
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2018

Numerical Solutions of Fractional Nonlinear
Advection-Reaction-Diffusion Equations
Sophia Vorderwuelbecke
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Mathematics Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Vorderwuelbecke, Sophia, "Numerical Solutions of Fractional Nonlinear Advection-Reaction-Diffusion Equations" (2018). Theses and
Dissertations. 1942.
https://dc.uwm.edu/etd/1942

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F1942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1942?utm_source=dc.uwm.edu%2Fetd%2F1942&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


Numerical Solutions of Fractional Nonlinear

Advection-Reaction-Diffusion Equations

by

Sophia Vorderwülbecke

A Thesis Submitted in
Partial Fulfillment of the

Requirements for the Degree of

Master of Science
in

Mathematics

at

The University of Wisconsin-Milwaukee
May 2018



ABSTRACT

Numerical Solutions of Fractional Nonlinear

Advection-Reaction-Diffusion Equations

by

Sophia Vorderwülbecke

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Bruce A. Wade

In this thesis nonlinear differential equations containing advection, reaction and diffusion

terms are solved numerically, where the diffusion term is modelled by a fractional derivative.

One of the methods employed is a finite difference method for temporal as well as spatial

discretization. Furthermore, exponential time differencing schemes under consideration of

different matrix exponential approximations are exploited for the temporal discretization,

whereas finite differences are used for the spatial approximation. The schemes are applied to

the homogeneous Burgers, Burgers-Fisher and Burgers-Huxley equation and compared with

respect to convergence and efficiency in a numerical investigation.

ii



Table of Contents

Motivation 1
1.1 Partial Differential Equations (PDEs) . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Navier-Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Burgers-Huxley’s and Burgers-Fisher’s Equation . . . . . . . . . . . . 3
1.2.3 Space-Fractional Burgers’ Equation . . . . . . . . . . . . . . . . . . . 5

1.3 Numerical Methods for Nonlinear PDEs . . . . . . . . . . . . . . . . . . . . 5

Mathematical Introduction 8
2.1 Fractional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Fractional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Spatial Discretization of Fractional Derivatives . . . . . . . . . . . . . 10

2.2 Approximation of Matrix Exponentials . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Padé Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Real Distinct Poles (RDP) Approximation . . . . . . . . . . . . . . . 13

Numerical Methods 15
3.1 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Discretizations for Fractional Burgers’ Equations . . . . . . . . . . . 16
3.1.2 Matrix-Vector Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Exponential Time Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Time-Stepping Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Spatial Discretization for Fractional Burgers’ Equations . . . . . . . . 24

Numerical Results 27
4.1 Example and its Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Comparison regarding to Convergence and Efficiency . . . . . . . . . . . . . 31

4.2.1 Homogeneous Burgers’ Equation . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Burgers-Fisher’s Equation . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Burgers-Huxley’s Equation with γ = 0.005 . . . . . . . . . . . . . . . 38

iii



Conclusion 40

Bibliography 41

Appendix 44
A Convergence Tables for FETD-CN . . . . . . . . . . . . . . . . . . . . . . . . 44
B Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B.1 Produce Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.2 Produce Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 49
B.3 Convergence and Efficiency . . . . . . . . . . . . . . . . . . . . . . . 52
B.4 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iv



List of Figures

4.1 Comparison of solutions for various α with λ = 1 . . . . . . . . . . . . . . . 28

4.2 Comparison of solutions for various α with λ = 0.1 . . . . . . . . . . . . . . 29

4.3 Comparison of solutions for α = 1.8 and λ = 1 . . . . . . . . . . . . . . . . 31

4.4 Homogeneous Burgers’ equation with λ = 1: convergence plots (left) and

efficiency plots (right) for fractional parameters α = 2.0, 1.9, 1.8, 1.7 (from

top to bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Convergence table for homogeneous Burgers’ equation . . . . . . . . . . . . 34

4.6 Burgers-Fisher’s equation with λ = 1: convergence plots (left) and efficiency

plots (right) for fractional parameters α = 2.0, 1.9, 1.8, 1.7 (from top to bottom) 35

4.7 Burgers-Huxley’s equation with λ = 1: convergence plots (left) and efficiency

plots (right) for fractional parameters α = 2.0, 1.9, 1.8, 1.7 (from top to bottom) 36

4.8 Convergence table for Burgers-Fisher’s equation with λ = 1 . . . . . . . . . 37

4.9 Convergence table for Burgers-Huxley’s equation with λ = 1 . . . . . . . . 38

10 Convergence tables for FETD-CN (λ = 1) . . . . . . . . . . . . . . . . . . 44

11 Convergence tables for FETD-CN (λ = 0.1) . . . . . . . . . . . . . . . . . 45

v



Motivation

1.1 Partial Differential Equations (PDEs)

Partial differential equations are used to model a variety of physical phenomena, such as heat

transfer, fluid dynamics or quantuum mechanics. In applications there are usually relation-

ships between rates of change and some variables or a conservation. Solving those equations,

either analytically or numerically, results usually in good predictions for the given physical

system.

If the relationship is nonlinear in some variables, the equation is called a nonlinear PDE. This

nonlinearity implies a higher complexity of the problem and usually inadequate theoretical

support. With that the equations are harder to solve analytically - in many cases which

involve PDEs it is not possible at all. Following from that, it is not as easy to generalize

from specific applications and to work out a more abstract theory as it is for linear PDEs,

and therefore numerical methods become crucial tools to get solutions of nonlinear PDEs.

1.2 Fluid Dynamics

In this thesis, the main focus will be on nonlinear PDEs related to fluid dynamics. Fluids

can be classified as gases or liquids, which is why common applications of fluid PDEs are in

the context of aero- and hydrodynamics, for example, in models of ocean movement, wind

turbines or jet engines.

1



An important assumption to model fluids is that they are continous, even if they consist

of molecules. This can be justified if a ’macro-scale’ approach is used, where so-called fluid

parcels contain a huge amount of molecules, but mathematically represent an infinitesimal

volume with constant properties. Further characterizations help to model the flow of the

fluids properly. Some of them are listed in the following.

• (in)compressible: constant/not constant density of the fluid parcels

• (in)viscous: viscosity/diffusion is (not) considered because viscous forces1 are (not)

dominating inertial forces2 indicated by a low (high) Reynolds number3

• (un)steady: fluid properties are not time-dependent (time-dependent)

• laminar/turbulent: fluid moves smoothly/irregular fluctuations in fluid flow

• (non-)Newtonian: stress4 has (no) linear relationship to strain5

1.2.1 Navier-Stokes Equation

A wide range of fluid flows is governed by the Navier Stokes equations. The momentum in

convective form for Newtonian flows is given by

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p̄+ µ∇2u+

µ

3
∇(∇ · u) + ρg, (1.2.1)

where u denotes the fluid velocity, ρ the density, p̄ the mechanical pressure, µ the dynamic

viscosity and g an external source, for example gravity. Moreover, the mechanical pressure

p̄ can be expressed in terms of the thermodynamical pressure p and volume viscosity ξ by

p̄ = p− ξ∇ · u.

1 dynamic viscosity · velocity/distance · area
2 mass · acceleration
3 helpful to predict flow patterns and defined by the ratio of inertial to viscious forces
4 tensile or compressive loading (force/area)
5 amount of deformation (length of deformation/original length)

2



The operators acting on u are the gradient ∇, divergence ∇· and Laplace operator ∇2. The

nonlinearity, introduced by the advection term u · ∇u and the pressure term, is the main

reason for the modelled fluid velocity solution being hard to find. It is actually one of the

Millenium Prize Problems to prove that there exist global, smooth solutions to the Navier

Stokes equation.

The Navier-Stokes equation in the form given in (1.2.1) can be rewritten as

∂u

∂t
+ u · ∇u = −1

ρ
∇p̄+

µ

ρ
∇2u+

µ

3ρ
∇(∇ · u) + g. (1.2.2)

Incompressibility means, that the density flow is constant, so mathematically, incompress-

ibility results in a non-existent divergence of the flow velocity ∇ · u = 0 and therefore, the

mechanical becomes equivalent to the thermodynamical pressure. Furthermore, in case of

homogeneous fluids, which are characterized by uniform density, the pressure term 1
ρ
∇p can

be expressed as thermodynamic work ∇w, which is also called an internal source. Moreover,

we define the kinematic viscosity v = µ
ρ
. With that, the equation (1.2.2) can be simplified

to

∂u

∂t
+ u · ∇u = v∇2u−∇w + g. (1.2.3)

1.2.2 Burgers-Huxley’s and Burgers-Fisher’s Equation

Dropping the source terms of the incompressible Navier-Stokes equation (1.2.3) leads to the

Burgers equation

∂u

∂t
+ u · ∇u− v∇2u = 0. (1.2.4)

The equation is named after Johannes Martinus Burgers, who developed the equation as

a nonlinear extension of the heat equation by incorporation of the advection term u · ∇u

[Burgers, 1948].

3



The equation (1.2.4) is the viscid Burgers equation, whereas, in case of an absent diffusion

term, it is called inviscous. In the latter case discontinuities in the solution can occur, which

are related to shock waves, see [contributors, 2018]. In contrast to the Navier-Stokes equa-

tion, it is possible to linearize the equation (1.2.4) to the linear parabolic heat equation with

help of the Cole-Hopf transformation [Hopf, 1950], and then to solve it exactly

The equation (1.2.4) is in its homogeneous form, whereas adding an external force field F (u)

called reaction term to the right hand side yields the inhomogeneous Burgers equation

∂u

∂t
+ u · ∇u− v∇u = F (u). (1.2.5)

Let the external source be F (u) = ufi(u) to consider mild nonlinear reactions. The function

fi could be, for example, Huxley’s reaction f1(u) = (1 − u)(u − γ) or Fisher’s reaction

law f2(u) = 1 − u. The standard Fisher’s equation (also called Kolmogorov-Petrovsky-

Piskunov (KPP) equation) is a semi-linear reaction-diffusion equation with f2 as reaction

term, but without the advection term as in Burgers’ equation. It was published by the

biologist Ronald Fisher in the year 1937 in application to population dynamics [Fisher,

1937]. Huxley’s reaction term was also first considered in the context of biology in 1952, to

be specific, in the Hodgin-Huxley model to simulate neural action potentials6 [Hodgkin and

Huxley, 1952]. The combination of f1 or f2 and Burgers’ equation produces traveling wave

solutions, where successive curves of the solutions are displaced by a constant distance in

the temporal variable t. In other words, the wave does not change its shape along the axis

of the spatial variable x, see [Griffiths and Schiesser, 2010].

