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ABSTRACT

Analysis on Some Basic Ion Channel

Modeling Problems

by

Zhen Chao

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Dexuan Xie

The modeling and simulation of ion channel proteins are essential to the study of many

vital physiological processes within a biological cell because most ion channel properties are

very difficult to address experimentally in biochemistry. They also generate a lot of new

numerical issues to be addressed in applied and computational mathematics. In this dis-

sertation, we mainly deal with some numerical issues that are arisen from the numerical

solution of one important ion channel dielectric continuum model, Poisson-Nernst-Planck

(PNP) ion channel model, based on the finite element approximation approach under dif-

ferent boundary conditions and unstructured tetrahedral meshes. In particular, we present

the derivation of an improved PNP ion channel model using Dirichlet boundary value con-

ditions and membrane surface charges, and obtain its variational formulations. To solve this

PNP ion channel model numerically, we develop a fast finite element iterative method and

program it as a software package by using effective numerical techniques. This work makes

it possible for us to carry out numerical tests in order to study the affection of different

boundary value conditions on the PNP numerical solutions.

To solve a PNP ion channel model by the finite element method, one important task

is to generate an interface fitted unstructured tetrahedral mesh but it is very challenging

to complete since the PNP ion channel model involves three physical regions – a protein

region, a membrane region, and a solvent region, and the interfaces between these three

regions are very complex. To address this mesh challenge, in this dissertation, we develop

a new algorithm for generating a triangular surface mesh of a simulation box domain and

a new algorithm for constructing a tetrahedral mesh of the membrane region, such that we

can easily split a mesh of the simulation box domain into three submeshes — the meshes of
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protein, membrane, and solvent regions in high quality. Remarkably, our membrane mesh

generation algorithm works for an ion channel protein with an irregular ion channel pore

provided that a triangular mesh of the interface between the membrane and protein regions

does not have any hole. Furthermore, we implement these two new mesh algorithms based

on the state-of-the-art package FEniCS, and then adapt them to one commonly-used ion

channel mesh generation package.

With our PNP ion channel program package, we study the impacts of boundary value

conditions, membrane surface changes, and simulation box sizes on the quality of a PNP

ion channel model. Such studies are done numerically by using crystallographic molecular

structures of ion channel proteins in a solution of multiple ionic species. We visualize the

three dimensional electrostatic potential and ionic concentrations not only in color mapping

on a cross-section of protein, membrane, or solvent region but also in two dimensional curves

with curve values being the average values of potential and concentration functions over a

block partition of the solvent region along the membrane normal direction.
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Chapter 1

Introduction

1.1 Motivation and current research

All living things are composed of cells. Although cells have differences in structure and

function, all of them have a membrane. The biological cell membrane separates the cell

from its exterior environment. It is the protective barrier that prevents unwanted material

from passing in the cell and plays an important function to transport materials into the

cell to support necessary life functions. There are many different proteins embedded within

the membrane that have various functions and structures. One important type of these

proteins is the pore-forming membrane protein; because these proteins are concerned with

ion transport, they are referred to as ion channels.

In living organisms, transport of ions through channel pores in cell membranes is a

fundamental and important process to cell biology. It is facilitated by ion channels that

utilize the ionic flux to perform various biological functions, such as blood pressure, cell-

cell signaling, maintaining homeostasis, muscle contraction, etc. Moreover, the action of

ion channels is responsible for most of what we perceive as reality in the form of sound,

smell, sight, taste, touch, and forms the physiological basis for thought. They also represent

important and challenging drug targets [50]. Therefore, well understanding of the ion channel

is one of the utmost biomedical significance. Although there exist probably 300 types of ion

channels [66], they all share some characteristics, such as ions pass through their channels

by electrical potential and concentration gradient across the cell membrane, ion channels are

selective, which means that only certain types of ions can pass through their channels, and

ion channels play a role via their open and close states in response to chemical or electrical
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stimuli.

The study of ion channels has been done for a long time, and great progress has been

made in understanding the functions and structures of them, but there still exist lots of key

open questions and basic issues [23], for example, there are many ion channels whose gating

mechanisms are still very obscure. In fact, ion channel study is a multidisciplinary research

including lots of fields of science, such as biology, chemical, mathematics. Thus, cooperation

between different disciplines is very important, and it is necessary for us to develop new

methods and tools to understand ion channel functions.

Over the past several decades, ion channel methodological progresses in X-ray crystallog-

raphy and electron microscopy have led to tremendous progress in determining the structure

of ion channels [14, 63] in high resolution, which can help us to better understand and cap-

ture some important properties, such as ion channel conductance, selectivity, and gating

property. However, some microscopic activities that happen as ions pass through a channel,

such as, conformational changes in the protein, solvation/desolvation of ions along the jour-

ney, are almost impossible to obtain by the experimental approach. Fortunately, some of the

shortcomings of experimental methods can be obtained by computational approaches.

There exist a large number of computational methods for studies of ion channels. Here

are three widely-used computational methods:

1) Molecular Dynamics (MD): it is a fully microscopic description with all atoms treated

explicitly [8, 10]. The history of MD simulation for small biological molecules dates back to

the 1970s [42]. MD simulations have been widely used to study functions of ion channels, such

as ion conductance, channel gating, ion selectivity, or larger molecules, see [2, 24, 25, 40, 49]

for more details. However, there exist some challenges in MD simulations, the accuracy of

force fields (AMBER [70], CHARMM [30], GROMOS [60]) is not good enough due to that

it is an approximation, and the effect of electronic polarization is not considered during the

simulation. The overall MD simulation is too expensive to investigate ion currents, so it is

very difficult to use MD simulation to run up to a long time scale of ion permeation pass

through the membrane.

2) Poisson-Boltzmann (PB) equation: ion channels are very complicated systems with

huge degrees of freedom, hence, they are challenging to model in atomistic detail. The PB

equation is one popular continuum model for describing the electrostatic interaction around

a charged molecule in ionic solution at the equilibrium state, a brief history of the PB

theory can be found in [17]. In the PB model, the distribution of charges in the solution

is assumed to satisfy Boltzmann distribution. A solution of the PB equation presents the
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electrostatic potential and equilibrium concentration of ions in the solution. This model

has been extensively used to estimate the free energy of transferring the ions from the bulk

solution to the ion channel pore [29, 47, 71] and to calculate the electrostatic potential and

ionic concentrations [55, 56]. Recently, a size-modified PB model has been studied for ion

channels in a solution of multiple ionic species [73]. To solve the PB equation numerically,

there exist several popular software packages, such as DelPhi [53], APBS [1], UHBD [39],

PBSA [38], PBEQ [28], MIBPB [5], SDPBS [27]. However, these packages need to be

modified significantly for modeling ion channels due to the complicated shape of the ion

channel proteins.

3) Poisson-Nernst-Planck (PNP) equations: while the PB model only gives insights into

the equilibrium state of an ion channel, PNP can be used to simulate the flow of ions

across the biological membrane in a non-equilibrium state. It also can be used to study

ion permeation events, which are expensive to obtain by using MD. Mathematical analyses

of PNP equations have been studied for a long time since it was introduced by German

theoretical physicists Nernst and Planck [48, 52] at the end of 19th century. The solution

existence of the PNP equations was studied for the simple case in [26, 45]. For multiple

ion species case, the existence and uniqueness of solution were studied in [34] for the 1D

steady-state PNP system. Analytic solutions of PNP equations in the 1D case were found

in [19, 20].

However, due to the nonlinearity of the strong coupled system of PNP equations, it is

challenging to find the analytic solution of PNP equations in the realistic bimolecular context.

Therefore, numerical methods are required to find approximate solutions in general. Several

numerical techniques and algorithms for solving PNP equation were developed in the past

two decades including finite difference methods [3, 4], recently, a second-order finite difference

method by using matched interface and boundary method [76] has been developed to solve

PNP system in gA ion channel [78]. The application of the finite difference method to

the PNP system has some limitations on the description of the ionic channel structure.

Finite volume method [41] is also very popular to solve PNP equations in some irregular

domains, but it was still limited due to the low convergence rate. And a hybrid finite-

difference/finite-volume method for solving PNP equations in irregular domains by utilizing

a conservative discretization of the diffusive has been presented in [44]. Hollerbach et al.

[21] simulated sodium chloride currents through the gramicidin A (gA) channel by using

the spectral element method to solve PNP equations. Another important and widely used

method is the finite element methods [37, 65]. Of these numerical methods, the finite element
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method is the most suitable to handle irregular molecular surfaces of an ion channel protein

and different types of boundary conditions. Current PNP models used Dirichlet boundary

value conditions, ignored any effect of membrane surface charges. Recently, in order to reflect

the affection of ions and ion channel proteins outside a simulation box, Xie and Lu [75]

applied periodic boundary conditions to a PNP ion channel model. We also constructed an

improved PNP ion channel model using Neumann boundary value condition and membrane

surface charges in [74].

Each of the three approaches for ion channel simulations has limitations and advantages.

The MD method is considered the most computationally expensive but also the most accu-

rate. The PNP approaches are, in general, less computationally expensive but also provide

less detail. They easily incorporate certain types of boundary value conditions that arise in

physical systems. In addition, the accuracy of a PNP finite element solution depends on the

quality of a related finite element mesh.

