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ABSTRACT 

DOWNSTREAM PREDICTABILITY OF THE PATH OF SEVERE WIND PRODUCING 

MCSs USING RUC ANALYSIS DATA 

by 

Russell Danielson 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Paul Roebber 

 

 A method for predicting the track of mesoscale convective systems (MCSs) is developed, 

based upon meteorological parameters in the path of the systems. Rapid Update Cycle model 

analysis from the years 2007 through 2011 were used to gather meteorological data for 94 MCS 

events. An artificial neural network model was developed to predict whether the MCS will track 

to the “Right”, “Left”, or stay on its current path. The most important parameters to predict the 

track of an MCS in this model are precipitable water, most unstable CAPE, 700hPa temperature, 

surface-500hPa mean wind, low-level equivalent potential temperature difference, and 700-

500hPa lapse rate. The model produced a threat score of 0.30 and a Heidke skill score of 0.16 

which demonstrates relatively small skill but compares favorably to similar warm season 

forecasts. When considering the prediction of each class, the model proved to be skillful when 

predicting “Left” and “Right” classes while it did not skillfully predict the “Middle” class. 

Sensitivity analysis revealed that surface-500hPa mean wind was the most influential 

meteorological parameter for forecasting the track of MCSs, with smaller (higher) values giving 

a greater chance for MCSs to track in the “Middle” and “Right” (“Left”). This relationship may 

help forecasters improve decision support services and issuances of convective watches. Future 
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work may be able to develop a model with better skill through the use of a higher resolution 

model or through stratifying MCS cases into subsets of similar environments.  
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I. INTRODUCTION  

 

 Severe wind producing mesoscale convective systems (MCSs) are common weather 

phenomena that occur across the United States especially in the warm season. They are 

beneficial in that they produce generous rainfall which aids the agricultural community but they 

also are harmful in that they are responsible for considerable damage from severe wind, 

lightning, and heavy rain. Regardless of negative or positive effects, quality forecasts can 

improve people’s decision making process whether it is to stay safe during these storms or to 

reduce property damage and agricultural loss.  

With these incentives, many in the meteorology community have tried to improve MCS 

forecasts. These studies included a wide range of research approaches especially in the way that 

they collected and utilized their data. For example, Jirak and Cotton (2007) gathered 

environmental meteorological data from NCEP’s North American Regional Reanalysis to 

develop an MCS index that assigns a likelihood of MCS development. Coniglio et al. (2007) 

used proximity soundings within a 3-hour window of an MCS to develop an updated technique 

to forecast the short-term motion of MCSs. James et al. (2006) used an idealized model to 

simulate the conditions of bow echoes to improve the physical understanding of these types of 

systems. While these studies have made great strides to improve the predictability of these 

systems, the meteorological community still has insufficient techniques to forecast the track of 

these systems as suggested by Coniglio et al. (2007).  

In this study, an attempt is made to improve forecasts by focusing on the downstream 

predictability of the path and survival of severe wind producing MCSs that already exist 
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upstream. The severe wind producing criteria is used because these storms will often produce 

more damage and create more of a societal impact when compared to MCSs that don’t produce 

severe wind. Furthermore, the requirement that the MCS already exists upstream is to eliminate 

the development stage where, in most cases, individual thunderstorms coagulate into an 

organized cluster of storms. This stage is rather complex because the strength and severe 

capabilities of the storms could be called into question which would affect how these storms 

progress. Moreover, there may be doubt as to whether the storms will initiate at all since 

convective initiation remains a difficult forecast challenge (e.g., Banacos et al. 2004) and 

multiple field studies such as 2002’s International H2O Project have been completed to try and 

expand knowledge on this subject. The exclusion of the development stage is additionally 

justified because MCSs often travel for very long distances and over many hours. Therefore, 

many of the areas affected by an MCS will have known the system has already formed and the 

path and survival of this system become the most critical aspects of the forecast.  

 Many studies focusing on MCSs have developed evidence that suggests certain variables 

are important for the maintenance and track of an MCS. Merritt and Fritsch (1984) surveyed the 

motion of more than 100 MCSs and found that they often track parallel to the contours of the 

1000-500hPa thickness. Evans et al. (2001) suggests that when 0-6km mean wind and large-scale 

forcing are strong, severe surface winds can be supported within derecho (a subset of MCSs) 

environments. In addition, they note that strong downdrafts, the potential for which are simulated 

by Downdraft CAPE, can maintain damaging surface winds even when mean winds and large-

scale forcing are weak. Coniglio et al. (2007) found that surface-6km shear, 3-8km lapse rates, 

“best” CAPE, and 3-12km mean wind were the best combination of predictors when forecasting 

the maintenance of MCSs and they developed the MCS maintenance probability through logistic 
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regression that was based on these parameters. This study will assess these variables, as well as 

many more that may help generate a model which is able to improve MCS prediction.  

 How this study will differ from others is in the method of obtaining data. Some studies 

used proximity soundings while others used idealized models and manipulated the initial 

conditions. This study gathers data during the analysis period of the Rapid Update Cycle (RUC) 

model out ahead of MCSs in the inflow region of the storm. The reason being that the traits of 

the atmospheric air that are ingested into the system will likely have a great effect on it. Also, 

since a numerical model is used, the hope is that it keeps the parameters from being affected by 

the model-produced convection which may skew the data. For example, within the MCS, the 

model will likely produce much less CAPE since the storm is realizing this energy. A drawback 

is that the motion of the system is likely dependent on the structure and intensity of the ongoing 

system itself. For example, the cold pool and rear inflow jet strength will affect the track of 

MCSs, and this is not directly accounted for in the data. Regardless, a new approach to studying 

MCSs is attempted in hopes of garnering new methods for predictions.  

 The goal of this study is to improve the forecast process for MCS events and to improve 

the understanding of the variables that are most important for the survival and track of these 

systems. Based on an artificial neural network, a model is developed that uses certain parameters 

to predict the likelihood that an MCS will move a certain direction. It is hoped that the model 

produced can improve the decision-making process on issuing convective watches as well as 

allow businesses to make better financial decisions among other forecast issues. In addition, 

future studies can use this information to focus on the physics of these systems and continue to 

advance our understanding.  
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II. METHODOLOGY 

 

a. Selection of analysis, events, and parameters 

 To study the environment ahead of an MCS it was determined that a model analysis 

would provide more data than proximity soundings. Therefore, the 20km Rapid Update Cycle 

(RUC) model was used since it offers hourly analysis data. To maintain a relatively consistent 

model configuration and associated biases throughout the study, a 5-year period encompassing 

the years 2007 to 2011 was chosen. The quality of the model was assessed by Thompson et al. 

(2003), who showed that the 40km RUC model analysis soundings are a reasonable proxy for 

observed soundings in supercell environments. They later stated that while the 40km RUC has 

been replaced by the 20km RUC, SPC forecasters have not identified any undesirable changes 

and that their study is applicable to the new 20km model. They did note small biases in the 

model as it tends to be too cool and dry at the surface which, in turn, leads to surface-based 

CAPE values being lower than proximity soundings. These errors were within typical ranges for 

radiosonde accuracy so, while there are certain biases in the RUC model, there is evidence to 

suggest that it can reasonably represent a severe thunderstorm atmosphere.  

