0

A110 G1

A011 G1

A111 G0

R1 R1

B1 X G A000 A100 A001 A101 R0

X B1 G0 G1 G1 G0 Q
G G0

A010 G0

A110 G1

A011 G1

A111 G0

R1 Q

R0 X
X Q
B0 B1

B1 B0

G B0

R1 X B0 B1 G
X Q B1 B0 B0

G0 X G ∗
X G0 G0 G0

G G0 F F
∗ G0 F

G1 X G ∗
X G1 G1 G1

G G1 F F
∗ G1 F

A000 X P0

X Q B0

A001 X
X Q

A100 X
B G1

X R1

A101 X
B G0

X Q

A010 X
G0 B0

X Q

A011 X
X Q

A110 X B
X R0 G1

A111 X B
X Q G0
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1.5 Balzer’s and Noguchi’s 8-state Solutions

Both Balzer and Noguchi followed the same general strategy as Waksman, with slight

changes. Balzer’s 8 state solution was found in 1967 independently of Waksman’s 16 state

solution with the primary differences being that different signals were not used to indicate

whether the current machine was an even or odd distance from the General which generated

it and that there is only one General state [1]. Balzer’s 8 state minimal time solution used

182 rules in its transition tables.

Figure 1.2: Length 22 Squad Simulation - Noguchi Solution
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In 2004, Noguchi found that Balzer’s solution had unnecessary rules in the transition

tables [7]. He found that of the 182 rules listed in the tables, 17 were not used upon running

the solution’s algorithm. Of these 17 unnecessary rules, 6 were used to run the solution with

the General beginning on the other end of the array, 1 was for a firing squad of length 1, and

the others were simply not used. After eliminating these unnecessary rules in the transition

tables, Noguchi was able to further reduce the number of required rules by combining some

rules and simplifying the relationship between the Generals and their neighbors, by utilizing

two Quiescent states, two states for waves of the A type, and two states for B waves, resulting

in a final minimal time solution using 8 states and only 119 rules [7]. Noguchi’s transition

tables can be found below.

Table 1.2: Noguchi’s Transition Tables

Q1 Q1 A1 A2 B1 B2 G
Q1 Q1 A1 A2 Q1 Q1 A2

A1 Q1 A1 A2 Q1 Q1 A2

B1 Q1 A1 A2 Q1 Q1 A2

B2 Q1 A1 B2 Q1 Q1 B2

G B2 Q1 Q1 G

Q2 ∗ Q2 A2 B1 B2 G
Q2 Q2 Q2 Q2 Q2 Q2

A1 G A1 A1 A1 B2

A2 A2 A2 A2 A2 B2

B1 Q2 Q2 Q2 Q2 Q2

B2 Q2 Q2 Q2 Q2 Q2

G G A1 A1 A1 B2 G

A1 Q1 Q2 B1

Q1 Q1 Q1 Q1

B1 Q1

B2 B1

G Q1 Q1

A2 Q2 B1 B2 G
Q1 Q2 Q2

Q2 Q2 Q2 B1

B1 Q2 Q2

B1 Q1 Q2 A1 A2

Q1 B1 B2 G
Q2 B1 B1

A1 B1 G B2 G
A2 B2 B2

B2 Q1 Q2 A1 B2 G
Q1 B2 A1 G
Q2 B2 B2

A2 A2 Q2

B2 G G
G B2 Q1 G

G ∗ Q1 Q2 A1 B2 G
∗ G G G G F
Q1 G G G
Q2 G G G
A2 G G G
B2 G G G
G F G G G G F
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1.6 Mazoyer’s 6 State Minimal Time Solution

In 1987, Mazoyer discovered a 6 state minimal time solution to the FSSP, which remains

the minimal time solution with least number of states today. Mazoyer also used a strategy

of dividing the length n array into sections, however unlike Waksman, Balzer, and Noguchi,

he divided the array into uneven sections, creating the first division point in such a way as

to divide the array into two sections, with one twice as long as the other (up to one unit

according to n mod (3)) [6].

Mazoyer’s strategy for his 6 state minimal time solution to the FSSP involves iteratively

dividing the length n firing squad array into thirds [6]. After creating the first division at

2

3
n, the right part of the array is treated as an initial array of size

n + i

3
where i ∈ {0, 1, 2}

[6]. This is iteratively repeated, creating divisions at
2

3
n,

(
2

3

)2

n,

(
2

3

)3

n, and so on. By

dividing the array into pieces as described, each sub-array will have its General at the left

most position [6], unlike the previous solutions described where the General could be on the

right or the left side of the sub-arrays.

It should be noted that Mazoyer counts his time steps differently than the previously

mentioned papers. Mazoyer considers time step t = 1 to be the initial set up of the firing

squad array, with the first machine on the left-hand side being in the General state and the

remaining n − 1 machines in the Quiescent state, whereas the previously mentioned works

consider the initial set up of the firing squad array to be time step t = 0. Because of this

difference in initialization, Mazoyer’s paper [6] states that his solution finishes in 2n−1 time

steps, whereas using the initialization of the other papers, this would be 2n− 2 time steps.

Here, we adjust the times mentioned in Mazoyer’s work to match with the other works in

the field.
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Figure 1.3: Length 25 Squad Simulation - Mazoyer Solution

It is easiest to describe the overarching theme of the strategy using an ideal case where

the array is perfectly divided each time with no conflicts involving remainders when dividing

into thirds. In actuality, this does not happen, but this ideal case will still be described so

that the general idea of the algorithm can be explained simply. Once divided at the
2

3
n ma-

chine at t =
4

3
n− 2, the newly created sub-array consisting of the right third of the original

array, from that point in time until completion, behaves similarly to the original length n

array’s behavior from the beginning of the algorithm until completion [6]. The remaining

piece of the original array is also divided similarly to the original array, thus at the machine

at spot
2

3

(
2

3
n

)
[6]. Once divided at the machine at spot

2

3

(
2

3
n

)
, the process is repeated

on the new remaining sub-array and the newly created sub-array, until the entire array is
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synchronized.

In actual practice, with any integer n as the length of the initial firing squad, the above

described procedure has to be adjusted based on the remainder modulo 3 of n [6]. Let (i, j)

indicate position i at time j. The initial wave including the original General will occupy

spots (`, ` − 1) and so its reflection will occupy spots (`, 2n − ` − 1) for ` ∈ {1, . . . , n} [6].

Say that the new General, created around the
2

3
n machine as described above, is formed at

(k, 2n−k−1). This results in the reflection of the initial wave meeting the original General

at time (2n−k−1) + (k−1) = 2n−2, as needed for a minimal time solution [6]. The newly

created General will generate a new wave, with a delay depending on the remainder modulo

3 of the length of the original array. Say that the new General generates a new wave after

a delay of j time steps with j ∈ {0, 1, 2}. Then the new initial wave generated by this new

General will start at (k, 2n−k−1+ j) and will travel to the right-most machine, reaching it

at (n, 2n−k−1+ j+n−k), or simplified at (n, 3n−2k−1+ j) [6]. This new wave, once re-

flected, would then return to the new General at time 3n−2k−1+j+n−k = 4n−3k−1+j.

In order for the firing squad to be synchronized, the original wave must return to the original

general at the same time that the new wave returns to the new general. So, it would be

required that 2n− 2 = 4n− 3k− 1 + j, so it must be that 3k = 2n+ j + 1, which is solvable

provided that j ∈ {0, 1, 2} [6].

Consider the length of the original array as n = 3p+ i with integer p ≥ 1 and i ∈ {1, 2, 3}. If

i = 1, then n = 3p+1 and so 3k = 2(3p+1)+j+1 = 6p+3+j. Thus j = 0 and so k = 2p+1.

Similarly, if i = 2, we have j = 1, k = 2p+ 2 and if i = 3, we have j = 2, k = 2p+ 3 [6]. The

variable j will be called the delay for the new General′s activation. Regardless of the value

of j, the new sub-array will have p+ 1 machines, consisting of machines k to n with a delay

of j = i− 1.
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Mazoyer constructed his 6 state minimal time solution by first creating an 8 state mini-

mal time solution using the method described above. Then, he combined some rules and

states to eliminate two of the least used states, resulting in his 6 state solution. His solution

uses three states, A,B,C to provide information in the waves in regards to how much of a

delay each new General should have, as well as the General, Quiescent, and Fire states.

The construction of the transition tables and the induction proof of the correctness of the

solution, both of which are quite lengthy, can be found in [6]. Mazoyer’s transition tables

can be found below.

Table 1.3: Mazoyer’s Transition Tables
Q ∗ Q A B C G
∗ Q
Q Q Q Q Q Q
A C G Q Q Q C
B Q Q Q Q Q Q
C G A Q Q Q G
G A C Q Q Q A

G ∗ Q A B C G
∗ A G G F
Q G G G
A B G G
B G B G G G
C A A G G A
G F B G G F

A ∗ Q A B C G
∗ F G
Q A Q G
A F A A B C B
B C G G C C
C A A
G C C C

B ∗ Q A B C G
Q G B Q B
A G B B Q
B G A B C B
C Q Q A Q
G G C C B G

C ∗ Q A B C G
Q C A G C G
A B B B B
B G C C G
C C A B C B
G F B G G F

Currently, there are many different minimal time solutions to the standard FSSP, many

of which were not outlined here. The minimal time solution with the smallest number of

states is currently Mazoyer’s 6 state solution outlined above [3, 6]. Settle proved there is no

3 state minimal time solution to the standard FSSP and Sanders claimed there is no 4 state

minimal time solution to the standard FSSP using a brute-force computer simulation [8, 9].

It is currently unknown whether a 5 state minimal time solution to the standard FSSP can

exist [3].
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2 A New Extension to the FSSP

2.1 Problem Statement

We introduce a new extension to the Firing Squad Synchronization Problem using a different

neighborhood definition than the standard problem.

Definition 1. The Von Neumann neighborhood of extent n of a cell is the set of all cells

with taxi-cab distance no more than n from the given cell.

Consider an extension of the standard FSSP as follows. Let the firing squad be repre-

sented by a one dimensional array with Von Neumann neighborhoods of extent 2 in which

each cell in the cellular automata is identical, except possibly the 4 cells, 2 at each of the

ends, which will not have a full neighborhood consisting of other cells in the array. All cells

begin in a state called the Quiescent state except for one of the end cells, which will be

taken to be the left end cell, which is in a state referred to as the General. Then, using a

fixed finite number of states and a rule set, each cell in the array is updated based on the

current state of that cell and its four neighbors (the far left, the near left, the near right,

and the far right neighbors).

In the standard FSSP, there is a required rule that a Quiescent cell with two Quiescent

neighbors must remain in the Quiescent state in the next time step [3] and we extend this

concept of no spontaneous state change activity by requiring that a Quiescent cell with four

Quiescent neighbors must remain Quiescent in the next time step. The end goal of the

problem is to have every cell in the array, regardless of the size of the array, enter a special

state called Fire at the same time step, with no cell firing prior to that time step. Ideally,

this should be done in the least amount of discrete time steps and with as few cell states as

possible.
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2.2 Length of a Minimal Time Solution

In the standard FSSP, the length of a minimal time solution is 2n− 2, where n is the length

of the squad, due to the conditions of no spontaneous state changes without a received signal

and Von Neumann neighborhoods of extent 1 which restrict waves of information to moving

only 1 cell per time step. This results in a minimal time solution needing 2n− 2 time steps

since it is necessary for a signal from the General to travel n− 1 units to reach the opposite

end of the firing squad and then return to the General - (n − 1) + (n − 1) = 2n − 2 time

steps. It should be noted that, due to the neighborhood definition in the standard FSSP, no

interior cell has information about whether either of its neighbors is an end cell.

Figure 2.1: Neighborhood Comparison
Extent 1 neighborhood in green, extent 2 neighborhood in purple

In the FSSP with Von Neumann neighborhood of extent 2, two interior cells - the one di-

rectly to the right of the General and the one directly to the left of the end cell on the far

end, depicted in orange in Figure 2.1 - have information about one of their 4 neighbors being

an end cell. This is due to the radius of the neighborhoods being 2, so on one side of these

particular cells, they have a cell as a neighbor and can “see” that there is no cell on the

other side of their neighbor. This bit of information influences the time needed in a minimal

time solution.

Theorem 1 (Length of Minimal Time Solution to the FSSP with Von Neumann neighbor-

hood of extent 2). A minimal time solution to the FSSP with Von Neumann neighborhood
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of extent 2 synchronizes the firing squad in n− 1 time steps, where n is the number of cells

in the squad.

Proof. Assume n is odd. Then n − 1 is even. The original signal, call it A1, generated by

the General must travel n − 1 cells to the far end. This signal can move 2 cells per time

step at its quickest speed and so can reach the far end in k =
n− 1

2
time steps. Similarly,

on return to the General, the return signal, call it A2, can travel the n − 1 cells in k time

steps resulting in a minimal time solution of 2k = n− 1 time steps.

Now assume n is even. Then n− 1 is odd. The original signal A1 generated by the General

can travel to the cell directly to the left of the far end cell in ` =
n− 2

2
time steps. In the

next time step, the original signal will reach the end cell, but the cell directly to the left of

this end cell is aware that its neighbor is an end cell and will thus send back a signal. So

in that same time step the cell directly to the left of the far end cell can enter a state of A2

for the return signal. This A2 signal would need to travel another n − 2 cells back to the

General, which can be done in another ` time steps. Thus a minimal time solution will take

2` + 1 = n− 1 time steps.
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3 A Minimal Time Solution

3.1 Motivation

Our goal was to discover a minimal time solution to the Firing Squad Synchronization Prob-

lem with Von Neumann neighborhoods of extent 2 using the common technique of halving.

Motivated by Waksman’s, Balzer’s, and Noguchi’s previous halving technique solutions to

the standard problem, we were able to construct a similar halving technique solution per-

formed at double speed. This was achieved by first creating a simulation program in python

(source code found in Chapter 6) and beginning to create rules involving a “fast” wave and

“slow wave” and halving using a small, but non-trivial, array of size n = 15. After suc-

cessfully attaining a working minimal time simulation for size n = 15, additional rules were

added successively in order for the solution to work for all odd n, beginning with n = 3 and

increasing in size. After 638 rules were included in the transition tables, no more rules were

needed for odd n after size n = 211. Then an additional 13 rules were added in order to

account for the differences that occur when n is even and the fast return wave begins one

discrete time step “early.” At this stage, the simulation program confirmed that the solution

was a minimal time solution for a firing squad of any size up to and including n = 500, as

well as a few choice large n examples including n = 17, 675 and n = 1, 357, 899. Once these

large examples were confirmed through simulation, we moved on to the formal proof of the

solution.

3.2 Description of the Solution

We will describe a 651 rule, 8 state, minimal time solution to the Firing Squad Synchro-

nization Problem with Von Neumann Neighborhood of Extent 2 that uses the technique of

halving.
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Let S be the set of states for the cellular automata where S = {G,Q1, Q2, A1, A2, B1, B2, F}.

Figure 3.1: Boddie Solution - n = 75

G represents the General state, Qi are Quiescent states, Ai are waves generated by a General

that move at the maximum speed of 2 cells per time step, Bi are waves that are generated

and travel at slower speeds (as will be described), and F represents the terminal Fire state.

At time t = 0, the 1-dimensional array of length n representing the firing squad has the first

cell, cell 0, in state G and the remaining cells, cells 1 through n− 1, in state Q1.
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The general idea of the minimal time solution follows the halving method. The cell in

position 0 starts in the state G and emits a forward signal A1 which moves at the maximal

speed of two cells per time step. If n is odd, then the A1 signal will reach the cell in position

n − 1 after
n− 1

2
time steps, and at that time the cell in position n − 1 will enter the G

state. This new G will then send a return signal A2 which moves at the maximal speed of

two cells per time step. While this is occurring, the cell at position 0 in state G will also

emit slower moving Bi signals which will serve to intersect the return signal A2 at the
n− 1

2
,

n− 1

4
,
n− 1

8
and so on division points of the firing squad array. At each intersection point,

the cell or cells at the intersection will enter state G and the procedure is repeated on the

smaller sub-array. As the sub-arrays are repeatedly halved, the sub problems will eventually

involve small enough sub-arrays to be trivial, at which time, t = n− 1, all cells in the entire

array will synchronize in the F state. The only difference with an even n is that if n is even,

then the next-to-last machine in position n− 2 will enter the A2 state in the same time step

as the cell in position n − 1 will enter the G state - essentially beginning the return wave

one time step “early.”

The first Bi wave will travel 2 machines every 3 times steps in order to intersect the re-

turn wave A2 at the
n− 1

2
division point. This can be visualized by imagining a space-time

diagram of our firing squad with the initial states of the cells at time t = 0 printed in a row

and the states of the cells in each successive time step printed in rows below the initial row.