To solve a PNP ion channel model by the finite element method, we need an ion channel

mesh generation package to generate an interface fitted unstructured tetrahedral mesh for a

box simulation domain. Quite often, people give up the finite element method because they

can not generate a tetrahedral mesh, which can fit well the three related physical regions,

called the membrane, protein, and solvent region, respectively. Generally speaking, the

first step of generating an ion channel mesh is to produce a high quality protein surface

mesh. There exist several molecular surface mesh generation software packages, such as

TMSmesh [6], NanoShaper [11], GAMer [77], and MolSurf [64]. Recently, in order to improve

the efficiency, robustness, and mesh quality of the molecular surface mesh, Lu’s group [33]

proposed an updated version of TMSmesh, TMSmesh 2.0, to handle large molecules and

speedup the computer performance of TMSmesh. Then the box triangular surface mesh of

the domain is needed to produce, this can be done by Gmesh [18] or FEniCS [35]. In [32],

Liu et al. used the uniform mesh with the fixed density, which can not fit the interface

between membrane and solvent region well, and may reduce the quality of the corresponding

volume mesh. Once the triangular surface meshes of molecular and box domain are obtained,

the volume mesh can be generated by the three dimensional (3D) volume mesh generation

packages such as TetGen [62, 61], CGAL [15], and Gmsh [18]. Finally, the membrane region

is needed to construct to simulate the effect of the membrane surface charges. In 2014, Tu et

al. [67] used cylinders or balls to generate a membrane mesh manually because the structure

of each ion channel is different. Recently, this method has been improved by Lu’s group

[32] via the walk-detect method to yield a computer algorithm for generating the membrane

4



region mesh. Even so, this method works only for a single ion channel protein with the

channel pore having a regular shape. It does not work well or even fails for an ion channels

with a complicated channel shape.

1.2 Dissertation outline

Following what is done in [74, 75], in this dissertation, we present a finite element iterative

method for solving the PNP ion channel model using Dirichlet boundary value conditions

and a membrane surface charge density function. We then propose a new numerical scheme

for generating a membrane mesh to improve the ion channel tetrahedron mesh generation

package reported in [67, 32]. Furthermore, we implement our new PNP finite element iter-

ative solver and new membrane mesh scheme as a software package so that we can explore

some important numerical issues arisen from PNP ion channel simulations. The remaining

parts of the dissertation are organized as follows:

In Chapter 2, we present the PNP ion channel model using Dirichlet boundary conditions

and membrane surface charges. For clarity, this model is denoted by the PNPic model.

In Chapter 3, we follow the work in [74] to derive the variational forms related to the

PNPic model and then use the novel solution decomposition method [72] to derive an efficient

finite element method for solving the PNPic model approximately.

In Chapter 4, we present a new algorithm for generating a triangular surface mesh of

a simulation box domain and a new algorithm for constructing a tetrahedral mesh of the

membrane region. We then implement these two new mesh algorithms based on the state-of-

the-art package FEniCS, and use them to modify Lu’s ion channel mesh generation package.

In Chapter 5, we present the results of numerical experiments to study the effects of

boundary value conditions, simulation domain sizes, and membrane surface charges.

The conclusions and future work are given in Chapter 6.
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Chapter 2

Possion-Nernst-Planck ion channel

models

In this chapter, we describe Possion-Nernst-Planck ion channel (PNPic) equations and the

related interface and boundary value conditions, and then derive a dimensionless PNPic

model.

2.1 A simulation box domain partition

Let a rectangular box open domain Ω ∈ R
3 be defined by

Ω = {(x, y, z)|Lx1
< x < Lx2

, Ly1 < y < Ly2 , Lz1 < x < Lz2} , (2.1)

where Lx1
, Lx2

, Ly1 , Ly2 , Lz1 , and Lz2 are real numbers.

In order to construct the PNPic model, the domain Ω is divided as follows:

Ω = Dp ∪Dm ∪Ds ∪ Γm ∪ Γp ∪ Γpm, (2.2)

where Dp represents a protein domain, Ds is a solvent domain, which contains a solution of

ionic species, Dm is a membrane domain. Γm, Γp, and Γpm denote the interfaces between

Dm and Ds, Dp and Ds, and Dp and Dm, respectively. We further split the interface Γm and
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the boundary ∂Ω by

Γm = Γmb ∪ Γmt, ∂Ω = ΓD ∪ ΓNs ∪ ΓNm, (2.3)

where Γmb and Γmt represent the bottom and top surfaces of membrane, ΓNs and ΓNm

consist of the lateral surfaces of the boundary ∂Ds of Ds and ∂Dm of Dm, respectively, and

ΓD consists of the bottom and top surfaces of ∂Ω.

A cross-section of the domain partitions (2.2) and (2.3) is shown in Figure 2.1(b). Here

the normal direction of the membrane surface is set in the z-axis direction, and the membrane

location is determined by two numbers Z1 and Z2. Figure (2.1(a)) is a view of the mesh of

a box domain generated from our mesh software package while Figure (2.1(b)) is simply a

diagram to illustrate the region partition and related interfaces and boundaries.

(a) A 3D view (b) A 2D cross-section

Figure 2.1: An illustration of a domain partition of (2.2).

2.2 Poisson dielectric equation

One of the cornerstones of electrostatics is setting up and solving problems described by

the Poisson dielectric equation. Solving the Poisson equation amounts to finding the electric

potential for a given charge distribution. Now, we give a brief description of it, the differential
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form of time dependent Gauss’s law in electrostatic is:

∇ · ǫ(r)E(r) = ρ(r), (2.4)

where ρ(r) is the total charge density that consists of both fixed and mobile charges, ǫ(r) is

permittivity of the medium, in reality, it maybe space-dependent [51]. ∇· is the divergence

operator, and E is an electric field induced by charge density ρ. Generally, the electric

permittivity ǫ(r) is conventionally expressed as

ǫ(r) = ǫr(r)ǫ0,

where ǫr(r) is the relative permittivity, ǫ0 is the permittivity of vacuum.

Since E is conservative, there exists an electrostatic potential function φ such that

E(r) = −∇φ(r).

Applying the above identity to (2.4), we obtain the Poisson dielectric equation as follows:

−∇ · ǫr(r)∇φ(r) =
ρ(r)

ǫ0
. (2.5)

Normally, different subdomains have different charge densities. In the PNPic model, the

charge density function ρ(r) is defined by

ρ(r) =



































0, r ∈ Dm,

ec
n
∑

i=1

Zici(r), r ∈ Ds,

np
∑

j=1

qjδ(r− rj), r ∈ Dp,

(2.6)

where qj = zjec with zj being the valence of the j-th atom of the protein at position rj,

ec is the elementary charge, ci is the concentration of the ith ionic species, Zi is the charge

number of the ith ionic species, n is the number of ionic species in the solvent, np is the

number of atoms of the protein, and δ(r− rj) is the Dirac delta function [57].

Due to the membrane chemical compositions, both protein and membrane can have
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different relative electrical permittivities from the relative permittivity of the solvent. So

ǫr(r) is discontinuous across the different regions, and defined as a piecewise function by

ǫr(r) =































ǫm, r ∈ Dm,

ǫs(r), r ∈ Ds,

ǫp, r ∈ Dp,

(2.7)

where ǫm and ǫp are the dielectric functions in the membrane and protein regions, respectively,

which can be chosen as constants, and ǫs(r) denotes the dielectric function of the solvent

region, which can vary from the bulk region to the ion channel pore.

From (2.6), (2.7), and (2.5), the Poisson dielectric equation for ion channel cases can be

defined by


































−ǫp∆φ(r) = ec
ǫ0

np
∑

j=1

zjδ(r− rj), r ∈ Dp,

−ǫm∆φ(r) = 0, r ∈ Dm,

−∇ · ǫs(r)∇φ(r) = ec
ǫ0

n
∑

i=1

Zici(r), r ∈ Ds.

(2.8)

2.3 Nernst-Planck equation

The Nernst–Planck equation is a conservation of mass equation used to describe the flux of a

charged chemical species in a fluid medium under the influence of both an ionic concentration

gradient and an electric field. It is named after Walther Nernst and Max Planck.

Let’s start with a general derivation of the Nernst-Planck equation. Suppose there is a

flux density Ji of the i-th ionic species across the boundary ∂Ωs of a solvent domain Ωs,

then the total ionic amount flowing out the boundary is

∫

∂Ωs

Ji · dS.

By the law of mass conservation, the above expression should be equal to the rate of decrease

of the total amount of ions in the solvent domain Ωs, i.e.,

−
dQi

dt
=

∫

∂Ωs

Ji · dS,

9



where

Qi(t) =

∫

Ωs

ci(t, r)dr,

ci(t, r) is the concentration of the i-th ionic species in the solvent. Thus, it has

−

∫

Ωs

∂ci(t, r)

∂t
dr =

∫

∂Ωs

Ji · dS.

Now, by the Divergence Theorem, we can get

−

∫

Ωs

∂ci(t, r)

∂t
dr =

∫

Ωs

∇ · Jidr,

from which it implies that
∂ci(t, r)

∂t
= −∇ · Ji. (2.9)

The above equation is the continuity equation, which states that the divergence of the flux

density Ji is equal to the negative rate of the ionic concentration ci for the i-th ionic species.