6 Neural action potentials, also called nerve impulses, are defined by fast changing membrane potentials of
an axon in a cell. Their importance lies in cell-to-cell communication. In that context, a neuron emitting
a potential is commonly known as ’fire’.

4



1.2.3 Space-Fractional Burgers’ Equation

Space-fractional calculus is used to extend existing models with the intention of more applica-

bility. Equations can be improved by including non-local properties by substituting a regular

derivative by a fractional derivative denoted by ∆α/2. The non-locality implies that the so-

lution of (1.2.6) in a certain configuration is not only influenced by the diffusive properties

of the solutions at this point, but also from the surrounding environment. The fractional dif-

ferentiation could be described as ‘continuous differentiation‘, since additionally non-integer

orders of derivatives are considered. In the space-fractional Burgers-Huxley/Burgers-Fisher

equation the non-locality is modelled in the diffusion term.

∂u

∂t
+ u · ∇u− v∆α/2u = F (u) (1.2.6)

1.3 Numerical Methods for Nonlinear PDEs

As already mentioned, nonlinear PDEs seldomly have analytical solutions and the fractional

extension makes them even more complicated to solve. Therefore, there is a great need of

numerical methods. Unfortunately, in contrast to the broad theory regarding approximations

of linear PDE solutions, scientists are still working to understand nonlinear ones. Therefore,

most methods are developed for specific equations, but not for general types.

Possible general ideas to obtain analytic solutions for nonlinear PDEs could be to make use

of symmetries, an ansatz or other tranformations resulting in reduced equations. Indeed, it

is possible to convert the non-fractional Burgers equation (nonlinear) to the heat equation

(linear) with help of the Cole-Hopf transformation by using a nonlinear substitution. If there

is no reduction of the general equation possible, it is helpful to make assumptions, for ex-

ample induced by real-life constraints, and consider a more simple equation, as for example

Burgers’ equation instead of the Navier-Stokes equation.

5



Traveling wave analytical solutions, which for example solve the Burgers-Huxley and Burgers-

Fisher equation, can be calculated with an associated traveling wave method, as direct in-

tegration, factorization or expansion, or residual function method, where in the first step a

solution is assumed, see [Griffiths and Schiesser, 2010].

Generally, numerical methods to solve nonlinear PDEs could be the method of lines, which

transforms a space-time PDE into an ordinary differential equation (ODE), by employing

discretization techniques for the spatial operators like finite differences, volume and element

methods.

By focussing on a special type of equation which involves advection, reaction and diffusion

terms (ARD equations), some theoretical results could be gathered. Especially, in case of

pure advection or diffusion equations a more general theory has been established regard-

ing positivity of the results and also different types of discretizations have been applied

(for example, finite differences or flux-limiting), as can be seen in [Hundsdorfer and Ver-

wer, 1996]. For equations where advection, reaction and diffusion are combined, splitting

schemes have been developed, such a implicit-explicit (IMEX), on which exponential time

differencing schemes are based, or alternating direction implicit (ADI), on which Rosenbrock

methods rely (see [Hundsdorfer and Verwer, 1996]). On top of that, a backward differenti-

ation formula (BDF) method applicable to general parabolic problems has been developed

(see [Vigo-Aguiar et al., 2007]).

Over the years exponential time differencing schemes became popular and more and more

publications arised. Some of them included Padé approximations of matrix exponentials

(see [Khaliq et al., 2009], [Janssen, 2009], [Kleefeld et al., 2012] and [Yousuf et al., 2012])

and also a speed up of these methods was developed, see [Asante-Asamani and Wade, 2016].

6



In contrast to that, some years later the matrix exponentials were approximated by real dis-

tinct poles, as in [Asante-Asamani et al., 2016] in application to reaction-diffusion systems

and [Iyiola and Wade, 2017], [Iyiola et al., 2017] in application to fractional reaction-diffusion

models. Furthermore, new investigations will be published soon regarding methods for sys-

tems of nonlinear space-fractional models with super-diffusion processes in pattern formation

in [Iyiola and Wade, 2018].

The numerical methods used in this thesis are generally applicable to nonlinear advection-

reaction-diffusion PDEs of fractional order. The focus here is set on the homogeneous Burg-

ers, Burgers-Huxley and Burgers-Fisher equation. A finite difference scheme is explained,

which uses finite differences for the spatial as well as temporal approximation of the frac-

tional Burgers equations with non-smooth initial conditions. Furthermore, two exponential

time differencing schemes including a Padé and real distinct poles approximation for the

matrix exponentials are exploited. A numerical investigation is performed to compare the

methods with respect to convergence and efficiency.

7



Mathematical Introduction

In this chapter various mathematical foundations regarding fractional calculus and approx-

imations, used at different stages of the thesis are mentioned. They play an important role

in understanding the numerical methods and results explained in the following chapters.

2.1 Fractional Calculus

As already mentioned in the introductory chapter, fractional calculus, can be understood

as expansion of integer-order to non-integer order integration and differentiation. Since this

results in a more complex theory, there is the need of special functions, on which the theory

can be built on.

2.1.1 Gamma Function

One of the special functions, which is essential to know in fractional calculus is the Gamma

function. This function expands factorials z! in the way, that z could be complex.

Definition 2.1.1. Let z ∈ C, then the Gamma function is defined as

Γ(z) :=

∫ ∞
0

e−ttz−1dt.

Basic properties of the Gamma function are the recursive and the limit definition, needed

for a more convenient way to calculate frational centered differences later.

8



Lemma 2.1.2. Properties of the Gamma function

Γ(z + 1) = zΓ(z)

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
,where Re(z) > 0

Another important function for regular calculus is the exponential function, which is ab-

stracted to fractional calculus by Mittag-Leffler’s definition.

Definition 2.1.3. Let β, z ∈ C and Re(α) > 0, then the Mittag-Leffler function regarding

one/two parameters is definded as

Eα(z) :=
∞∑
k=0

zk

Γ(αk + 1)

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
.

2.1.2 Fractional Derivatives

Fractional derivatives are generally defined as an integer-order derivative of fractionally in-

tegrated term. In the following, let aD
α
xf(x) denote the Riemann-Liouville and Dαf(x) the

Riesz fractional derivative of order α. Let a, b ∈ R and −∞ ≤ a < x < b ≤ ∞.

For the sake of completeness, the general fractional Riemann-Liouville derivative is given by

the following definition.

Definition 2.1.4. Riemann-Liouville

aD
α
xf(x) :=

(
d

dx

)m+1 ∫ x

a

(x− ξ)m−αf(ξ)dξ, where m ∈ N,m ≤ α < m+ 1

For the purposes of this thesis the following definition is sufficient.

9



Proposition 2.1.5. Left/Right-sided Riemann-Liouville

Let Ω = [a, b] × [0, T ], T > 0 and 1 < α ≤ 2. Moreover, assume u(x, t) = 0 forall x /∈ [a, b]

and t ∈ [0, T ]. Under these assumptions the left- and right-sided space-fractional Riemann-

Liouville derivatives become

−∞D
α
x =

1

Γ(2− α)

∂2

∂x2

∫ x

−∞

u(ξ, t)

(x− ξ)α−1
dξ

xD
α
+∞ =

1

Γ(2− α)

∂2

∂x2

∫ ∞
x

u(ξ, t)

(ξ − x)α−1
dξ.

In the numerical methods explained in a later chapter there is made use of the Riesz fractional

derivative defined by (2.1.7) under the same assumptions as for the left/right-sided Riemann-

Liouville propostion. The main disadvantage of the Riemann-Liouville derivative is that the

fractional derivative of a constant is not zero, see [Podlubny, 1998].

Definition 2.1.6. Riesz

Dαu(x, t) :=
−1

2 cos(πα
2

)Γ(2− α)

∂2

∂x2

∫ ∞
−∞

u(ξ, t)

|x− ξ|α−1
dξ ∀(x, t) ∈ Ω. (2.1.7)

The relationship between Riesz and Riemann-Liouville fractional derivatives is given by

Dαu(x, t) = − 1

2 cos(πα/2)
(−∞D

α
x +x D

α
+∞)u(x, t).

2.1.3 Spatial Discretization of Fractional Derivatives

In case of the Riesz’ fractional derivative one way of spatial discretization is using frac-

tional centered differences. Another possible method would be the matrix transfer technique,

see [Podlubny, 1998].

10



Definition 2.1.8. Fractional centred differences

Let f : R→ R, f ∈ L1(R), h > 0 and α > −1, then α-th order fractional centred differences

of f at point x is defined as

∆α
hf(x) :=

∞∑
k=−∞

gαk f(x− kh),∀x ∈ R.

The coefficients are given by

gαk :=
(−1)kΓ(α + 1)

Γ(α/2− k + 1)Γ(α/2 + k + 1)

The coefficicients gαk can be computed in a more convenient way by

gα0 :=
Γ(α + 1)

Γ(α/2 + 1)2

gαk+1 =

(
1− α + 1

α/2 + k + 1

)
gk,∀k ∈ N ∪ {0}

Let Ω = [a, b]× [0, T ], T > 0 and u ∈ C5(Ω). Moreover, we assume u(x, t) = 0 forall x /∈ [a, b]

and t ∈ [0, T ]. For our purpose of 1 < α ≤ 2 the following is satisfied (see [Ortigueira, 2006])

lim
h→0

1

hα
∆α
hu(x, t) = lim

h→0

1

hα

∞∑
k=−∞

gαku(x− kh, t) = Dαu(x, t) +O(h2),∀(x, t) ∈ Ω.

In addition, it is good to know, that gα0 is positive, while all other coefficients are negative.