As the solution is a minimal time solution, there will be n rows in this diagram - one for

each of the n − 1 times steps and one for the initial set up at t = 0. Thinking of placing

this diagram on the Cartesian plane in Quadrant 1 with the bottom left corner at the origin,

the return A2 wave can be modeled by the linear equation y =
1

2
x. The first Bi wave can

be modeled by the linear equation y = −3

2
x + (n − 1), and these two lines intersect when

x =
n− 1

2
. Successive Bi waves are emitted and will move 2 cells every 2m+1− 1 time steps,
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thus modeled by the linear equation y = −2m+1 − 1

2
x + (n− 1) to meet the return wave A2

at the (n− 1)

(
1

2

)m

division point.

Fast Wave A1

First Slow

Wave Bi

Second

Slow

Wave Bi

Third

Slow

Wave

Bi

Reflected Wave A2

Figure 3.2: Visualizing the Intersections of Waves

The initial A1 wave emitted from the General will emit a “backwards” A1 wave, travel-

ing at the maximum speed of 2 units per time step in the direction of the General. These

“backwards” A1 waves serve to inform the slow Bi waves of when to move forward, resulting

in the progressively slower Bi waves.

The slow waves progress as follows. In time step 1, machine 1 will enter the Q2 Quiescent

22



state. The slow waves consist of states B1 , B2, and the occasional Q2 state. In time step

2, machine 1 will enter the B1 state by the rule (∗, G,Q2, A1, Q1) → B1. Then, the slow

wave progresses using these general properties: 1) If a cell is in state B1 with its near-right

or far-right neighbor in state A1, the signal will progress one spot to the right as B1 or B2,

provided that there is no A2 or G as a near or far-right neighbor of the A1 cell, as laid out

in the transition tables. 2) If a cell is in state B1 with no A1 neighbor near or far-right, the

signal will remain in place as B1, provided that no near neighbor (either side) is in B1, no

left neighbor is in A2, there is not at least one G neighbor on each side, it is not about to

intersect an A2 far-right neighbor, and its left neighbors are not A1Q1 in that order. 3) If

a machine is in state B2 with near or far-right neighbor in state A1, the signal will stay in

place but change to B1. 4) If a cell is in state B2 with no A1 or A2 neighbor near or far-right,

the signal will remain in place as B2, provided that there is not at least one G neighbor on

each side, there is no A2 neighbor near or far-left, and there is no B1 or B2 neighbor far-right

while a left neighbor is A1.

An A2 wave is sent from the new General created in cell n − 1 after the primary A1

wave reaches the end of the array. When this A2 wave meets the slow Bi wave and the

length of the squad is odd, the intersection will create one new General. If the length of

the squad is even the waves will intersect and form two Generals, side by side. This new

General or Generals are created at the middle cell or cells of the firing squad array and

will emit their own signals to further divide the array. The process is iteratively repeated

until the squad is sufficiently divided into small enough sub-arrays to enter the Fire state

simultaneously at time t = n− 1.
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Figure 3.3: Boddie Solution - n = 24

3.3 Transition Tables for the Solution

A state transition rule of a cell in state X will be denoted by (V,W,X, Y, Z) → U where

V,W, Y, Z ∈ S∪{∗}, with ∗ representing a dummy state (no actual cell) and X,U ∈ S. This

state transition rule represents that at time t, if a cell has state X and its far left neighbor

has state V , near left neighbor has state W , near right neighbor has state Y , and far right

neighbor has state Z, (where by default if any of the neighbors do not exist in the array, the

state is taken to be the dummy state ∗), then at time t + 1 the cell will enter state U . In

the tables to follow, the state transition rule (V,W,X, Y, Z)→ U will be represented in the

table with state X in the upper left corner. To locate the particular rule, locate VW in the

left column and Y Z on the top row. Move horizontally across the row starting with VW

until you reach the column starting with Y Z. In this location in the array will be the state

U - the output of the rule.
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Figure 3.4: Boddie Solution - n = 25

Table 3.1: Transition Tables for a Minimal Time Solution to the FSSP with Von Neumann
Neighborhood of Extent 2

G Q1Q1 Q2A1 B1A1 Q2B1 Q2B2 ∗∗ B1Q2 A1Q1 B1B1 GB1 Q2G Q1G Q1A2 GQ1 Q1B2 GQ2 GA1 Q1∗
∗∗ G G G G G G F F F

A1Q2 G G G G
A2B1 G G G
B1Q1 G G G
Q2A2 G G G
A2Q1 G G G
Q1B1 G G G
B1B1 F F F
B1G G G F
GQ2 F F F
GQ1 F F F
Q2G G F G
B2Q2 G G
B2Q1 G G G
Q1G G G G F
A2G G
Q2Q2 G G
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Q1 Q1Q1 Q1∗ ∗∗ A2B1 A2Q1 B1Q1 G∗ A2B2 B1G GQ2 B2Q1 GG Q1B1 Q1A2 Q1B2 B2A2

∗G Q2 Q2 F
GQ1 A1 A1 G A1 A1 A1 A1 A1 A1

Q1Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1

Q2A1 Q2 Q2 G Q2 Q2 G Q2 Q2 Q2 Q2 Q2 Q2

A1Q1 A1 A1 G A1 A1 B1 A1 A1 A1 A1 A1 A1

Q2A2 Q1 Q1 B1 Q1 B2 B1 B1

B2A2 Q1 Q1 Q1 B1 B2 B1 Q1 B1 Q1 Q1

Q1A2 Q1 Q1 Q1 B2 Q1 Q1 Q1 Q1

Q1B1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1

GA1 Q2 Q2 G Q2 Q2 Q2

B1B1 A1 A1 A1 B1 A1 A1

Q2G Q2 Q2 Q2 F F Q2 F Q2 Q2

GG Q2 F F Q2 F Q2 Q2

A2B1 A2 B1 A2 B1 A2 B1 A2 A2 A2

Q1B2 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1

A2B2 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1

B1Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1

A1B2 A1 A1 A1 B1 A1 A1

A2Q1 A2 A2 A2 A2 A2 A2 A2

B2Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1

Q2 A1Q1 B1Q2 A1Q2 A1B2 B1A1 B2Q2 G∗ Q2B1 Q2A1 B2A1 A2G A2Q1 B1B1 GQ1 GG Q2Q2 Q2B2 Q2G B2A2 Q2A2

∗G B1 Q2 B1 Q2 F F F
B1A1 Q2 Q2 Q2 Q2 Q2 Q1 Q2 Q1 Q1 Q2 Q2 A2 A2

Q2B1 B2 Q2 A1 G G Q2 Q2 B1

Q2A1 Q2 Q2 Q2 Q2 Q2 Q1 Q2 Q1 Q1 A2 Q1 Q2 Q2 A2 A2 A2

B2A1 Q2 Q2 Q2 Q2 Q2 Q1 Q1 A2 Q2 Q2 A2 A2

GB1 B2 Q2 B2 A1 Q2 Q2 B1 B1

Q2B2 Q2 Q2 Q2 A1 Q2 Q2 A1 Q2 Q1 Q1 Q1 Q2 Q2 A2 A2

B1Q2 Q2 Q2 Q2 A1 Q2 Q2 A1 Q2 Q1 Q1 A2 Q2 Q2 A2 A2

A1B2 Q2 A1 Q1 Q2 Q2 A2 A2

B2Q2 Q2 Q2 Q2 A1 Q2 Q2 A1 Q2 Q1 Q1 Q1 Q2 Q2 A2 A2

Q1G B1 Q2 B1 B1 Q2 Q2 F F
A1Q2 Q2 A1 Q2 Q2 A1 Q2 Q1 Q1 A2 Q1 Q1 Q2 Q2 A2 A2 A2

Q2Q2 Q2 Q2 Q2 A1 Q2 Q2 A1 Q2 Q1 Q1 A2 Q1 Q1 Q2 Q2 A2 A2 A2

GG B1 Q2 B1 B1 Q2 Q2 F F

A1 Q1Q1 Q2A1 B2A1 Q2B1 Q2G Q2A2 B2Q2 B2A2 Q1A2 Q1B1 Q2Q2 Q2B2 B2Q1 Q1B2 Q1∗
GQ2 A1 Q2 Q2 B1 A1 B1 A1 B1

GB1 B1 B2 G B2

A1Q2 A1 A1 Q2 A2 A2 A2 A1 Q2 Q2 A2 A1 A2

B1Q2 A1 A1 Q2 Q2 A2 A2 Q2 A1 Q2 Q2 Q2

A1B2 A1 B1 Q2

Q2B1 B1 G B2

B2Q2 Q2 Q2 A2 Q2 A2 Q2 Q2

Q2Q2 Q2 Q2 A2 A2 Q2 A2 Q2 Q2

Q2B2 A1 Q2 B1 Q2 Q2

A2G B1 B1 Q2

GG B1 Q2
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A2 Q1A2 B1G Q1B1 GA1 B2A2 Q1G B1Q1 Q1B2 B2Q1 GG Q1Q1 G∗
A1Q2 A2 A2 B1 A2 B1

A2Q1 A2 B1 A2 A2 B1 A2

A1B2 A1 B1 A1 A1

A1Q1 A1 A1 B1 G A1 B1 A1

A2B2 Q1 Q1 Q1 Q1

GQ1 A1 G A1 A1

B1Q2 Q1 Q1 Q1 Q1 Q1

B1Q1 Q1 B2 Q1 Q1 Q1 Q1

Q1Q1 Q1 Q1 Q1 B2 Q1 Q1 Q1

Q1B2 Q1 Q1 Q1 Q1

Q2B2 A1 B1

Q2Q2 A2 A2 B1 A2 B1

B2Q2 A2 A2

B2Q1 B2 Q1 Q1 Q1 Q1

B1 A1Q2 Q2A1 Q2B1 Q2Q2 G∗ Q1G Q2B2 B1Q1 Q1B1 GB1 B1G GG Q2A2 Q1A2 Q1Q1 Q2Q2 Q1B2

∗G Q2 B1 B1 F
GQ2 Q2 A1 B1 G
B1Q2 Q2 A1 B1 G
A1Q2 A1 B1 G G
Q2Q2 Q2 A1 G G B1

Q1A2 Q1 Q1 Q1 Q1 Q1 Q1 Q1

A2Q1 Q1 A2 A2 Q1 Q1 A2 A2 A2

Q2B1 G G G
B1Q1 B1 B1 B1

B1G Q2 Q2 B1 B1 F
GB1 F F F
GG Q2 Q2 B1 B1 F
A1Q1 G G G G
B2Q2 Q2 A1 B1 G
Q1Q1 B1 B1 B1 B1 B1

B2Q1 B1 B1 B1

B2 A1Q2 Q2A1 Q2Q2 A2Q1 Q2B1 Q2G Q1G Q1B1 Q2B2 Q2A2 Q1A2 Q1Q1 Q1B2

Q2A1 B1 B2 G G G G G
GQ2 B1 B1 B2 G B2

B1Q2 B1 B1 B2 G
Q1A2 B1 B1 B1 B1 B1

A1Q2 B1 B2 G G
GQ1 G
A2Q1 B1 B1 B1 B1 B1

Q2Q2 B1 B1 B2 G G
Q1Q1 B2 B2 B2 B2 B2

B2Q2 B1 B1 B2 G
A1Q1 G G G G
B1Q1 B2

B2Q1 B2
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4 Proof of Minimal Time Solution

4.1 Image Solutions

In [2], Balzer defined a special type of solution, called an Image Solution, to the standard

Firing Squad Synchronization Problem and proved properties that Image Solutions exhibit.

We extend the definition of an Image Solution and prove the corresponding properties for

the Firing Squad Synchronization Problem with Von Neumann Neighborhoods of Extent 2.

Definition 2. Let S be the set of states in a solution. A solution to the Firing Squad

Synchronization Problem with Von Neumann Neighborhood of Extent 2 is called an Image

Solution if for every state transition rule (V,W,X, Y, Z) → U in the solution there exists a

state transition rule (Im(Z), Im(Y ), Im(X), Im(W ), Im(V ))→ Im(U), where Im : S → S

and Im(Im(A)) = A for every state A ∈ S. Im(A) is called the image of A.

Definition 3. A curve is defined to be a connected set of machines in the two dimensional

representation of the squad (successive time steps printed on rows beneath the original squad).

Each connected set of machines must be a portion of a horizontal row, a vertical column, or

two adjacent diagonals at ±arctan(0.5) degrees (i.e. diagonals with slope ±1

2
).

Definition 4. Two curves are said to be equal if they have the same shape and orientation

and if elements along one curve are identical to the corresponding elements of the other

curve.
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Definition 5. Two curves are said to be images of each other if they have the same shape

and orientation, except the horizontal direction is reversed, and elements along one curve

are images of the corresponding elements of the other curve.

Definition 6. A closed curve consists of a vertical curve adjoined at the top to a curve

consisting of two adjacent diagonals at ±arctan(0.5) degrees and closed off by either a diag-

onal at ±arctan(0.5) degrees extending from the end of the adjacent diagonals to the bottom

end of the vertical curve or by a horizontal curve connecting the bottom end of the adjacent

diagonals to the bottom end of the vertical curve.

Figure 4.1: Examples of Closed Curves

Definition 7. The closure of two curves, a vertical curve adjoined at the top to a curve

consisting of two adjacent diagonals, is the closed curve consisting of these curves and the

horizontal curve or diagonal curve needed to form a closed curve.
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Definition 8. The parents of an element are the elements which determine its value. For

example, if S(x, t) refers to the state of the machine x units from the left end at time t, then

the parents of the element S(x, t) are S(x− 2, t− 1), S(x− 1, t− 1), S(x, t− 1), S(x + 1, t−

1), S(x + 2, t− 1).

In [2], Balzer proved a property of image solutions stating that if a pair of curves in

separate simulations are equal (or images) of each other then all cells in the interior of the

closure of these curves are also equal (or images) of each other. We prove that this same

property holds with Von Neumann neighborhoods of extent 2.

Theorem 2. Consider two pairs of curves, as defined in Definition 3, each consisting of

a vertical curve adjoined at the top to a curve consisting of two adjacent diagonals. If the

corresponding curves in the pairs are equal (or images) then all elements in the interior or

on the bottom border of the closures are equal (or images).

Proof. Assume there is at least one element in the interior or bottom border of the closure

of one of the pairs that is not equal (or the image) of the corresponding element in the other

pair’s closure. Then, since the transitions in the transition tables are deterministic, at least

one of that element’s parents is not equal (or the image) to its corresponding element. Simi-

larly, one of this element’s parents must also not be equal (or the image) to its corresponding

element. Continuing this process until we reach the border of the closure, we find an element

on one of our original curves is not equal (or the image) to the corresponding element of the

original curve in the other pair. This contradicts the assumptions of the theorem, and hence

all elements in the interior or on the border of the closures are equal.
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4.2 Proof of 651 rule 8 state Minimal Time Solution

Let R0 be the set consisting of the 651 rules outlined in the transition tables found in Table

3.1. Let R1 be the set consisting of the union of R0 and the following additional rules in

Table 4.1:

Table 4.1: Additional Rules for R1

Q2 B1A1 B2A1 G∗ Q2G Q2Q2 A2Q1 Q2A2

∗∗ F G Q2 G G
∗G B1 Q2

∗Q2 Q1 A2 Q2 Q1 A2

Q2Q2 Q1

Q1 G∗ A2B1 A2Q1

∗G F Q2 Q2

A1 Q1A2 Q1B1

∗G B1 Q2

A2 Q1A2 Q1G
∗Q2 A1 B1

B1 Q2A1

∗G Q2

G ∗∗ Q1A2 A1Q1 Q1G
∗∗ G G F
∗Q2 F
Q2Q2 G

Let S∗ = {G,Q1, Q2, A1, A2, B1, B2, F, ∗} be the set of states used in R0 and R1, includ-

ing the nonexistent state ∗. Let Im : S∗ → S∗ be defined by

Im(s) =



s s = G,F,B1, B2, ∗

Q1 s = Q2

Q2 s = Q1

A1 s = A2

A2 s = A1

Using Im(s), we can see that for every state transition rule (V,W,X, Y, Z) → U ∈ R1

there exists a state transition rule (Im(Z), Im(Y ), Im(X), Im(W ), Im(V ))→ Im(U) ∈ R1
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and that Im(Im(s)) = s for every s ∈ S∗.