When the flux density Ji comes from two sources, the concentration gradient and the

electric potential gradient, the effect of a concentration gradient of the ith ionic species on

ion flow can be described by Fick’s law of diffusion [16]:

Ji,d(t, r) = −Di(r)∇ci(t, r), (2.10)

where Ji,d is the diffusion flux, Di is the diffusion coefficient. And the effect of an electric

potential gradient of the ith ionic species is described by Ohm’s law of drift [46]:

Ji,e(t, r) = −µi

qi
|qi|

ci(t, r)∇φ(t, r), (2.11)

where µi is the mobility of the i-th ion. Since the diffusion and drift can be impeded by the

same molecular processes, there exists a physical connection between the parameters µi and

Di(r), i.e., Einstein relation:

µi =
|qi|

kBT
Di(r),

where kB and T are the Boltzmann constant and the absolute temperature, respectively.
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Then, (2.11) becomes

Ji,e(t, r) = −
qi

kBT
Di(r)ci(t, r)∇φ(t, r). (2.12)

When both diffusional and electric field forces are present in (2.10) and (2.12), the total flux

density,

Ji(t, r) = Ji,d(t, r) + Ji,e(t, r),

is obtained in the expression

Ji(t, r) = −Di(r)

[

∇ci(t, r) +
qi

kBT
ci(t, r)∇φ(t, r)

]

. (2.13)

Combining (2.13) with (2.9), we obtain the Nernst-Planck equation of the ith ionic species

in SI units as follows:

∂ci(t, r)

∂t
= ∇ ·Di(r)

[

∇ci(t, r) +
Ziec
kBT

ci(t, r)∇φ(t, r)

]

. (2.14)

2.4 A Poisson-Nernst-Planck ion channel system

We now consider the steady-state Poisson-Nernst-Planck ion channel system as follows:



















































−ǫm∆φ(r) = 0, r ∈ Dm,

−∇ · ǫs(r)∇φ(r) = ec
ǫ0

n
∑

i=1

Zici(r), r ∈ Ds,

−ǫp∆φ(r) = ec
ǫ0

np
∑

j=1

zjδ(r− rj), r ∈ Dp,

∇ ·Di(r)
[

∇ci(r) +
Ziec
kBT

ci(r)∇φ(r)
]

= 0, r ∈ Ds, i = 1, 2, · · · , n.

(2.15)

where φ is measured in Volts (V), ci has the unit of the number of ions per cubic meter, ec,

ǫ0, kB, and T are given in Table 2.1, and Di has the unit m2/s. To obtain a dimensionless

form of the PNP ion channel system (2.15), we express the potential φ as

φ(r) =
kBT

ec
u(r), (2.16)
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Parameter Name Unit(abbr.) Magnitude

T Absolute temperature Kelvin(K) 298.15

kB Boltzmann constant Joule/Kelvin(J/K) 1.380648813×10−23

ǫ0 Permittivity of vacuum Farad/Meter(F/m) 8.854187817×10−12

ec Elementary charge Coulomb(C) 1.602176565×10−19

Table 2.1: Magnitudes & units of PNP parameters in SI unit system

where u is a dimensionless potential function. Then the PNP ion channel system (2.15) can

be changed as



















































−ǫm∆u(r) = 0, r ∈ Dm,

−∇ · ǫs(r)∇u(r) = e2c
ǫ0kBT

n
∑

i=1

Zici(r), r ∈ Ds,

−ǫp∆u(r) = e2c
ǫ0kBT

np
∑

j=1

zjδ(r− rj), r ∈ Dp,

∇ ·Di(r) [∇ci(r) + Zici(r)∇u(r)] = 0, r ∈ Ds, i = 1, 2, · · · , n.

(2.17)

In molecular calculation, the coordinates of atoms are in unit of angstrom (Å). We

change the length units from meter to angstrom. Correspondingly, the time is measured

in picosecond (ps), diffusion coefficient Di(r) in units Å2/ps, and the concentration ci(r) is

measured in mole/liter (M/L). Then (2.17) can be rewritten as



















































−ǫm∆u(r) = 0, r ∈ Dm,

−∇ · ǫs(r)∇u(r) = β
n
∑

i=1

Zici(r), r ∈ Ds,

−ǫp∆u(r) = α
np
∑

j=1

zjδ(r− rj), r ∈ Dp,

∇ ·Di(r) [∇ci(r) + Zici(r)∇u(r)] = 0, r ∈ Ds, i = 1, 2, · · · , n,

(2.18)

where

α =
1010e2c
ǫ0kBT

, β =
NAe

2
c

1017ǫ0kBT
, (2.19)

and NA = 6.02214076× 1023, which is the Avogadro constant (an estimate of the number of

ions per mole.
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2.5 Interface and boundary conditions

In physics, the potential function and the normal derivative of the potential function should

be continuous at the interface between different regions when the permittivity function ǫr

is discontinuous across the interfaces. A membrane surface charge density function σ(r) is

provided on the membrane in order to consider the membrane surface charge effect. Thus,

we have the following interface conditions:























u(s−) = u(s+), ǫp
∂u(s−)
∂np(s)

= ǫs(s
+)∂u(s

+)
∂np(s)

, s ∈ Γp,

u(s−) = u(s+), ǫm
∂u(s−)
∂nm(s)

= ǫs(s
+) ∂u(s+)

∂nm(s)
+ τσ(s), s ∈ Γm,

u(s−) = u(s+), ǫp
∂u(s−)
∂np(s)

= ǫm
∂u(s+)
∂np(s)

, s ∈ Γpm,

(2.20)

where

τ =
10−12ec
ǫ0kBT

, (2.21)

nm and np denote the unit outward normal direction of Dm and Dp, respectively,

u(s±) = lim
t→0+

u(s+ tn(s)),

which are limits along a normal direction n of a given region from inside to outside, σ(s) is

defined by

σ(s) =















σt, s ∈ Γmt,

σb, s ∈ Γmb.

(2.22)

Moreover, since the channel walls are insulating, charged particles cannot penetrate them.

To ensure this, we require that the flux satisfies the Robin boundary value conditions:

Di(s)

(

∂ci(s)

∂ns(s)
+ Zici(s)

∂u(s)

∂ns(s)

)

= 0, s ∈ Γp ∪ Γm, (2.23)

where ns denotes the unit outward normal direction of the solvent region Ds.

Different boundary conditions may be imposed on (2.17) depending on specific biological

settings of ion channel problems. Setting ΓN = ΓNs∪ΓNm, we define the boundary conditions

of u and ci as follows:

• Dirichlet boundary conditions:
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













u(s) = g(s), s ∈ ∂Ω,

ci(s) = gi(s), s ∈ ΓD ∪ ΓNs, i = 1, 2, · · · , n.

(2.24)

• Mixed (Neumann) boundary conditions:















































u(s) = g(s), s ∈ ΓD,

∂u(s)
∂n(s)

= 0, s ∈ ΓN ,

ci(s) = gi(s), s ∈ ΓD,

∂ci(s)
∂ns(s)

= 0, s ∈ ΓNs, i = 1, 2, · · · , n.

(2.25)

where n denotes the unit outward normal direction of Ω. In calculation, gi can be simply

given by the bulk concentration cbi of species i, which is selected to satisfy the electronneu-

trality
n

∑

i=1

Zic
b
i = 0. (2.26)

In summary, the PNP ion channel (PNPic) system with Dirichlet boundary conditions

consists of the Poisson dielectric boundary value problem:



































































































−ǫp∆u(r) = α
np
∑

j=1

zjδ(r− rj), r ∈ Dp,

−ǫm∆u(r) = 0, r ∈ Dm,

−∇ · ǫs(r)∇u(r) = β
n
∑

i=1

Zici(r), r ∈ Ds,

u(s−) = u(s+), ǫp
∂u(s−)
∂np(s)

= ǫs(s
+)∂u(s

+)
∂np(s)

, s ∈ Γp,

u(s−) = u(s+), ǫm
∂u(s−)
∂nm(s)

= ǫs(s
+) ∂u(s+)

∂nm(s)
+ τσ(s), s ∈ Γm,

u(s−) = u(s+), ǫp
∂u(s−)
∂np(s)

= ǫm
∂u(s+)
∂np(s)

, s ∈ Γpm,

u(s) = g(s), s ∈ ∂Ω,

(2.27)
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and n Nernst-Planck boundary value problems:































∇ ·Di(r) [∇ci(r) + Zici(r)∇u(r)] = 0, r ∈ Ds,

Di(s)
(

∂ci(s)
∂ns(s)

+ Zici(s)
∂u(s)
∂ns(s)

)

= 0, s ∈ Γp ∪ Γm,

ci(s) = gi(s), s ∈ ΓNs ∪ ΓD,

(2.28)

for i = 1, 2, · · · , n.
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Chapter 3

Numerical solution of a

Poisson-Nernst-Planck ion channel

model

In this chapter, to overcome the singular difficulty caused by the distribution function, we

present a solution decomposition technique for the PNPic model with Dirichlet boundary

value conditions, and obtain its variational formulations. Then we develop a fast finite

element solver for solving them. In order to display the potential and concentration functions

in two dimensional curves across the membrane, we introduce one scheme for computing a

volume integral of a three dimensional function over a block from a block partition of the

solvent region.

3.1 A solution decomposition method

In order to avoid the singularities caused by the Dirac Delta function in Poisson-Boltzmann

equation, Xie [72] introduced a solution decomposition scheme. Now we apply this scheme to

the Poisson dielectric boundary value problem (2.27) to decompose the electrostatic potential

function u into three functions:

u(r) = G(r) + Ψ(r) + Φ̃(r), (3.1)
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where G is the Green’s function, which can be given analytically

G(r) =
α

4πǫp

np
∑

j=1

zj
|r− rj|

, r ∈ R
3. (3.2)

Ψ(r) is the solution of a linear interface boundary value problem with the Dirichlet

boundary value condition as follows:















































∆Ψ(r) = 0, r ∈ Dp ∪Ds ∪Dm,

Ψ(s−) = Ψ (s+) , ǫp
∂Ψ(s−)
∂np(s)

= ǫs(s)
∂Ψ(s+)
∂np(s)

+ (ǫs(s)− ǫp)
∂G(s)
∂np(s)

, s ∈ Γp,

Ψ(s−) = Ψ (s+) , ǫm
∂Ψ(s−)
∂nm(s)

= ǫs(s)
∂Ψ(s+)
∂nm(s)

+ (ǫs(s)− ǫm)
∂G(s)
∂nm(s)

+ τσ(s), s ∈ Γm,

Ψ(s−) = Ψ (s+) , ǫp
∂Ψ(s−)
∂np(s)

= ǫm
∂Ψ(s+)
∂np(s)

+ (ǫm − ǫp)
∂G(s)
∂np(s)

, s ∈ Γpm,

Ψ(s) = g(s)−G(s), s ∈ ∂Ω,

(3.3)

and Φ̃(r) is the solution of a linear interface boundary value problem with the Dirichlet

boundary value condition as follows:































































∆Φ̃(r) = 0, r ∈ Dp ∪Dm,

−∇ · ǫs(r)∇Φ̃(r) = β
n
∑

i=1

Zici(r), r ∈ Ds,

Φ̃(s−) = Φ̃(s+), ǫp
∂Φ̃(s−)
∂np(s)

= ǫs(s)
∂Φ̃(s+)
∂np(s)

, s ∈ Γp,

Φ̃(s−) = Φ̃(s+), ǫm
∂Φ̃(s−)
∂nm(s)

= ǫs(s)
∂Φ̃(s+)
∂nm(s)

, s ∈ Γm,

Φ̃(s−) = Φ̃(s+), ǫp
∂Φ̃(s−)
∂np(s)

= ǫm
∂Φ̃(s+)
∂np(s)

, s ∈ Γpm,

Φ̃(s) = 0, s ∈ ∂Ω.