To develop a dataset of MCSs over this period, base radar reflectivity was combined with 

surface observations and Storm Prediction Center (SPC) severe storm wind reports to 

subjectively determine the position of the MCS. For example, if a quasi-linear band of high 

reflectivity with a width of 100km or greater coincided with multiple severe wind storm reports 

then the system was determined to be an MCS. If the quasi-linear band of high reflectivity did 

not coincide with a severe wind storm report, then population density was considered and surface 
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observations were used to help identify the system. If a system was considered an MCS, the left-

most and right-most points of the MCS were gathered at every hour of the MCS’s existence. The 

geographical consideration for these systems was that it had to be in the contiguous United States 

so the SPC severe storm report archive could be used. In addition, to consider only longer-lived 

events as Coniglio et al. (2007) did, only systems that lasted five or more hours continuously 

were included in this study.  

 This process produced 94 unique events that covered 835 total hours. Figure 1 shows the 

longevity, in hours, of all the selected cases. Nearly 65% of the cases lasted between 5 and 9 

hours while the longest case lasted 19 hours. The dataset included MCSs during the months of 

April through October, with the most common month being June.  

 To measure the deviation in the MCS track, two calculations were performed. The first 

took the midpoint of the MCS at the current hour based on the latitude and longitude of the left-

most and right-most points. Then, comparing the midpoint to the midpoint at the previous time 

step, the angle of the slope was calculated. This angle is in respect to north so an MCS traveling 

to the east would have an angle slope of 90 degrees. Then, the actual angle of the slope of travel 

was calculated based on the midpoint of the MCS 3 hours in the future compared to the midpoint 

at the current time step. Figure 2 shows an example of an MCS that was traveling due east, and 

deviated 20 degrees to the right of the extrapolated track. Deviations of greater than 90 degrees 

or less than -90 degrees were excluded since the MCS would no longer be forward propagating. 

These back-building or training systems accounted for less than 1% of the cases that were 

originally considered. Other time steps were considered, but 3 hours was selected since lesser 

time periods would not allow much path deviation, while longer time steps would have severely 

limited the available data.  
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Once the selection process was complete, the RUC 20km files from the Research Data 

Archive website (https://rda.ucar.edu/) were requested and received for each hour of every MCS. 

MATLAB code was then generated to extract 20 meteorological variables from the analysis time 

step of these files. Table 1 displays these parameters and their calculations. These parameters 

were selected in order to assess the conditions necessary for severe storms, in addition to those 

necessary for MCS longevity. It is widely accepted that instability (i.e. most unstable CAPE), 

lift, shear (surface to 500 hPa shear), and moisture (850 hPa relative humidity) are essential for 

severe thunderstorm development. A large majority of the 20 parameters selected were based on 

this consideration. However, a few parameters were included because they play a critical role in 

the sustainability of MCSs. The largest equivalent potential temperature difference between the 

surface and the layers below 600 hPa was selected because it is an indicator of cold pool 

production, a factor that Evans et al. (2001) claim plays a dominate role in maintaining damaging 

surface winds with weak large-scale forcing. To account for when large-scale forcing is strong, 

surface to 500 hPa mean wind speed and direction were selected because Evans et al. (2001) 

states that with larger mean wind, severe surface winds can occur with relatively weak 

downdrafts and cold pools.  

To determine if any of these parameters can better predict the direction of the path of 

MCSs, the parameters were collected along a line out ahead of the system. For each case this line 

was 160 kilometers wide, regardless of the width of the MCS, and consisted of 9 points spaced 

20 kilometers apart to coincide with the grid resolution of the model. The line was placed 

parallel to the line created when connecting the leftmost and rightmost points of the MCS. The 

midpoint of the line was determined to be 25 kilometers away from the MCS in the direction of 

motion. To find the direction of motion, the slope of the midpoint of the MCS at the previous 
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time step to the midpoint of the MCS at the current time was calculated. Each individual point is 

labeled with a specific number which is consistent among every case, with point 1 (point 9) 

always on the leftmost (rightmost) side of the MCS’s track. An example of this line and the 

points is shown in Figure 3.  

 Out of the 835 cases that were gathered, only 454 cases could be used for the analysis. 

This is because the previous time step was always needed for the calculation of the path of the 

MCS so the initial time step of every MCS had to be excluded. In addition, the last three hours of 

an MCS could not be used because of the calculation of the deviation from the MCS’s direction 

of motion. Furthermore, some RUC files contained corrupt data meaning the entire case was 

excluded.  

 

b. Construction of Models 

 All of the previously described methods for calculating the variables and deviation of 

track were completed in MATLAB. This code output excel files which were then input into the 

software JMP to develop the statistical models. The initial step was to determine if there was a 

linear relationship that could reasonably predict the track of MCSs. This was done by 

constructing a (linear) stepwise multiple regression model with the angle of deviation being the 

dependent variable and the 153 different raw parameters (17)/positions (9) composing the 

independent variables. To be able to test the quality of the model, a third of the data was 

randomly held back. When the raw parameter values of the randomly selected data were used, 

the highest R-squared value that the model produced was never greater than 0.16. This model 

contained three variables which were surface-500hPa mean wind at point 6, 700hPa temperature 
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at point 4, and precipitable water at point 8. Since this accounts for only 16% of the variance in 

the angle of deviation in the development dataset, other methods were then explored. However, it 

was noted that the stepwise models tested had some variables that were consistently included, 

such as surface-500hPa mean wind speed, 700hPa temperature, most unstable CAPE, and 

precipitable water.  

 The next approach that was taken was to standardize the parameters by its along-line 

mean for each case. This was done by calculating the mean of all 9 points along the line for each 

parameter and case and then subtracting the actual value by the mean to get the anomaly. The 

reason for this was that the gradient of the parameters may play a bigger role than the actual 

value of the parameter. In other words, a certain case may have had most unstable CAPE ranging 

from 1000 j/kg to 3000 j/kg while another may have had uniform most unstable CAPE of 4000 

j/kg. In the first case, the MCS may have progressed into the region of higher most unstable 

CAPE while in the second case the system may have evolved based on other parameters. When a 

similar linear stepwise model was constructed, five parameters proved to be the best predictors 

including the precipitable water at point 8, most unstable CAPE at point 5, 700hPa temperature 

at point 4, surface-500hPa mean wind at point 6, equivalent potential temperature difference at 

point 2, and 700-500hPa lapse rate at point 4. These parameters again only explained a small 

amount of the variance since the R-squared value was only 0.14.  

 Since the linear stepwise models proved to be rather poor, a different approach was taken 

which was to separate the angle deviations of the MCSs into three classes. The reason for this 

approach was that the predictors may not be able to accurately predict the angle of deviation but 

they may be able to predict when a certain case may be susceptible to deviating to the right, left 

or staying on the current path. These classes are based on standard deviations from the mean. 
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Since the distribution of the angle of deviation has rather high kurtosis, a small standard 

deviation of 0.5 was used to make relatively even classes. The three classes consisted of “Left”, 

“Middle”, and “Right”. The “Left” class had angles of deviation less than -7.69 degrees, the 

“Right” class having angles of deviation of greater than 7.01 degrees, and the “Middle” class 

having angles of deviation between less than 7.01 but greater than -7.69 degrees. The amount of 

cases in each of these classes were 117 to the “Left”, 243 in the “Middle”, and 94 to the “Right”. 

To account for the uneven amount of “Middle” cases, 50% were excluded by randomly selecting 

“Middle” cases with a random number generator. This produced 108 “Middle” cases that were 

then used in the model. The usefulness of the 0.5 standard deviation was also considered because 

it should make sense meteorologically. A deviation of about 7 degrees over a three-hour period 

would mean that an MCS would deviate roughly 22 kilometers if it was assumed that the MCS 

had a forward propagation speed of 60 km per hour. A deviation of this length was considered 

large enough to proceed with the stratification of classes. Nonetheless, the best (linear) stepwise 

multiple regression model for this approach did not yield a model that improved upon the R-

squared of 0.16 found in other approaches.  