We will show that the set of states S∗ with rule set R1 forms a minimal time solution

to the Firing Squad Synchronization Problem with Von Neumann Neighborhood of Extent

2 by using properties of image solutions. Then, we will show that the rules in rule set R0 are

necessary and sufficient, meaning that S∗ with R0 is a minimal time solution to the problem.

In Noguchi’s minimal time solution to the standard FSSP, he noted that his “slow” waves

formed a virtual binary counter which counted the number of cells that backwards waves

had traveled [7]. He then continued to use binary in his proof due to this virtual counter and

due to the binary nature of repeated halving of the array [7]. Our solution to the FSSP with

Von Neumann Neighborhood of Extent 2 does not exhibit this same behavior of forming a

binary counter, however we will also prove the correctness of the solution using binary, as

inspired by Noguchi. Using binary is a convenient way to express dividing in half repeatedly,

as dividing by 2 in binary is represented by simply removing the bit farthest to the right

(rounded down as needed). We utilize this in the statements and proofs needed to prove the

correctness of the solution to express the half point, quarter point, eighth point and so on

in a concise way.

Theorem 3. The set of states S∗, as on page 31, with rule set R1, outlined in Tables 3.1

and 4.1, is a minimal time solution to the Firing Squad Synchronization Problem with Von

Neumann Neighborhood of Extent 2. That is, for any size n, the one-dimensional array of

size n will synchronize with S(i, n−1) = F for 0 ≤ i ≤ n−1 and S(i, t) 6= F for 0 ≤ i ≤ n−1

and t < n− 1.

The proof of this theorem follows multiple lemmas.
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Lemma 1. (Propagation of the initial A1 wave)

With set of states S∗ as defined on page 31, rule set R1, outlined in Tables 3.1 and 4.1, and

n ≥ 6

a. S(2i, i) = A1 with 1 ≤ i ≤ n− 3

2
if n is odd and 1 ≤ i ≤ n− 2

2
if n is even

b. S(2i, i + 1) = A1 with 1 ≤ i ≤ n− 3

2
if n is odd and 1 ≤ i ≤ n− 4

2
if n is even

c. S(2i + 1, i + 1) = Q2 with 1 ≤ i ≤ n− 3

2
if n is odd and 1 ≤ i ≤ n− 2

2
if n is even

d. S(j, i) = Q1 for 2i < j ≤ n− 1

e. S
(
n− 2,

n

2

)
= A2 for even n

Proof. We use induction on i to prove a.− d.

Recall that at time t = 0, the array is as follows:

∗ ∗GQ1Q1Q1Q1 . . . Q1 ∗ ∗

That is, the initial array satisfies S(0, 0) = G and S(i, 0) = Q1 for 1 ≤ i ≤ n− 1, as laid out

in the problem statement.

Assume i = 1. We need to verify:

a. S(2, 1) = A1

b. S(2, 2) = A1

c. S(3, 2) = Q2

d. S(j, 1) = Q1 for 2 < j ≤ n− 1

The machine in position 2 is in state Q1 at time t = 0, and applying the rule

(G,Q1, Q1, Q1, Q1)→ A1 gives S(2, 1) = A1.

To verify b. we must find the states of the neighbors of the cell in position 2 at time

t = 1 in order to apply rules to find the state of cell 2 at time t = 2. Applying the
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rules (∗, ∗, G,Q1, Q1)→ G , (∗, G,Q1, Q1, Q1)→ Q2 , (Q1, Q1, Q1, Q1, Q1)→ Q1

, (Q1, Q1, Q1, Q1, ∗)→ Q1 and (Q1, Q1, Q1, ∗, ∗)→ Q1 places the array at time t = 1 in the

following states:

∗ ∗GQ2A1Q1Q1 . . . Q1 ∗ ∗

Then applying the rule (G,Q2, A1, Q1, Q1)→ A1 results in S(2, 2) = A1.

To verify c., apply the rule Q2, A1, Q1, Q1, Q1)→ Q2 to find S(3, 2) = Q2.

To verify d., the rules (Q1, Q1, Q1, Q1, Q1)→ Q1 , (Q1, Q1, Q1, Q1, ∗)→ Q1 and

(Q1, Q1, Q1, ∗, ∗) → Q1 result in S(j, 1) = Q1 for all 2 < j ≤ n − 1 - meaning there is no

spontaneous state changes.

Now assume statements a.− d. hold for i = k. That is, assume the following are true:

a. S(2k, k) = A1 where k ≤ n− 5

2
if n is odd and k ≤ n− 4

2
if n is even

b. S(2k, k + 1) = A1 where k ≤ n− 5

2
if n is odd and k ≤ n− 6

2
if n is even

c. S(2k + 1, k + 1) = Q2 where k ≤ n− 5

2
if n is odd and k ≤ n− 4

2
if n is even

d. S(j, k) = Q1 for 2k < j ≤ n− 1

We will verify these four statements for i = k + 1. That is, we need to show:

a. S(2(k + 1), k + 1) = S(2k + 2, k + 1) = A1 where k + 1 ≤ n− 5

2
+ 1 =

n− 3

2
if n is odd

and k + 1 ≤ n− 4

2
+ 1 =

n− 2

2
if n is even

b. S(2(k + 1), (k + 1) + 1) = S(2k + 2, k + 2) = A1 where k + 1 ≤ n− 5

2
+ 1 =

n− 3

2
if n

is odd and k + 1 ≤ n− 6

2
+ 1 =

n− 4

2
if n is even

c. S(2(k + 1) + 1, (k + 1) + 1) = S(2k + 3, k + 2) = Q2 where k + 1 ≤ n− 5

2
+ 1 =

n− 3

2
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if n is odd and k + 1 ≤ n− 4

2
+ 1 =

n− 2

2
if n is even

d. S(j, k + 1) = Q1 for 2(k + 1) = 2k + 2 < j ≤ n− 1

By the assumptions made above, the squad at time t = k, where I means a cell in an

irrelevant state, is one of the following:

∗ ∗ I . . . A1Q1Q1Q1Q1 . . . ∗ ∗ ∗ ∗I . . . A1Q1Q1Q1 ∗ ∗

where the first cell indicated after the irrelevant cells is in position 2k. In both cases, we find

that S(2k + 2, k + 1) = A1 by either (A1, Q1, Q1, Q1, Q1)→ A1 or (A1, Q1, Q1, Q1, ∗)→ A1.

To show b. and c. we must observe what happens to the array at time t = k + 2. At

time t = k+1, with k+1 satisfying the restrictions given, the squad is in one of the following:

∗ ∗ I . . . A1Q2A1Q1Q1Q1 . . . ∗ ∗ ∗ ∗I . . . A1Q2A1Q1Q1 ∗ ∗

Note that S(2k, k + 1) = A1 and S(2k + 1, k + 1) = Q2 were given by assumption and that

we already showed S(2k + 2, k + 1) = A1. Then at time t = k + 2, we have from the rules

(A1, Q2, A1, Q1, Q1) → A1, (Q2, A1, Q1, Q1, Q1) → Q2, and (Q2, A1, Q1, Q1, ∗) → Q2 that

S(2k + 2, k + 2) = A1 and S(2k + 3, k + 2) = Q2.

Part d. can be seen by observing the squad at time t = k, which again is as follows:

∗ ∗ I . . . A1Q1Q1Q1Q1 . . . ∗ ∗ ∗ ∗I . . . A1Q1Q1Q1 ∗ ∗

where the first cell not in an irrelevant state is in position 2k. We want S(j, k + 1) = Q1

where 2k + 2 < j ≤ n − 1. The cells in positions 2k + 3 and greater, by following rules
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(Q1, Q1, Q1, Q1, Q1) → Q1 , (Q1, Q1, Q1, Q1, ∗) → Q1, and (Q1, Q1, Q1, ∗, ∗) → Q1 all enter

state Q1 at time k + 1, so S(j, k + 1) = Q1 where 2k + 2 < j ≤ n− 1 - no spontaneous state

changes have occurred.

By the principles of mathematical induction, parts a.− d. hold for all i as stated.

It remains to show part e.. By parts a. − d. we know that the squad at time t =
n− 2

2

for even n is as follows:

∗ ∗ I . . . A1Q2A1Q1 ∗ ∗

By the rule (A1, Q2, A1, Q1, ∗) → A2, we have that S
(
n− 2,

n

2

)
= A2. This is the cell in

position n− 2 “seeing” that the A1 signal will reach the end in the next time step and thus

beginning to send the return signal A2 in that next time step.

Lemma 2. (Progress of slow waves and propagation of backwards A1 waves)

Let (xmxm−1 . . . x1x0)2 be the binary representation of i + 1, where m ≥ 1 and xm = 1.

That is, i + 1 =
m∑
k=0

xk2k where xk ∈ {0, 1}, m ≥ 1, and xm = 1. Consider the space-time

diagram representing the execution of the FSSP with time t = 0 as the first row and time

increasing as we read vertically down. If i ∈ 2Z, let C1 be the arctan

(
1

2

)
degree diagonal

curve beginning at

(
i,
i

2

)
and ending at (0, i) and let C2 be the adjacent arctan

(
1

2

)
degree

diagonal curve beginning at

(
i− 1,

i

2
+ 1

)
and ending at (1, i). If i ∈ Z \ 2Z, let C1 be the

arctan

(
1

2

)
degree diagonal curve beginning at

(
i− 1,

i + 1

2

)
and ending at (0, i) and let

C2 be the adjacent arctan

(
1

2

)
degree diagonal curve beginning at

(
i,
i + 1

2

)
and ending at

(1, i). The notation C(j) refers to the state of the machine in position j that lies on the

curve C.
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Using the set of states S∗ (page 31) and rule set R1 (Tables 3.1 and 4.1), for n ≥ 4 and for

all i such that 2 ≤ i ≤ n− 2 the following are true:

a. For all j such that 1 +
m∑
k=1

xk2k−1 ≤ j ≤ i we have C1(j) = A1 if j ∈ 2Z and C2(j) = Q2

if j ∈ Z \ 2Z.

b. For all ` such that 0 ≤ ` ≤ m− 1

i. If x` = 1 then C1

(
m∑

k=`+1

xk2k−(`+1)

)
= B1 if

m∑
k=`+1

xk2k−(`+1) ∈ 2Z and

C2

(
m∑

k=`+1

xk2k−(`+1)

)
= B1 if

m∑
k=`+1

xk2k−(`+1) ∈ Z \ 2Z.

ii. If x` = 1 and
m∑

k=`+1

xk2k−(`+1) ≥ 3, then for all j such that 1 +
m∑

k=`+2

xk2k−(`+2) ≤ j ≤

−1 +
m∑

k=`+1

xk2k−(`+1) we have C1(j) = Q2 if j ∈ 2Z and C2(j) = Q2 if j ∈ Z \ 2Z.

iii. If x` = 0 and there exists p such that 0 ≤ p < `, xp = 1, and ` < m− 1, then

C1

(
m∑

k=`+1

xk2k−(`+1)

)
= B2 if

m∑
k=`+1

xk2k−(`+1) ∈ 2Z and C2

(
m∑

k=`+1

xk2k−(`+1)

)
= B2

if
m∑

k=`+1

xk2k−(`+1) ∈ Z \ 2Z.

iv. If x` = 0 and there exists p such that 0 ≤ p < `, xp = 1 , ` < m− 1 and
m∑

k=`+1

xk2k−(`+1) ≥ 3 then for all j such that 1 +
m∑

k=`+2

xk2k−(`+2) ≤ j ≤

− 1 +
m∑

k=`+1

xk2k−(`+1) we have that C1(j) = Q2 if j ∈ 2Z and C2(j) = Q2 if j ∈ Z \ 2Z

v. If x` = 0 , xp = 0 for all p such that 0 ≤ p ≤ ` , and ` < m− 1 then

C1

(
m∑

k=`+1

xk2k−(`+1)

)
= A1 if

m∑
k=`+1

xk2k−(`+1) ∈ 2Z and C2

(
m∑

k=`+1

xk2k−(`+1)

)
= B2

if
m∑

k=`+1

xk2k−(`+1) ∈ Z \ 2Z.

vi. If x` = 0 , xp = 0 for all p such that 0 ≤ p ≤ ` , ` < m− 1 , and
m∑

k=`+1

xk2k−(`+1) ≥ 3,

then for all j such that 1 +
m∑

k=`+2

xk2k−(`+2) ≤ j ≤ −1 +
m∑

k=`+1

xk2k−(`+1) we have that

C1(j) = A1 if j ∈ 2Z and C2(j) = Q2 if j ∈ Z \ 2Z.

vii. If xm−1 = 0 then C2(1) = Q2.
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c. C1(0) = G.

Proof. We will prove using induction. For a base case, all statements were verified by direct

verification for squads of any length N ≤ N0 = 85. As an illustration, the direct verification

for a squad of length 16 and i = 11 as well as a squad of length 16 and i = 12 are shown

below.

Figure 4.2: Length 16 Squad Simulation, i = 11
C1 depicted in blue and C2 depicted in gold

As seen in Figure 4.2, for n = 16 and i = 11, and thus i + 1 = 12 = (1100)2 and m = 3,

the statements of the lemma read as follows:

a. For all j such that 7 ≤ j ≤ 11, C1(j) = A1 if j ∈ 2Z and C2(j) = Q2 if j ∈ Z \ 2Z.

b. For all ` such that 0 ≤ ` ≤ 2

i. x` = 1 implies ` = 2, then since
m∑

k=`+1

xk2k−(`+1) =
3∑

k=3

xk2k−3 = 1 ∈ Z \ 2Z, we have

C2(1) = B1.

ii. x` = 1 implies ` = 2, and since
m∑

k=`+1

xk2k−(`+1) =
3∑

k=3

xk2k−3 = 1 6≥ 3, this part does

not apply.

iii. x` = 0 implies ` = 0, 1. For either of these there is no p such that 0 ≤ p < ` with

xp = 1 so this part does not apply.

38



iv. x` = 0 implies ` = 0, 1. For either of these there is no p such that 0 ≤ p < ` with

xp = 1 so this part does not apply.

v. x` = 0 implies ` = 0, 1. For ` = 0, we do have that xp = 0 for all p such that 0 ≤ p ≤ 0.

Then since
m∑

k=`+1

xk2k−(`+1) =
3∑

k=1

xk2k−1 = 0× 20 + 1× 21 + 1× 22 = 6 ∈ 2Z, we see

that C1(6) = A1. For ` = 1, we also have that xp = 0 for all p such that 0 ≤ p ≤ 1.

Then since
m∑

k=`+1

xk2k−(`+1) =
3∑

k=2

xk2k−2 = 1× 20 + 1× 21 = 3 ∈ Z \ 2Z, we see that

C2(3) = B2.

vi. x` = 0 implies ` = 0, 1 and both satisfy that xp = 0 for all p such that 0 ≤ p ≤ `. If

` = 0, then
m∑

k=`+1

xk2k−(`+1) =
3∑

k=1

xk2k−1 = 0× 20 + 1× 21 + 1× 22 = 6 ≥ 3, we

have to check for all j such that 4 ≤ j ≤ 5 that C1(j) = A1 if j ∈ 2Z and C2(j) = Q2

if j ∈ Z \ 2Z. We do in fact have C1(4) = A1 and C2(5) = Q2. If ` = 1, then
m∑

k=`+1

xk2k−(`+1) =
3∑

k=2

xk2k−2 = 1× 20 + 1× 21 = 3 ≥ 3 and we must check the

conclusion for all j such that 2 ≤ j ≤ 2 and we do in fact have C1(2) = A1.

vii. xm−1 = x2 = 1 6= 0, so this does not apply.

c. C1(0) = G can be seen in the simulation.

Figure 4.3: Length 16 Squad Simulation, i = 12
C1 depicted in blue and C2 depicted in gold

As seen in Figure 4.3, for n = 16 and i = 12, and thus i + 1 = 13 = (1101)2 and m = 3, the
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statements of the lemma read as follows:

a. For all j such that 7 ≤ j ≤ 12, C1(j) = A1 if j ∈ 2Z and C2(j) = Q2 if j ∈ Z \ 2Z.

b. For all ` such that 0 ≤ ` ≤ 2

i. x` = 1 implies ` = 0, 2. If ` = 0 then since
m∑

k=`+1

xk2k−(`+1) =
3∑

k=1

xk2k−1 = 6 ∈ 2Z, we

have C1(6) = B1. If ` = 2 then since
m∑

k=`+1

xk2k−(`+1) =
3∑

k=3

xk2k−3 = 1 ∈ Z \ 2Z, we

have C2(1) = B1.

ii. x` = 1 implies ` = 0, 2, and for ` = 0 we have
m∑

k=`+1

xk2k−(`+1) =
3∑

k=1

xk2k−1 = 6 ≥ 3.