Furthermore, the coefficients are symmetric around gα0 and the sum of all coefficients is zero.

2.2 Approximation of Matrix Exponentials

In a following chapter a semi-discretized time stepping scheme will be explained, which con-

tains matrix exponentials. Since direct computation of these exponentials consumes a lot of

time, there are at least two possible discretization techniques considered to increase efficiency.

11



2.2.1 Padé Approximation

The first possibility is to use an approximation published by Henri Padé in 1892, see [Padé,

1892].

Definition 2.2.1. Let a function f be represented by a power series f(x) :=
∑∞

l=0 clx
l, where

c0 6= 0. Then the (m,n)th-entry in the Padé-table is

Rm,n(x) :=
Pm,n(x)

Qm,n(x)
,

where Pm,n(x) and Qm,n(x) are power series, cut off at m and n, respectively.

This is a very general definition working for all analytic functions. By considering the power

series representation of the exponential function e−x =
∑∞

k=0(−x)k/k! the following quotients

can be obtained, see [Janssen, 2009].

Proposition 2.2.2. Matrix exponential approximation with Padé

Pm,n(−x) :=
m∑
j=0

(m+ n− j)!m!

(m+ n)!j!(m− j)!
(−x)j

Qm,n(−x) :=
n∑
j=0

(m+ n− j)!n!

(m+ n)!j!(n− j)!
(−x)j

The error of this approximation is Rm,n(−x) = e−x + O(|x|m+n+1) as x → 0, x ∈ C. The

Padé-schemes which will be used later, are

R0,1(−kA) := (I + kA)−1 and R1,1(−kA) := (2I − kA)(2I + kA)−1.

The first one is locally second order convergent, while the second one is second order con-

vergent.

12



2.2.2 Real Distinct Poles (RDP) Approximation

The second approach is to use a function R(x) of the form (2.2.4), instead of Rm,n(x) as

in the Padé approximation. This time the denominator has a different form. The idea in

the context of RDP approximations for ETD schemes is to determine the coefficients to

approximate the Mittag-Leffler function in an appropriate way.

Definition 2.2.3. RDP approximation: Let a1, a2, a3 ∈ R and a2 6= a3, then a real distinct

poles approximating function has the following form:

R(x) :=
1 + a1x

(1− a2x)(1− a3x)
(2.2.4)

By considering the relationships

a1 + a2 + a3 =
Γ(β)

Γ(α + β)
a1 − a2a3 =

Γ(β)

Γ(2α + β)
− Γ(β)

Γ(α + β)
a2

for the coefficients, a second order approximation for the Mittag-Leffler function can be

obtained, i.e. R(x)−Γ(β)Eα,β(x) = Cx3+O(x4), as x→ 0, where C is an error constant. For

Proof and formula of the error constant see [Iyiola and Wade, 2017], [Iyiola et al., 2018], [Voss

and Khaliq, 1995]. To sharply design the coefficients one property of the approximation,

called L-acceptance, is introduced at this point.

Definition 2.2.5. L-acceptance: R(x) is said to be L-acceptable, if |R(x)| < 1 for Re(x) < 0

(A-acceptable) and additionally, |R(x)| → 0 for Re(x)→ −∞.

Specifically for this thesis, the approximation for E1,1(−x) = e−x is of utmost interest. In

that case L-acceptance is immediately apparent, since we know, the exponential is smaller

than one for negative x and also, the smaller x the closer is the exponential to zero. As can

be seen in [Asante-Asamani et al., 2016], this leeds to the following coefficients and final,

almost optimal approximation of the exponentials (see [Voss and Khaliq, 1995]).

13



Proposition 2.2.6. RDP approximation for exponentials

R(−x) = E1,1(−x) = e−x ≈
1− 5

12
x

(1 + 1
4
x)(1 + 1

3
x)

, with the error constant C = 0.0416̄

Furthermore, an essential feature of the RDP approximaton is, that partial fraction expansion

can be used to rewrite the fraction in terms of only simple real poles fractions, since R has

only real poles. Later on, this opens more efficient possibilities to program the numerical

schemes, see section 3.2.1.

14



Numerical Methods

Let Ω = (a, b)× (0, T ), where a, b ∈ R, a < b and T ≥ 0. For initial and boundary conditions

let φ be a function, which maps from the spatial region and ψ1, ψ2 be functions, which

map from the temporal region to the real-valued numbers. Furthermore, ψ1, ψ2 ∈ C1((a, b)).

The solution u, a function mapping from Ω to the real-valued numbers, is assumed to be

sufficiently smooth and satisfying the following PDE for all (x, t) ∈ Ω.

L(u(x, t)) +R(u(x, t)) +N (u(x, t)) = F (u(x, t))

s.t.


u(x, 0) = φ(x) ∀x ∈ (a, b)

u(a, t) = ψ1(t) ∀t ∈ (0, T )

u(b, t) = ψ2(t) ∀t ∈ (0, T )

In this general fractional advection-reaction-diffusion (ARD) equation the fractional differ-

ential operator is denoted by L, the linear differential operator in t by R, the nonlinear

advection operator by N and F is a non-homogeneous source term.

15



Let F (u(x, t)) = u(x, t)fi(u(x, t)) with i = 1, 2 and u ≡ u(x, t). Morover, suppose γ, λ are

positive numbers, γ < 1 and 1 < α ≤ 2. In case of Burgers-Fisher’s with f1 or Burgers-

Huxley’s equation with f2 we get the following terms.

L(u) := − ∂αu

∂|x|α
with 1 ≤ α < 2

R(u) :=
∂u

∂t

N (u) := λu
∂u

∂x

f1(u) := 1− u or f2(u) := (1− u)(u− γ)

3.1 Finite Difference Method

The main idea of finite difference methods is to discretize the region and then use differ-

ence quotients for the approximation of functions on the region, differential operators and

boundary operators specified in differential equations. This leads to equation systems which

can be solved numerically. Since the considered PDEs are of fractional type, we make use of

fractional centered differences as described in section 2.1.3.

3.1.1 Discretizations for Fractional Burgers’ Equations

The discretizations of the regions can be seperated in the spatial mesh, defined by the step-

sizes h = (b − a)/M , where M + 1 is the number of spatial grid points and the temporal

mesh, given by the temporal stepsize τn and the number of meshpoints N + 1. With that,

the discretization of the functions u and f are unj = u(xj, tn) and f(unj ) with xj = a + jh,

j ∈ 0, ...,M and n ∈ 0, ..., N .

16



For the variation in t the backward difference quotient of order 1 is used as approximation.

Furthermore, centred differences of order 2 are used for the spatial derivative, i.e.

∂unj
∂x

=

(
unj+1 − unj−1

)
(2h) +O(h2)

and the fractional term is approximated by fractional centred differences, see section 2.1.3,

which is also of second order. With that, the approximations of the linear differential,

nonlinear advection and fractional differential operator are

R̃(unj ) :=
un+1
j − unj
τn

Ñ (unj ) := λun−1j

unj+1 − unj−1
2h

L̃(unj ) := − 1

hα

M∑
k=0

gαj−ku
n
k .

Using the discretizations the following discrete non-homogeneous Burgers equation

R̃(unj ) + L̃(un+1
j ) + Ñ (un+1

j ) = un+1
j f(unj ) such that


u0j = φ(xj) ∀j ∈ 0, 1, ...,M

un0 = ψ1(tn) = 0 ∀n ∈ 0, 1, ..., N

unM = ψ2(tn) = 0 ∀n ∈ 0, 1, ..., N

can be obtained, where the time steps are choosen in the way that the nonlinearity occurs

in the advection operator, as well as in the source term, see [Maćıas-Dı́az, 2018].

3.1.2 Matrix-Vector Form

By rewriting the approximated non-homogeneous Burgers equation it is possible to obtain a

matrix-vector representation, as can be seen in [Maćıas-Dı́az, 2018], describing a system of

equations, which can be solved numerically.

17



Let An ∈ R(M+1)×(M+1), un ∈ RM+1 and vn ∈ RM+1. With that the equation system is


Anun+1 = vn, ∀n ∈ 0, 1, ..., N − 1

s.t. u0 = u0,

with

u0 =



φ(x0)

φ(x1)

. . .

φ(xM−1)

φ(xM)


, un =



un0

un1

. . .

unM−1

unM


, vn =



ψ1(tn+1)

un1

. . .

unM−1

ψ2(tn+1)


.

The matrix An is relying on the notation

ξnj :=
τn
hα
gα1 −

λτn
2h

unj ηnj := 1 +
τn
hα
gα0 − τnf(nj )

νnj :=
τn
hα
gα1 +

λτn
2h

unj ḡαk :=
τn
hα
gαk ,

and becomes

An =



1 0 0 0 . . . 0 0 0

ξn1 ηn1 νn1 ḡα2 . . . ḡαM−3 ḡαM−2 ḡαM−1

ḡα2 ξn2 ηn2 νn2 . . . ḡαM−4 ḡαM−3 ḡαM−2

. . .

ḡαM−2 ḡαM−3 ḡαM−4 ḡαM−5 . . . ηnM−2 νnM−2 ḡα2

ḡαM−1 ḡαM−2 ḡαM−3 ḡαM−4 . . . ξnM−1 ηnM−1 νnM−1

0 0 0 0 . . . 0 0 1



.

18



3.1.3 Features

For the fractional advection-reaction-diffusion equations, as for example the Burgers-Huxley

equation, positive and bounded solutions are obtained by the numerical method analogously

to the the exact solutions obtained in the non-fractional case. Furthermore, the method is

consistent, stable and convergent with first-order in time and second-order in space. For a

detailed proof refer to [Maćıas-Dı́az, 2018]).

3.2 Exponential Time Differencing

Consider the advection-reaction-diffusion equation in the form

ut(x, t) + Au(x, t) = F (t, u(x, t)) (3.2.1)

such that 
u(x, 0) = φ(x) ∀x ∈ (a, b)

u(a, t) = ψ1(t) ∀t ∈ (0, T )

u(b, t) = ψ2(t) ∀t ∈ (0, T ).