 With stepwise multiple regression models explaining such a small amount of the 

variance, an artificial neural network was built to predict the track of the MCSs. Given that linear 

methods were unsuccessful in predicting the path, non-linearities may exist in the data which an 

artificial neural network might capture. To predict which class the MCS would take, the artificial 

neural network produced a probability for each system to track down each class and the class that 

had the highest probability was used for the model’s prediction. Just as in the linear models, one 

third of the data was held back such that the model can be tested. Numerous combinations of 

variables and nodes were attempted to produce the best model. For example, for each new set of 
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variables that were tested, the neural network was run with numerous different nodes in an 

attempt to capture the non-linearities in the data. Then, different variable combinations, such as 

taking the middle point of certain variables and switching up the number of variables, were 

tested with different nodes and so on. The combination of variables that proved to be most 

beneficial in predicting the track of MCSs was the precipitable water at point 8, most unstable 

CAPE at point 5, 700hPa temperature at point 4, surface-500hPa mean wind at point 6, 700-

500hPa lapse rate at point 4, and equivalent potential temperature difference at point 2. Prior to 

analysis, a check for collinearity was performed between variables and within a variable for a 

given position along the line. None of the variables needed to be excluded based upon these tests.  
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III. RESULTS 

 

 The results from the artificial neural network, described in the methodology section, are 

analyzed here. All calculations and equations used to construct this model can be found in the 

appendix. Figure 4 shows a schematic diagram from Roebber et al. (2003) that depicts the 

structure of the neural network. This model has 6 inputs (i.e., D=6) which were described in the 

methodology, 21 hidden nodes (K=21), and 3 outputs (M=3) consisting of the three possible 

track deviations. The hidden nodes use an equation with a hyperbolic tangent to connect the 6 

input variables with the 3 output classes. The reason 21 hidden nodes were chosen was that it 

produced the most stable model. In other words, having 21 hidden nodes allowed the model to 

consistently predict the correct classes despite the different randomly selected cases that were 

included in each run of the model.  

Table 2 shows the contingency table associated with the neural model that produced the 

best prediction of the track. Table 3 shows that the model percent correct is 46.5%, Heidke skill 

score 0.156, and a threat score 0.303. Although these statistics demonstrate relatively small skill, 

these compare favorably, for example, to those for NOAA’s Weather Prediction Center’s Day 1 

forecasts for heavy rainfall in the warm season 

(http://www.wpc.ncep.noaa.gov/images/hpcvrf/d110.gif).  

The question becomes how can a forecaster successfully implement this information into 

their forecast process? Evaluating the predictions for each class and considering every one of the 

454 cases revealed that the model’s “Left” (“Middle”, “Right”) forecasts had a probability of 

detection of 0.55 (0.46, 0.36) while the false alarm rates for the “Left” (“Middle”, “Right”) 
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forecasts were 0.64 (0.41, 0.57). To examine the model’s biases, the threat score and bias were 

calculated for each class. The “Left” (“Middle”, “Right”) forecasts had a threat score of 0.28 

(0.35, 0.24) and a bias of 1.56 (0.79, 0.85). The threat scores for an equal-frequency random 

forecast based on the climatology of each class produced 95th percentiles of 0.147-0.150 (0.363-

0.367, 0.116-0.123) for the “Left” (“Middle”, “Right”) classes. When considering this, the model 

proved to be skillful when predicting “Left” and “Right” classes because it’s threat scores were 

outside of the 95th percentiles of 1000 randomly produced forecasts. In addition, the model was 

not skillful when predicting “Middle” cases since the threat score was less than the 95th 

percentiles. These numbers also indicate that the model has a “Left” bias, meaning that there 

were more “Left” forecasts than actual events. The model underpredicts “Middle” and “Right” 

cases and, to a lesser extent, it overpredicts the “Left” cases. This is likely due to the fact that 

when the cases were selected for training, despite efforts to balance numbers on each category, 

there were still more “Left” cases than in the two other classes.  

 To make sure the model is not fitting to the noise, the analysis is broken down into 

performance stratified by both the training dataset and the validation dataset (Tables 4 and 6). 

Neither dataset includes the 135 “Middle” cases that were excluded to develop relatively even 

track change categories. From the 319 remaining cases, the training dataset was gathered by 

randomly selecting two-thirds of the cases and the validation dataset consists of the remaining 

one-third. In both cases, the percent correct (Training: 46.7% and Validation: 48.6%) and the 

Heidke skill score (Training: 0.19 and Validation: 0.21) were higher than when the model was 

used on all of the cases (Seen in Tables 5 and 7). One possible reason that these numbers are 

higher than the model for all of the cases is that when all cases are considered, only “Middle” 

cases are added back in. The “Middle” cases did not have the best threat scores and bias in the 
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training dataset so it likely decreased the skill of the model adding those back in. To assess the 

skill and biases of the model, threat scores and biases were calculated for each of the three 

tracks. For the training dataset, the “Left” (“Middle”, “Right”) forecasts had a threat score of 

0.36 (0.27, 0.28) and a bias of 1.09 (1.27, 0.61). This analysis deviates from the analysis for all 

of the cases because the model’s skill is best when forecasting “Left” cases while the slight 

overprediction bias is much smaller than for all of the cases. The model predicts the “Right” 

cases with better skill but it has a significant underprediction of these events. Where the model 

performs worse, is the “Middle” cases because the threat score drops nearly 0.08 when compared 

to all cases and it switches to an overprediction bias. The validation dataset is very similar to the 

training dataset as the “Left” (“Middle”, “Right”) forecasts had a threat score of 0.35 (0.3, 0.3) 

and a bias of 1.1 (1.11, 0.71). In fact, the threat scores increase while the bias decreases for the 

“Middle” and “Right” cases. The increased threat scores and decreased bias likely is a result of 

the relatively even cases in each of the three track change classes.  

 Next, a sensitivity analysis was performed on each variable to determine its significance 

within the model. The first method attempted for sensitivity analysis was to fit the six 

(independent) variables within the neural network into a (linear) stepwise multivariate regression 

model with the neural network model’s probability of a certain track change as the dependent 

variable. For each of the three different track changes, four variables were statistically significant 

as they had a p-value of less than 0.01. The only variable to be statistically significant for each 

track change was surface-500hPa mean wind. Conversely, there were no variables that were not 

at least once statistically significant.  

 Figures (5 through 7) show the four statistically significant variables for each of the three 

possible track changes. For the “Left” cases, the variable that appears to have the best correlation 
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is surface-500hPa mean wind. The stronger the surface-500hPa mean wind, the more likely the 

model is to predict that the system will track to the “Left”. The rest of the variables do not seem 

to have any correlation except for a possible slight correlation between higher equivalent 

potential temperature difference and a better probability to track “Left”.  

 For the “Middle” cases, there appears to be weak correlations between the variables and 

the probabilities. The only case you can make is the surface-500hPa mean wind has a slight 

correlation between weaker winds and having a higher chance of tracking in the “Middle”. For 

the “Right” cases, correlation seems present in surface-500hPa mean wind in which it shows that 

weaker wind leads to the model predicting a better chance that the system will move to the 

“Right”. There may also be weak correlation between lower values of equivalent potential 

temperature difference (higher values of most unstable CAPE) and a higher chance of a “Right” 

track.  