Then we must have that for all j such that 4 ≤ j ≤ 5, C1(j) = Q2 if j ∈ 2Z and

C2(j) = Q2 if j ∈ Z \ 2Z. We do indeed have C1(4) = Q2 and C2(5) = Q2. If ` = 2,

then
m∑

k=`+1

xk2k−(`+1) =
3∑

k=3

xk2k−3 = 1 6≥ 3, and this part does not apply.

iii. x` = 0 implies ` = 1. There does exist p such that 0 ≤ p < ` with xp = 1 (namely

p = 0). Then since
m∑

k=`+1

xk2k−(`+1) =
3∑

k=2

xk2k−2 = 3 ∈ Z \ 2Z ,we verify that

C2(3) = B2 as shown in the simulation.

iv. x` = 0 implies ` = 1. Since x0 = 1 and
m∑

k=`+1

xk2k−(`+1) =
3∑

k=2

xk2k−2 = 3 ≥ 3, we

must verify that for all j such that 2 ≤ j ≤ 2 we have C1(j) = Q2 if j ∈ 2Z and

C2(j) = Q2 if j ∈ Z \ 2Z. Indeed, we have C1(2) = Q2.

v. x` = 0 implies ` = 1. But since x0 = 1, this part does not apply.

vi. x` = 0 implies ` = 1. But since x0 = 1, this part does not apply.

vii. xm−1 = x2 = 1 6= 0, so this does not apply.

c. C1(0) = G can be seen in the simulation.

Now consider a squad of length n where N0 − 2 < n − 2. For a squad of length n, the

lemma holds for all i such that 2 ≤ i ≤ N0 − 2 < n− 2 using properties of image solutions.

If i is even, then consider the triangular region within the simulation diagram for a squad of

size N0 enclosed by the vertical curve at x = −1, the pair of adjacent −arctan
(

1

2

)
degree
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diagonal curves beginning at (0, 0) and (1, 1) and ending at

(
i,
i

2

)
and

(
i− 1,

i

2

)
respec-

tively, and the pair of adjacent arctan

(
1

2

)
degree diagonal curves C1 and C2 as described

in the lemma. Looking at the triangular area enclosed by the same curves in the simulation

diagram for a squad of size n, we see that the vertical curves at x = −1 in both diagrams

are equal (these curves are on the boundary and thus in state ∗ at each time step). Also,

by Lemma 1, the adjacent diagonals beginning at (0, 0) and (1, 1) and ending at

(
i,
i

2

)
and(

i− 1,
i

2

)
respectively are equal in both diagrams. Then by Theorem 2 and using the fact

that the set of states S∗ with rule set R1 is an image solution under the function Im(s) de-

fined on page 31, we see that C1 and C2 are the same in each simulation diagram, and hence

they satisfy the properties laid out in the lemma for all even i such that 2 ≤ i ≤ N0−2 < n−2

in the simulation diagram for a squad of length n.

If i is odd, then consider the triangular region within the simulation diagram for a squad of

size N0 enclosed by the vertical curve at x = −1, the pair of adjacent −arctan
(

1

2

)
degree

diagonal curves beginning at (0, 0) and (1, 1) and ending at

(
i + 1,

i + 1

2

)
and

(
i,
i + 1

2

)
respectively, and the pair of adjacent arctan

(
1

2

)
degree diagonal curves C1 and C2 as de-

scribed in the lemma. Looking at the triangular area enclosed by the same curves in the

simulation diagram for a squad of size n, we see that the vertical curves at x = −1 in both

diagrams are equal (these curves are on the boundary and thus in state ∗ at each time

step). Also, by Lemma 1, the adjacent diagonals beginning at (0, 0) and (1, 1) and ending at(
i + 1,

i + 1

2

)
and

(
i,
i + 1

2

)
respectively are equal in both diagrams. Then by Theorem 2

and using the fact that the set of states S∗ with rule set R1 is an image solution under the

function Im(s) (page 31), we see that C1 and C2 are the same in each simulation diagram

and thus satisfy the conclusions of this lemma for all odd i such that 2 ≤ i ≤ N0− 2 < n− 2

, even in the size n diagram. So the conclusions of the lemma are satisfied for all i such that

2 ≤ i ≤ N0 − 2 < n− 2.
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Now, assume that the conclusions hold for all i such that 2 ≤ i ≤ N where N0−2 ≤ N ≤ n−3.

We will show that the conclusions then also hold for N + 1.

Let (xmxm−1 . . . x1x0)2 be the binary representation of N + 1 and let (yMyM−1 . . . y1y0)2

be the binary representation of N + 2. That is, N + 1 =
m∑
k=0

xk2k and N + 2 =
M∑
k=0

yk2k

and M = m or M = m + 1. If N + 1 ∈ 2Z, let D1 be the arctan

(
1

2

)
degree diagonal

curve beginning at

(
N + 1,

N + 1

2

)
and ending at (0, N + 1) and let D2 be the adjacent

arctan

(
1

2

)
degree diagonal curve beginning at

(
N,

N + 1

2
+ 1

)
and ending at (1, N + 1).

If N + 1 ∈ Z \ 2Z then let D1 begin at

(
N,

N + 2

2

)
and end at (0, N + 1) and let D2 begin

at

(
N + 1,

N + 2

2

)
and end at (1, N + 1).

First consider if N + 1 is even. We know by Lemma 1 that S

(
N + 1,

N + 1

2

)
= A1,

S

(
N + 1,

N + 1

2
+ 1

)
= A1, S

(
N + 2,

N + 1

2
+ 1

)
= Q2, and S

(
k,

N + 1

2

)
= Q1 for all

k such that N + 1 < k ≤ n− 1. All of these are depicted in green in Figure 4.4.

By our inductive hypothesis, we know that for all j such that 1 +
m∑
k=1

xk2k−1 ≤ j ≤ N ,

we have C1(j) = A1 if j ∈ 2Z and C2(j) = Q2 if j ∈ Z \ 2Z, as shown in gold in Figure

4.4. We also know the corresponding information for i = N − 1 as shown in blue in Figure

4.4. Then by applying the rules (A1, Q2, A1, Q2, A1)→ A1 , (Q2, A1, Q2, A1, Q1)→ Q2, and

(Q2, A1, Q2, A1, Q2) → Q2 and noting that since N + 1 is even, we know x0 = 0 and thus
m∑
k=1

xk2k−1 =
M∑
k=1

yk2k−1, we have that for all j such that 1 +
M∑
k=1

yk2k−1 ≤ j ≤ N + 1 we have

D1(j) = A1 if j ∈ 2Z and D2(j) = Q2 if j ∈ Z \ 2Z.

Now consider if N+1 is odd. We know by Lemma 1 that S

(
N,

N

2

)
= A1, S

(
N,

N + 2

2

)
=
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Figure 4.4: Induction for backwards wave - N + 1 even
Green boxes have information from Lemma 1, blue and gold boxes have information from the assumptions

for the induction step for i = N − 1 and i = N respectively

A1, S

(
N + 1,

N + 2

2

)
= Q2, and S

(
k,

N

2

)
= Q1 for all k such that N < k ≤ n − 1. All

of these are depicted in green in Figure 4.5.

By our inductive hypothesis, we know that for all j such that 1+
m∑
k=1

xk2k−1 ≤ j ≤ N , we

have C1(j) = A1 if j ∈ 2Z and C2(j) = Q2 if j ∈ Z \ 2Z, as shown in gold in Figure 4.5. We

also know the corresponding information for i = N − 1 as shown in blue in Figure 4.5. Then

by applying the rules (A1, Q2, A1, Q2, A1) → A1 and (Q2, A1, Q2, A1, Q2) → Q2 and noting

that since N + 1 is odd, we know x0 = 1 and thus 1 +
m∑
k=1

xk2k−1 =
M∑
k=1

yk2k−1, we have that

for all j such that 1 +
M∑
k=1

yk2k−1 ≤ j ≤ N + 1 we have D1(j) = A1 if j ∈ 2Z and D2(j) = Q2

if j ∈ Z \ 2Z. Thus the conclusions of Lemma 2 part a are proven.

Now we examine the movement of the “slow” B waves, starting with the first “slow” B wave
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Figure 4.5: Induction for backwards wave - N + 1 odd
Green boxes have information from Lemma 1, blue and gold boxes have information from the assumptions

for the induction step for i = N − 1 and i = N respectively

through the (p + 1)st “slow wave.” Since smaller length n squads can be verified by hand

simply using the transition tables, we assume that
m∑

k=p+1

xk2k−(p+1) −
m∑

k=p+2

xk2k−(p+2) ≥ 3.

This assumption assures that the (p + 1)st and (p + 2)nd “slow” B waves are separated by

at least 2 cells along our pair of arctan

(
1

2

)
diagonal curves C1 and C2.

When the “backward” A1 wave traveling along D1 and D2 meets the first “slow” wave

coming from C1 and C2, the assumed conditions of this lemma for all i such that 2 ≤ i ≤ N

where N0 − 2 ≤ N ≤ n− 3 result in one of four possible configurations of states, as seen in

Figure 4.6. Configurations 1 and 2 arise for N + 1 ∈ 2Z and configurations 3 and 4 arise for

N + 1 ∈ Z \ 2Z.

Note that in 1 and 2 in Figure 4.6, the backward A1 wave on D1 does not continue after

the first “slow” B wave meets the D1, D2 pair. However, in 3 and 4 in Figure 4.6, the
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Figure 4.6: First “slow” wave meeting the backwards wave along D1 and D2

D1 in blue and D2 in gold. 1 and 2 are for even N + 1 while 3 and 4 are for odd N + 1

backwards A1 wave on D1 continues to propagate even after the “slow” B wave meets the

D1, D2 pair.

When examining the second “slow” B wave, 8 different transition configurations, depicted

in Figure 4.7, are possible, depending on the binary expansion (xmxm−1 . . . x1x0)2 of N + 1.

These configurations are found due to our induction hypothesis of the conclusions of this

lemma holding for all i such that 2 ≤ i ≤ N where N0 − 2 ≤ N ≤ n− 3

If in the binary expansion of N + 1 = (xmxm−1 . . . x1x0)2 we have that x1 = 0 = x0,

the possible configurations are 1 or 2 in Figure 4.7. If x1 = 1 and x0 = 0, we have 3 or

4 in Figure 4.7. If x1 = 0 and x0 = 1, we have 5 or 6 in Figure 4.7. If x1 = 1 = x0, the
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Figure 4.7: Second “slow” wave meeting D1 and D2

D1 in blue and D2 in gold. 1 and 2 are for (x1x0) = (00), 3 and 4 are for (x1x0) = (10), 5 and 6 are for
(x1x0) = (01), and 7 and 8 are for (x1x0) = (11).

possible transition configurations are as in 7 or 8 in Figure 4.7. Note that in this last case,

the “backwards” A1 wave along D1 and D2 continues to propagate after meeting the second

“slow” wave.

Now consider the third “slow” B wave. 12 different transition configurations, depicted in

Figure 4.8 for q = 2, are possible, depending on the binary expansion (xmxm−1 . . . x1x0)2 of

N + 1. These configurations are found due to our induction hypothesis of the conclusions of

this lemma holding for all i such that 2 ≤ i ≤ N where N0 − 2 ≤ N ≤ n− 3. In 9 and 10 in

Figure 4.8, the state I refers to an irrelevant state - it can be in Q2 or in A1, but this does

not change the states along D1 and D2.

If in the binary expansion of N + 1 = (xmxm−1 . . . x1x0)2 we have (x2x1x0) = (000), then the

transition pattern is that of 1 or 2 in Figure 4.8. If (x2x1x0) = (100), the transition pattern

is either 3 or 4 in Figure 4.8. If (x2x1x0) = (011), the transition pattern is that of 5 or 6

in Figure 4.8. If (x2x1x0) = (111), the transition pattern is either 7 or 8 in Figure 4.8. If

(x2x1x0) = (010) or (001), the transition pattern is either 9 or 10 in Figure 4.8. Lastly, if
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Figure 4.8: q + 1st Slow Wave meeting D1 and D2 for q ≥ 2
D1 depicted in blue, D2 depicted in gold. 1, 2: x0 = x1 = . . . = xq = 0 (and so y0 = 1 and
y1 = y2 = . . . = yq = 0). 3, 4: x0 = x1 = . . . = xq−1 = 0 and xq = 1 (and so y0 = yq = 1 and

y1 = y2 = . . . = yq−1 = 0). 5, 6: x0 = x1 = . . . = xq−1 = 1 and xq = 0 (and so y0 = y1 = . . . = yq−1 = 0 and
yq = 1). 7, 8: x0 = x1 = . . . = xq = 1 (and so y0 = y1 = . . . = yq = 0). 9, 10: xq = yq = 0 (except for cases

already covered by 1, 2). 11, 12: xq = yq = 1 (except for cases already covered by 3, 4).

(x2x1x0) = (110) or (101), the transition pattern is that of 11 or 12 in Figure 4.8. Note that

in the case of (x2x1x0) = (111), so transition pattern 7 or 8, the backward wave along D1

and D2 still continues to propagate after meeting the “slow” wave.

Now, for q such that 2 ≤ q ≤ p, we show that the possible transition configurations for

the (q + 1)st “slow” B wave are the same as those depicted in Figure 4.8.

If the transition configuration for the qth “slow” wave is pattern 1 or 2, then we know
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that the binary expansion of N + 1 = (xmxm−1 . . . x1x0)2 is (xmxm−1 . . . xq00 . . . 0)2 and the

binary expansion of N + 2 is (yMyM−1 . . . yq00 . . . 01)2. Since xq is either 0 or 1 and yq can

be determined by adding 1 to the binary expansion of N + 1, the possibilities for the transi-

tion configuration of the (k + 1)st “slow” wave are given by (xmxm−1 . . . xq+1000 . . . 0)2 and

(yMyM−1 . . . yq+1000 . . . 1)2, resulting in configuration 1 or 2 in Figure 4.8, or by

(xmxm−1 . . . xq+1100 . . . 0)2 and (yMyM−1 . . . yq+1100 . . . 1)2, resulting in configuration 3 or 4.

If the transition configuration for the qth “slow” wave is pattern 3 or 4, then we have

(xmxm−1 . . . xq100 . . . 0)2 and (yMyM−1 . . . yq100 . . . 01)2. Then one possibility for the tran-

sition configuration of the (k + 1)st “slow” wave is given by (xmxm−1 . . . xq+10100 . . . 0)2

and (yMyM−1 . . . yq+10100 . . . 1)2. In this case, since xq = yq = 0 but not every bit xi

with 0 ≤ i < q is 0, we are in configuration 9 or 10 in Figure 4.8. The other pos-

sibility is(xmxm−1 . . . xq+11100 . . . 0)2 and (yMyM−1 . . . yq+11100 . . . 1)2. In this case, since

xq = yq = 1 but not every bit xi with 0 ≤ i < q is 0, we are in configuration 11 or 12.

If the transition configuration for the qth “slow” wave is pattern 5 or 6, then we have

(xmxm−1 . . . xq011 . . . 1)2 and (yMyM−1 . . . yq100 . . . 0)2. Then one possibility for the tran-

sition configuration of the (k + 1)st “slow” wave is given by (xmxm−1 . . . xq+10011 . . . 1)2

and (yMyM−1 . . . yq+10100 . . . 0)2. In this case, since xq = yq = 0 but not every bit xi

with 0 ≤ i < q is 0, we are in configuration 9 or 10 in Figure 4.8. The other pos-

sibility is(xmxm−1 . . . xq+11011 . . . 1)2 and (yMyM−1 . . . yq+11100 . . . 0)2. In this case, since

xq = yq = 1 but not every bit xi with 0 ≤ i < q is 0, we are in configuration 11 or 12.

If the transition configuration for the qth “slow” wave is pattern 7 or 8, then we have

(xmxm−1 . . . xq11 . . . 1)2 and (yMyM−1 . . . yq00 . . . 0)2. Then one possibility for the transi-

tion configuration of the (k + 1)st “slow” wave is given by (xmxm−1 . . . xq+1011 . . . 1)2 and

(yMyM−1 . . . yq+1100 . . . 0)2. In this case, we are in configuration 5 or 6 in Figure 4.8. The
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other possibility is(xmxm−1 . . . xq+111 . . . 1)2 and (yMyM−1 . . . yq+100 . . . 0)2. In this case, we

are in configuration 7 or 8.