(3.4)

Actually, G is the solution of the Poisson dielectric equation

− ǫp∆G(r) = α

np
∑

j=1

zjδ(r− rj), r ∈ R
3. (3.5)

From (3.3), (3.4), and (3.5)we notice that Φ̃ is independent of G and Ψ, and G and Ψ

are independent of ci, so we can calculate G and Ψ first, then set w(r) = G(r) + Ψ(r) to
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rewrite the Nernst-Planck boundary value problems as follows:































∇ ·Di(r)
[

∇ci(r) + Zici(r)∇w(r) + Zici(r)∇Φ̃(r)
]

= 0, r ∈ Ds,

Di(s)
(

∂ci(s)
∂ns(s)

+ Zici(s)
∂w(s)
∂ns(s)

+ Zici(s)
∂Φ̃(s)
∂ns(s)

)

= 0, s ∈ Γp ∪ Γm,

ci(s) = gi(s), s ∈ ΓNs ∪ ΓD,

(3.6)

for i = 1, 2, · · · , n.

By introducing the effective densities (also referred to as Slotboom variables in semi-

conductor literature)

c̄i(r) = ci(r)e
Ziu(r), D̄i(r) = Di(r)e

−Ziu(r), (3.7)

the Nernst-Planck equations (3.6) with the Dirichlet boundary value conditions can be trans-

formed as






























−∇ ·
(

D̄i(r)∇c̄i(r)
)

= 0, r ∈ Ds,

D̄i(s)
(

∂c̄i(s)
∂ns(s)

)

= 0, s ∈ Γp ∪ Γm,

c̄i(s) = gi(s)e
Zig(s), s ∈ ΓNs ∪ ΓD,

(3.8)

where i = 1, 2, . . . , n.

From the above system, we notice that the Slotboom transformation removes the convec-

tion term and results in self-adjoint Laplace equations. However, the transformed diffusion

coefficient D̄i(r) could result in a large condition number for the stiffness matrix of a finite

element approximate equation of (3.8). Furthermore, the Slotboom transformation may

cause overflow problems in numerical implementation due to the exponential term.

3.2 Variational formulation

To solve the PNPic model defined in (2.27) and (2.28) by the finite element method, the

equivalent variational problems of them are needed, they can be obtained by following

method in [74].

Let H1(Ω) and H1(Ds) be the Sobolev function spaces defined in Ω and Ds, respectively.
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Then, we introduce their subspaces, H1
0 (Ω) and V0, as follows:

H1
0 (Ω) =

{

ν ∈ H1(Ω)|ν = 0 on ∂Ω
}

, V0 =
{

µ ∈ H1(Ds)|µ = 0 on ΓNs ∪ ΓD

}

.

A finite element solution Ψ of (3.3) can be found by solving the equivalent linear variational

problem:

Find Ψ ∈ H1(Ω) satisfying Ψ(s) = g(s)−G(s) on ∂Ω such that

a(Ψ, ν) = L1(ν) ∀ν ∈ H1
0 (Ω), (3.9)

where

a(Ψ, ν) = ǫp

∫

Dp

∇Ψ(r) · ∇ν(r)dr+ ǫm

∫

Dm

∇Ψ(r) · ∇ν(r)dr+

∫

Ds

∇Ψ(r) · ∇(ǫs(r)ν(r))dr,

(3.10)

and

L1(ν) =

∫

Γp

∂G(s)

∂np(s)
(ǫs(s)− ǫp)ν(s)ds+

∫

Γm

∂G(s)

∂nm(s)
(ǫs(s)− ǫm)ν(s)ds

+ (ǫm − ǫp)

∫

Γpm

∂G(s)

∂np(s)
ν(s)ds+ τ

∫

Γm

σ(s)ν(s)ds.

(3.11)

Specially, if ǫm = ǫp, we have

L1(ν) =

∫

Ds

∇G(r) · ∇((ǫp − ǫs(r))ν(r))dr+ τ

∫

Γm

σ(s)ν(s)ds. (3.12)

Actually, by the Green’s first identity, Gauss’s Theorem, ∆G(r) = 0 in Ds, and ν = 0 on

∂Ω, the volume integral of (3.12) can be reformulated as follows:

∫

Ds

∇G(r) · ∇((ǫp − ǫs(r))ν(r))dr

=

∫

∂Ds

(ǫp − ǫs(s))ν(r)
∂G(s)

∂ns(s)
ds

=

∫

Γp

∂G(s)

∂ns(s)
(ǫp − ǫs(s))ν(s)ds+

∫

Γm

∂G(s)

∂ns(s)
(ǫp − ǫs(s))ν(s)ds

=

∫

Γp

∂G(s)

∂np(s)
(ǫs(s)− ǫp)ν(s)ds+

∫

Γm

∂G(s)

∂nm(s)
(ǫs(s)− ǫp)ν(s)ds.
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Due to the complexity of the molecular surface, it may be difficult to do the interface integral

calculation. We can avoid this, we can difficulty by using (3.12) when ǫm = ǫp.

After using the Slotboom transformation, the linear interface boundary value problem

(3.4) can be formulated as the following nonlinear variational problem:

Find Φ̃ ∈ H1
0 (Ω) such that a(Φ̃, ν)− L2(Φ̃, ν) = 0 ∀ν ∈∈ H1

0 (Ω), (3.13)

where

a(Φ̃, ν) = ǫp

∫

Dp

∇Φ̃(r) · ∇ν(r)dr+ ǫm

∫

Dm

∇Φ̃(r) · ∇ν(r)dr+

∫

Ds

∇Φ̃(r) · ∇(ǫs(r)ν(r))dr

(3.14)

and

L2(Φ̃, ν) = β
n

∑

i=1

Zi

∫

Ds

e−Zi(G(r)+Ψ(r)+Φ̃(r))c̄i(r)ν(r)dr. (3.15)

Finally, the Nernst-Planck boundary value problem of (3.6) can be formulated as the

following variational problems:

Find c̄i ∈ H1(Ds) satisfying c̄i = gie
Zig on ΓNs ∪ ΓD such that

∫

Ds

D̄i(r)∇c̄i(r) · µi(r)dr = 0, ∀µi ∈ V0, i = 1, 2, · · · , n. (3.16)

3.3 A finite element iterative solver

In this section, we describe our finite element solver for the PNPic model based on the

variational problems. Notice that the values of ci are zero in the domains Dm and Dp, so ci

can only be defined in the solvent domain Ds while an electrostatic potential function u in

the whole box domain Ω. In order to couple functions u and ci when define Nernst-Planck

equation, most of the researchers tried to extended ci from Ds to Ω by setting ci(r) = 0 at

the mesh nodes outside Ds. But, this simple treatment may decay the accuracy of a PNP

numerical solution significantly since ci can be nonzero outside Ds on a layer of tetrahedra

along the interfaces Γp and Γm due to the continuity of ci. To improve this, we define a finite

element function space for ci or c̄i based on an irregular tetrahedral mesh of Ds directly.
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Let U and V be the finite dimensional subspaces of H1(Ω) and H1(Ds), respectively, and

U0 = {ν ∈ U|ν = 0 on ∂Ω} , V0 = {µ ∈ V|µ = 0 on ΓNs ∪ ΓD} .

After calculating G and Ψ from (3.2) and (3.9), we let w = G + Ψ, and compute Φ̃ and

c̄i by solving the following nonlinear system:

Find Φ̃ ∈ U0 and c̄i ∈ V satisfying c̄i = gie
Zig on ΓNs ∪ ΓD such that















∫

Ds
Di(r)e

−Zi(w+Φ̃)∇c̄i(t, r) · ∇νi(r)dr = 0, ∀νi ∈ V0, i = 1, 2, · · · , n,

a(Φ̃, νn+1)− β
∑n

i=1 Zi

∫

Ds
c̄i(r)e

−Zi(w+Φ̃)νn+1(r)dr = 0, ∀νn+1 ∈ U0.

(3.17)

After finding Φ̃ and c̄i, we recover u and ci by the formulas (3.1) and (3.7), respectively.

The nonlinear system (3.17) can be solved efficiently by adopting the nonlinear relaxation

method reported in [74]. Initial iterates are essentially to determine the convergent prop-

erty of the relaxation method, and how to choose good initial guesses c̄
(0)
i and Φ̃(0) for the

relaxation method is an important topic. Interestingly, when we let the slotboom variable

c̄i = cbi , which is a bulk concentration function of the ith ion species, then

ci = cbie
−Ziu, i = 1, 2, . . . , n, (3.18)

and the nonlinear equation (3.9) can be simplified as s follows:

Find Φ̃ ∈ U0 such that a(Φ̃, ν)− β
∑n

j=1 Zjc
b
i

∫

Ds
e−Zi(w+Φ̃)νdr = 0 ∀ν ∈ U0.