 Based on these correlations, a slightly different sensitivity analysis was performed to 

further investigate their ability to predict the track of an MCS. The median of each of the 6 

parameters was chosen as a baseline for this analysis. To test the sensitivity of 4 of the correlated 

variables, their values were modified one by one. For example, to test the sensitivity of the 

model with respect to surface-500hPa mean wind, arbitrary surface-500hPa mean wind values 

were inputted instead of the median value while the rest of the parameters were held constant. 

The model then calculated the probabilities of each class based on the new surface-500hPa mean 

wind value. Figure 8 shows the results from this analysis for the variables, surface-500hPa mean 

wind, most unstable CAPE, equivalent potential temperature difference, and precipitable water. 

For surface-500hPa mean wind, this reinforces the previous conclusions that smaller (higher) 

values give a greater chance for MCSs to track in the “Middle” and “Right” (“Left”). 
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Furthermore, higher values of equivalent potential temperature difference (precipitable water) 

give a greater chance for MCSs to track to the “Left” (“Middle”) while lower values give a 

greater chance for MCSs to track to the “Right” (“Right”). For most unstable CAPE, there were 

no correlations between higher or lower values and greater probabilities of a certain track.  

When examining parameters individually, surface-500hPa mean wind stands out as the 

parameter that shows the largest difference between the inner quartile range in the three 

categories. Figure 9 shows cases that had weaker mean wind were more likely to move to the 

right than cases that had relatively stronger mean wind. The other parameters did not show any 

clear differences between the inner quartile ranges of the three possible movements.  

Once this analysis was completed, an attempt was made to add other variables to improve 

the artificial neural network. 1000-500hPa thickness was added along with surface-500hPa mean 

wind direction. Unfortunately, these parameters were unsuccessful in improving the artificial 

neural network. Since multiple papers, such as Merritt and Fritsch (1984), have found that MCSs 

typically follow thickness gradients, the 1000-500hPa thickness was stratified into three sections 

to account for the gradient. The thickness at point 1 (4,7) was subtracted by the thickness at point 

3 (6,9) to develop a gradient in the path of the MCS. This new parameter was also ineffective in 

improving the model. 

 

A. Case study 

Three case studies, one for each track change, were evaluated to assess the usefulness of 

the model. The “Right” mover case occurred on June 23, 2009 as an MCS developed over 

northwest Iowa and Southwest Minnesota and began tracking eastward (Figure 10). Over the 
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next 6 hours the MCS began to deviate to the right and finally began to weaken in extreme 

southeastern Iowa. Table 8 shows that the model correctly predicted the MCS to have a track 

change to the “Right” for 4 hours. The below average surface-500hPa mean wind is likely the 

biggest reason as to why it deviated to the right since all hours had negative values of mean 

wind. Figure 11 shows the mesoanalysis archive 850-300hPa mean winds at 18 UTC which were 

very light. An application of the model in this case would be to consider these light mean winds 

and realize that the system likely has a much higher chance of deviating to the right than other 

MCSs. The other parameter that may give some insight into why the MCS tracked to the “Right” 

is the equivalent potential temperature difference which was near zero or below zero in many of 

the hours. This may indicate that the system had limited cold pool potential and that other factors 

like CAPE may have played a bigger role in determining the track of the system.    

The second case occurred on June 12, 2009 as an MCS developed over south-central 

Kansas heading east-southeastward. Surface-500hPa mean winds in this case were near zero for 

nearly every hour which was a factor in the model correctly predicting that the MCS would track 

in the “Middle” path (Figure 12). The 850-300hPa mean wind seen in Figure 13 shows that this 

system had an environment with moderate mean winds which helped it maintain the path it was 

on. Since lower values of the surface-500hPa mean wind make a track to the “Middle” and the 

“Right” more likely, other variables are needed to determine the track change (Table 9). In this 

case, the equivalent potential temperature difference being positive and near 5 means that it is 

associated with lower probabilities on tracking “Right”.  The other 4 parameters had values near 

zero as well meaning there was no strong indication that this system would deviate “Right” or 

“Left”.  
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The last case occurred on April 26, 2011 as an MCS developed over southwestern 

Arkansas moving northeastward. This system tracked to the “Left” due in large part to the 

relatively strong mean wind (Figure 14). The surface-500hPa mean wind values for each hour of 

the case were 0.3 and 0.5 m/s which falls in the area of enhanced probabilities for the system to 

track “Left” (Table 10). Figure 15 shows that the 850-300hPa mean wind was much stronger in 

the this case than the other two.  

The sensitivity analysis and the case studies reveal that the strength of the surface-500hPa 

mean wind can help delineate between whether a case will track “Left” and when it will track to 

the “Middle” or “Right”. One possible physical reason for this is that the cases with stronger 

surface-500hPa mean wind may be identified as a system similar to a serial derecho as described 

in Johns and Hirt (1987). These systems typically are associated with an extended squall line 

with line-echo wave patterns and a well-defined, migratory low pressure system, hence the better 

likelihood for stronger surface-500hPa mean winds. When the surface-500hPa mean wind is 

weaker, the MCSs may be similar to progressive type derechos as explained by Johns and Hirt 

(1987). These systems typically have one bow echo and form along a stationary front in a 

stagnant upper level pattern.  

Perhaps the most difficult decision that forecasters using these results would have, would 

be to determine between a “Middle” and “Right” track change. This is because the lower the 

surface-500hPa mean wind, the more likely the MCS is to travel to the “Middle” and the 

“Right”. In these cases where the surface-500hPa mean wind is light, it is best to look at a 

combination of parameters because one parameter does not stand out above the rest. The 

sensitivity analysis revealed that lower equivalent potential temperature differences at point 2 

increase (decrease) the chance for a system to track “Right” (“Middle”). In addition, precipitable 
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water values at point 8 greater than 5 (less than -5) increases the probability that the system 

tracks in the “Middle” (“Right”). Errors when using this forecast model to predict a “Middle” 

case versus a “Right” case do not always fall in the “Middle” or “Right”. In other words, while 

errors when predicting “Right” cases often end up with the highest probability being in the 

“Middle” class (38) versus “Left” cases (8), more errors end up in the “Left” class (44) than the 

“Right” class (35) when predicting the “Middle” class.”  
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IV. CONCLUSIONS AND DISCUSSION 

 

 This study looked at RUC analysis parameters from the years 2007 to 2011 in an attempt 

to improve the forecasting process for MCS track changes. Since (linear) stepwise multiple 

regression models were unsuccessful in developing a useful model, an artificial neural network 

model was developed. This model incorporated the parameters, precipitable water at point 8, 

most unstable CAPE at point 5, 700hPa temperature at point 4, surface-500hPa mean wind at 

point 6, equivalent potential temperature difference at point 2, and 700-500hPa lapse rate at point 

4. This model had a threat score of 0.30 and a Heidke skill score of 0.156 which demonstrates 

relatively small skill but compares favorably to other warm season forecasts. When considering 

each of the three classes, the model had the best threat score when predicting the “Middle” cases 

and the worst threat score when predicting “Right” cases. In addition, it had a considerable 

overforecasting bias for “Left” cases and a underforecasting bias for “Middle” and “Right” cases.  

Perhaps the most useful product of this study was showing the importance of the surface-

500hPa mean wind on predicting the change in track of MCSs. In cases where the surface-

500hPa mean wind at point 6 is higher than zero, there is a better chance for MCSs to track 

“Left” and the chances increase with higher surface-500hPa mean winds values. Surface-500hPa 

mean wind below zero increases the probability that the MCS will track to the “Middle” or 

“Right”.  