If the transition configuration for the qth “slow” wave is pattern 9 or 10, then we have

(xmxm−1 . . . xq0xq−2 . . . x0)2 where at least one xi with 0 ≤ i ≤ q − 2 is not 0 and

(yMyM−1 . . . yq0yq−2 . . . y0)2. Then one possibility for the transition configuration of the

(k + 1)st “slow” wave is given by (xmxm−1 . . . xq+100xq−2 . . . x0)2 where at least one xi with

0 ≤ i ≤ q − 2 is not 0 and (yMyM−1 . . . 00yq−2 . . . y0)2. In this case, since xq = yq = 0 but not

every bit xi with 0 ≤ i < q is 0, we are in configuration 9 or 10 in Figure 4.8. The other pos-

sibility is given by (xmxm−1 . . . xq+110xq−2 . . . x0)2 where at least one xi with 0 ≤ i ≤ q − 2

is not 0 and (yMyM−1 . . . 10yq−2 . . . y0)2. In this case, since xq = yq = 1 but not every bit xi

with 0 ≤ i < q is 0, we are in configuration 11 or 12.

Lastly, if the transition configuration for the qth “slow” wave is pattern 11 or 12, then

we have (xmxm−1 . . . xq1xq−2 . . . x0)2 where at least one xi with 0 ≤ i ≤ q − 2 is not 0 and

(yMyM−1 . . . yq1yq−2 . . . y0)2. Then one possibility for the transition configuration of the

(k + 1)st “slow” wave is given by (xmxm−1 . . . xq+101xq−2 . . . x0)2 where at least one xi with

0 ≤ i ≤ q − 2 is not 0 and (yMyM−1 . . . 01yq−2 . . . y0)2. In this case, since xq = yq = 0 but not

every bit xi with 0 ≤ i < q is 0, we are in configuration 9 or 10 in Figure 4.8. The other pos-

sibility is given by (xmxm−1 . . . xq+111xq−2 . . . x0)2 where at least one xi with 0 ≤ i ≤ q − 2

is not 0 and (yMyM−1 . . . 11yq−2 . . . y0)2. In this case, since xq = yq = 1 but not every bit xi

with 0 ≤ i < q is 0, we are in configuration 11 or 12.

In summary, following the numbering in Figure 4.8, if the qth “slow” wave meets D1 and D2

in configuration 1 or 2, the (q + 1)st slow wave will meet D1 and D2 in configuration 1, 2, 3

or 4. If in 7 or 8, the next will meet in 5, 6, 7 or 8. If in 3, 4, 5, 6, 9, 10, 11 or 12, the next will

meet in 9, 10, 11 or 12.
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Hence the conclusions of Lemma 2 part b hold for i = N + 1 and for all q such that

2 ≤ q ≤ p. We must still show that the “slow” waves after the pth one still satisfy the con-

clusions. Let p = 3. Then the assumption of
m∑

k=p+1

xk2k−(p+1) −
m∑

k=p+2

xk2k−(p+2) ≥ 3 means

that
m∑
k=4

xk2k−4−
m∑
k=5

xk2k−5 ≥ 3 where N +1 = (xmxm−1 . . . x1x0)2. The smallest such N +1

which satisfies this assumption is N + 1 = 80 = (1010000)2, thus N ≥ 79. Since we already

verified by hand that the lemma is true for all squads up to length 85 and 85− 2 > 79, we

take N0 = 85.

If N ′ ∈ 2Z, let C ′1 be the arctan

(
1

2

)
degree diagonal curve beginning at

(
N ′,

N ′

2

)
and

ending at (0, N ′) and let C ′2 be the adjacent arctan

(
1

2

)
degree diagonal curve beginning at(

N ′ − 1,
N ′

2
+ 1

)
and ending at (1, N ′). If N ′ ∈ Z \ 2Z, let C ′1 be the arctan

(
1

2

)
degree

diagonal curve beginning at

(
N ′ − 1,

N ′ + 1

2

)
and ending at (0, N ′) and let C ′2 be the ad-

jacent arctan

(
1

2

)
degree diagonal curve beginning at

(
N ′,

N ′ + 1

2

)
and ending at (1, N ′).

If N ′ ∈ 2Z, then let D′1 begin at

(
N ′,

N ′ + 2

2

)
and end at (0, N ′ + 1) and let D′2 begin at(

N ′ + 1,
N ′ + 2

2

)
and end at (1, N ′ + 1). If N ′ ∈ Z \ 2Z let D′1 be the arctan

(
1

2

)
degree

diagonal curve beginning at

(
N ′ + 1,

N ′ + 1

2

)
and ending at (0, N ′ + 1) and let D′2 be the

adjacent arctan

(
1

2

)
degree diagonal curve beginning at

(
N ′,

N ′ + 1

2
+ 1

)
and ending at

(1, N ′ + 1).

There exists N ′ << N such that (I) the pair of curves C1 and C2 are equal to the pair

of curves C ′1 and C ′2 when starting the comparison of the curves at cell position
m∑
k=4

xk2k−4

and ending at cell position 0 and (II) when comparing the transitions configurations, laid

out in Figure 4.8, of the “slow” waves at cell position
m∑
k=4

xk2k−4 passing from C1 and C2

to D1 and D2 to the transition configurations of the “slow” waves in the same cell position

50



from C ′1 and C ′2 to D′1 and D′2, the configurations are the same. We show the existence of

such an N ′ below.

First, if the transition configuration of the 4th “slow” wave, which occurs in cell
m∑
k=4

xk2k−4,

on the pair C1 and C2 is in configuration 1 or 2 of Figure 4.8, then we know that N + 1 =

(xmxm−1 . . . x40000)2. Then, we can pick N ′ + 1 = (xmxm−1 . . . x4000)2, which would have

the same transition configuration, then, at the same cell location, although it is the 3rd

“slow” wave on C ′1 and C ′2 (note that N +1 is m+1 bits and N ′+1 is m bits - so N ′ << N).

So, for transition configuration 1 or 2, N ′ = (xmxm−1 . . . x4000)2− 1 satisfies the conditions.

If the transition configuration of the 4th “slow” wave on the pair C1 and C2 is in con-

figuration 3 or 4 of Figure 4.8, then we know that N + 1 = (xmxm−1 . . . x41000)2. So

N ′ + 1 = (xmxm−1 . . . x4100)2 would have the same transition configuration at the same cell

location on C ′1 and C ′2. Thus for transition pattern 3 or 4, N ′ = (xmxm−1 . . . x4100)2 − 1

satisfies the conditions.

If the transition configuration of the 4th “slow” wave on the pair C1 and C2 is in con-

figuration 5 or 6 of Figure 4.8, then we know that N + 1 = (xmxm−1 . . . x40111)2. So

N ′ + 1 = (xmxm−1 . . . x4011)2 would have the same transition configuration at the same cell

location on C ′1 and C ′2. Thus for transition pattern 5 or 6, N ′ = (xmxm−1 . . . x4011)2 − 1

satisfies the conditions.

If the transition configuration of the 4th “slow” wave on the pair C1 and C2 is in con-

figuration 7 or 8 of Figure 4.8, then we know that N + 1 = (xmxm−1 . . . x41111)2. So

N ′ + 1 = (xmxm−1 . . . x4111)2 would have the same transition configuration at the same cell

location on C ′1 and C ′2. Thus for transition pattern 7 or 8, N ′ = (xmxm−1 . . . x4111)2 − 1

satisfies the conditions.
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If the transition configuration of the 4th “slow” wave on the pair C1 and C2 is in con-

figuration 9 or 10 of Figure 4.8, then we know that N + 1 = (xmxm−1 . . . x40x2x1x0)2,

where not all of x0, x1, x2 are the same. Of x0, x1, x2 select xa and xb so that xa 6= xb. Then,

N ′+1 = (xmxm−1 . . . x40xaxb)2 would have the same transition configuration at the same cell

location on C ′1 and C ′2. Thus for transition pattern 9 or 10, N ′ = (xmxm−1 . . . x40xaxb)2 − 1

satisfies the conditions.

Lastly, if the transition configuration of the 4th “slow” wave on the pair C1 and C2 is

in configuration 11 or 12 of Figure 4.8, then we know that N + 1 = (xmxm−1 . . . x41x2x1x0)2,

where not all of x0, x1, x2 are the same. Of x0, x1, x2 select xa and xb so that xa 6= xb. Then,

N ′+1 = (xmxm−1 . . . x41xaxb)2 would have the same transition configuration at the same cell

location on C ′1 and C ′2. Thus for transition pattern 9 or 10, N ′ = (xmxm−1 . . . x41xaxb)2 − 1

satisfies the conditions.

Note that, as stated when describing the situation where the 4th “slow” B wave on C1

and C2 is in configuration 1 or 2, in all of these situations, the “slow” B wave on C ′1 and C ′2

is the 3rd “slow” wave and that the number of bits in N ′ is m, whereas the number of bits

in N is m + 1.

Now we compare the curves D1 and D2 to D′1 and D′2. Since C1 and C2 are equal to

C ′1 and C ′2 from cell
m∑
k=4

xk2k−4 to cell 0, given the above description of finding the appropri-

ate N ′, and since the transition patterns of the “slow” waves from C1 and C2 to D1 and D2

are the same as those of the “slow” waves from C ′1 and C ′2 to D′1 and D′2, also from finding

the appropriate N ′ as above, then D1 and D2 are equal to D′1 and D′2 from cell
m∑
k=4

xk2k−4

to cell 0 since we are applying the same set of transition rules.
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Thus, the position of the 4th “slow” wave on D1 and D2 is in the same position as the

3rd “slow” wave on D′1 and D′2 - namely cell
M∑
k=4

yk2k−4 (recall that the binary expansion of

N + 2 is (yMym−1 . . . y1y0)2). Hence, N + 2 and N ′ + 2 have the same binary expansions for

M − 3 bits, though they may differ for the remaining 4 bits. Then, since we know from as-

sumption that Lemma 2 part b holds for i = N ′+1 and since for all q such that 4 ≤ q ≤M−1,

we have matching conditions regarding the bit patterns for the qth “slow” wave for i = N +1

and the (q−1)st “slow” wave for i = N ′+1, we have that Lemma 2 part b holds for i = N+1.

It only remains to show part c. But as a result of the above, we know that D1(0) = D′1(0)

and since we assumed in our induction hypothesis that all of Lemma 2 holds for all i such

that 2 ≤ i ≤ N , we know that D′1(0) = G and thus D1(0) = G, so part c holds for i = N +1.

Hence by the principle of mathematical induction, Lemma 2 holds for squads of any finite

length n.

Lemma 3. (Finding the middle points of the squad array)

Consider a firing squad of length n ≥ 6. Let the binary representation of n − 1 be

(zmzm−1 . . . z1z0)2, where m ≥ 1 and zm = 1. That is, let n−1 =
m∑
k=0

zk2k with zm = 1, m ≥ 1.

If n− 1 ∈ 2Z, let C3 be the arctan

(
1

2

)
degree diagonal curve beginning at

(
n− 1,

n− 1

2

)
and ending at (2, n− 2) and let C4 be the adjacent arctan

(
1

2

)
degree diagonal curve begin-

ning at

(
n− 2,

n− 1

2
+ 1

)
and ending at (3, n − 2). If n − 1 ∈ Z \ 2Z, then let C3 be the

arctan

(
1

2

)
degree diagonal curve beginning at

(
n− 2,

n

2

)
and ending at (2, n− 2) and let

C4 be the adjacent arctan

(
1

2

)
degree diagonal curve beginning at

(
n− 1,

n

2

)
and ending at

(3, n− 2).

Using the set of states S∗ (defined on page 31) and rule set R1 (made up of the rules found
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in Tables 3.1 and 4.1) , and for all i such that 0 ≤ i ≤ m− 1 the following hold:

a. If
m∑
k=i

zk2k−i ∈ 2Z , then C3

(
m∑
k=i

zk2k−i
)

= G. If
m∑
k=i

zk2k−i ∈ Z\2Z, then C4

(
m∑
k=i

zk2k−i
)

=

G.

b. If zi = 0 and i < m− 1 then for all j such that 1 +
m∑

k=i+1

zk2k−(i+1) ≤ j ≤ −1 +
m∑
k=i

zk2k−i

, if j ∈ 2Z then C3(j) = A2 and if j ∈ Z \ 2Z then C4(j) = Q1.

Note that when zi = 0, the cell in position
m∑

k=i+1

zk2k−(i+1) is the middle cell of cells

0 through
m∑
k=i

zk2k−i

c. If zi = 1 and i < m− 1, then

i. For all j such that 2 +
m∑

k=i+1

zk2k−(i+1) ≤ j ≤ −1 +
m∑
k=i

zk2k−i , if j ∈ 2Z then

C3(j) = A2 and if j ∈ Z \ 2Z then C4(j) = Q1.

ii. If 1 +
m∑

k=i+1

zk2k−(i+1) ∈ 2Z then C3

(
1 +

m∑
k=i+1

zk2k−(i+1)

)
= B1 and if

1 +
m∑

k=i+1

zk2k−(i+1) ∈ Z \ 2Z then C4

(
1 +

m∑
k=i+1

zk2k−(i+1)

)
= G

Note that when zi = 1, the two cells in positions
m∑

k=i+1

zk2k−(i+1) and 1+
m∑

k=i+1

zk2k−(i+1)

are the middle cells of cells 0 through
m∑
k=i

zk2k−i.

Proof. Consider a firing squad array of length n ≥ 6. We will prove by induction.

First, we show that Lemma 3 part a. holds when i = 0. Assume that n is even and so

n − 1 is odd. We have C3 beginning at
(
n− 2,

n

2

)
and C4 beginning at

(
n− 1,

n

2

)
. Since

n is even, we know from Lemma 1 that the squad at time t =
n− 2

2
is as follows, where I

stands for an irrelevant state:

∗ ∗ II . . . IQ2A1Q1 ∗ ∗
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Then applying the rule (Q2A1Q1 ∗ ∗)→ G we see that C4

(
m∑
k=0

zk2k

)
= C4(n− 1) = G

Now assume that n is odd and so n − 1 is even. We have C3 beginning at

(
n− 1,

n− 1

2

)
and C4 beginning at

(
n− 2,

n− 1

2
+ 1

)
. Since n is odd, we know from Lemma 1 that the

squad at time t =
n− 3

2
is as follows, where I stands for an irrelevant state:

∗ ∗ II . . . IA1Q1Q1 ∗ ∗

Then applying the rule (A1Q1Q1 ∗ ∗) → G we see that C3

(
m∑
k=0

zk2k

)
= C3(n − 1) = G.

Thus Lemma 3 part a. holds for i = 0.

Now assume that part a. holds for i ≤ j. First, assume that zj = 0. Then, by ap-

Figure 4.9: Finding Middle Points with zj = 0
C3 and C4 are dark and light orange, respectively. C1 and C2 for i = n− 2 are blue and gold, respectively.

plying Lemma 2 for i = n − 2 and i = n − 3, and by using rules (Q2, A1, Q2, G,Q1) →

Q1 , (A1, Q2, A1, Q2, G) → A2 , (Q2, A1, Q2, A2, Q1) → Q1 , (A1, Q2, A1, Q2, A2) → A2 ,

(B1, Q2, A1, Q2, A2)→ A2 , (Q2, Q2, B2, A2, Q1)→ G , (Q2, A1, B2, A2, Q1)→ G , (Q2, A1,

Q2, A2, G)→ Q1 , (Q2, B1, A1, Q2, A2)→ G , (B1, A1, Q2, A2, Q1)→ Q1 , (B2, Q2, A1, Q2, A2)

→ A2 , (Q2, B2, Q2, A2, Q1)→ Q1 and (Q2, Q2, B2, Q2, A2)→ G we have the possibilities in

Figure 4.9.

So if zj = 0, we have that part a. holds for i = j + 1 and that part b. holds for i = j.
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Now assume that zj = 1. Then, by applying Lemma 2 for i = n− 2 and i = n− 3, and by

Figure 4.10: Finding Middle Points with zj = 1
C3 and C4 are dark and light orange, respectively. C1 and C2 for i = n− 2 are blue and gold, respectively.
S refers to a state that is either A1 or Q2, T refers to a state that is A1 or B1, R refers to a state that is

B1 or B2

using rules (A1, Q2, A1, Q2, A2) → A2 , (Q2, A1, Q2, A2, G) → Q1 , (Q2, A1, Q2, A2, Q1) →

Q1 , (B2, Q2, A1, Q2, A2) → A2 , (Q2, Q2, B1, Q2, A2) → G , (A1, Q2, B1, Q2, A2) → G

, (Q2, B1, Q2, A2, Q1) → G , (B2, A1, Q2, A2, Q1) → Q1 , (A1, B2, A1, Q2, A2) → B1) ,

(Q2, B2, A1, Q2, A2) → B1 , and (Q2, Q2, B1, B1, Q1) → G , we have the possibilities in

Figure 4.10.