It can be easily shown that adding the solution Φ̃ of above equation with w gives a

solution Φ̃PB of a Poisson-Boltzmann (PB) ion channel model with Dirichlet boundary value
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conditions as follows:



































































































−ǫm∆u(r) = 0, r ∈ Dm,

−∇ · ǫs(r)∇u(r) = β
n
∑

i=1

Zic
b
ie

−Ziu(r), r ∈ Ds,

−ǫp∆u(r) = α
np
∑

j=1

zjδ(r− rj), r ∈ Dp,

u(s−) = u(s+), ǫp
∂u(s−)
∂np(s)

= ǫs(s)
∂u(s+)
∂np(s)

, s ∈ Γp,

u(s−) = u(s+), ǫm
∂u(s−)
∂nm(s)

= ǫs(s)
∂u(s+)
∂nm(s)

+ τσ(s), s ∈ Γm,

u(s−) = u(s+), ǫp
∂u(s−)
∂np(s)

= ǫm
∂u(s+)
∂np(s)

, s ∈ Γpm,

u(s) = g(s), s ∈ ∂Ω,

(3.19)

Now, we can set c̄
(0)
i = cbi and Φ̃(0) = Φ̃PB as a good initial guess for the relaxation method.

3.4 Visualization of potential and concentration func-

tions in curves

After the calculation, we can visualize the values of 3D functions u (or ci) on a cross-section

of a region in a color mapping or in a line that passes through an ion channel pore as done

in the current literature. However, such a visualization only reflects some values of u (or

ci) and may ignore some important values. To display a global property of u and ci over

a 3D region, we introduce a numerical method for calculating a set of average values of

u (or ci) over a block partition of the solvent region Ds along the normal direction of the

membrane, which is the z-axis direction in this thesis. Using these average values, we then

can plot a 2D curve. Such a curve is valuable in the study of potential and ionic distribution

profiles passing through an ion channel pore and in the comparison of potential and ionic

concentration functions generated by either different models or the same model but using

different parameter values.

Let h̄ be a positive parameter, which can be used to control the quality of the 2D curve.

Set m = m1+m2+m3, and start with m+2 partition numbers {zj} of the interval [Lz1 , Lz2 ]
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as follows:

z0 < z1 < . . . < zm1 < . . . < zm1+m2 < . . . < zm+1,

where

z0 = Lz1, zm1 = Pz1 , zm1+m2 = Pz2 , and zm+1 = Lz2.

In addition, the set {zj}mj=1 contains the important location numbers that we want to know

the average values such as the membrane location numbers Z1 and Z2. We also can set a

larger value of m2 to get more average values in the channel pore. Then we can build m

mesh blocks Bj of Ds by

Bj =
(

[zj − h̄/2, zj + h̄/2]× [Lx1, Lx2]× [Ly1, Ly2]
)

∩Ds, j = 1, 2, . . . ,m, (3.20)

where zj is the middle location of Bj in the z-direction, and Bj is allowed to be overlapped

with its adjacent blocks in order to avoid missing any tetrahedron, and each Bj should have

a nonzero volume ‖Bj‖ by adjusting the parameter h̄. It is clear that ∪m
j=1Bj = Ds. Then, we

can set c0i = cbi,b= and cm+1
i = cbi,t to obtain m+ 2 points (zj, cji ) for j = 0, 1, 2, . . . ,m,m+ 1

by

cji =
1

‖Bj‖

∫

Bj

ci(r)dr, j = 1, 2, . . . ,m, (3.21)

where cbi,b and cbi,t are bulk concentrations in the upper and lower bulk regions, respectively.

Note that an electrostatic potential function u has positive and negative values. Hence, we

rewrite u as the sum of a positive function u+ and a negative function u− by the formulas

u = u+ + u−, u+(r) =
u(r) + |u(r)|

2
, u−(r) =

u(r)− |u(r)|

2
∀r ∈ Ds. (3.22)

Now, we can set u±

0 = gb and u±

m+1 = gt, and calculate the m average values u±

j of u± by

u±

j =
1

‖Bj‖

∫

Bj

u±(r)dr, j = 1, 2, . . . ,m, (3.23)

which produce m+ 2 points (zj, u±

j ) for j = 0, 1, 2, . . . ,m,m+ 1.

After the above calculations, we get points (zj, cji ) and (zj, u±

j ) for j = 0, 1, 2, . . . ,m,m+

1, then 2D curves can be plotted as the visualization of concentration functions ci and

electrostatic potential function u over Ds along the z-axis driection. Since the mesh D̄s,h̄
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is unstructured, each block Bj, as a submesh of D̄s,h̄, also has an irregular shape, thus, the

volume integral is difficult to calculate. Fortunately, FEniCS has provided us with some

useful functions to help us to do so. We can extract a mesh of Bj, denoted by Bj,h, from

a mesh D̄s,h̄ by the FEniCS function SubMesh, for example. As a submesh of D̄s,h̄, Bj,h̄

consists of tetrahedrons from D̄s,h̄. Therefore, cji and u±

j can be calculated approximately

by:

cji ≈
1

‖Bj,h̄‖

∫

Bj,h̄

ci(r)dr =

∑

T∈Bj,h̄

∫

T
ci(r)dr,

∑

T∈Bj,h̄
‖T‖

(3.24)

and

u±

j ≈
1

‖Bj,h̄‖

∫

Bj,h̄

u±

j (r)dr =

∑

T∈Bj,h̄

∫

T
u±(r)dr

∑

T∈Bj,h̄
‖T‖

, (3.25)

where T denotes a tetrahedron of the mesh domain Bj,h̄.
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Chapter 4

An improved ion channel finite

element mesh generation scheme

To solve a PNP ion channel model by the finite element method, one of the most important

tasks is to generate an interface fitted unstructured tetrahedral mesh for a box simulation

domain. Actually, it is very difficult to construct such a mesh due to the irregular shape

of proteins. In the PNPic model, to handle different boundary conditions and equations

are defined in different regions, we need to mark triangular surface meshes on the inter-

faces/boundaries and tetrahedra meshes in different regions. In this chapter, we describe

our algorithms and implementations for generating these meshes, and numerical tests for

showing the robustness and efficiency of our mesh generation package are presented.

4.1 Our mesh generation method

We consider a closed box domain

Ω̄ = {(x, y, z)|Lx1
6 x 6 Lx2

, Ly1 6 y 6 Ly2 , Lz1 6 x 6 Lz2} (4.1)

and the partition

Ω̄ = D̄p ∪ D̄m ∪ D̄s,
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where D̄p, D̄m, and D̄s are the closures of Dp, Dm, and Ds, respectively. Our purpose is to

generate tetrahedral meshes for subdomains Dp, Dm, and Ds as well as triangular surface

meshes for the interfaces Γp, Γm, and Γpm such that they are the submeshes of a box mesh

Ω̄h to satisfy

Ω̄h = D̄p,h ∪ D̄m,h ∪ D̄s,h. (4.2)

We define the interface meshes by

Γp,h = D̄p,h ∩ D̄s,h, Γm,h = D̄s,h ∩ D̄m,h, Γpm,h = D̄p,h ∩ D̄m,h.

Here, the normal direction of D̄m is in the z-axis direction, and the location of Dm is set

between the two planes z = Z1 and z = Z2.

According to the methodology of volume mesh generation, the tetrahedral mesh for a

3D domain can be generated from triangular surface meshes of its boundary. Thus, the box

boundary triangular surface mesh ∂Ω̄h, the protein surface mesh ∂D̄p,h, and the membrane

surface mesh ∂D̄m,h are needed. However, due to the irregular and complicated interface

Γpm,h, D̄m,h is very difficult to produce directly. To avoid this difficulty, it is usually to first

generate a good quality mesh for an expanded solvent region, D̂s, defined by

D̂s = D̄s ∪ D̄m,

such that

Ω̄ = D̂s ∪ D̄p ∪ Γ̂sp,

where Γ̂sp is exactly a molecule surface of an ion channel protein, which can be given ap-

proximately by the triangular surface mesh ∂D̄p,h. We next construct the triangular surface

mesh ∂Ω̄h by

∂Ω̄h = ΓD,h ∪ ΓN,h,

where ΓD,h and ΓN,h are the triangular meshes of ΓD and ΓN , respectively.

Using ∂Ω̄h and ∂D̄p,h, we can generate D̂s,h and D̄p,h such that

Γ̂sp,h = D̂s,h ∩ D̄p,h,

which is a triangular surface mesh of the interface Γ̂sp. The remaining work is to develop
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algorithms to produce D̄m,h as a submesh of D̂s,h, such that

D̂s,h = D̄s,h ∪ D̄m,h,

approximately. To do so, a scheme is used in the current mesh package developed by Lu’s

group. In this scheme, a list of additional mesh nodes is pre-allocated on the two planes

z = Z1 and z = Z2, as a major part of the mesh nodes of Γm,h, and a mesh of the four side

surfaces of Dm is also constructed as a submesh of ∂Ω̄h.

Our major improvements on this mesh generation algorithm include a new scheme for the

box boundary mesh ∂Ω̄h generation and a new scheme for generating the membrane region

mesh D̄m,h. Moreover, we implement these two new schemes to yield a new mesh generation

package, and then adopt it as a part of our PNPic software package.

4.2 A new triangular surface mesh for a simulation box

In this section, we present a new scheme for generating a high quality box surface mesh

∂Ω̄h. By this new scheme, the quality of the membrane and solvent region meshes can be

improved significantly.