Other parameters performed relatively poorly during the sensitivity analysis. The only 

other parameters that indicated they were useful in predicting the track of an MCS were 

equivalent potential temperature difference and most unstable CAPE. Lower values of equivalent 
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potential temperature difference and higher values of most unstable CAPE were weakly 

correlated with a higher chance of a “Right” track. 

 It is important to note that this method for predicting the track of MCSs is limited in that 

it is only looking out ahead of the systems. The environment within and behind the MCS plays a 

large role in the evolution of the system. Therefore, any model developed based on the 

parameters out ahead of an MCS cannot be the only product considered when forecasting its 

track. Nonetheless, this study proved that a skillful model can be developed based solely on the 

meteorological parameters ahead of an MCS. Other limitations include the possibility that the 

environment may change within the 3 hours that is required to determine the track change. 

Environments can change drastically within a matter of an hour and this can influence the track 

of the system which would not be captured within the model in this study.  

 The results from this study also indicate that there is a need for future work to enhance 

the forecast process on this problem. Future studies can use a newer, higher resolution numerical 

model, like the Rapid Refresh model, to assess the atmosphere better than the RUC 20km used in 

this study. It also may be worthwhile to stratify cases into different types of MCS environments. 

For example, cases can be stratified into the two types of environments that Johns and Hirt 

(1987) documented for derechos (a subset of MCSs): serial derecho environments which have 

relatively strong forcing with the derecho developing ahead of a cold front; and progressive 

derecho environments which have relatively weak forcing and derechos developing along 

stationary fronts.  

 Other parameters or calculations could be used to further improve the model. For 

example, different levels of mean wind can be used than the surface-500hPa column used in this 

study. Downdraft CAPE could be considered along with other composite parameters like the 
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probability of MCS maintenance or the energy-helicity index. Finally, arbitrarily selected aspects 

of this study could be reconsidered like the 3-hour time step to determine the track change in an 

MCS and the 25km distance from the leading edge of the MCS to the line where the 

meteorological parameters were collected. A useful study may be to consider longer-lived MCSs, 

like derechos, and to lengthen the time step for determining the track change. This might 

improve the track changes for higher impact events that represent a substantial forecast 

challenge.  
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Figure 1. Histogram of the longevity in hours of each MCS event.  
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Figure 2. An MCS deviating 20 degrees to the right of the original track.  

 

 

 

 

 

 

. 

20° 

. 

. 



24 

 

 

 

Figure 3. A depiction of the line in which that RUC model data is gathered from. Point 1 is the 

leftmost point, point 9 is the rightmost point. There is 20km between each point and the length of 

the line is 160km.  
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Parameter Calculation Units 

Low-level Equivalent Potential 

Temperature (Θ𝑒) Difference 

Surface Θ𝑒 – minimum Θ𝑒 in atmosphere at 600hPa and 

below 
K 

850hPa Wind Direction with respect to 

MCS motion 
850hPa wind direction – MCS direction Degrees 

700-500hPa Lapse Rate 700hPa temperature – 500hPa temperature C 

Sfc-500hPa Mean Wind Speed 
Finding the sum of the u and v components from sfc to 

500hPa and calculating their magnitude 
M/S 

300hPa Wind Speed Model output M/S 

850hPa Wind Speed Model output M/S 

Most unstable CAPE Model output J/KG 

Surface based CAPE Model output J/KG 

Most unstable CIN Model output J/KG 

Surface based CIN Model output J/KG 

Boundary Layer Storm Relative Helicity Model output 𝑀2/𝑆2 

Precipitable Water Model output Kg/𝑀2 

Surface-500hPa Wind Shear Speed 
Finding the magnitude of the winds after taking the difference 

between the sfc and 500hPa u and v components. 
M/S 

700hPa Temperature Model output C 

850hPa Temperature Model output C 

700hPa Relative Humidity Model output % 

850hPa Relative Humidity Model output % 

Sfc-500hPa Mean Wind Direction with 

respect to MCS motion 
Surface-500hPa mean wind direction – MCS direction Degrees 

1000-500hPa Thickness 1000hPa height - 500hPa height M 

1000-500hPa Thickness Gradient Thickness at point 3 (6,9) – thickness at point 1 (4,7) M 
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Table 1. The 20 meteorological parameters that were included in this study, their calculations, 

and their units are displayed in the three columns of the table.  

 

 

 

Figure 4. Schematic diagram of a neural network model from Roebber et al. (2003).  This model 

has single-hidden-layer with D (6) inputs, K (21) hidden layer processing elements and M (3) 

outputs.  
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Predicted Class 

A
ct

u
a
l 

C
la

ss
 

 
Left Middle Right Total 

Left 65 44 8 117 

Middle 93 112 38 243 

Right 25 35 34 94 

Total 183 191 80 454 

 

Table 2. Contingency table of the artificial neural network model for all cases.  

 

 All Cases 

Heidke Skill Score 0.15637904 

Threat Score 0.30272597 

 

Percent Correct 46.4757709 

 

 Left Middle Right 

Probability of Detection 0.55555556 0.46090535 0.36170213 

False Alarm Rate 0.64480874 0.41361257 0.575 

Threat Score 0.27659574 0.34782609 0.24285714 

Bias 1.56410256 0.78600823 0.85106383 

 

Table 3. List of different skill scores and statistical analyses for all cases.  
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 Predicted Class 

A
ct

u
a
l 

C
la

ss
 

 Left Middle Right Total 

Left 43 29 5 77 

Middle 25 34 12 71 

Right 16 27 23 66 

Total 84 90 40 214 

 

Table 4. Contingency table of the artificial neural network model for the training dataset. 

 

 All Cases 

Heidke Skill Score 0.19479834 

 

Threat Score 0.30487805 

 

Percent Correct 46.728972 

 

 Left Middle Right 

Probability of Detection 0.55844156 0.47887324 0.34848485 

False Alarm Rate 0.48809524 0.62222222 0.425 

Threat Score 0.36440678 0.26771654 0.27710843 

Bias 1.09090909 1.26760563 0.60606061 

 

Table 5. List of different skill scores and statistical analyses for the training dataset. 
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Predicted Class 

A
ct

u
a
l 

C
la

ss
 

 
Left Middle Right Total 

Left 22 15 3 40 

Middle 13 18 6 37 

Right 9 8 11 28 

Total 44 41 20 105 

 

Table 6. Contingency table of the artificial neural network model for the validation dataset. 

 

 All Cases 

Heidke Skill Score 0.21118531 

Threat Score 0.32075472 

Percent Correct 48.5714286 

 Left Middle Right 

Probability of Detection 0.55 0.48648649 0.39285714 

False Alarm Rate 0.5 0.56097561 0.45 

Threat Score 0.35483871 0.3 0.2972973 

Bias 1.1 1.10810811 0.71428571 

 

Table 7. List of different skill scores and statistical analyses for the validation dataset.  
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Figure 5. (a)-(d) Scatter plots with the dependent variable on the y axis indicating the probability 

for an MCS to track “Left” and the independent variable (a) surface-500hPa mean wind, (b) 700-

500hPa lapse rates, (c) equivalent potential temperature difference, and (d) precipitable water.  

 

 

 

A) 
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B) 
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Figure 6. (a)-(d) Scatter plots with the dependent variable on the y axis indicating the probability 

for an MCS to track “Middle” and the independent variable (a) 700-500hPa lapse rates, (b) 

surface-500hPa mean wind, (c) 700hPa temperature, and (d) precipitable water.  
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Figure 7. Scatter plots with the dependent variable on the y axis indicating the probability for an 

MCS to track “Middle” and the independent variable (a) surface-500hPa mean wind, (b) 

equivalent potential temperature, (c) most unstable CAPE, (d) 700hPa temperature. 
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Figure 8. (a)-(d) Plots with the dependent variable on the y axis indicating the probability for an 

MCS to track “Left” in blue, “Middle” in red, and “Right” in green, and the independent variable 

(a) surface-500hPa mean wind, (b) most unstable CAPE, (c) equivalent potential temperature, (d) 

precipitable water. 
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Figure 9. Box plot with the surface-500hPa mean wind as the dependent variable and the “Left” 

(1), “Middle” (2), and “Right” (3) as the independent variables.  