Exponential time differencing schemes (ETD) are time-stepping schemes to solve reaction-

diffusion-advection PDEs numerically. The main idea is to rewrite the ARD-equation in the

way that linear terms Au(x, t) and nonlinear terms F(t, u) get seperated. The intention for

the splitting is to use different time stepping schemes for the seperated parts and especially,

to treat the linear term highly accurate. Schemes, which use an implicit method for one

term and an explicit for the other one, are called implicit-explicit (IMEX), and are belong-

ing besides strang, multi-component, ADI and AF splitting are belonging to the class of

time-splitting schemes (see [Hundsdorfer and Verwer, 1996]).

19



At this point it has to be mentioned that the difference between regular ETD and fractional

ETD schemes is, that different approximations of A are used. Therefore, the following section

3.2.1, which is only about how to handle the equation in time, is applicable to either regular

or fractional equations.

3.2.1 Time-Stepping Scheme

For the development of the time-stepping scheme the Duhamel principle is used on (3.2.1)

to obtain an exact solution on an interval [tn, tn+1]. The equation is similiar to Volterra’s

integral equation for ordinary differential equations. Let u(x, tn) ≡ u(tn) and k = ∆t, then

an exact solution is

u(tn+1) = e−kAu(tn) +

∫ k

0

e−A(k−τ)F (tn + τ, u(tn + τ)) dτ. (3.2.2)

Let us first consider the nonlinear part F in the integrand in (3.2.1). Instead of approximating

the integral by a quadrature formula, as for example in exponential Rosenbrock methods

[Hochbruck et al., 2009], this ETD-scheme works with the following linearization of F around

tn

F(tn + τ, u(tn + τ)) ≈ F(tn, u(tn)) + τ

(
F(tn+1, u(tn+1))−F(tn, u(tn))

k

)
. (3.2.3)

Be aware, that k is the variable describing the temporal stepsize and not τ , as in chapter

3.1. In this case, τ is the variable with respect to which the integration is carried out. In

the ODE case the idea of linearization of the integrand leads in the ODE case to the implicit

trapezoidal or Crank-Nicolson (CN) method, which belongs to the class of Adams-Moulton

methods.

20



By integration as described in (3.2.2) substituting F with its linearization (3.2.3), the semi-

discretized scheme

un+1 = e−Akun + A−1(1− e−Ak)F(un) +
A−2

k
(kA− I + e−Ak) (F(tn+1, un+1)−F(tn, un))

(3.2.4)

of second order can be established, see also [Janssen, 2009]. It is only semi-discretized since

A and F are not space-discretized, yet. With that it is not nessecary to use additional

iterative methods to approximate the nonlinear part. However, (3.2.4) is fully implicit and

therefore, an inital guess is needed first to start the iteration and then (3.2.4) can correct

the guess. The predictor equation is obtained in the following way. Since we expect the

nonlinear part of the solution not to contribute significantly to the variation of the solution

for small perturbations we can approximate F with first-order accuracy by

F(tn + τ, u(tn + τ)) ≈ F(tn, u(tn))

and with that the predictor equation consists of the first two terms of (3.2.4), that is

u?n+1 = e−Akun − A−1(1− e−Ak)F(tn, un) (3.2.5)

as can be seen in [Janssen, 2009].

Altogether, the ETD scheme is a predictor-corrector method used for equations in form of

(3.2.1) and is described by (3.2.4) and (3.2.5). It is a fixed point method, similiar to PECE-

method used for ODEs. Usually one iteration is already good enough, since the predictors

order is only one less than the correctors. Obviously, the approximation is not finished, since

the exponentials are not computed. Common in application to ETD schemes are either Padé

or real distinct poles (RDP) approximations, see section 2.2.

21



Crank-Nicolson

Using the the (0,1)-Padé scheme R0,1(−kA) := (I + kA)−1, where I is the identity, for the

predictor (3.2.5) and the (1,1)-Padé scheme R1,1(−kA) := (2I − kA)(2I + kA)−1 for the

corrector (3.2.4), we obtain the following ETD scheme

u?n+1 = R1,1(−kA)un + kR0,1

(
−1

2
kA

)
F(tn, un)

un+1 = u?n+1 + 2kR0,1

(
−1

2
kA

)[
F(tn+1, u

?
n+1)−F(tn, un)

]
. (3.2.6)

Note that the scheme was also subject to the following algebraic transformations:

−A−1 [R1,1(−kA)− I] = kR0,1

(
−1

2
kA
)

and 1
k
A−2 [R1,1(−kA)− I + kA] = 2kR0,1

(
−1

2
kA
)

After considering the exponentials we still have to take a look at the matrices, which have

to be inverted. In case of high condition numbers the ETD-method in form of (3.2.6) could

become inaccurate due to high error amplification (small errors in input produces high error

in output). That is why a splitting technique/partial fraction decomposition is used. In the

beginning there is an initial damping step, which can be calculated directly by

(I + kA)un+1 = un + kF(tn, un)

, and in the further steps the computationally efficient method is given by


u?n+1 = (−1)un + an with (2I + kA)an = 4un + 2kF(tn, un)

un+1 = u?n+1 + bn with (2I + kA)bn = k
[
F(tn+1, u

?
n+1)−F(tn, un)

]
.

(3.2.7)

A version of this method is published in [Asante-Asamani and Wade, 2016] where a slight

speedup is achieved with help of a splitting method.

.

22



Real Distinct Poles

The ETD-CN is very efficient and the matrix exponential approximations are A-acceptable,

see [Janssen, 2009]. Unfortunately, in some equations high frequencies are not decaying fast

enough/spurious oscillations are not damped out, see [Iyiola and Wade, 2017]. Another

problem in ETD-CN is, that matrices with eigenvalues close to zero can result in numerical

problems, since the matrices are inverted. For that reason, there was a partial fractional

decomposition used in ETD-CN, see (3.2.7).

In real life application the equations are usually considered in large regions resulting in a

big amount of data. Therefore, parallelization is very common to speed up the evolution

and for that, a separation of poles in the rational approximation is helpful. Since this is

not possible for Padé schemes, because the approximation is defined using truncated power

series, there is another discretization considered, which is called real distinct poles (RDP)

approximation, see 2.2.2.

The RDP approximation R(z) :=
(
1 + 5

12
z
) [

(1− 1
3
z)(1− 1

4
z)
]−1

is nearly optimal for a sec-

ond order rational approximation, see [Voss and Khaliq, 1995]. Again, as in ETD-CN, a

(0,1)-Padé is used as a locally second order predictor (3.2.5) and the higher-order approxi-

mation R(−Ak) :=
(
I − 5

12
Ak
) [(

I + 1
3
Ak
) (
I + 1

4
Ak
)]−1

is used for the matrix exponentials

e−Ak in the corrector (3.2.4). The resulting ETD scheme including RDP approximations is

given by

u?n+1 = R0,1(−kA)un + A−1(I −R0,1(−Ak))F(tn, un)

un+1 = R(−kA)un + A−1(I −R(−Ak))F(tn, un) (3.2.8)

+
A−2

k
(kA− I +R(−Ak)

[
F(tn+1, u

?
n+1)−F(tn, un)

]
.

23



Further partial fractional decompositions to improve efficiency, as can be seen in [Asante-

Asamani et al., 2016], [Iyiola and Wade, 2017], leads to the following efficient and ready to

program ETD-RDP scheme



(I + kA)u∗n+1 = un + kF(tn, un)

un+1 = an + bn

with (I + 1
3
kA)an = 9un + 2kF(tn, un) + kF(tn+1, u

∗
n+1)

and (I + 1
4
kA)bn = −8un − 3

2
kF(tn, un)− k

2
F(tn+1, u

?
n+1).

(3.2.9)

Again before using (3.2.9) there is an inital damping step, which can be calculated directly

by (I + kA)un+1 = un + kF(tn, un).

3.2.2 Spatial Discretization for Fractional Burgers’ Equations

The general advection-reaction-diffusion equation can be specified to the fractional Burgers

equation as mentioned in the beginning of this chapter. With the goal to apply the ETD

scheme the equation has to be rewritten as

ut(x, t) + Au(x, t) = F(t, u(x, t)),

as discussed in section 3.2, where linear terms including fractional terms are described by

Au(x, t) and nonlinear terms by F(t, u(x, t)). The temporal discretizations are (3.2.6) or

(3.2.8). In a next step, the region of interest is discretized, similiar to the finite difference

methods in section 3.1. Furthermore, the approximation of space-fractional derivatives is

done by fractional centred differences,

−δαhu
(n)
j =

1

hα

M∑
k=0

gαj−k, u
(n)
k

where δαh denotes the fractional centred difference operator.

24



With the intent to bring the fractional centred differences into matrix-vector form let

un = (un0 , ..., u
n
M)T and gαj =

(
gαj−0, ..., g

α
j−M

)
so that δαhu

n
j = − 1

hα
gαj · un.

With that, the matrix An is described in

δαhun = − 1

hα


gα0 · un

...

gαM · un

 = − 1

hα



1 0 0 ...

g1 g0 g−1

... ...

... 0 1


un = Anun. (3.2.10)

By consideration of gi = g−i for all i > 0 the matrix is known to be symmetric.

The further procedure is to develop an approximation for F , which contains the nonlinear

terms. In application to the non-homogeneous Burgers equation, that are the advection

and reaction term, so that F(u, t) = −λu(x, t)ux(x, t) + u(x, t)f(u(x, t)). As second-order

approximation of the derivative in space a backward difference quotient

∂xu
(n)
j =

u
(n)
j+1 − u

(n)
j−1

2h
+O(h2),

is used, which can be rewritten to a matrix vector form for each time step tn as

∂xu
(n) =

1

2h



1 0 0 ...

−1 0 1

0 −1 0 1

... ...

0 1


u(n), where u(n) =



ψ1(tn)

u
(n)
1

...

u
(n)
M−1

ψ2(tn)


.

25



With that we get the final approximation for the nonlinear part of the equation, that is

F(u(n)) = −λu(n)∂xu
(n) + u(n)f(u(n)). (3.2.11)

Altogether, the obtained ETD scheme for the fractional Burgers equation is either 3.2.6 or

3.2.9, where the matrix A is approximated by A(n), as in 3.2.10, and F(tn, un) by F(u(n)),

as in 3.2.11.