So if zj = 1, we have that part a. holds for i = j + 1 and that part c. holds for i = j. Thus

by the principle of mathematical induction, Lemma 3 holds for all i with 0 ≤ i ≤ m− 1.

Lemma 4. (Reflection of return wave at middle points)

Consider a firing squad of length n ≥ 6. Let the binary representation of n − 1 be

(zmzm−1 . . . z1z0)2, where m ≥ 2 and zm = 1. That is, let n−1 =
m∑
k=0

zk2k with zm = 1, m ≥ 2.

If
m∑

k=i+1

zk2k−(i+1) ∈ 2Z, then let C3,i be the arctan

(
1

2

)
degree diagonal curve beginning

at

(
m∑

k=i+1

zk2k−(i+1), n− 1− 1

2

m∑
k=i+1

zk2k−(i+1)

)
and ending at (2, n − 2) and let C4,i be the

adjacent arctan

(
1

2

)
degree diagonal curve beginning at(

−1 +
m∑

k=i+1

zk2k−(i+1), n− 1

2

m∑
k=i+1

zk2k−(i+1)

)
and ending at (3, n− 2). If

m∑
k=i+1

zk2k−(i+1) ∈

Z \ 2Z, then let C3,i be the arctan

(
1

2

)
degree diagonal curve beginning at
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(
−1 +

m∑
k=i+1

zk2k−(i+1), n− 1

2

(
1 +

m∑
k=i+1

zk2k−(i+1)

))
and ending at (2, n−2) and let C4,i be

the adjacent arctan

(
1

2

)
degree diagonal curve beginning at(

m∑
k=i+1

zk2k−(i+1), n− 1

2

(
1 +

m∑
k=i+1

zk2k−(i+1)

))
and ending at (3, n− 2).

Using the set of states S∗ (defined on page 31) and rule set R1 (containing the rules from

Tables 3.1 and 4.1), the following are true:

a. If zk = 0, and
m∑

k=i+1

zk2k−(i+1) ∈ 2Z , then let C5,i be the −arctan
(

1

2

)
degree diag-

Figure 4.11: Diagonals for Lemma 4 if zi = 0
C3,i in blue, C4,i in yellow, C5,i in purple, C6,i in orange. Green indicates a cell that is both in C4,i and C6,i

onal curve beginning at

(
m∑

k=i+1

zk2k−(i+1), n− 1− 1

2

m∑
k=i+1

zk2k−(i+1)

)
and ending at(

−2 +
m∑
k=i

zk2k−i, n− 2

)
and let C6,i be the adjacent −arctan

(
1

2

)
degree diagonal curve be-

ginning at

(
1 +

m∑
k=i+1

zk2k−(i+1), n− 1

2

m∑
k=i+1

zk2k−(i+1)

)
and ending at

(
−3 +

m∑
k=i

zk2k−i, n− 2

)
.
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If zk = 0 and
m∑

k=i+1

zk2k−(i+1) ∈ Z \ 2Z , then let C5,i begin at(
1 +

m∑
k=i+1

zk2k−(i+1), n− 1

2

(
1 +

m∑
k=i+1

zk2k−(i+1)

))
and end at

(
−2 +

m∑
k=i

zk2k−i, n− 2

)
and

let C6,i begin at

(
m∑

k=i+1

zk2k−(i+1), n− 1

2

(
1 +

m∑
k=i+1

zk2k−(i+1)

))
and end at(

−3 +
m∑
k=i

zk2k−i, n− 2

)
.

Then, C5,i and C6,i are images (as in Definition 5) of C3,i and C4,i.

b. If zi = 1 and
m∑

k=i+1

zk2k−(i+1) ∈ 2Z, then let C5,i be the −arctan
(

1

2

)
degree diagonal

Figure 4.12: Diagonals for Lemma 4 if zi = 1
C3,i in blue, C4,i in yellow, C5,i in purple, C6,i in orange.

curve beginning at

(
1 +

m∑
k=i+1

zk2k−(i+1), n− 1− 1

2

m∑
k=i+1

zk2k−(i+1)

)
and ending at(

−2 +
m∑
k=i

zk2k−i, n− 2

)
and let C6,i be the adjacent −arctan

(
1

2

)
degree diagonal curve

beginning at

(
2 +

m∑
k=i+1

zk2k−(i+1), n− 1

2

m∑
k=i+1

zk2k−(i+1)

)
and ending at(

−3 +
m∑
k=i

zk2k−i, n− 2

)
.
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If zi = 1 and
m∑

k=i+1

zk2k−(i+1) ∈ Z \ 2Z, then let C5,i begin at(
2 +

m∑
k=i+1

zk2k−(i+1), n− 1

2

(
1 +

m∑
k=i+1

zk2k−(i+1)

))
and end at

(
−2 +

m∑
k=i

zk2k−i, n− 2

)
and

let C6,i begin at

(
1 +

m∑
k=i+1

zk2k−(i+1), n− 1

2

(
1 +

m∑
k=i+1

zk2k−(i+1)

))
and end at(

−3 +
m∑
k=i

zk2k−i, n− 2

)
.

Then, C5,i and C6,i are images (as in Definition 5) of C3,i and C4,i.

Proof. First, let zi = 0. So we know that
m∑
k=i

zk2k−i ∈ 2Z. Consider the triangular region

enclosed by the following curves:

The vertical curve starting at

(
m∑
k=i

zk2k−i, n− 1− 1

2

m∑
k=i

zk2k−i
)

and ending at(
m∑
k=i

zk2k−i, n− 2

)

The double diagonal curves starting at

(
m∑
k=i

zk2k−i, n− 1− 1

2

m∑
k=i

zk2k−i
)

and(
−1 +

m∑
k=i

zk2k−i, n− 1

2

m∑
k=i

zk2k−i
)

and ending at the starting position for C3,i and C5,i, re-

spectively, if
m∑

k=i+1

zk2k−(i+1) ∈ 2Z. If
m∑

k=i+1

zk2k−(i+1) ∈ Z \ 2Z, have the double diagonal

curves end at the starting position for C3,i and C4,i, respectively.

We know the double diagonal curves follow Lemma 3 and that the vertical curve is in state

G throughout, due to rule set R1 requiring that a General remain in the General state until

the few conditions specified in the tables which result in a General firing, none of which

appear in this situation. Call this triangular area T1.

Consider also the triangular area in the space-time diagram for a squad of length N =
m∑

k=i+1

zk2k−(i+1) enclosed by the vertical curve starting at (0, 0) and ending at (0, N − 2)

and the double diagonals starting at (0, 0) and (1, 1) and ending at

(
N − 1,

N − 1

2

)
and
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(
N − 2,

N − 1

2

)
, respectively, if N ∈ Z \ 2Z. If N ∈ 2Z, then have the double diagonals

end at

(
N − 2,

N − 2

2

)
and

(
N − 1,

N

2

)
, respectively. Call this triangular area T2.

We know that the double diagonals of T2 follow Lemma 1 and the vertical curve remains in

G. So, by Lemmas 1 and 3, we see the double diagonals of T1 and T2 are images of each

other (using the function Im(s) defined on page 31). Then, since Im(G) = G as well, we

know from Theorem 2, that T1 and T2 are images of each other. Thus the double diagonals

that close T1 and T2 are also images of each other. Note that the closing diagonals of T1 are

C5,i and C6,i. Then, due to Lemma 3, we also have that the closing double diagonals for T2

are equal to the double diagonals C3,i and C4,i. Hence, C5,i and C6,i are images of C3,i and C4,i.

Now assume zi = 1. We know from Lemma 3 that we have two possibilities for arrangements

of states depending on if
m∑

k=i+1

zk2k−(i+1) is even or odd (see Figure 4.10). First assume that

m∑
k=i+1

zk2k−(i+1) ∈ 2Z. Then, by Lemmas 2 and 3 and Figure 4.10, we can apply rules from

rule set R1 to obtain the configuration in Figure 4.13.

In particular, the rules (B1, Q2, A2, Q1, I)→ Q1 , (A1, Q2, A2, Q1, I)→ A2 ,

Figure 4.13: zi = 1 and zi+1 = 0 reflection of waves
C3,i in blue, C4,i in yellow, C5,i in purple, C6,i in orange

(Q2, A2, Q1, A2, I)→ Q1 , (G,G,Q1, Q1, I)→ Q2 , (A2, Q1, A2, Q1, I)→ A2 ,
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(G,Q1, Q1, A2, I)→ A1 , (Q1, A2, Q1, A2, I)→ Q1 , (Q1, Q1, A2, Q1, I)→ Q1 , and

(Q2, A1, Q1, Q1, I) → Q2 are used. Using the function Im(s) as defined on page 31, we can

see that C5,i and C6,i are images of C3,i and C4,i so far.

By using Lemma 3, we know that C3,i and C4,i continue on the same way until they meet

the i + 2nd slow wave. Since the `th slow wave intersects at the cell in position
1

2`
(n − 1)

at time t =
2`+1 − 1

2`+1
(n − 1), we know the number of time steps between the intersec-

tion at middle point
m∑

k=i+1

zk2k−(i+1) and the intersection at middle point
m∑

k=i+2

zk2k−(i+2) is

2i+3 − 1

2i+3
(n−1)− 2i+2 − 1

2i+2
(n−1) =

1

2i+3
(n−1) time steps. So C3,i and C4,i continue in their

same pattern until
1

2i+3
(n−1) time steps have passed since the intersection at

m∑
k=i+1

zk2k−(i+1).

Meanwhile, C5,i and C6,i continue unchanged until the first slow wave emitted from the middle

point at
m∑
k=i

zk2k−i intersects. The first slow wave emitted from the cell in position
m∑
k=i

zk2k−i

travels to the midpoint between
m∑
k=i

zk2k−i and
m∑

k=i+1

zk2k−(i+1). So the slow wave needs to

travel
1

2

m∑
k=i+1

zk2k−(i+1) =
m∑

k=i+2

zk2k−(i+2) =
1

2i+2
(n−1) cells. Since this is the first slow wave

emitted from this middle point, it travels 2 cells every 3 time steps, hence will reach this

new middle point in a total of
3

2

(
1

2i+2
(n− 1)

)
=

3

2i+3
(n− 1) time steps. However, by the

time the
m∑

k=i+1

zk2k−(i+1) intersection begins generating our waves C3,i, C4,i, C5,i, C6,i, the first

slow wave from the
m∑
k=i

zk2k−i middle point has already been traveling for
1

2

m∑
k=i+1

zk2k−(i+1) =

m∑
k=i+2

zk2k−(i+2) =
1

2i+2
(n−1) time steps. Hence, starting when the middle cell

m∑
k=i+1

zk2k−(i+1)

begins generating our C3,i, C4,i, C5,i, C6,i, the first slow wave from position
m∑
k=i

zk2k−i will meet

our waves C5,i and C6,i in another
3

2i+3
(n− 1)− 1

2i+2
(n− 1) =

1

2i+3
(n− 1) time steps.

Hence the pair C3,i and C4,i meet their slow wave in the same number of time steps as

it takes C5,i and C6,i to meet their slow wave. Hence, we can see that C5,i and C6,i are
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images of C3,i and C4,i.

Now consider if
m∑

k=i+1

zk2k−(i+1) ∈ Z \ 2Z. Then, by Lemmas 2 and 3 and Figure 4.10,

we can apply rules from rule set R1 to obtain the configuration in Figure 4.14.

In particular, the rules (A1, Q2, A2, Q1, I)→ A2 , (Q2, A2, Q1, A2, I)→ Q1 ,

Figure 4.14: zi = 1 and zi+1 = 1 reflection of waves
C3,i in blue, C4,i in yellow, C5,i in purple, C6,i in orange

(B1, B1, Q1, A2, Q1)→ A1 , (B1, Q1, A2, Q1, I)→ Q1 , (G,A1, Q1, Q1, I)→ Q2 ,

(A1, Q1, Q1, A2, I)→ A1 , (Q1, A2, Q1, A2, I)→ Q1 , (Q1, Q1, A2, Q1, I)→ Q1 , and

(Q2, A1, Q1, Q1, I) → Q2 are used. Using the function Im(s) as defined on page 31, we can

see that C5,i and C6,i are images of C3,i and C4,i so far. However, the same argument as

above holds as to when the next midpoints will be found, and thus we can see that C5,i and

C6,i are images of C3,i and C4,i.

Now we provide the proof for Theorem 3.

Proof of Theorem 3. We need to show that, using set of states S∗, as on page 31, with rule

set R1, outlined in Tables 3.1 and 4.1, for any n, the one-dimensional array of size n will syn-

chronize with S(i, n−1) = F for 0 ≤ i ≤ n−1 and S(i, t) 6= F for 0 ≤ i ≤ n−1 and t < n−1.
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This was verified directly using the simulation program for squads of any size n with

2 ≤ n ≤ 500.

By Lemmas 1, 2, 3, and 4, we have that the curves C3,1 and C4,1 for a squad of size n

are equivalent to the fast return wave of a squad of size dn
2
e, which takes dn−1

4
e time steps

to fire. C3,1 and C4,1 are generated at the first middle point of the squad of size n at

time d3
4
(n − 1)e. Adding these times together shows that the left half of the squad of size

n fires in n−1 time steps. The right side, by Lemma 4, also fires in a total of n−1 time steps.

Hence a squad of size n fires in n− 1 time steps and we have a minimal time solution.

Theorem 4. The set of states S∗, as on page 31, with rule set R0, outlined in Table 3.1, is

a minimal time solution to the Firing Squad Synchronization Problem with Von Neumann

Neighborhood of Extent 2. That is, for any size n, the one-dimensional array of size n will

synchronize with S(i, n − 1) = F for 0 ≤ i ≤ n − 1 and S(i, t) 6= F for 0 ≤ i ≤ n − 1 and

t < n− 1.

Proof. The rule set R0 is contained in the rule set R1. The rules in R0 are necessary rules,

as all 651 rules in rule set R0 are used at least once in running simulations of firing squads

of size n with 2 ≤ n ≤ 211.

We will show the rules in R0 are also sufficient. Of the added rules in Table 4.1 to cre-

ate rule set R1:

The following 13 rules cannot exist due to the initial set up of the firing squad array

∗ ∗ GQ1Q1 . . . Q1 ∗ ∗ and the fact that the General state remains in General until the

conditions are met for firing:
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(∗, Q2, Q2, G, ∗)→ Q1

(∗, ∗, Q2, G, ∗)→ F

(∗, Q2, Q2, Q2, G)→ A2

(∗, ∗, Q2, Q2, G)→ G

(∗, Q2, Q2, Q2, Q2)→ Q2

(∗, ∗, Q2, Q2, Q2)→ Q2

(∗, Q2, Q2, A2, Q1)→ Q1

(∗, ∗, Q2, A2, Q1)→ G

(∗, Q2, Q2, Q2, A2)→ A2

(∗, ∗, Q2, Q2, A2)→ G

(∗, Q2, G, ∗, ∗)→ F

(∗, Q2, A2, Q1, A2)→ A1

(∗, Q2, A2, Q1, G)→ B1

The following 6 rules cannot exist because of the fast A1 wave traveling 2 cells per time step

from the initial General:

(∗, G,A1, Q1, A2)→ B1

(∗, G,A1, Q1, B1)→ Q2
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(∗, G,B1, Q2, A1)→ Q2

(∗, G,Q2, B1, A1)→ B1

(∗, G,Q2, B2, A1)→ Q2

(∗, ∗, G,A1, Q1)→ G

The following 3 rules cannot exist because of the fact that A2 is the fast return wave and is

about to hit the original General, which should result in Fire:

(∗, G,Q1, A2, B1)→ Q2

(∗, G,Q1, A2, Q1)→ Q2

(∗, ∗, G,Q1, A2)→ G

Both (Q2, Q2, Q2, G, ∗)→ Q1 and (Q2, Q2, G, ∗, ∗)→ G are not necessary as they would be

for having an initial set up with the General on the right side of the firing squad.

(∗, ∗, G,Q1, G)→ F cannot exist as Theorem 3 showed that the squad of size n has C3,1 and

C4,1 equal to the fast return wave of a squad of size dn
2
e. Iteratively repeating this, a squad

will Fire when the states at time n − 2 are repetitions of the second-to-last time step of a

squad of size 4, 5, or 6. Examining squads of these sizes, we see the only possibilities for this

rule at time n− 2 are (∗, ∗, G,B1, B1)→ F or (∗, ∗, G,Q2, G)→ F .

The last added rule of Table 4.1 is (∗, G,Q1, G, ∗), which could only arise in a squad of

size 3. Actually running the simulation for a squad of size 3, however, yields the following:
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∗ ∗GQ1Q1 ∗ ∗

∗ ∗GQ2G ∗ ∗

∗ ∗ FFF ∗ ∗

So that last added rule never occurs.