We set the surface mesh partition

ΓN,h = ΓNs,h ∪ ΓNm,h,

where ΓNs,h and ΓNm,h are the lateral surface meshes of D̄s and D̄m, respectively. To guar-

antee that the two surface meshes ΓNs,h and ΓNm,h can match well, we further set the surface

mesh partition

ΓNs,h = ΓNs1,h ∪ ΓNs2,h,

ΓNs2,h represents the layer between ΓNs1,h and ΓNm,h, ΓNs1,h denotes the upper and lower

parts of ΓNs,h except the layer. We then generate ∂Ω̄h by the following steps:
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• Step 1: Set the box domain Ω̄ by































Lx1
= Px1

− δx1
, Lx2

= Px2
+ δx2

,

Ly1 = Py1 − δy1 , Lyz = Py2 + δy2 ,

Lz1 = Pz1 − δz1 , Lz2 = Pz2 + δz2 ,

(4.3)

where δx1
, δx2

, δy1 , δy2 , δz1 , δz2 are the input positive parameters to control the size of

the box domain, and the box [Px1
, Px2

]× [Py1 , Py2 ]× [Pz1 , Pz2 ] holds the protein region

D̄p,h.

• Step 2: Specify a box surface mesh of the box domain by the inputs nx, ny, and nz,

which set the numbers of partitions in the x-, y-, and z-directions, respectively. We

then simply set the number of partitions in the z-direction on the upper and lower parts

of ΓNs1,h as nz/2, the number of partitions in the x-, y-, and z-directions on the surface

mesh ΓNm,h as 2nx, 2ny, and nz. This setting leads to meshes of the membrane-protein

region is finer than that of the solvent region and avoids any sharp triangular facet on

the interface between the solvent and membrane regions. In addition, a parameter dz

is introduced to control the height of ΓNs2,h, which can be adjusted to further improve

the quality of the mesh.

• Step 3: Generate the box triangular surface mesh data, vertices and triangles, and save

these data for generating the volume mesh. In particular, we use the BoxMesh function

from the state-of-the-art software package FEniCS [35] to generate the uniform volume

meshes Ω̄1,h, Ω̄2,h, and Ω̄3,h of the top, middle, and bottom parts of the box domain as

follows

Ω̄1,h = BoxMesh(Point(Lx1
, Ly1 , Lz1),Point(Lx2

, Ly2 , Z1− dz), nx, ny, nz),

Ω̄2,h = BoxMesh(Point(Lx1
, Ly1 , Z1),Point(Lx2

, Ly2 , Z2), 2nx, 2ny, nz),

Ω̄3,h = BoxMesh(Point(Lx1
, Ly1 , Z2 + dz),Point(Lx2

, Ly2 , Lz2), nx, ny, nz).

We then obtain a mesh of the box domain Ω̄ by

Ω̄h = Ω̄1,h ∪ Ω̄2,h ∪ Ω̄3,h.
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We then extract the surface meshes ΓNs1,h, ΓNm,h and ΓD,h by the function Bound-

aryMesh from FEniCS. Consequently, we produce the surface mesh ∂Ω̄h by

∂Ω̄h = ΓNs1,h ∪ ΓNs2,h ∪ ΓNm,h ∪ ΓD,h.

4.3 A new scheme for generating membrane tetrahe-

dral meshes

Once the box surface mesh ∂Ω̄h and the protein surface mesh ∂D̄p,h are obtained, then

the corresponding tetrahedral meshes D̂s,h and D̄p,h can be generated by the volume mesh

generation packages such as TetGen [62, 61]. We then need a scheme to determine D̄m,h as a

submesh of the extended solvent mesh D̂s,h. However, developing such a scheme is difficult

since the interface between the membrane and the solvent regions is not given in an explicit

function expression. To avoid such a difficulty, we can construct a scheme to re-mark the

tetrahedra of D̂s,h that belong to the membrane region Dm from the label number 2 to 3 as

illustrated in Figure 4.1. Using these region label data as shown in Figure 4.1(b), we can

produce the triangular meshes of the related interfaces and boundaries.

(a) The initial labels (b) The final labels

Figure 4.1: An illustration of the labels of protein, solvent, and membrane regions.

The most recent scheme for constructing D̄m,h is reported in [32]. In this scheme, the

walk-and-detect algorithm [12] is used to construct the membrane region mesh D̄m,h. This
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method works well when the channel pore has a smooth and regular shape. It does not

work well or even fails for an ion channel with a complicated channel pore. To improve this

scheme, we develop a new algorithm for constructing D̄m,h. We then show that our new

algorithm works for an ion channel protein even with an irregular ion channel pore provided

that a surface mesh of the interface region Γpm does not have any hole.

We describe our new method in the following steps. Here we assume that Ω̄h is produced,

and the tetrahedrons of the protein region and the solvent-membrane region have been

marked by label numbers 1 and 2, respectively (see Figure 4.1(a)).

• Step 1: Construct a partition of the membrane region D̄m as

D̄m = D̄m1 ∪ D̄m2,

where D̄m2 represents a subregion of D̄m that intersects with a block region,

[lx1
, lx2

]× [ly1 , ly2 ]× [Z1, Z2],

such that D̄m1 has a regular shape, where lx1
, lx2

, ly1 , and ly2 are selected big enough

not to touch the surface mesh of the protein. See Figure 4.2 for an illustration of this

partition.

• Step 2: Produce a mesh D̄m1,h of Dm1 by remarking the tetrahedrons of the extend

solvent region that belong to this region from 2 to 3.

• Step 3: Find a “seed” tetrahedron in D̄m2,h by using either the walk-and-detect method

or a direct selection method. Numerical tests show that the efficiency of these two

methods is almost the same. Figure 4.3(a) shows one “seed” tetrahedron, which is

colored in purple.

• Step 4: Relabel all the tetrahedrons belonging to the subregion Dm2 starting from the

“seed” tetrahedron via the following strategy: If the adjacent tetrahedron has label

number 1 (i.e., in the protein region) or -1 (i.e., in the box boundary), the searching

process is stopped; otherwise, this adjacent tetrahedron is re-labeled from 2 to 3, and

continue to search for other adjacent tetrahedrons similarly until all the tetrahedrons

belonging to Dm2 are found.
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Figure 4.2: A cross-section view of the ion channel simulation box at z = Z1. Here, the
protein region is colored in green, the membrane region Dm is split into two subdomains,
Dm1 and Dm2, colored in yellow and red, respectively, and the channel pore area is marked
in white, which belongs to the solvent region Ds.

(a) A “seed” tetrahedron (b) After 16 iterations (c) Final restult

Figure 4.3: An iterative search process for the tetrahedrons that belong to the membrane
region. (a) Select a “seed” tetrahedron as the initial iteration. (b) A volume mesh generated
after 16 iterations. (c) The membrane mesh generated at the end of the iteration.

• Step 5: Obtain the membrane mesh D̄m,h by combining D̄m1,h and D̄m2,h, i.e.,

D̄m,h = D̄m1,h ∪ D̄m2,h.

The search process of Step 4 is easy to carry out because all the data of adjacent tetrahe-

drons exist (e.g., in a .neigh file when the volume mesh is generated by TetGen). Figure 4.3(b)

displays the tetrahedrons (colored in purple) found in the membrane region after 16 iter-

ations, and Figure 4.3(c) shows all the tetrahedrons (colored in purple) that make up the

membrane region Dm. Once the membrane mesh is constructed, we save the data of vertices,
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(a) mVDAC1 in cartoon (b) Surface mesh of the mVDAC1

Figure 4.4: (a) A molecular structure of a mVDAC1 ion channel (PDB ID: 3EMN). Here
the α-helix is colored in red. (b) A molecular surface mesh of mVDAC1.

tetrahedrons, and tetrahedron labels to a .xml mesh file as required by FEniCS for a finite

element mesh. We then can use this mesh directly for our PNPic package. In this way, we

have obtained an improved mesh generation package.

4.4 Numerical results

As mentioned at the start of this chapter, Lu’s method works well when the channel pore has

a smooth regular shape. However, it does not work well for ion channels with complicated

channel pores. In this section, we present numerical tests to illustrate the robustness of our

method compared to Lu’s method.

Figure 4.4(a) shows the cartoon backbone representation of the original mouse voltage-

dependent anion-channel isoform (mVDAC1) ion channel. Figure 4.4(b) is the corresponding

triangular surface meshes, which are generated by TMSmesh [6, 33] with parameters h = 0.4,

d = 0.9, and c = 0.9.

Figure 4.5 displays a comparison of the membrane mesh D̄m,h and the solvent mesh D̄s,h

generated by our improved mesh package with that by Lu’s mesh package for the original

mVDAC1. From Figures 4.5(a, b, c) it can be seen that the membrane region mesh D̄m,h

generated by Lu’s mesh package contains the tetrahedra of D̄s,h while the solvent region

mesh D̄s,h contains some sharp triangles on ∂D̄s,h. These low quality meshes may affect the

accuracy of a finite element solution. Figures 4.5(d, e, f) display the meshes D̄m,h and D̄s,h
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(a) Top view of D̄m,h (b) Side view of D̄m,h (c) Side view of D̄s,h

(d) Top view of D̄m,h (e) Side view of D̄m,h (f) Side view of D̄s,h

Figure 4.5: (a, b, c) The subdomain meshes generated by Lu’s mesh package. (d, e, f) The
subdomain meshes generated by our improved mesh package.

generated by our mesh generation method, which have much higher quality.
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Chapter 5

Numerical studies on some ion

channel modeling issues

In this chapter, we numerically study some important issues arisen from the PNP ion channel

modeling. Our PNPic software package makes such a study possible. All numerical tests

were done on an Intel Core i5 3.3 GHz MacBook Pro with 16GB RAM (macOS Catalina

version 10.15.5) in double-precision floating-point format.