26



Numerical Results

4.1 Example and its Solutions

Let the space-fractional Burgers equation with reaction term be considered for each (x, t) ∈ Ω

with Ω = (a, b)× (0, T ) in the form

∂

∂t
u(x, t) =

∂α

∂|x|α
u(x, t)− λu(x, t)

∂

∂x
u(x, t) + u(x, t)f(u(x, t)) (4.1.1)

from now on, with the same initial and boundary conditions as before.

The example, used for the comparison of the numerical schemes regarding the space-fractional

Burgers equation in homogeneous form or with reaction term, is the following.

Example 4.1.2. Let Ω = (−200, 200)× (0, 12), spatial stepsize h = 1 and λ = 1 or λ = 0.1.

The boundary conditions are given by

ψ1(t) = ψ2(t) = 0 ∀t ∈ (0, 12)

and the initial condition by

φ(x) =


0.1 : x = 0

0 : otherwise.

For the moment let the solutions be obtained regarding various fractional parameters, ad-

vection coefficients or time steps. Furthermore, let λ = 1, τ = 0.0125 and the method to

construct the solution be FETD-RDP.

27



How the choice of the fractional parameter α influences the solution of (4.1.1) can be seen

in 4.1, where the solution is plotted over the interval (−100, 100). The smaller α, the more

the curve differs from its initial condition. A reason for that is that the smaller the fraction

is, the more diffusive properties are taken into account. In other words, the closer α is to

two, the more the fractional derivative behaves like regular diffusion.

(a) Homogeneous Burgers (b) Burgers-Fisher

(c) Burgers-Huxley

Figure 4.1: Comparison of solutions for various α with λ = 1

28



By varying the parameter λ, different solutions as in 4.2, where λ = 0.1, can be obtained.

Since λ is the constant multiplied with the convection term, it describes how much convection

occurs in the solution. As already mentioned earlier, the convection term consists of the

solution multiplied with its derivative.

(a) Homogeneous Burgers (b) Burgers-Fisher

(c) Burgers-Huxley

Figure 4.2: Comparison of solutions for various α with λ = 0.1

29



First, note that the solutions are positive. Futhermore, the rate of change is positive for

negative values, while it is negative for positive values. For all those reasons, the curve is

shifted in a certain way to the right for positive x and to the left for negative x. In the plot,

this becomes most obvious with Fisher’s reaction term and for the positive x-values close to

zero, since the maximum of the function is not at x = 0 anymore, but shifted to the right.

Note, the higher λ, the more the previously described shift becomes obvious in the solution.

The plots for Burgers-Huxley’s and homogeneous Burgers’ equation look very similiar, though

the maximum in the former one is slightly higher. Considering Huxley’s reaction f2(u) =

(1 − u)(u − γ) in the whole source term F (u) = uf2(u), the solutions are approximately

squared and then multplied by 1 − u. Furthermore, taking into account that the initial

condition at x = 0 is 0.1, it is explained, why the maximum of Burgers-Huxley’s is situated

between the orders of magnitude 10−3 to 10−2. In case of the homogeneous Burgers equation

there is no reaction term at all, which is why there the maximum is even smaller than in

Burgers-Huxley’s solution. In comparison to that, the solutions for Burgers-Fisher’s, where

the reaction term is just 1− u, are generally higher due to the fact the reaction term is high

enough to dominate the terms, which influence the solutions to become smaller.

In the figures 4.3 we can see how the solutions develop over time. Therefore, let again λ = 1

and also the fractional parameter is set, in this case α = 1.8. The solutions are picked from

the time steps T = 1, 2, . . . , 12 and a surface is fitted over the solutions. The comparison of

the reaction terms, explained above, becomes more obvious in these plots. Especially, the

solutions clearly decrease over time for homogeneous Burgers’ and Burger-Huxley’s equation,

while they increase for Burgers-Fisher’s.

30



(a) Homogeneous Burgers (b) Burgers-Fisher

(c) Burgers-Huxley

Figure 4.3: Comparison of solutions for α = 1.8 and λ = 1

4.2 Comparison regarding to Convergence and Effi-

ciency

In this chapter we adress, which method works best for an example with non-smooth initial

conditions, but homogeneous Dirichlet boundary conditions, given by 4.1.2. The quality of

the numerical algorithm can be understood, on the one hand, as how much the approxima-

tions produced by the algorithm improve in terms of the error while letting the temporal

stepsize decrease (convergence), and on the other hand, how much time elapses while the

error gets improved (efficiency).

31



For the purpose of comparing the numerical methods described in chapter 2.2.2 the following

definitions of error and convergence rate are used. To the best of my knowledge, no exact

solutions exist for example 4.1.2. Therefore, let u be an almost exact solution, produced by

FETD-CN with a very small temporal step size τ = 0.0001, whereas ũτ is the approximated

solution, produced with stepsize τ . Then, the relative error in max-norm is defined by

Eτ = ||u − ũτ ||∞/||u||∞ and the approximated rate of convergence defined in terms of the

relative error by

p ≈
log
(

Eτ
Eτ/2

)
log(2)

. (4.2.1)

In the following, the comparison is outlined in detail for the homogeneous Burgers equa-

tion and from there, it is contrasted how including Fisher’s and Huxley’s reaction term,

respectively, affects convergence and efficiency.

4.2.1 Homogeneous Burgers’ Equation

For Burgers’ equation with no source term and the convection parameter λ = 1 the plots

showing convergence and efficiency results can be seen in the figure 4.4. FETD-RDP and

FETD-CN show similiar convergence and effiency results. However, RDP seems to be slightly

better convergence, whereas in case of CN the elapsed time is less (on cost of a higher error).

In contrast to that, the FD method costs slightly less time than ETD-CN for same temporal

step amount, but therefore, has a much higher error.

Especially in case of α = 2, FD shows the best results regarding elapsed time. The reason

for that is, that the matrix A becomes of a banded structure, since the fractional diffusion is

actually regular diffusion and with that the fractional operator gets reduced to the Laplace

operator. With that property it is possible to improve the efficieny of the algorithm. However,

to obtain similiar good approximations as in the FETD schemes, the time step in FD would

have to be chosen smaller and with that the elapsed time would increase.

32



Figure 4.4: Homogeneous Burgers’ equation with λ = 1: convergence plots (left) and effi-
ciency plots (right) for fractional parameters α = 2.0, 1.9, 1.8, 1.7 (from top to bottom)

33



A deeper insight into the results can be provided by the tables in the figure 4.5. Since

FETD-RDP and FETD-CN show similiar convergence and efficiency, the tables regarding

FETD-CN are excluded there. The results for FETD-CN can be found in the appendix

A. As expected, the convergences rate depends on the fractional parameter. In case of

FETD-RDP p = 2 and p increases with decreasing τ . In contrast to that, FD converges

approximately with order 1 and the order increases slightly for decreasing τ .

alpha tau error time rate
2 0.1 7.1228e-06 3.3275 0
2 0.05 2.0163e-06 6.5632 1.8207
2 0.025 5.4238e-07 12.5931 1.8943
2 0.0125 1.4112e-07 24.5897 1.9423

1.9 0.1 6.3783e-06 3.218 0
1.9 0.05 1.7921e-06 6.1635 1.8315
1.9 0.025 4.7979e-07 12.0568 1.9012
1.9 0.0125 1.2454e-07 24.2569 1.9458
1.8 0.1 5.7009e-06 3.1878 0
1.8 0.05 1.5842e-06 6.1967 1.8474
1.8 0.025 4.2135e-07 12.0573 1.9107
1.8 0.0125 1.0906e-07 24.0343 1.9498
1.7 0.1 5.1472e-06 3.2715 0
1.7 0.05 1.4188e-06 6.2862 1.8591
1.7 0.025 3.7541e-07 12.0698 1.9182
1.7 0.0125 9.6777e-08 24.4962 1.9557

(a) FETD-RPD method

alpha tau error time rate
2 0.1 0.0010889 0.54228 0
2 0.05 0.00054287 1.1006 1.0042
2 0.025 0.00027103 2.1674 1.0022
2 0.0125 0.00013541 4.3797 1.0011

1.9 0.1 0.0011385 1.7797 0
1.9 0.05 0.00056756 3.2386 1.0043
1.9 0.025 0.00028335 6.2247 1.0022
1.9 0.0125 0.00014157 12.2412 1.0011
1.8 0.1 0.001193 1.7698 0
1.8 0.05 0.00059469 3.3212 1.0044
1.8 0.025 0.00029688 6.2428 1.0022
1.8 0.0125 0.00014833 12.2241 1.0011
1.7 0.1 0.0012532 1.7714 0
1.7 0.05 0.00062464 3.2618 1.0045
1.7 0.025 0.00031182 6.2355 1.0023
1.7 0.0125 0.00015579 12.7269 1.0012

(b) FD method

Figure 4.5: Convergence table for homogeneous Burgers’ equation

4.2.2 Burgers-Fisher’s Equation

Tables 4.5 and 4.8 illustrate, that the errors for the Burgers-Fisher equation are generally

slightly higher than in the homogeneous Burgers equation and the numerical methods have

higher convergence rates.