Hence, since Theorem 3 shows that the set of states S∗ with rule set R1 is a minimal

time solution, and since we have shown that the rules in rule set R0 are necessary and suf-

ficient, we have that S∗ with rule set R0 consisting of the 651 rules outlined in Table 3.1 is

a minimal time solution to the Firing Squad Synchronization Problem with Von Neumann

Neighborhood of Extent 2
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5 Conclusion and Suggestions for Future Work

We developed a new variation of the Firing Squad Synchronization Problem using a different

neighborhood definition - the Von Neumann Neighborhood of extent 2. In solving this new

variation of the FSSP, we found a minimal time solution which synchronizes an array of any

finite length in half the number of times steps as needed in the standard FSSP. This reduc-

tion in discrete time steps is due to the ability of information to travel at twice the speed

as in the standard problem, because of the extended radius of the neighborhoods used. The

technique used to solve the problem, the halving technique, has been used by many others

in solving the standard problem, including Waksman, Balzer, and Noguchi [1, 2, 6, 7].

Although the number of discrete time steps needed is half that of the required time steps in

the standard problem, the number of rules in this solution, 651, is larger than the number of

rules in minimal time solutions to the standard FSSP that use the same technique of halving

and have the same number of possible states, 8. Balzer’s 8 state minimal time solution is

stated to have 182 rules, however Noguchi claims that only 165 of these are actually used,

and Noguchi’s 8 state minimal time solution with the least number of rules has 119 rules

[1, 7]. However, regardless of the number of rules, in implementing any of these solutions

using a simulation program similar to our code found on page 69, the complexity of the

algorithm remains the same.

The 651 rule 8 state minimal time solution to the Firing Squad Synchronization Problem

with Von Neumann Neighborhood of Extent 2 was proven with induction using properties of

image solutions and many patterns that arise due to the binary nature of repeated halving

of the firing squad array.

More work can be done in examining possible other minimal time solutions to the FSSP

67



with Von Neumann Neighborhood of Extent 2 to attempt to reduce the number of states in

a solution or reduce the number of rules. Different techniques other than halving could also

be explored, such as dividing the array in thirds as Mazoyer did in the standard problem

[6]. Due to the rules having more inputs when considered a Von Neumann Neighborhood

of Extent 2, there are more possible rules that can be defined for a fixed number of states

than with the standard Von Neumann Neighborhood. Having a larger number of possible

configurations of states in the rule set could feasibly result in solutions with fewer states than

what is possible in the standard problem. Exploring that possibility would be of interest.

It is also natural to now consider changing the neighborhood definition used in other vari-

ations of the FSSP, including the ring variation as in [10] or in higher dimensions as in [5].

Expanding the radius of the neighborhoods in these variations could result in minimal time

solutions that require fewer discrete time steps. Different types of neighborhoods can also

be explored, including an even larger radius, neighborhoods defined only on one side of a

cell, or neighborhoods with unequal number of neighbors on each side.

Solutions to variations of the FSSP could be used in applications requiring simultaneous

action by machines. For example, in a future with all self-driving cars, a solution to the

FSSP could be used to allow for simultaneous movement of cars stopped at a traffic light

when the signal changes to green, as opposed to the current reality that each car can only

move once all preceding cars have already started moving. Solutions could also be used for

simultaneous engine firing in rockets or other applications requiring synchronous action.
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6 Simulation Program Code

import sys

import numpy as np

from termcolor import colored

from colored import fg

#prompt user for the size of the firing squad

squad_size = int(input(’Enter the length of the firing squad: ’))

#initialize 1d array for firing squad with all entries 0 (quiescent state)

squad = np.zeros(squad_size + 4, dtype=np.int)

#set the four end units’ state to boundary (20)

squad[0]=20

squad[1]=20

squad[squad_size+2]=20

squad[squad_size+3]=20

#initialize first member of the squad as the general (state 1)

squad[2]=1

for k in range(2, squad_size+2):

if squad[k] == 0:

sys.stdout.write(’%s\u2610’ %(fg(’white’)))

elif squad[k] == 1:

sys.stdout.write(’%s\u2610’ %(fg(’green’)))

69



elif squad[k] == 2:

sys.stdout.write(’%s\u2610’ %(fg(’red’)))

elif squad[k] == 3:

sys.stdout.write(’%s\u2610’ %(fg(’yellow’)))

elif squad[k] == 4:

sys.stdout.write(’%s\u2610’ %(fg(’magenta’)))

elif squad[k] == 5:

sys.stdout.write(’%s\u2610’ %(fg(’blue’)))

elif squad[k] == 6:

sys.stdout.write(’%s\u2610’ %(fg(’cyan’)))

elif squad[k] == 7:

sys.stdout.write(’%s\u2610’ %(fg(’orchid’)))

else:

sys.stdout.write(’’)

sys.stdout.write(’\n’)

#create the array to hold the rule set

rules = np.full((21,21,21,21,21), 21, dtype=np.int)

#define rules

rules[20,20,1,0,0]=1 #general persists

rules[20,1,0,0,0]=3

rules[1,0,0,0,0]=4 #fast wave

rules[0,0,0,0,0]=0 #no instantaneous change from quiescent

rules[0,0,0,0,20]=0 #no instantaneous change from quiescent

rules[0,0,0,20,20]=0 #no instantaneous change from quiescent

rules[20,20,1,3,4]=1 #general persists

rules[20,1,3,4,0]=7 #start slow wave
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rules[1,3,4,0,0]=4

rules[3,4,0,0,0]=3

rules[4,0,0,0,0]=4 #fast wave

rules[20,20,1,7,4]=1 #general persists

rules[20,1,7,4,3]=3

rules[1,7,4,3,4]=7 #slow wave

rules[7,4,3,4,0]=3

rules[4,3,4,0,0]=4

rules[20,20,1,3,7]=1 #general persists

rules[20,1,3,7,3]=3

rules[1,3,7,3,4]=4 #fast wave

rules[3,7,3,4,3]=6 #slow wave

rules[7,3,4,3,4]=4

rules[3,4,3,4,0]=3

rules[20,1,3,4,6]=7 #slow wave

rules[1,3,4,6,4]=3

rules[3,4,6,4,3]=7 #slow wave

rules[4,6,4,3,4]=4

rules[6,4,3,4,3]=3

rules[4,3,4,3,4]=4

rules[20,1,7,3,7]=7 #slow wave

rules[1,7,3,7,4]=4 #fast wave

rules[7,3,7,4,3]=3

rules[3,7,4,3,4]=7 #slow wave

rules[7,4,3,4,3]=3

rules[3,4,3,4,3]=3

rules[1,7,4,3,7]=6 #slow wave
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rules[7,4,3,7,3]=3

rules[4,3,7,3,4]=4 #fast wave

rules[3,4,0,0,20]=3

rules[4,0,0,20,20]=1 #fast wave hits far end

rules[20,20,1,3,6]=1 #general persists

rules[20,1,3,6,3]=3

rules[1,3,6,3,4]=7

rules[3,6,3,4,6]=3

rules[6,3,4,6,4]=3

rules[4,3,4,3,1]=5 #fast reverse wave

rules[3,4,3,1,20]=0

rules[4,3,1,20,20]=1 #general persists

rules[1,3,7,3,3]=7 #slow wave

rules[3,7,3,3,7]=3

rules[7,3,3,7,4]=4

rules[3,3,7,4,3]=3

rules[7,3,4,3,7]=3

rules[3,4,3,7,3]=3

rules[7,3,4,3,5]=5 #fast reverse wave

rules[4,3,5,0,5]=5

rules[3,5,0,5,7]=0

rules[5,0,5,7,1]=7

rules[0,5,7,1,20]=0

rules[5,7,1,20,20]=1 #general persists

rules[1,3,4,6,3]=3

rules[3,4,6,3,3]=6 #slow wave

rules[4,6,3,3,4]=4 #fast wave
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rules[6,3,3,4,6]=3

rules[3,3,4,6,5]=5 #fast reverse wave

rules[3,4,6,5,0]=1 #intersection of reverse fast and forward slow waves

rules[4,6,5,0,5]=4 #fast wave

rules[6,5,0,5,0]=0

rules[5,0,5,0,7]=5

rules[0,5,0,7,0]=6

rules[5,0,7,0,1]=5 #fast reverse wave

rules[0,7,0,1,20]=0

rules[7,0,1,20,20]=1 #general persists

rules[20,20,1,7,3]=1 #general persists

rules[20,1,7,3,6]=7 #slow wave

rules[1,7,3,6,4]=3

rules[7,3,6,4,3]=7 #slow wave

rules[3,6,4,3,5]=7 #slow wave

rules[6,4,3,5,1]=0

rules[4,3,5,1,4]=7 #slow wave

rules[3,5,1,4,0]=1 #general persists

rules[5,1,4,0,5]=7 #slow wave

rules[1,4,0,5,6]=3

rules[4,0,5,6,5]=7 #slow wave

rules[0,5,6,5,0]=7 #slow wave

rules[5,6,5,0,1]=0

rules[6,5,0,1,20]=7

rules[4,3,4,3,5]=5 #fast reverse wave

rules[3,4,3,5,0]=0

rules[4,3,5,0,1]=5
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rules[3,5,0,1,20]=7 #slow wave

rules[5,0,1,20,20]=1 #general persists

rules[1,7,3,7,7]=7

rules[7,3,7,7,0]=1

rules[3,7,7,0,7]=1

rules[7,7,0,7,1]=7

rules[7,0,7,1,7]=7

rules[0,7,1,7,3]=1 #general persists

rules[7,1,7,3,7]=7

rules[7,0,7,1,20]=7

rules[0,7,1,20,20]=1 #general persists

rules[20,20,1,7,7]=2

rules[20,1,7,7,1]=2

rules[1,7,7,1,1]=2

rules[7,7,1,1,7]=2

rules[7,1,1,7,7]=2

rules[1,1,7,7,1]=2

rules[1,7,7,1,7]=2

rules[7,7,1,7,7]=2

rules[7,1,7,7,1]=2

rules[1,7,7,1,20]=2

rules[7,7,1,20,20]=2

rules[1,7,4,3,1]=1 #intersection of waves

rules[7,4,3,1,20]=0

rules[20,20,1,3,1]=2

rules[20,1,3,1,0]=2

rules[1,3,1,0,1]=2
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rules[3,1,0,1,20]=2

rules[1,0,1,20,20]=2

rules[7,3,4,3,1]=5

rules[1,3,4,6,5]=7

rules[4,6,5,0,1]=7

rules[3,7,4,3,5]=1 #intersection of waves

rules[7,4,3,5,0]=0

rules[7,4,3,1,0]=0

rules[4,3,1,0,5]=1 #general persists

rules[3,1,0,5,7]=3

rules[1,0,5,7,1]=1

rules[3,1,0,1,3]=2

rules[1,0,1,3,1]=2

rules[0,1,3,1,0]=2

rules[6,3,4,6,5]=5

rules[6,5,0,5,7]=0

rules[1,3,7,3,5]=1

rules[3,7,3,5,1]=1

rules[7,3,5,1,4]=0

rules[5,1,4,0,7]=3

rules[1,4,0,7,0]=1

rules[4,0,7,0,1]=1

rules[20,1,3,1,1]=2

rules[1,3,1,1,0]=2

rules[3,1,1,0,1]=2

rules[1,1,0,1,3]=2

rules[0,1,3,1,1]=2
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rules[1,1,0,1,20]=2

rules[3,4,3,1,0]=0

rules[3,1,0,5,0]=3

rules[1,0,5,0,7]=4

rules[6,5,0,1,3]=7

rules[5,0,1,3,4]=1

rules[0,1,3,4,6]=7

rules[20,1,0,0,20]=3

rules[1,0,0,20,20]=1

rules[20,1,3,1,20]=2

rules[1,3,1,20,20]=2

rules[3,3,4,6,4]=3

rules[3,6,4,3,3]=3

rules[6,4,3,3,7]=3

rules[4,3,3,7,4]=4

rules[3,5,0,5,0]=0

rules[1,7,3,7,3]=3

rules[7,3,7,3,3]=7

rules[3,7,3,3,4]=4

rules[7,3,3,4,3]=3

rules[3,3,4,3,1]=5

rules[1,0,5,0,5]=4

rules[0,5,0,5,6]=0

rules[5,0,5,6,5]=5

rules[3,5,0,1,3]=7

rules[0,1,3,4,0]=7

rules[1,3,4,0,5]=4
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rules[3,4,0,5,7]=3

rules[4,0,5,7,0]=1 #intersection

rules[0,5,7,0,7]=0

rules[5,7,0,7,1]=5

rules[0,5,7,1,7]=0

rules[5,7,1,7,4]=1 #general persists

rules[7,1,7,4,3]=3

rules[3,3,4,3,7]=3

rules[3,7,4,3,3]=6

rules[7,4,3,3,3]=3

rules[4,3,3,3,4]=4

rules[3,3,3,4,6]=3

rules[5,0,5,0,5]=5

rules[1,7,4,3,6]=6

rules[7,4,3,6,3]=3

rules[4,3,6,3,4]=7

rules[3,6,3,4,3]=3

rules[6,3,4,3,5]=5

rules[3,4,3,5,1]=0

rules[1,4,0,5,0]=3

rules[4,0,5,0,5]=4

rules[0,5,0,5,7]=0

rules[5,0,5,7,0]=7

rules[1,3,6,3,7]=6

rules[3,6,3,7,3]=3

rules[6,3,7,3,5]=1 #intersection

rules[3,7,3,5,0]=1 #intersection
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rules[7,3,5,0,7]=0

rules[3,5,0,7,1]=6

rules[5,0,7,1,7]=0

rules[7,1,7,3,4]=3

rules[1,7,3,4,0]=6

rules[7,3,4,0,7]=3

rules[3,4,0,7,0]=1 #intersection

rules[4,0,7,0,5]=1 #intersection

rules[0,7,0,5,7]=0

rules[7,0,5,7,1]=6

rules[1,3,6,3,1]=1 #intersection

rules[3,6,3,1,1]=0

rules[6,3,1,1,0]=1 #general persists

rules[3,1,1,0,6]=1 #general persists

rules[1,1,0,6,0]=3

rules[1,0,6,0,1]=1 #intersection

rules[0,6,0,1,3]=0

rules[6,0,1,3,6]=1 #general persists

rules[0,1,3,6,3]=3

rules[0,6,0,1,20]=0

rules[6,0,1,20,20]=1 #general persists

rules[3,1,0,1,1]=2

rules[1,0,1,1,3]=2

rules[0,1,1,3,1]=2

rules[1,1,3,1,0]=2

rules[6,3,4,3,3]=3

rules[3,4,3,3,7]=3
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rules[6,3,7,3,3]=7

rules[3,7,3,3,3]=3

rules[7,3,3,3,4]=4

rules[3,3,3,4,3]=3

rules[0,5,0,5,0]=0

rules[6,3,7,3,4]=4

rules[3,4,0,5,0]=3

rules[4,0,5,0,7]=4

rules[5,0,7,0,5]=5

rules[7,4,3,4,6]=3

rules[4,3,4,6,5]=5

rules[4,6,5,0,6]=4

rules[6,5,0,6,0]=0

rules[5,0,6,0,1]=7

rules[0,7,0,1,3]=0

rules[0,1,3,7,3]=3

rules[7,0,1,3,7]=1

rules[7,3,4,3,3]=3

rules[3,4,3,3,3]=3

rules[6,3,4,6,3]=3

rules[6,3,3,4,3]=3

rules[3,3,4,3,5]=5

rules[3,7,3,3,6]=3

rules[7,3,3,6,4]=3

rules[3,3,6,4,3]=7

rules[4,3,5,0,7]=5

rules[6,4,3,5,0]=0
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rules[7,3,4,0,5]=4

rules[3,4,0,5,6]=3

rules[5,6,5,0,6]=0

rules[7,3,3,7,7]=5

rules[3,3,7,7,0]=1

rules[3,7,7,0,5]=1

rules[7,7,0,5,6]=4

rules[7,0,5,6,0]=0

rules[0,5,6,0,1]=7

rules[5,6,0,1,3]=0

rules[0,1,3,6,4]=3

rules[1,3,6,4,3]=7

rules[3,6,4,3,7]=3

rules[6,4,3,7,7]=5

rules[4,3,7,7,0]=1

rules[3,7,7,0,0]=1

rules[7,7,0,0,7]=4

rules[0,0,7,0,1]=7

rules[7,0,0,7,0]=0

rules[7,3,5,1,1]=0

rules[1,1,4,0,7]=3

rules[3,5,1,1,4]=1

rules[5,1,1,4,0]=1

rules[1,1,3,1,1]=2

rules[1,1,0,1,1]=2

rules[6,4,3,3,3]=3

rules[3,3,4,3,3]=3
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rules[3,3,7,3,3]=7