 

 

 

 

 

 

 

 



35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. (a)-(d) Base reflectivity for the June 23, 2009 MCS at (a) 17 UTC, (b) 19 UTC, (c) 21 

UTC, (d) 23 UTC. These were gathered from http://www2.mmm.ucar.edu/imagearchive/.  

 

 

 

 

A) B) 

C) D) 



36 

 

 

Table 8. The 6 meteorological parameters that were included in the neural network, in addition 

to, the actual and forecast class, the angle of deviation, and hits for the June 23, 2009 MCS. A hit 

of 1 indicates the actual and forecast track were identical while a 0 means they were different.  

 

 

Time 

(UTC) 

Actual 

Class 

Degree of 

Deviation 

700hPa 

Temp 

Precip 

Water 

MU 

CAPE 

Sfc-

500hPa 

Mean 

Wind 

700-

500hPa 

Lapse 

Rates 

Theta-

e Dif 

Forecast 

Class 

Hit 

00Z 1 -18.52 -0.22 -2.62 62.08 0.5 -0.15 -0.42 1 1 

01Z 1 -24.57 0.25 -0.72 -6.95 0.5 0.04 0.26 1 1 

02Z 2 1.73 0.15 0.22 -499.22 0.4 -0.03 1.89 1 0 

03Z 2 -2.14 0.4 3.9 436.8 0.46 0.07 5.7 1 0 

04Z 1 -10.21 0.47 0.25 549.9 0.33 0.17 4.54 1 1 



37 

 

 

 

Figure 11. June 23, 2009 850-300hPa mean wind at 18 UTC.  
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Figure 12. (a)-(d) Base reflectivity for the June 12, 2009 MCS at (a) 13 UTC, (b) 15 UTC, (c) 17 

UTC, (d) 19 UTC. These were gathered from http://www2.mmm.ucar.edu/imagearchive/. 
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Time 

(UTC) 

Actual 

Class 

Degree of 

Deviation 

700hPa 

Temp 

Precip 

Water 

MU 

CAPE 

Sfc-

500hPa 

Mean 

Wind 

700-

500hPa 

Lapse 

Rates 

Theta-e 

Dif 

Forecast 

Class 

Hit 

13Z 2 2.95 -0.01 -1.23 -270.98 -0.09 0.23 2.7 2 1 

14Z 2 -2.91 0.1 -2.32 498.64 -0.28 0.29 4.72 2 1 

15Z 2 5.45 0.11 -1.22 -231.27 -0.32 0.13 1 2 1 

16Z 2 -1.97 -0.09 -2 -12.78 -0.51 -0.03 0.11 2 1 

17Z 2 -0.52 -0.01 -0.52 207.49 -0.68 -0.03 1.91 2 1 

18Z 2 5.65 -0.11 -1.18 47.89 -0.67 -0.09 1.05 2 1 

19Z 2 -1.66 0.2 -2.5 -123.36 -0.26 0 4.84 2 1 

20Z 2 -0.11 0.25 -4.42 -219.4 0.02 0.02 4.72 1 0 

21Z 2 -1.06 0.17 -2.78 -262.99 -0.29 0.12 5.99 2 1 

22Z 2 -2.05 0.31 0.12 257.01 0.22 0.15 5.42 1 0 

23Z 2 5.09 0.42 3.46 275.2 0 0.23 5.53 2 1 

00Z 3 17.23 0.29 2.16 769.57 0.06 0.09 1.67 2 0 

 

Table 9. The 6 meteorological parameters that were included in the neural network, in addition 

to, the actual and forecast class, the angle of deviation, and hits for the June 12, 2009 MCS. A hit 

of 1 indicates the actual and forecast track were identical while a 0 means they were different. 
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Figure 13. June 12, 2009 850-300hPa mean wind at 15 UTC. 
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Figure 14. (a)-(d) Base reflectivity for the April 26, 2011 MCS at (a) 00 UTC, (b) 02 UTC, (c) 

04 UTC, (d) 06 UTC. These were gathered from http://www2.mmm.ucar.edu/imagearchive/. 
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Time 

(UTC) 

Actual 

Class 

Degree of 

Deviation 

700hPa 

Temp 

Precip 

Water 

MU 

CAPE 

Sfc-

500hPa 

Mean 

Wind 

700-

500hPa 

Lapse 

Rates 

Theta-

e Dif 

Forecast 

Class 

Hit 

16Z 3 20.92 0.22 -5.82 -1164.6 -0.46 0.09 2.49 2 0 

17Z 3 31.51 -0.12 -7.39 -284.39 -0.43 -0.05 6.07 3 1 

18Z 3 58.76 -0.32 -9.01 332.94 -0.89 -0.13 -1.41 3 1 

19Z 3 12.12 0.37 0.65 75.3 -0.9 0.26 -4.4 3 1 

20Z 3 12.54 0.3 0.8 -21.64 -1.53 0 -3.75 3 1 

21Z 2 -3.85 0.17 0.75 -949.57 -0.58 -0.03 -6.16 3 0 

 

Table 10. The 6 meteorological parameters that were included in the neural network, in addition 

to, the actual and forecast class, the angle of deviation, and hits for the April 26, 2011 MCS. A 

hit of 1 indicates the actual and forecast track were identical while a 0 means they were different. 

 

 



43 

 

 

Figure 15. April 26, 2011 850-300hPa mean wind at 01 UTC. 
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VI. APPENDIX 

 

a. Artificial Neural Network Input Node Equations  

Note: Lapse_R_4 is the 700-500hPa lapse rate at point 4 (the description of numbering the points 

can be found in the methodology), Mean_W_6 is the surface-500hPa mean wind at point 6, 

Temp_700_4 is the 700hPa temperature at point 4, Precip_W_8 is the precipitable water at point 

8, and the CAPE_MU_5 is the most unstable CAPE at point 5.  

Node 1:  

TanH(0.5 * ((-0.312998195383049) + (-0.861639799434503 * Lapse_R_4) + 

(-0.0854010075421984 * Mean_W_6) + 0.177413848260043 * Temp_700_4 + 

(-0.0806514109025484 * Precip_W_8) + 0.000663438005474068 * CAPE_MU_5 

+0.123558427048433 * ThetaE_Dif_2)) 

 

Node 2: 

TanH(0.5 * (0.383018716662308 + (-1.56999121351854 * Lapse_R_4) + 1.16517715719708 * 

Mean_W_6 + (-1.04543837486005 * Temp_700_4) + 0.119230955376078 * Precip_W_8 

+(-0.000779638959420064 * CAPE_MU_5) + (-0.0542058801069476 * ThetaE_Dif_2))) 

 

Node 3: 

TanH(0.5 * ((-0.186294552778093) + (-0.0470495460843277 * Lapse_R_4) 

+0.667055561257761 * Mean_W_6 + 0.511011300749929 * Temp_700_4 

+0.1701691560616 * Precip_W_8 + 0.000813546351020121 * CAPE_MU_5 

+0.257857195872967 * ThetaE_Dif_2)) 

 

Node 4:  