34



Figure 4.6: Burgers-Fisher’s equation with λ = 1: convergence plots (left) and efficiency
plots (right) for fractional parameters α = 2.0, 1.9, 1.8, 1.7 (from top to bottom)

35



Figure 4.7: Burgers-Huxley’s equation with λ = 1: convergence plots (left) and efficiency
plots (right) for fractional parameters α = 2.0, 1.9, 1.8, 1.7 (from top to bottom)

36



The reason for the higher errors is probably, that by taking a source term into account,

more basic calculations are needed in the algorithm and with that there more computational

errors, produced for example by a limited representation of decimals, are introduced. Com-

paring the different fractional parameters for the same temporal stepsizes, the rate increases

for the homogeneous Burgers equation, but decreases for Burgers-Fisher’s. With that we

definitely know, that the convergence rate is not only depending on the choice of the frac-

tional parameter, but also on the chosen source term.

alpha tau error time rate
2 0.1 0.0001414 3.2594 0
2 0.05 3.5895e-05 6.3792 1.9779
2 0.025 9.0017e-06 12.3701 1.9955
2 0.0125 2.2513e-06 24.7617 1.9995

1.9 0.1 0.00050052 3.3373 0
1.9 0.05 0.00013013 6.1525 1.9434
1.9 0.025 3.3192e-05 12.0383 1.9711
1.9 0.0125 8.3824e-06 24.1432 1.9854
1.8 0.1 0.00045979 3.2548 0
1.8 0.05 0.00011936 6.4088 1.9456
1.8 0.025 3.0423e-05 12.4255 1.9721
1.8 0.0125 7.6804e-06 23.8402 1.9859
1.7 0.1 0.00041499 3.2139 0
1.7 0.05 0.00010767 6.173 1.9465
1.7 0.025 2.7434e-05 12.1361 1.9726
1.7 0.0125 6.9247e-06 24.0447 1.9862

(a) FETD-RPD method

alpha tau error time rate
2 0.1 0.050686 0.58708 0
2 0.05 0.024963 1.1377 1.0218
2 0.025 0.012173 2.1815 1.0362
2 0.0125 0.0060058 4.3717 1.0192

1.9 0.1 0.030089 1.7709 0
1.9 0.05 0.014884 3.289 1.0155
1.9 0.025 0.0073936 6.2635 1.0094
1.9 0.0125 0.0036829 12.484 1.0054
1.8 0.1 0.025172 1.761 0
1.8 0.05 0.012329 3.3471 1.0298
1.8 0.025 0.0060904 6.3044 1.0174
1.8 0.0125 0.0030264 14.1437 1.0089
1.7 0.1 0.022264 1.77 0
1.7 0.05 0.01088 3.5804 1.0331
1.7 0.025 0.0053676 6.2267 1.0193
1.7 0.0125 0.0026659 12.2818 1.0097

(b) FD method

Figure 4.8: Convergence table for Burgers-Fisher’s equation with λ = 1

For α = 2 FETD-RDP has lower errors than for low fractional parameters. Since this

phenomen does not occur in the results for the homogeneous Burgers equation, it has to be

related to the reaction term. FETD-RDP always has a smaller error than FETD-CN, and a

much smaller one than FD, as in the previous test, see figure 4.5.

37



4.2.3 Burgers-Huxley’s Equation with γ = 0.005

Shown in figure 4.7, FETD-CN has almost the same error for Burgers-Huxley’s as for Burgers-

Fisher’s, whereas the FD and FETD-RDP method have slightly lower errors, but all of them

are still higher than in the homogeneous Burgers equation. This is caused by the reaction

term u(1−u)(u−γ), which has less influence than u(1−u), but more than in the homogeneous

case. The reason for that could be similiar to Burgers-Fisher’s higher errors. Since the source

term is included, there are more calculations needed. However, even if in the Burgers-Huxley

more calculations are needed in the reaction term than in the Burgers-Fisher equation, the

solutions themselves are smaller and with that the errors in each step have less influence

on the error of the final solution. The FD method yields the best efficiency results for the

Burgers-Huxley equation, which can be recognized by the efficiency curve being closer to the

FETD methods.

alpha tau error time rate
2 0.1 0.00021921 3.5017 0
2 0.05 6.127e-05 6.3723 1.839
2 0.025 1.6335e-05 12.8452 1.9072
2 0.0125 4.2279e-06 25.5735 1.95

1.9 0.1 0.00020554 3.1743 0
1.9 0.05 5.7158e-05 6.2398 1.8464
1.9 0.025 1.5187e-05 12.4201 1.9121
1.9 0.0125 3.9229e-06 25.0754 1.9529
1.8 0.1 0.00019229 3.272 0
1.8 0.05 5.3214e-05 6.2637 1.8534
1.8 0.025 1.4094e-05 12.507 1.9168
1.8 0.0125 3.6336e-06 24.9001 1.9556
1.7 0.1 0.00017945 3.1193 0
1.7 0.05 4.9429e-05 6.2113 1.8602
1.7 0.025 1.3051e-05 13.3513 1.9212
1.7 0.0125 3.3589e-06 25.2225 1.9581

(a) FETD-RPD method

alpha tau error time rate
2 0.1 0.0018275 0.55014 0
2 0.05 0.00092987 1.1213 0.97475
2 0.025 0.00046945 2.1161 0.98606
2 0.0125 0.00023592 4.2137 0.99266

1.9 0.1 0.0018702 1.513 0
1.9 0.05 0.00094989 2.975 0.97732
1.9 0.025 0.00047907 5.9869 0.98753
1.9 0.0125 0.00024063 11.6591 0.99345
1.8 0.1 0.001917 1.4587 0
1.8 0.05 0.00097201 2.9817 0.9798
1.8 0.025 0.00048975 5.9199 0.98892
1.8 0.0125 0.00024586 11.607 0.99419
1.7 0.1 0.0019687 1.4995 0
1.7 0.05 0.00099655 2.9426 0.9822
1.7 0.025 0.00050165 6.1479 0.99025
1.7 0.0125 0.00025172 11.8231 0.99489

(b) FD method

Figure 4.9: Convergence table for Burgers-Huxley’s equation with λ = 1

38



The convergence rates, as can be seen in 4.9, are slightly higher for the FETD applied on

Burgers-Huxley’s than on homogeneous Burgers’ equation, whereas, the convergence rate of

the FD method is slightly less in comparison, but overall very similiar. The dynamics of the

convergence rate by variation of the fractional parameter are comparable to Burgers-Fisher’s

equation.

39



Conclusion

In this thesis a finite difference scheme and two exponential time differencing schemes includ-

ing a Padé and real disinct poles approximation for the matrix exponentials are explained.

The numerical investigation underlines the first order convergence of the former scheme and

second order of the latter. In all considered applications, the ETD schemes with real distinct

poles approximation works best in terms of accuracy of the results. This demonstrates the

dominance of ETD-RDP over FD for the considered nonlinear fractional PDEs.

One possible way to improve the exponential time differencing scheme with real distinct

poles approximation is to parallelize the method which is actually a major feature of that

scheme. Another idea would be to choose the temporal stepsize adaptively indicated by an

error boundary. This could be applied to either the FD or one of the ETD schemes.

In the future the scheme can also be further extended to describe advection reaction diffusion

models with two dimensions in space. For the non-fractional homogeneous Burgers equation

some methods with one dimension in time and two dimensions in space have already been

investigated for a modified cubic B-spline differential quadrature method combined with

a fourth order Runge-Kutta scheme, see [Shukla et al., 2014], a Cole-Hopf transformation

plus finite element method, see [Zhao et al., 2011], a fully implicit finite difference scheme

solved with Adomian decomposition method, see [Zhu et al., 2010] and reduced order models

based on Galerkin projection and discrete empirical interpolation in case of high Reynolds

number, see [Wang et al., 2016].

40



Bibliography

[Asante-Asamani et al., 2016] Asante-Asamani, E., Khaliq, A., and Wade, B. A. (2016). A
real distinct poles exponential time differencing scheme for reaction–diffusion systems.
Journal of Computational and Applied Mathematics, 299:24–34.

[Asante-Asamani and Wade, 2016] Asante-Asamani, E. and Wade, B. A. (2016). A dimen-
sional splitting of etd schemes for reaction-diffusion systems. Communications in Compu-
tational Physics, 19(5):1343–1356.

[Burgers, 1948] Burgers, J. M. (1948). A mathematical model illustrating the theory of
turbulence. In Advances in applied mechanics, volume 1, pages 171–199. Elsevier.

[contributors, 2018] contributors, W. (2018). Burgers’ equation — wikipedia, the free ency-
clopedia. [Online; accessed 26-March-2018].

[Fisher, 1937] Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of
Human Genetics, 7(4):355–369.

[Griffiths and Schiesser, 2010] Griffiths, G. and Schiesser, W. E. (2010). Traveling wave
analysis of partial differential equations: numerical and analytical methods with MATLAB
and Maple. Academic Press.

[Hochbruck et al., 2009] Hochbruck, M., Ostermann, A., and Schweitzer, J. (2009). Expo-
nential rosenbrock-type methods. SIAM Journal on Numerical Analysis, 47(1):786–803.

[Hodgkin and Huxley, 1952] Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative de-
scription of membrane current and its application to conduction and excitation in nerve.
The Journal of physiology, 117(4):500–544.

[Hopf, 1950] Hopf, E. (1950). The partial differential equation ut + uux = xx. Communi-
cations on Pure and Applied Mathematics, 3(3):201–230.

[Hundsdorfer and Verwer, 1996] Hundsdorfer, W. and Verwer, J. (1996). Numerical solution
of advection-diffusion-reaction equations. CWI Report NMN9603, Centrum voor Wiskunde
en Informatica, Amsterdam, 24:30.

41



[Iyiola et al., 2017] Iyiola, O., Asante-Asamani, E., Furati, K., Khaliq, A., and Wade,
B. (2017). Efficient time discretization scheme for nonlinear space fractional reaction–
diffusion equations. International Journal of Computer Mathematics, pages 1–18.

[Iyiola et al., 2018] Iyiola, O., Asante-Asamani, E., and Wade, B. (2018). A real distinct
poles rational approximation of generalized mittag-leffler functions and their inverses:
Applications to fractional calculus. Journal of Computational and Applied Mathematics,
330:307–317.

[Iyiola and Wade, 2018] Iyiola, O. and Wade, B. (2018). Exponential integrator methods
for systems of non-linear space-fractional models with super-diffusion processes in pattern
formation. Computers & Mathematics with Applications.

[Iyiola and Wade, 2017] Iyiola, O. S. and Wade, B. (2017). Exponential integrator methods
for nonlinear fractional reaction-diffusion models.

[Janssen, 2009] Janssen, B. (2009). An efficient exponential time differencing method for
nonlinear reaction diffusion problems. The University of Wisconsin-Milwaukee.