rules[7,3,3,7,3]=3

rules[5,7,0,0,7]=5

rules[4,3,4,0,5]=4

rules[0,5,7,0,0]=0

rules[7,3,4,3,6]=3

rules[3,4,3,6,3]=3

rules[4,6,3,3,7]=3

rules[6,3,3,7,3]=3

rules[0,7,0,5,0]=0

rules[7,0,5,0,7]=0

rules[7,3,5,0,5]=0

rules[3,5,0,5,6]=0

rules[5,0,5,6,0]=5

rules[3,3,7,3,5]=1

rules[3,6,4,3,4]=4

rules[6,4,3,4,0]=3

rules[4,3,4,0,7]=3

rules[1,7,3,6,3]=3

rules[7,3,6,3,3]=6

rules[3,6,3,3,1]=5

rules[6,3,3,1,1]=0

rules[3,3,1,1,0]=1

rules[3,1,1,0,0]=1

rules[1,0,0,5,7]=4

rules[0,0,5,7,0]=6

rules[0,5,7,0,1]=0
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rules[5,7,0,1,3]=7

rules[1,1,0,0,5]=3

rules[0,1,3,7,4]=7

rules[1,3,7,4,3]=3

rules[7,4,3,3,1]=5

rules[4,3,3,1,1]=0

rules[1,1,0,0,6]=3

rules[1,0,0,6,5]=4

rules[0,0,6,5,0]=6

rules[0,6,5,0,1]=0

rules[1,7,3,6,5]=7

rules[7,3,6,5,0]=1

rules[3,6,5,0,1]=7

rules[6,5,0,1,1]=7

rules[5,0,1,1,3]=1

rules[0,1,1,3,4]=1

rules[1,1,3,4,6]=7

rules[1,3,4,6,0]=7

rules[6,0,7,1,7]=7

rules[3,4,6,0,7]=1

rules[4,6,0,7,1]=7

rules[6,0,7,1,20]=7

rules[7,1,7,3,6]=7

rules[3,6,3,3,7]=3

rules[3,3,7,3,4]=4

rules[5,0,0,6,5]=5

rules[6,5,0,0,6]=0
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rules[4,6,5,0,0]=4

rules[3,6,3,3,4]=4

rules[3,4,3,4,6]=3

rules[5,6,0,7,1]=0

rules[0,5,6,0,7]=7

rules[4,0,5,6,0]=7

rules[4,6,4,3,5]=7

rules[3,3,4,6,3]=3

rules[5,6,5,0,0]=0

rules[6,4,3,3,6]=3

rules[4,3,3,6,4]=3

rules[7,3,3,3,7]=3

rules[3,3,3,7,7]=5

rules[7,7,0,5,0]=4

rules[7,0,5,0,5]=0

rules[3,4,3,7,7]=5

rules[0,0,5,6,0]=0

rules[7,0,0,5,6]=0

rules[7,7,0,0,5]=4

rules[4,3,4,3,7]=3

rules[7,3,3,5,1]=0

rules[0,7,0,7,1]=0

rules[1,4,0,0,7]=3

rules[0,0,7,0,7]=7

rules[4,0,0,7,0]=7

rules[1,1,4,0,0]=7

rules[3,7,3,3,5]=7
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rules[3,3,5,1,1]=7

rules[7,0,7,1,1]=7

rules[7,1,1,7,3]=1

rules[0,7,1,1,7]=1

rules[1,1,7,3,7]=7

rules[3,3,3,7,3]=3

rules[3,3,3,7,4]=4

rules[5,7,0,0,5]=5

rules[1,0,5,0,0]=4

rules[0,5,0,0,7]=0

rules[5,0,0,7,0]=5

rules[3,3,4,3,6]=3

rules[4,3,3,3,7]=3

rules[7,0,5,0,0]=0

rules[6,3,3,3,1]=5

rules[3,3,3,1,1]=0

rules[0,0,0,5,7]=0

rules[1,0,0,0,5]=4

rules[1,1,0,0,0]=3

rules[4,3,6,3,3]=6

rules[3,6,3,3,3]=3

rules[1,0,0,5,0]=4

rules[0,0,5,0,7]=0

rules[5,0,7,0,7]=5

rules[7,3,7,3,4]=4

rules[3,4,3,3,1]=5

rules[1,3,6,3,6]=6

84



rules[3,6,3,6,3]=3

rules[3,6,3,5,0]=0

rules[6,3,5,0,1]=5

rules[3,5,0,1,1]=7

rules[6,3,6,3,5]=1

rules[6,0,5,7,1]=6

rules[0,6,0,5,7]=0

rules[1,1,3,4,0]=7

rules[1,3,4,0,6]=4

rules[3,4,0,6,5]=3

rules[4,0,6,0,5]=1

rules[3,4,0,6,0]=3

rules[4,0,6,5,0]=1

rules[6,5,0,7,1]=6

rules[0,6,5,0,7]=0

rules[1,7,3,4,6]=6

rules[7,3,4,6,3]=3

rules[3,4,6,3,5]=1

rules[4,6,3,5,0]=0

rules[3,6,3,1,0]=0

rules[3,1,0,6,0]=3

rules[6,3,1,0,5]=1

rules[4,3,1,0,6]=1

rules[0,5,7,1,1]=0

rules[7,1,1,7,4]=1

rules[1,1,7,4,3]=3

rules[5,7,1,1,7]=1
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rules[6,3,3,3,7]=3

rules[6,3,6,3,3]=6

rules[6,3,3,3,4]=4

rules[6,5,0,0,0]=0

rules[5,0,0,0,5]=5

rules[6,3,6,3,4]=7

rules[4,0,5,0,6]=4

rules[5,0,6,0,5]=7

rules[0,5,0,6,0]=0

rules[4,3,7,3,5]=1

rules[7,0,6,0,1]=6

rules[0,7,0,6,0]=0

rules[4,0,7,0,6]=1

rules[3,4,3,3,6]=3

rules[7,3,3,3,3]=3

rules[3,3,3,3,7]=3

rules[7,0,0,5,0]=0

rules[0,0,5,0,6]=0

rules[7,3,3,3,5]=5

rules[3,3,3,5,1]=0

rules[1,4,0,0,5]=3

rules[4,0,0,5,6]=4

rules[0,0,5,6,5]=0

rules[5,6,5,0,7]=0

rules[7,3,4,6,4]=3

rules[4,6,4,3,3]=3

rules[6,4,3,3,5]=5

86



rules[4,3,3,5,1]=0

rules[1,4,0,0,0]=3

rules[4,0,0,0,7]=4

rules[0,0,7,0,6]=7

rules[0,0,0,7,0]=0

rules[5,0,7,1,1]=0

rules[1,1,7,3,4]=3

rules[0,6,0,1,1]=0

rules[6,0,1,1,3]=1

rules[1,1,3,6,3]=3

rules[0,1,1,3,6]=1

rules[5,0,0,0,7]=5

rules[0,5,0,0,0]=0

rules[5,0,7,0,6]=5

rules[4,6,3,3,3]=3

rules[6,3,3,3,3]=3

rules[3,3,3,3,1]=5

rules[0,0,5,0,5]=0

rules[4,3,4,3,3]=3

rules[0,0,0,5,0]=0

rules[3,3,6,3,3]=6

rules[7,3,3,6,3]=3

rules[6,3,3,5,0]=0

rules[3,3,5,0,1]=5

rules[3,6,3,3,5]=5

rules[3,4,0,0,5]=3

rules[4,0,0,5,7]=4
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rules[0,5,7,0,6]=0

rules[5,7,0,6,0]=5

rules[3,6,3,7,4]=4

rules[6,3,7,4,3]=3

rules[4,3,3,5,0]=0

rules[7,4,3,3,5]=5

rules[3,4,0,0,6]=3

rules[4,0,0,6,5]=4

rules[0,6,5,0,6]=0

rules[7,3,3,6,5]=5

rules[3,3,6,5,0]=1

rules[3,6,5,0,5]=4

rules[4,3,4,6,0]=5

rules[3,4,6,0,5]=1

rules[4,6,0,5,6]=4

rules[6,0,5,6,0]=0

rules[3,6,4,3,6]=3

rules[6,4,3,6,5]=5

rules[4,3,6,5,0]=1

rules[3,4,6,0,0]=1

rules[4,6,0,0,7]=4

rules[6,0,0,7,0]=0

rules[0,7,0,1,1]=0

rules[1,1,3,7,3]=3

rules[7,0,1,1,3]=1

rules[0,1,1,3,7]=1

rules[3,3,3,3,4]=4

88



rules[4,0,5,0,0]=4

rules[0,5,0,0,6]=0

rules[0,5,6,0,0]=7

rules[5,6,0,0,7]=0

rules[4,3,3,3,3]=3

rules[0,0,5,0,0]=0

rules[3,3,3,3,5]=5

rules[4,0,0,5,0]=4

rules[3,4,3,3,5]=5

rules[4,0,0,0,5]=4

rules[0,0,0,5,6]=0

rules[7,3,3,5,0]=0

rules[3,3,5,0,7]=5

rules[7,3,4,0,0]=4

rules[3,4,0,0,7]=3

rules[0,0,7,0,5]=7

rules[0,7,0,5,6]=0

rules[6,4,3,7,3]=3

rules[4,3,7,3,3]=7

rules[0,7,0,0,7]=0

rules[0,0,7,0,0]=7

rules[5,6,0,1,1]=0

rules[1,1,3,6,4]=3

rules[3,3,3,3,3]=3

rules[6,3,3,3,5]=5

rules[3,3,3,5,0]=0

rules[4,6,3,3,6]=3
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rules[6,3,3,6,3]=3

rules[3,3,6,3,5]=1

rules[6,3,5,0,5]=5

rules[4,3,4,0,6]=4

rules[0,6,0,5,0]=0

rules[6,0,5,0,7]=0

rules[0,6,5,0,0]=0

rules[6,5,0,0,7]=0

rules[7,3,3,4,6]=3

rules[6,3,3,1,0]=0

rules[3,3,1,0,5]=1

rules[4,3,1,0,0]=1

rules[3,1,0,0,5]=3

rules[4,3,3,1,0]=0

rules[3,1,0,0,6]=3

rules[3,3,6,3,4]=7

rules[3,6,3,3,6]=3

rules[0,7,0,0,6]=0

rules[7,0,0,6,5]=0

rules[4,0,7,0,0]=1

rules[4,6,3,3,1]=5

rules[1,0,0,6,0]=4

rules[0,0,6,0,7]=6

rules[0,6,0,7,1]=0

rules[0,7,0,0,5]=0

rules[7,0,0,5,7]=0

rules[7,4,3,3,7]=3
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rules[4,3,3,7,3]=3

rules[7,0,0,6,0]=0

rules[5,7,0,1,1]=7

rules[1,1,3,7,4]=7

rules[6,0,7,1,1]=7

rules[1,1,7,3,6]=7

rules[5,0,7,0,0]=5

rules[5,0,0,6,0]=5

rules[4,3,3,6,3]=3

rules[3,3,5,0,5]=5

rules[7,3,3,3,6]=3

rules[3,3,3,6,5]=5

rules[5,0,6,0,7]=7

rules[4,6,0,5,0]=4

rules[6,0,5,0,6]=0

rules[3,4,3,6,5]=5

rules[7,3,6,3,4]=7

rules[6,3,4,3,6]=3

rules[4,6,0,0,5]=4

rules[6,0,0,5,6]=0

rules[3,3,5,1,4]=7

rules[5,1,4,0,0]=7

rules[3,3,3,6,3]=3

rules[3,3,3,6,4]=3

rules[5,6,0,0,5]=0

rules[4,3,3,7,7]=5

rules[7,7,0,0,0]=4
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rules[7,0,0,0,7]=0

rules[7,0,5,0,6]=0

rules[6,3,4,3,7]=3

rules[0,7,0,0,0]=0

rules[5,7,0,0,0]=5

rules[4,3,3,3,6]=3

rules[6,0,5,0,0]=0

rules[3,3,3,1,0]=0

rules[3,1,0,0,0]=3

rules[6,3,3,3,6]=3

rules[7,0,0,0,5]=0

rules[4,3,3,3,1]=5

rules[1,0,0,0,6]=4

rules[0,0,0,6,0]=0

rules[0,0,6,0,5]=6

rules[4,3,6,3,5]=1

rules[4,0,6,0,6]=1

rules[6,0,6,0,1]=6

rules[0,6,0,6,0]=0

rules[7,0,0,0,6]=0

rules[0,0,0,6,5]=0

rules[0,0,6,0,6]=6

rules[5,0,0,0,6]=5

rules[5,0,6,0,6]=7

rules[3,3,3,3,6]=3

rules[6,0,0,5,0]=0

rules[0,5,6,0,6]=7
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rules[5,6,0,6,0]=0

rules[6,3,6,4,3]=7

rules[3,6,3,6,4]=3

rules[7,0,0,0,0]=0

rules[0,0,0,0,7]=0

rules[0,0,0,0,6]=0

rules[4,6,3,3,5]=5

rules[4,0,0,6,0]=4

rules[0,0,6,0,0]=6

rules[0,6,0,0,7]=0

rules[0,0,0,0,5]=0

rules[0,6,0,5,6]=0

rules[6,4,3,6,3]=3

rules[5,0,0,0,0]=5

rules[4,3,3,3,5]=5

rules[4,0,0,0,6]=4

rules[4,0,6,0,0]=1

rules[0,6,0,0,6]=0

rules[6,0,0,6,5]=0

rules[0,6,0,0,5]=0

rules[6,0,0,5,7]=0

rules[7,4,3,3,6]=3

rules[6,0,0,6,0]=0

rules[5,0,6,0,0]=7

rules[5,7,0,0,6]=5

rules[6,3,3,7,4]=4

rules[4,3,3,6,5]=5
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rules[4,6,0,0,0]=4

rules[6,0,0,0,7]=0

rules[0,6,0,0,0]=0

rules[5,6,0,0,0]=0

rules[6,0,0,0,5]=0

rules[6,0,0,0,6]=0

rules[6,0,0,0,0]=0

rules[5,6,0,0,6]=0

rules[6,3,3,6,4]=3

#even rules here

rules[20,20,1,0,20]=2

rules[20,1,0,20,20]=2

rules[1,0,0,0,20]=4

rules[1,3,4,0,20]=7

rules[3,4,0,20,20]=1

rules[4,0,0,0,20]=4

rules[4,3,4,0,20]=5

rules[7,3,5,1,20]=0

rules[3,5,1,20,20]=1

rules[4,3,5,1,20]=7

rules[5,0,7,1,20]=0

rules[5,6,0,1,20]=0

rules[5,7,0,1,20]=7

#Loop through the squad and update with new state

#count the number of firings
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#create temporary array to hold update

temp = np.zeros(squad_size+4, dtype=np.int)

count=0

time=0

A=rules

while count==0:

for i in range(2, squad_size+2):

if squad[i]==21:

print("Undefined rule at time ", time-1)

for i in range(2, squad_size+2):

farLeft=squad[i-2]

nearLeft=squad[i-1]

current=squad[i]

nearRight=squad[i+1]

farRight=squad[i+2]

temp[i]=A[farLeft,nearLeft,current,nearRight,farRight]

for j in range(2, squad_size+2):

squad[j]=temp[j]

for k in range(2, squad_size+2):

if squad[k] == 0:

sys.stdout.write(’%s\u2610’ %(fg(’white’)))

elif squad[k] == 1:

sys.stdout.write(’%s\u2610’ %(fg(’green’)))

elif squad[k] == 2:

sys.stdout.write(’%s\u2610’ %(fg(’red’)))

elif squad[k] == 3:

sys.stdout.write(’%s\u2610’ %(fg(’yellow’)))
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elif squad[k] == 4:

sys.stdout.write(’%s\u2610’ %(fg(’magenta’)))

elif squad[k] == 5:

sys.stdout.write(’%s\u2610’ %(fg(’blue’)))

elif squad[k] == 6:

sys.stdout.write(’%s\u2610’ %(fg(’cyan’)))

elif squad[k] == 7:

sys.stdout.write(’%s\u2610’ %(fg(’orchid’)))

else:

sys.stdout.write(’’)

sys.stdout.write(’\n’)

for l in range(0, squad_size+4):

if squad[l]==2:

count=count+1

time=time+1

if not(count==squad_size):

print("Error in firing squad algorithm occurs at time ", time)

else:

print("Firing squad algorithm complete in ", time, " time-steps.")
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