TanH(0.5 * ((-0.0600934641536502) + 0.0800981853601172 * Lapse_R_4 + 

(-0.480270389728447 * Mean_W_6) + (-0.563610011886647 * Temp_700_4) 

+0.0191958321661417 * Precip_W_8 + 0.00158976207810333 * CAPE_MU_5 

+0.0205571519397239 * ThetaE_Dif_2)) 

 

Node 5:  

TanH(0.5 * (0.210715537550994 + (-3.3037579744206 * Lapse_R_4) + (-1.92234749554859 * 

Mean_W_6) + (-1.81077937098855 * Temp_700_4) + (-0.0406344146213817 * Precip_W_8) 

+ (-0.000318656425172095 * CAPE_MU_5) + 0.0616277778551394 * ThetaE_Dif_2)) 

 

Node 6:  
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TanH(0.5 * (0.566241472496902 + (-2.66795414568064 * Lapse_R_4) + 0.314602205449724 * 

Mean_W_6 + (-2.29773087788169 * Temp_700_4) + (-0.0591218307783031 * Precip_W_8) 

+ (-0.000809842044393637 * CAPE_MU_5) + (-0.0336908991895603 * ThetaE_Dif_2))) 

 

Node 7:  

TanH(0.5 * (0.0316268460309597 + (-1.48122424256465 * Lapse_R_4) + 0.465996790016292 

* Mean_W_6 + 1.088589419108 * Temp_700_4 + (-0.0018184597043054 * Precip_W_8) 

+ (-0.000912278243020361 * CAPE_MU_5) + (-0.000611144923158101 * ThetaE_Dif_2))) 

 

Node 8: 

TanH(0.5 * (0.148687273277041 + (-1.62562753304091 * Lapse_R_4) + (-0.283396658708113 

* Mean_W_6) + (-0.555096540145314 * Temp_700_4) + (-0.148477561329891 * 

Precip_W_8) + 0.0000141407539487639 * CAPE_MU_5 + (-0.0227980068862207 * 

ThetaE_Dif_2))) 

 

Node 9: 

TanH(0.5 * (0.489575452667522 + (-2.11971030898637 * Lapse_R_4) + (-1.55942450058709 * 

Mean_W_6) + (-2.87096553246257 * Temp_700_4) + (-0.332167929941937 * Precip_W_8) 

+ 0.000220485678940086 * CAPE_MU_5 + (-0.0279419457191649 * ThetaE_Dif_2))) 

 

Node 10: 

TanH(0.5 * (0.537243108135552 + (-2.67181952355903 * Lapse_R_4) + 1.20786565676066 * 

Mean_W_6 + (-0.416671585072205 * Temp_700_4) + (-0.024209295817086 * Precip_W_8) 

+ 0.0000056327581337879 * CAPE_MU_5 + 0.0142685006227867 * ThetaE_Dif_2)) 

 

Node 11: 

TanH(0.5 * ((-0.42254999609531) + 0.110842345928629 * Lapse_R_4 + (-1.53844826265695 

* Mean_W_6) + 1.34880464199006 * Temp_700_4 + 0.229050620764187 * Precip_W_8 

+ 0.000113019914537344 * CAPE_MU_5 + 0.104261978711348 * ThetaE_Dif_2)) 

 

Node 12: 

TanH(0.5 * ((-0.584457763284563) + 2.51342014612925 * Lapse_R_4 + (-1.21631400303524 

* Mean_W_6) + 0.731219185865046 * Temp_700_4 + (-0.111530831783616 * 

Precip_W_8) + (-0.00127552854617491 * CAPE_MU_5) + (-0.0707438684258752 * 

ThetaE_Dif_2))) 

 

Node 13: 

TanH(0.5 * (0.503475255438858 + (-5.18303347553372 * Lapse_R_4) + 0.572540539257258 * 

Mean_W_6 + (-0.932050685394089 * Temp_700_4) + (-0.384050204468855 * Precip_W_8) 

+ (-0.000577611854872146 * CAPE_MU_5) + 0.117398209333869 * ThetaE_Dif_2)) 

 

Node 14: 

TanH(0.5 * (0.163175824147292 + 1.8349506447891 * Lapse_R_4 + 1.42270142763081 * 

Mean_W_6 + (-1.26721164883268 * Temp_700_4) + 0.114484115138127 * Precip_W_8 
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+(-0.00159681527101823 * CAPE_MU_5) + 0.0210234800054395 * ThetaE_Dif_2)) 

 

Node 15: 

TanH(0.5 * ((-1.00627285132541) + 1.66933077833997 * Lapse_R_4 + (-0.31787020791916 

* Mean_W_6) + 1.97422489816946 * Temp_700_4 + 0.171944191199688 * Precip_W_8 

+ 0.00104565302751889 * CAPE_MU_5 + (-0.101171193957345 * ThetaE_Dif_2))) 

 

Node 16: 

TanH(0.5 * ((-0.826465446872852) + 8.54478762224928 * Lapse_R_4 + (-2.30654367418613 

* Mean_W_6) + 1.10196681058728 * Temp_700_4 + 0.0387464031470233 * Precip_W_8 

+ 0.000979891581797218 * CAPE_MU_5 + 0.0133596879350648 * ThetaE_Dif_2)) 

 

Node 17: 

TanH(0.5 * ((-0.132844269500526) + 3.36238141985796 * Lapse_R_4 + (-0.18757291590434 

* Mean_W_6) + (-1.01810714611921 * Temp_700_4) + (-0.0619488278162703 * 

Precip_W_8) + 0.000301508652212921 * CAPE_MU_5 + 0.0657979050148123 * 

ThetaE_Dif_2)) 

 

Node 18: 

TanH(0.5 * (0.151987159218665 + (-3.750374006312 * Lapse_R_4) + (-0.364717515552427 * 

Mean_W_6) + (-1.12755869585317 * Temp_700_4) + 0.127794325906269 * Precip_W_8 

+(-0.000443322207737791 * CAPE_MU_5) + (-0.140102638338899 * ThetaE_Dif_2))) 

 

Node 19: 

TanH(0.5 * ((-0.140702880341922) + (-0.0238085123895683 * Lapse_R_4) 

+0.255208568523875 * Mean_W_6 + 1.35112920571401 * Temp_700_4 + 

(-0.150235636163027 * Precip_W_8) + (-0.000924658951904272 * CAPE_MU_5) 

+0.0352787128783076 * ThetaE_Dif_2)) 

 

Node 20: 

TanH(0.5 * (0.187648951167735 + (-2.91974681638891 * Lapse_R_4) + 0.103504494210068 * 

Mean_W_6 + (-0.545225986543171 * Temp_700_4) + (-0.00298302399092736 * 

Precip_W_8) + 0.000168823830861263 * CAPE_MU_5 + (-0.0900618807552676 * 

ThetaE_Dif_2))) 

 

Node 21: 

TanH(0.5 * (0.287769091659785 + 0.924746475018714 * Lapse_R_4 + (-2.07262749419797 * 

Mean_W_6) + 0.365300014743662 * Temp_700_4 + (-0.0722142421750039 * Precip_W_8) 

+ (-0.0000282842950385927 * CAPE_MU_5) + 0.0309237570721295 * ThetaE_Dif_2)) 
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b. Artificial Neural Network Probability Equations for each Class 

Equation for Class 1 (Left(-Moving): 

Note: H1_1 is the first node, H1_2 is the second node, and so on.  