[Khaliq et al., 2009] Khaliq, A., Martin-Vaquero, J., Wade, B., and Yousuf, M. (2009).
Smoothing schemes for reaction-diffusion systems with nonsmooth data. Journal of Com-
putational and Applied Mathematics, 223(1):374–386.

[Kleefeld et al., 2012] Kleefeld, B., Khaliq, A., and Wade, B. (2012). An etd crank-nicolson
method for reaction-diffusion systems. Numerical Methods for Partial Differential Equa-
tions, 28(4):1309–1335.

[Maćıas-Dı́az, 2018] Maćıas-Dı́az, J. (2018). A dynamically consistent method to solve non-
linear multidimensional advection-reaction equations with fractional diffusion. Journal of
Computational Physics (to appear).

[Ortigueira, 2006] Ortigueira, M. D. (2006). Riesz potential operators and inverses via frac-
tional centred derivatives. International Journal of Mathematics and Mathematical Sci-
ences, 2006.

[Padé, 1892] Padé, H. (1892). Sur la représentation approchée d’une fonction par des frac-
tions rationnelles. Number 740. Gauthier-Villars et fils.

[Podlubny, 1998] Podlubny, I. (1998). Fractional differential equations: an introduction to
fractional derivatives, fractional differential equations, to methods of their solution and
some of their applications, volume 198. Elsevier.

[Shukla et al., 2014] Shukla, H., Tamsir, M., Srivastava, V. K., and Kumar, J. (2014). Nu-
merical solution of two dimensional coupled viscous burger equation using modified cubic
b-spline differential quadrature method. AIP Advances, 4(11):117134.

[Vigo-Aguiar et al., 2007] Vigo-Aguiar, J., Mart́ın-Vaquero, J., and Wade, B. (2007).
Adapted bdf algorithms applied to parabolic problems. Numerical Methods for Partial
Differential Equations, 23(2):350–365.

42



[Voss and Khaliq, 1995] Voss, D. and Khaliq, A. (1995). Parallel lod methods for second
order time dependent pdes. Computers & Mathematics with Applications, 30(10):25–35.

[Wang et al., 2016] Wang, Y., Navon, I. M., Wang, X., and Cheng, Y. (2016). 2d burg-
ers equation with large reynolds number using pod/deim and calibration. International
Journal for Numerical Methods in Fluids, 82(12):909–931.

[Yousuf et al., 2012] Yousuf, M., Khaliq, A., and Kleefeld, B. (2012). The numerical ap-
proximation of nonlinear black–scholes model for exotic path-dependent american options
with transaction cost. International Journal of Computer Mathematics, 89(9):1239–1254.

[Zhao et al., 2011] Zhao, G., Yu, X., and Zhang, R. (2011). The new numerical method for
solving the system of two-dimensional burgers equations. Computers & Mathematics with
Applications, 62(8):3279–3291.

[Zhu et al., 2010] Zhu, H., Shu, H., and Ding, M. (2010). Numerical solutions of two-
dimensional burgers equations by discrete adomian decomposition method. Computers
& Mathematics with Applications, 60(3):840–848.

43



Appendix

A Convergence Tables for FETD-CN
alpha tau error time rate

2 0.1 2.3155e-05 2.3103 0
2 0.05 7.0117e-06 4.61 1.7235
2 0.025 1.9563e-06 9.0237 1.8416
2 0.0125 5.1897e-07 17.8206 1.9144

1.9 0.1 2.0642e-05 2.5439 0
1.9 0.05 6.1994e-06 4.2606 1.7354
1.9 0.025 1.7201e-06 8.2057 1.8496
1.9 0.0125 4.547e-07 16.9734 1.9195
1.8 0.1 1.8145e-05 2.267 0
1.8 0.05 5.4101e-06 4.2774 1.7459
1.8 0.025 1.4938e-06 8.4038 1.8567
1.8 0.0125 3.9375e-07 16.3922 1.9236
1.7 0.1 1.5867e-05 2.2648 0
1.7 0.05 4.6452e-06 4.2435 1.7722
1.7 0.025 1.2772e-06 8.2428 1.8628
1.7 0.0125 3.3583e-07 16.5976 1.9272

(a) Burgers-Fisher

alpha tau error time rate
2 0.1 0.00065897 2.2262 0
2 0.05 0.00017502 4.3828 1.9127
2 0.025 4.5271e-05 8.9188 1.9509
2 0.0125 1.1526e-05 17.0885 1.9737

1.9 0.1 0.00077894 2.2458 0
1.9 0.05 0.00020452 4.2744 1.9293
1.9 0.025 5.2495e-05 8.2422 1.962
1.9 0.0125 1.3305e-05 16.3815 1.9802
1.8 0.1 0.00068406 2.4822 0
1.8 0.05 0.00017929 4.3074 1.9318
1.8 0.025 4.5964e-05 8.2964 1.9637
1.8 0.0125 1.1641e-05 16.4522 1.9812
1.7 0.1 0.00060994 2.2126 0
1.7 0.05 0.00015967 4.2384 1.9336
1.7 0.025 4.09e-05 8.2829 1.9649
1.7 0.0125 1.0354e-05 16.6719 1.9819

(b) Burgers-Fisher

alpha tau error time rate
2 0.1 0.00077714 2.1356 0
2 0.05 0.00022698 4.3758 1.7756
2 0.025 6.2007e-05 8.6922 1.8721
2 0.0125 1.6258e-05 17.4413 1.9313

1.9 0.1 0.00073135 2.1313 0
1.9 0.05 0.00021198 4.2146 1.7866
1.9 0.025 5.7622e-05 9.4158 1.8793
1.9 0.0125 1.5065e-05 16.996 1.9354
1.8 0.1 0.00068655 2.1282 0
1.8 0.05 0.00019753 4.319 1.7973
1.8 0.025 5.3442e-05 8.464 1.8861
1.8 0.0125 1.3934e-05 17.3509 1.9393
1.7 0.1 0.00064275 2.0635 0
1.7 0.05 0.00018362 4.2391 1.8075
1.7 0.025 4.9455e-05 8.7534 1.8925
1.7 0.0125 1.2862e-05 17.0628 1.943

(c) Burgers-Huxley

Figure 10: Convergence tables for FETD-CN (λ = 1)

44



alpha tau error time rate
2 0.1 5.4824e-06 2.3271 0
2 0.05 1.4227e-06 4.4552 1.9462
2 0.025 3.7164e-07 8.8051 1.9366
2 0.0125 9.5607e-08 17.2944 1.9587

1.9 0.1 5.5929e-06 2.3306 0
1.9 0.05 1.4434e-06 4.2514 1.9541
1.9 0.025 3.6796e-07 8.2908 1.9719
1.9 0.0125 9.3066e-08 16.4315 1.9832
1.8 0.1 5.7277e-06 2.2337 0
1.8 0.05 1.4713e-06 4.2354 1.9609
1.8 0.025 3.7385e-07 8.3553 1.9765
1.8 0.0125 9.4355e-08 16.6716 1.9863
1.7 0.1 5.8881e-06 2.2841 0
1.7 0.05 1.5066e-06 4.2863 1.9665
1.7 0.025 3.8179e-07 8.3656 1.9804
1.7 0.0125 9.6171e-08 16.365 1.9891

(a) Burgers-Fisher

alpha tau error time rate
2 0.1 0.00043479 2.1926 0
2 0.05 0.00011511 4.4857 1.9174
2 0.025 2.9717e-05 8.5518 1.9536
2 0.0125 7.5578e-06 16.8442 1.9752

1.9 0.1 0.0007191 2.2258 0
1.9 0.05 0.00018868 4.2006 1.9302
1.9 0.025 4.8405e-05 8.3405 1.9627
1.9 0.0125 1.2265e-05 16.6515 1.9807
1.8 0.1 0.00065044 2.1516 0
1.8 0.05 0.00017042 4.2879 1.9323
1.8 0.025 4.3679e-05 8.3202 1.9641
1.8 0.0125 1.1061e-05 16.3032 1.9815
1.7 0.1 0.00058791 2.2534 0
1.7 0.05 0.00015387 4.2198 1.9339
1.7 0.025 3.9408e-05 8.2508 1.9651
1.7 0.0125 9.9753e-06 16.4049 1.9821

(b) Burgers-Fisher

alpha tau error time rate
2 0.1 0.00077684 2.6487 0
2 0.05 0.00022688 4.8092 1.7757
2 0.025 6.1977e-05 8.6998 1.8722
2 0.0125 1.625e-05 17.4487 1.9313

1.9 0.1 0.00073109 2.1535 0
1.9 0.05 0.0002119 4.2594 1.7867
1.9 0.025 5.7596e-05 8.4969 1.8793
1.9 0.0125 1.5058e-05 17.1801 1.9354
1.8 0.1 0.00068633 2.1643 0
1.8 0.05 0.00019746 4.2916 1.7973
1.8 0.025 5.342e-05 8.4563 1.8861
1.8 0.0125 1.3929e-05 17.006 1.9393
1.7 0.1 0.00064256 2.1265 0
1.7 0.05 0.00018356 4.2651 1.8076
1.7 0.025 4.9437e-05 8.5151 1.8926
1.7 0.0125 1.2857e-05 16.9298 1.943

(c) Burgers-Huxley

Figure 11: Convergence tables for FETD-CN (λ = 0.1)

45



B Programs

B.1 Produce Solutions

1 f unc t i on produceSo lut ions ( )
2 %exact s o l u t i o n s has to be produced be f o r e to save the r i g h t e r r o r s
3 %a f t e r s us ing produceSo lut ions the f i r s t t imes a l l r e s u l t g e t s saved
4 %next time i t can be run in mode ’ loade ’
5 mode=’ f i r s t ’ ;
6 methodList =[” f e tdrdp ” ,” f e tdcn ” ,” d iaz ” ] ;
7 r e a c t i o n L i s t =[” huxley ” ,” f i s h e r ” ,” homogen ” ] ;
8 lambdaList = [ 1 , 0 . 1 ] ;
9 f o r method = methodList