5.1 Preparation for numerical tests

From the physical point of view, the diffusion coefficient in the bulk region and the ion

channel pore region can be different. In our PNPic software package, we use the diffusion

coefficient defined by a piecewise expression as follows:

Di(r) =



































Dp
i , Z1 + h < z < Z2− h (channel pore region),

Dp
i + (Dp

i −Db
i )ft(r), Z2− h 6 z 6 Z2 (upper buffer region),

Dp
i + (Dp

i −Db
i )fb(r), Z1 6 z 6 Z1 + h (lower buffer region),

Db
i , z < Z1 or z > Z2 (bulk region),

(5.1)
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Figure 5.1: A cross-section representation of the ion channel-membrane system with the
various regions for simulations.

where r = (x, y, z), the functions fb and ft are defined by

fb(r) = n

(

Z1 + h− z

h

)n+1

− (n+ 1)

(

Z1 + h− z

h

)n

(5.2)

and

ft(r) = n

(

z − Z2 + h

h

)n+1

− (n+ 1)

(

z − Z2 + h

h

)n

(5.3)

with n is an integer (the default value is 9), h is the buffer size (the default value is 3), Db
i

and Dp
i denotes the diffusion coefficients of the i-th ion species in the bulk and channel pore

regions, respectively, and Dp
i is given by

Dp
i = θDb

i for 0 < θ 6 1. (5.4)

A similar diffusion coefficient Di can be found in [22].
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We also use the following relative permittivity function ǫs in the solvent region:

ǫs(r) =



































ǫps, Z1 + h < z < Z2− h (channel pore region),

ǫps + (ǫps − ǫbs)ft(r), Z2− h 6 z 6 Z2 (upper buffer region),

ǫps + (ǫps − ǫbs)fb(r), Z1 6 z 6 Z1 + h (lower buffer region),

ǫbs, z < Z1 or z > Z2 (bulk region),

(5.5)

where ǫbs and ǫps denote the relative permittivities in the bulk and channel pore regions,

respectively.

The boundary potential value function g is defined by

g(s) =































gb(s), z = Lz1 (bottom surface of Ω),

gt(s), z = Lz2 (top surface of Ω),

gb(s) + (gt(s)− gb(s))k(s) Lz1 < z < Lz2 (lateral surface of Ω),

(5.6)

where gb and gt denote the given potential functions, s = (x, y, z), and

k(s) =
z − Lz1

Lz2 − Lz1
.

The boundary concentration value function gi(r) can be set as

gi = cbi ,

where cbi is the bulk concentration of the i-th ionic species in the solvent region Ds, which is
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defined by

cbi(r) =















































cbi,p(r), Z1 + h < z < Z2− h (channel region),

cbi,p(r) + (cbi,p(r)− cbi,t(r))ft(r), Z2− h 6 z 6 Z2 (upper buffer region),

cbi,p(r) + (cbi,p(r)− cbi,b(r))fb(r), Z1 6 z 6 Z1 + h (lower buffer region),

cbi,b(r), z < Z1 (lower bulk region),

cbi,t(r), z > Z2 (upper bulk region),

(5.7)

where cbi,p is the concentration in the channel pore region (the default value is zero), cbi,b and

cbi,t are the bulk concentrations in the upper and lower bulk regions, respectively.

Particularly, Db
i , ǫ

p
s, ǫ

b
s, gt, gb, c

b
i,b, c

b
i,p, c

b
i,b, and cbi,t are given as constants for the i-th

species.

To validate our PNPic software package, we did numerical tests on two realistic ion

channel proteins: Gramicidin A (gA) [31, 59] and murine voltage-dependent anion channel

isoforms (mVDAC1) [58].

The gA is a natural antibiotic peptides with 15 amino acids (552 atoms) that form

cation-permeable channels like pores in biological membranes and lipid bilayers of bacteria

and animal cells. Inorganic monovalent ions, such as sodium (Na+) and potassium (K+), can

pass through the channel pores via diffusion. This process can destroy vital ion concentration

gradients between membranes and lipid bilayers. The pore is about 4 Å in diameter. Over

the last fifty years, this channel has been studied on its ion selectivity, structure [69], etc.,

producing a lot of experimental data [9, 54]. Thus, the gA channel is regarded as a useful

model for validating ion channel models. Figure 5.2 shows the 3D structure of gA in three

different forms.

The mVDAC1 is one of the voltage-dependent anion channel isoforms of the mammalian

VDAC, which are the most abundant proteins in the mitochondrial membrane [58]. The

high-resolution crystal 3D structure of mVDAC1 contains an 19 stranded β barrel with an

α-helix in the middle of the channel pore (see Figure 5.3) [68]. The pore is about 27 Å in

diameter at the top and bottom mouths of the channel, but it narrows to about 14 Å near the

helix at the center of the ion channel [7]. Although the structural information is available,

the complexities of the conductance and the molecular mechanism are not understood well.

Recent hypotheses show that the opening or closure of the channel could be controlled

through a partial movement of the N-terminal helix with its flexible hinge region (amino
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(a) Side view of 1MAG in cartoon (b) Top view of 1MAG in cartoon

(c) Side view of 1MAG in stick (d) Top view of 1MAG in stick

(e) Side view of 1MAG with Gaussian
surface

(f) Top view of 1MAG with Gaussian
surface

Figure 5.2: Illustrations of gA ion channel (PDB ID: 1MAG) geometry using PyMOL visu-
alization software, color map indicates atoms.
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acids 19–25) into or out of the pore. Although an inward α-helical movement could control

the channel’s activity through the blockage, it fails to account for the channel’s ion selectivity,

which an outward-movement model addresses more adequately [43]. Figure 5.3 shows the

3D structure of the mVDAC1 in three different forms, and the N-terminal α-helix is colored

in red in Figure 5.3(a) and 5.3(b).

In our tests, the PDB files of proteins were downloaded from the Orientations of Proteins

in Membranes (OPM) database [36] https://opm.phar.umich.edu, and converted to the PQR

files by the online tool PDB2PQR [13], which prepares structures for further calculations

by reconstructing some missing atoms and assigning atomic charges and radii from specified

force fields. OPM provides us with proteins that have been rotated and transformed to

match our requirement as illustrated in Figure 2.1, resulting in that Z1 = −12 and Z2 = 12

for mVDAC1 ion channel, Z1 = −11 and Z2 = 6 for gA ion channel.

Symbol Value Symbol Value

ǫp 2 Di for K
+ 0.196

ǫm 2 Di for Ca
2+ 0.0793

ǫbs 80 Di for Na
+ 0.133

cbi,p 0 Di for NO
−

3 0.19

Di for Cl
− 0.203

Table 5.1: Relative permittivity and diffusion coefficient constants used in our tests.

Some constants used in our numerical tests are summarized in Table 5.1. These values

are collected from the experimental data and the website https://www.aqion.de/site/194.

gA mVDAC1

Parameter Value Value

TMSmesh: [h, d, c] [0.6, 0.9, 0.9] [0.2, 0.9, 0.9]

TetGen: [q, a, T] [1.3, 0, 0] [1.4, 0, 0]

BoxMesh: [δz1 , δz2 ] [10, 10] [10, 10]

BoxMesh: [nx, ny, nz, dz] [20, 40, 40, 1] [10, 20, 20, 2]

Table 5.2: Parameter values of mesh generation

The ion channel meshes used for our numerical tests were generated by the parameters

in Table 5.2. Three different box domains defined in Table 5.3 were used to generate meshes,

39



(a) Side view of 3EMN in cartoon (b) Top view of 3EMN in cartoon

(c) Side view of 3EMN in stick (d) Top view of 3EMN in stick

(e) Side view of 3EMN with Gaussian
surface

(f) Top view of 3EMN with Gaussian
surface

Figure 5.3: Illustrations of mVDAC1 ion channel (PDB ID: 3EMN) geometry using PyMOL
visualization software, color map indicates atoms in (c, d, e ,f), and the α-helix is colored in
red in (a, b).
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and all the meshes in the channel pores were refined. To compare numerical results clearly,

we used the method in Chapter 2 to depict the concentrations and potential functions in

curves by using m1 = 10, m2 = 30, m3 = 10, and h̄ = 4.

gA mVDAC1

[δx1
, δx2

, δy1 , δy2 , δz1 , δz2 ] Vertices Tetrahedra Vertices Tetrahedra

Mesh 1 [10, 10, 10, 10, 10, 10] 68614 385740 49798 300921

Mesh 2 [30, 30, 30, 30, 10, 10] 72157 410080 52085 316009

Mesh 3 [50, 50, 50, 50, 10, 10] 76019 437349 53084 322728

Table 5.3: Box domain dimensions and related mesh data for the three meshes used in
numerical tests.

5.2 A comparison study on boundary value conditions

Several different boundary value conditions are used in PNP ion channel models. In this

section, we present a comparison study on two commonly-used boundary value conditions

— the Dirichlet and Neumann boundary value conditions that are stated in Chapter 2. The

purpose of such a study is to show how boundary value conditions to affect the quality of a

PNPic model. We used two ion channels, gA and mVDAC1, and Mesh 1 in Table 5.3 to do

numerical tests, the membrane surface charge σt = σb = 0, and did the tests .

For gA in a symmetric salt solution of KCl (0.5 M/L) when gb = 1.946 (i.e., 50mV)

and θ = 0.055, we calculated the differences between the electrostatic potentials u and

concentrations ci generated by the PNPic model using the Dirichlet and Neumann boundary

value conditions, and plotted them in Figures 5.4 and 5.5. From Figure 5.4(a) it can be

seen that there is a significant difference between potential results, especially in the solvent

region. However, as shown in Figures 5.4(b) and 5.4(c), the differences in concentrations are

not big except that the concentration of K+ has significant changes in the entrance of the

channel pore. In Figure 5.5 we depicted the differences in 2D curves, from which, we now

can clearly see the trends of the differences in the whole solvent region.