Exp(0.207527951383221 + 0.187706412677864 * H1_1 2 + (-0.152881570942793 * H1_2 2) 

+ (-0.401716546254537 * H1_3 2 + (-0.789563997499046 * H1_4 2) + 

(-0.854821043761416 * H1_5 2) + (-0.874866113680077 * H1_6) + 0.743118602937288 * 

H1_7 + 0.247494449981411 * H1_8 + 0.759785189112915 * H1_9 

+0.0781389394430124 * H1_10 + 1.19683171841811 * H1_11 + (-1.58807277127848 * 

H1_12) + 1.81588500801269 * H1_13 + 0.850944364753991 * H1_14 + 

(-0.499641858036212 * H1_15) + 1.6164183637284 * H1_16 + 0.104889430270215 * 

H1_17 + 0.991828188256044 * H1_18 + (-0.291680322804769 * H1_19) + 

(-0.0687173631533351 * H1_20) + (-1.62872485175183 * H1_21) 

) / (1 + Exp( 

0.207527951383221 + 0.187706412677864 * H1_1 2 + (-0.152881570942793 * H1_2 2) 

+ (-0.401716546254537 * H1_3 2) + (-0.789563997499046 * H1_4 2) + 

(-0.854821043761416 * H1_5 2) + (-0.874866113680077 * H1_6) + 0.743118602937288 * 

H1_7 + 0.247494449981411 * H1_8 + 0.759785189112915 * H1_9 

+0.0781389394430124 * H1_10 + 1.19683171841811 * H1_11 + (-1.58807277127848 * 

H1_12) + 1.81588500801269 * H1_13 + 0.850944364753991 * H1_14 + 

(-0.499641858036212 * H1_15) + 1.6164183637284 * H1_16 + 0.104889430270215 * 

H1_17 + 0.991828188256044 * H1_18 + (-0.291680322804769 * H1_19) + 

(-0.0687173631533351 * H1_20) + (-1.62872485175183 * H1_21)) + Exp(0.762584847149082 + 

0.193455925501196 * H1_1 2 + 1.76846564770736 * H1_2 2 

+1.20111870055491 * H1_3 2 + 0.0926587928172754 * H1_4 2 + 0.7242827544073 * 

H1_5 2 + (-1.20163287947958 * H1_6) + 0.832231653576481 * H1_7 

+0.273825133989891 * H1_8 + 1.289426585541 * H1_9 + (-0.202547033096641 * 

H1_10) + (-0.624126056119543 * H1_11) + 0.183644303704899 * H1_12 

+1.60640961889727 * H1_13 + 1.56035627546325 * H1_14 + 1.52709845990362 * 

H1_15 + 1.72549755799604 * H1_16 + (-0.745702367097591 * H1_17) 

+0.236942077816432 * H1_18 + (-0.786011038461368 * H1_19) + (-0.349593421930795 

* H1_20) + (-0.470954274006917 * H1_21))) 

 

Equation for Class 2 (Middle): 

Exp(0.762584847149082 + 0.193455925501196 * H1_1 2 + 1.76846564770736 * H1_2 2 

+1.20111870055491 * H1_3 2 + 0.0926587928172754 * H1_4 2 + 0.7242827544073 * 
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H1_5 2 + (-1.20163287947958 * H1_6) + 0.832231653576481 * H1_7 

+0.273825133989891 * H1_8 + 1.289426585541 * H1_9 + (-0.202547033096641 * 

H1_10) + (-0.624126056119543 * H1_11) + 0.183644303704899 * H1_12 

+1.60640961889727 * H1_13 + 1.56035627546325 * H1_14 + 1.52709845990362 * 

H1_15 + 1.72549755799604 * H1_16 + (-0.745702367097591 * H1_17) 

+0.236942077816432 * H1_18 + (-0.786011038461368 * H1_19) + (-0.349593421930795 

* H1_20) + (-0.470954274006917 * H1_21) 

) / (1 + Exp( 

0.207527951383221 + 0.187706412677864 * H1_1 2 + (-0.152881570942793 * H1_2 2) 

+ (-0.401716546254537 * H1_3 2) + (-0.789563997499046 * H1_4 2) + 

(-0.854821043761416 * H1_5 2) + (-0.874866113680077 * H1_6) + 0.743118602937288 * 

H1_7 + 0.247494449981411 * H1_8 + 0.759785189112915 * H1_9 

+0.0781389394430124 * H1_10 + 1.19683171841811 * H1_11 + (-1.58807277127848 * 

H1_12) + 1.81588500801269 * H1_13 + 0.850944364753991 * H1_14 + 

(-0.499641858036212 * H1_15) + 1.6164183637284 * H1_16 + 0.104889430270215 * 

H1_17 + 0.991828188256044 * H1_18 + (-0.291680322804769 * H1_19) + 

(-0.0687173631533351 * H1_20) + (-1.62872485175183 * H1_21) 

) + Exp( 

0.762584847149082 + 0.193455925501196 * H1_1 2 + 1.76846564770736 * H1_2 2 

+1.20111870055491 * H1_3 2 + 0.0926587928172754 * H1_4 2 + 0.7242827544073 * 

H1_5 2 + (-1.20163287947958 * H1_6) + 0.832231653576481 * H1_7 

+0.273825133989891 * H1_8 + 1.289426585541 * H1_9 + (-0.202547033096641 * 

H1_10) + (-0.624126056119543 * H1_11) + 0.183644303704899 * H1_12 

+1.60640961889727 * H1_13 + 1.56035627546325 * H1_14 + 1.52709845990362 * 

H1_15 + 1.72549755799604 * H1_16 + (-0.745702367097591 * H1_17) 

+0.236942077816432 * H1_18 + (-0.786011038461368 * H1_19) + (-0.349593421930795 

* H1_20) + (-0.470954274006917 * H1_21))) 

 

Equation for Class 3 (Right(-Moving): 

1 / (1 + Exp(0.207527951383221 + 0.187706412677864 * H1_1 2 + (-0.152881570942793 * 

H1_2 2) + (-0.401716546254537 * H1_3 2) + (-0.789563997499046 * H1_4 2) + (-

0.854821043761416 * H1_5 2) + (-0.874866113680077 * H1_6) + 0.743118602937288 * 

H1_7 + 0.247494449981411 * H1_8 + 0.759785189112915 * H1_9 

+0.0781389394430124 * H1_10 + 1.19683171841811 * H1_11 + (-1.58807277127848 * 

H1_12) + 1.81588500801269 * H1_13 + 0.850944364753991 * H1_14 + 

(-0.499641858036212 * H1_15) + 1.6164183637284 * H1_16 + 0.104889430270215 * 

H1_17 + 0.991828188256044 * H1_18 + (-0.291680322804769 * H1_19) + 

(-0.0687173631533351 * H1_20) + (-1.62872485175183 * H1_21) 

) + Exp( 

0.762584847149082 + 0.193455925501196 * H1_1 2 + 1.76846564770736 * H1_2 2 
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+1.20111870055491 * H1_3 2 + 0.0926587928172754 * H1_4 2 + 0.7242827544073 * 

H1_5 2 + (-1.20163287947958 * H1_6) + 0.832231653576481 * H1_7 

+0.273825133989891 * H1_8 + 1.289426585541 * H1_9 + (-0.202547033096641 * 

H1_10) + (-0.624126056119543 * H1_11) + 0.183644303704899 * H1_12 

+1.60640961889727 * H1_13 + 1.56035627546325 * H1_14 + 1.52709845990362 * 

H1_15 + 1.72549755799604 * H1_16 + (-0.745702367097591 * H1_17) 

+0.236942077816432 * H1_18 + (-0.786011038461368 * H1_19) + (-0.349593421930795 

* H1_20) + (-0.470954274006917 * H1_21))) 
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