We further produced current-voltage (I-V) curves using the PNPic models, and reported

them in Figures 5.6 and 5.8. From these figures we can see that different boundary conditions

can significantly affect the I-V curve calculation.
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(a) Difference on potential (b) Difference on K+ concen-
tration

(c) Difference on Cl− concen-
tration

Figure 5.4: Color mappings of the differences of the potentials and ionic concentrations
generated by the PNPic model using Dirichlet and Neumann boundary value conditions on
a cross-section x = 0 for gA in a salt solution of KCl (0.5 M/L) when gb = 1.946 (i.e., 50mV).
The protein and membrane regions are colored in green and yellow, respectively.

(a) Difference on potentials (b) Difference on concentrations

Figure 5.5: Differences of the potentials and ionic concentrations generated by the PNPic
model using Dirichlet and Neumann boundary value conditions for gA in a salt solution of
KCl (0.5 M/L) when gb = 1.946 (i.e., 50mV) in 2D curves.

5.3 Simulation box size affection on ion channel simu-

lation

The simulation box domain size is another possible affection factor for PNP ion channel

simulations. To explore such an issue numerically, we set σb = σt = 0, ǫps = 80, gt = 0,

gb = 3.892 (i.e., 100 mV), and θ = 0.055 and θ = 0.035 for gA and mVDAC1 cases,
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Figure 5.6: A comparison of the current-voltage curves generated by the PNPic model using
Dirichlet and Neumann boundary value conditions for gA in a salt solution of KCl (0.5 M/L).

(a) Difference on potentials (b) Difference on concentrations

Figure 5.7: Difference of potentials and ionic concentrations generated by using Dirichlet
and Neumann boundary value conditions. All results are generated by PNPic model for
mVDAC1 in a mixture solution of KCl (0.5 M/L) and CaCl2 (0.1 M/L) when gb = 3.892
(i.e., 100mV).

respectively, to control the value of diffusion constant Dp
i inside the channel pore. We used

a salt solution with 0.5 M/L KCl for gA case and a mixture of 0.5 M/L KCl and 0.1 CaCl2

for mVDAC1 case. The numerical test results are reported in Figures 5.9 and 5.10.

The differences in electrostatic potential and ionic concentrations are displayed in Fig-

ure 5.9 for the gA simulations. From this figure we can see that the absolute difference on

potential and ionic concentration was reduced as the box domain size was increased. Fox

example, the largest difference in potential and concentrations are 0.9 and 0.16, respectively,
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Figure 5.8: A comparison of I-V curves for different boundary value conditions.

in the case of using Mesh 1, which are larger than that in the case of using a larger mesh,

Mesh 3. As shown in Figure 5.10, the mVDAC1 case has the same trend as the gA case.

These test results illustrate that the effects of boundary value conditions on the four side

surfaces are insensitive on the PNPic model when the box dimension in the x/y-axis direction

sufficiently exceeds the width of ion channel.

5.4 Effects of membrane surface charges

To study the effect of membrane surface charges, we did numerical tests by the PNPic model

using the Dirichlet boundary value conditions and Mesh 1 defined in Table 5.3. The PNPic

model was solved for a symmetric bulk salt concentration, i.e., cbi,p = 0 and cbi,t = cbi,b.

The electrostatic potential and concentrations on the cross-section x = 0 are shown in

Figure 5.11 for different membrane surface charges under an applied voltage gb = 1.946 (i.e.,

50mV) for the gA ion channel in a salt solution of KCl (0.5 M/L). We also displayed the

electrostatic potentials and ionic concentrations in 2D curves in Figure 5.12. From these

figures, we can see that adding negative charges on one side surface of membrane attracted

more cations K+, and caused a larger negative potential in magnitude near this membrane

surface. And adding positive charges on membrane surface increased positive potential, and

attracted more anions Cl− near the membrane surface, but can not enter the channel pore

due to the cation selectivity of gA channel.

Furthermore, from Figure 5.12 it can be seen that the positive membrane surface charge

σb = 20 significantly increased the positive electrostatic potential from 1.5 to 3 (see Fig-
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(a) Difference on potentials by Mesh 1 (b) Difference on concentrations by Mesh 1

(c) Difference on potentials by Mesh 2 (d) Difference on concentrations by Mesh 2

(e) Difference on potentials by Mesh 3 (f) Difference on concentrations by Mesh 3

Figure 5.9: Differences of u and ci generated by the PNPic model using Dirichlet and Neu-
mann boundary value conditions for gA in a salt solution of KCl (0.5 M/L) on Meshes 1, 2,
and 3 given in Table 5.3.
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(a) Difference on potentials by Mesh 1 (b) Difference on concentrations by Mesh 1

(c) Difference on potentials by Mesh 2 (d) Difference on concentrations by Mesh 2

(e) Difference on potentials by Mesh 3 (f) Difference on concentrations by Mesh 3

Figure 5.10: Differences of u and ci generated by the PNPic model using Dirichlet and
Neumann boundary value conditions for mVDAC1 in a mixture solution of KCl (0.5 M/L)
and CaCl2 (0.1 M/L) on Meshes 1, 2, and 3 given in Table 5.3.
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(a) σb = 0, σt = 0 (b) σb = 20, σt = 20 (c) σb = −20, σt = −20 (d) σb = 20, σt = −20

(e) σb = 0, σt = 0 (f) σb = 20, σt = 20 (g) σb = −20, σt = −20 (h) σb = 20, σt = −20

(i) σb = 0, σt = 0 (j) σb = 20, σt = 20 (k) σb = −20, σt = −20 (l) σb = 20, σt = −20

Figure 5.11: Comparisons of the electrostatic potential u and ion concentrations ci by PNPic
model with Dirichlet boundary value conditions and membrane surface charges for gA in a
salt solution of KCl (0.5 M/L) on a cross-section x = 0. The protein and membrane regions
are colored in green and yellow, respectively. Here gb = 1.946 (i.e., 50mV).

ures 5.12(b) and 5.12(d)), and anionic concentrations from 0 to 12 (see Figures 5.12(f) and

5.12(h)), and the anion Cl concentrations are essentially zero inside the channel for all cases.

These numerical tests further validate that our PNPic model can predicate the important

properties of gA channel, such as cation selectivity.

We also calculated the I-V curves of gA channel to further explore the effects of surface

charges. The numerical results were plotted in Figure 5.13. They show that current-voltage
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(a) σb = 0, σt = 0 (b) σb = 20, σt = 20

(c) σb = −20, σt = −20 (d) σb = 20, σt = −20

(e) σb = 0, σt = 0 (f) σb = 20, σt = 20

(g) σb = −20, σt = −20 (h) σb = 20, σt = −20

Figure 5.12: Comparisons of the electrostatic potential u and concentrations ci generated by
PNPic model using Dirichlet boundary value conditions and membrane surface charges for
gA (Mesh 1) in a salt solution of KCl (0.5 M/L). Here gb = 1.946 (i.e., 50mV).
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Figure 5.13: Current-voltage curves for gA ion channel with different membrane surface
charges in a salt solution of KCl (0.1 M/L).

curves were affected significantly by membrane surface charges. Here a symmetrical 0.1M

bulk concentration, i.e., cbi,t = cbi,b = 0.1 M/L was used. The presence of negative charges on

the membrane surface increased the current value that passes through the ion channel pore,

because more cations K+ were attracted into the channel pore. Similarly, positive charges

on the membrane surface can expel cations, producing a lower current. These test results

are in agreement with experiment observations [54].

We also did tests for mVDAC1 in a mixture solution of KCl (0.1 M/L) and CaCl2 (0.1

M/L). Here we set θ = 0.35 and gb = 1.946 (i.e., 50 mV). The numerical results were

displayed in Figure 5.14. They are similar to the case of gA ion channel.
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(a) σb = 0, σt = 0 (b) σb = 20, σt = 20

(c) σb = −20, σt = −20 (d) σb = 20, σt = −20

(e) σb = 0, σt = 0 (f) σb = 20, σt = 20

(g) σb = −20, σt = −20 (h) σb = 20, σt = −20

Figure 5.14: Comparisons of the electrostatic potential u and concentrations ci generated by
the PNPic model using Dirichlet boundary value conditions and membrane surface charges
for mVDAC1 in a mixture solution of of KCl (0.1 M/L) and CaCl2 (0.1 M/L). Here gb = 1.946
(i.e., 50 mV).

50



Chapter 6

Conclusions and future work

In this dissertation, an effective finite element algorithm for solving a PNP ion channel

model using Dirichlet boundary value conditions and an improved ion channel finite element

mesh algorithm have been presented. They have been implemented as a high quality ion

channel simulation software package. By using this package, many numerical tests were done

to explore some important issues arisen from ion channel simulations by PNP ion channel

models. Here is a summary of the main results of this dissertation:

• A PNP ion channel (PNPic) model using Dirichlet boundary value condition and mem-

brane surface charge is derived.

• An effective PNPic finite element solver is presented.

• New numerical algorithms for generating a triangular surface mesh of the simulation

box domain and for constructing a tetrahedral mesh of the membrane region are presented

and implemented for an improved ion channel mesh generation package.

• The effects of boundary value conditions, simulation box domain sizes, and membrane

surface charges on PNPic modeling are explored numerically.

Based on the current work, we will continue to do the following work in the future:

• In order to take the advantages of both finite difference and finite element methods, a

new finite element and finite difference hybrid method for solving a PNP ion channel model

will be developed.

• The PNPic model is effective but ignores the finite volume effect of ion particles. In fact,

it has been known that ionic size is important for ion transport in highly confined channels.

So an improved PNPic model needs to be constructed to consider ionic size effects.

• When we solve the PNPic system numerically, many highly indefinite linear systems
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may be produced, which cannot be solved by any current iterative method such as the

GMRES method preconditioned by ILU due to very poor convergent rates. In order to deal

with this numerical issue, we will develop preconditioners and new iterative algorithms for

our PNPic finite element solver.
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