10 f o r r e a c t i o n = r e a c t i o n L i s t
11 f o r lambda = lambdaList
12 skr ipt example58 (mode , method , r eac t i on , lambda ) ;
13 end
14 end
15 end
16 end
17

18 %run the examle used in paper by macias−diaz
19 f unc t i on skr ipt example58 (mode , method , r eac t i on , lambda )
20 addpath ( ’ . / f e tdrdp ’ ) ;
21 addpath ( ’ . / f e tdcn ’ ) ;
22 addpath ( ’ . / d iaz ’ ) ;
23

24 %values from example58
25 a=−200;
26 b=200. ;
27 T=12. ;
28 h=1. ;
29 M=(b−a ) /h ;
30 j =0:M;
31 x=a+h∗ j ;
32

33 %f r a c t i o n a l parameter
34 alpha =[2 1 .9 1 .8 1 . 7 ] ;
35

36 %time step
37 i f mode==’ exact ’
38 tau = [ 0 . 0 0 0 1 ] ;
39 e l s e
40 tau =[0.1 0 .05 0 .025 0 . 0 1 2 5 ] ;
41 end
42

43 %vary time step−>s o l u t i o n s in d i f f e r e n t d i r e c t o r i e s t e s t1 , 2 , . . .
44 f o r j =1: l ength ( tau )
45 t =0: tau ( j ) :T;
46 N=length ( t )−1;
47

48 %vary f r a c t i o n a l parameter−>r e s u l t s as so l1 , 2 , . . .
49 f o r i =1: l ength ( alpha )

46



50

51 %save s o l u t i o n s in f i r s t c a l c u l a t i o n
52 i f mode==’ f i r s t ’
53 t i c
54 s o l=eva l ( s t r c a t ( method , ’ ( lambda , t , x ,M,N, a , b , alpha ( i ) , tau ( j ) ,

r e a c t i o n ) ’ ) ) ;
55 elapsedTime=toc ;
56 %save s o l u t i o n s
57 %saving takes some time i f you do not need i t uncomment i t
58 path=char ( s t r c a t ( ’ . / ’ , method , ’ / ’ , r eac t i on , ’ / example58 ’ ,

num2str ( lambda ∗10000) , ’ / t e s t ’ , num2str ( j ) ) ) ;
59 mkdir ( s t r c a t ( path ) ) ;
60 save ( s t r c a t ( path , ’ / s o l s ’ , num2str ( i ) ) , ’ s o l ’ ) ;
61 %save e lapsed time f o r computation
62 f i l e I D = fopen ( s t r c a t ( path , ’ / t imeanderror s . txt ’ ) , ’ a ’ ) ;
63 f p r i n t f ( f i l e I D , ’%5s %d\n ’ , s t r c a t ( ’ time ’ , num2str ( i ) ) ,

elapsedTime ) ;
64 %save e r r o r in f i l e ( r e l a t i v e , i n f i n i t y norm)
65 load ( s t r c a t ( ’ . / r e f S o l u t i o n / f e tdcn / ’ , r eac t i on , ’ / example58 ’ ,

num2str ( lambda ∗10000) , ’ / exac tSo l ’ , num2str ( i ) ) , ’ exac tSo l ’ ) ;
66 e r r=norm( abs ( s o l ( end , : )−exac tSo l ( end , : ) ) , i n f ) /norm( exactSo l (

end , : ) ) ;
67 f p r i n t f ( f i l e I D , ’%6s %d\n ’ , s t r c a t ( ’ e r r o r ’ , num2str ( i ) ) , e r r ) ;
68 f c l o s e ( f i l e I D ) ;
69 makePics ( alpha , i , j , x , t , tau , so l , path )
70

71 %load s o l u t i o n s in next uses
72 e l s e i f mode==’ loade ’
73 path=char ( s t r c a t ( ’ . / ’ , method , ’ / ’ , r eac t i on , ’ / example58 ’ ,

num2str ( lambda ∗10000) , ’ / t e s t ’ , num2str ( j ) ) ) ;
74 load ( s t r c a t ( path , ’ / s o l s ’ , num2str ( i ) ) ) ;
75 makePics ( alpha , i , j , x , t , tau , so l , path )
76

77 %in case o f c a l c u l a t i n g r e f e r e n c e s o l u t i o n
78 e l s e i f mode==’ exact ’
79 t i c
80 exac tSo l=eva l ( s t r c a t ( method , ’ ( lambda , t , x ,M,N, a , b , alpha ( i ) , tau (

j ) , r e a c t i o n ) ’ ) ) ;
81 elapsedTime=toc ;
82 %save s o l u t i o n s
83 path=char ( s t r c a t ( ’ . / r e f S o l u t i o n / ’ , method , ’ / ’ , r eac t i on , ’ /

example58 ’ , num2str ( lambda ∗10000) ) ) ;
84 mkdir ( path ) ;
85 save ( s t r c a t ( path , ’ / exac tSo l ’ , num2str ( i ) ) , ’ exac tSo l ’ ) ;
86 %save e lapsed time f o r computation
87 f i l e I D = fopen ( s t r c a t ( path , ’ / t imeanderror s . txt ’ ) , ’ a ’ ) ;
88 f p r i n t f ( f i l e I D , ’%5s %d\n ’ , s t r c a t ( ’ time ’ , num2str ( i ) ) ,

elapsedTime ) ;
89 f c l o s e ( f i l e I D ) ;
90 makePics ( alpha , i , j , x , t , tau , exactSol , path )
91 end
92 end
93

94 f i g u r e ( l ength ( alpha ) +1)

47



95 x l a b e l ( ’ x ’ , ’ FontSize ’ ,13)
96 y l a b e l ( s t r c a t ( ’u (x , ’ , num2str (T) , ’ ) ’ ) , ’ FontSize ’ ,13) ;
97 l egend ({ ’ \ alpha =2.0 ’ , ’ \ alpha =1.9 ’ , ’ \ alpha =1.8 ’ , ’ \ alpha =1.7 ’ } , ’ FontSize

’ ,13) ;
98 i f mode˜= ’ exact ’
99 pr in t ( s t r c a t ( ’−f ’ , num2str ( l ength ( alpha ) +1) ) , s t r c a t ( ’ . / ’ , method , ’ / ’

, r eac t i on , ’ / example58 ’ , num2str ( lambda ∗10000) , ’ / t e s t ’ , num2str (
j ) , ’ / comparefrac ’ , num2str ( l ength ( alpha ) +1) ) , ’−dpng ’ ) ;

100 end
101 f i g u r e ( l ength ( alpha ) +1)
102 hold o f f
103 end
104 hold o f f
105 end
106

107 %method makes 2D p l o t s c o n s i d e r i n g d i f f e r e n t f r a c t i o n a l parameters
108 %and 3d p l o t s to p l o t s u r f a c e at over d i f f e r e n t time s t ep s
109 f unc t i on makePics ( alpha , i , j , x , t , tau , so l , path )
110 %2D−p lo t
111 f i g u r e ( l ength ( alpha ) +1)
112 p lo t (−100:100 , s o l ( end , 1 0 0 : 3 0 0 ) , ’ LineWidth ’ , 1 . 3 ) ;
113 hold on
114

115 %3D−p lo t
116 f i g u r e ( i )
117 s u r f ( x (101 : 301 ) , t (1/ tau ( j ) : 1/ tau ( j ) : end ) , s o l (1/ tau ( j ) : 1/ tau ( j ) : end

, 1 0 1 : 3 0 1 ) ) ;
118 az =40; e l =40; view ( az , e l ) ;
119 x l a b e l ( ’ x ’ , ’ FontSize ’ ,13) ;
120 y l a b e l ( ’ t ’ , ’ FontSize ’ ,13) ;
121 z l a b e l ( ’u (x , t ) ’ , ’ FontSize ’ ,13) ;
122 pr in t ( s t r c a t ( ’−f ’ , num2str ( i ) ) , s t r c a t ( path , ’ / s u r f ’ , num2str ( i ) ) , ’−

dpng ’ ) ;
123 end

48



B.2 Produce Exact Solutions

1 f unc t i on produceExactSo lut ions ( )
2 %t h i s method produces h igh ly exact r e s u l t s which are used as r e f e r e n c e
3 %s o l u t i o n when comparing numerica l r e s u l t s
4 mode=’ exact ’ ;
5 methodList =[” f e tdrdp ” , ” f e tdcn ” , ” d iaz ” ] ;
6 r e a c t i o n L i s t =[” huxley ” ,” f i s h e r ” ,” homogen ” ] ;
7 lambdaList =[1 , 0 . 1 ] ;
8 f o r method = methodList
9 f o r r e a c t i o n = r e a c t i o n L i s t

10 f o r lambda = lambdaList
11 skr ipt example58 (mode , method , r eac t i on , lambda ) ;
12 end
13 end
14 end
15 end
16

17 %run the examle used in paper by macias−diaz
18 f unc t i on skr ipt example58 (mode , method , r eac t i on , lambda )
19 addpath ( ’ . / f e tdrdp ’ ) ;
20 addpath ( ’ . / f e tdcn ’ ) ;
21 addpath ( ’ . / d iaz ’ ) ;
22

23 %values from example58
24 a=−200;
25 b=200. ;
26 T=12. ;
27 h=1. ;
28 M=(b−a ) /h ;
29 j =0:M;
30 x=a+h∗ j ;
31

32 %f r a c t i o n a l parameter
33 alpha =[2 1 .9 1 .8 1 . 7 ] ;
34

35 %time step
36 i f mode==’ exact ’
37 tau = [ 0 . 0 0 0 1 ] ;
38 e l s e
39 tau =[0.1 0 .05 0 .025 0 . 0 1 2 5 ] ;
40 end
41

42 %vary time step−>s o l u t i o n s in d i f f e r e n t d i r e c t o r i e s t e s t1 , 2 , . . .
43 f o r j =1: l ength ( tau )
44 t =0: tau ( j ) :T;
45 N=length ( t )−1;
46

47 %vary f r a c t i o n a l parameter−>r e s u l t s as so l1 , 2 , . . .
48 f o r i =1: l ength ( alpha )
49

50 %save s o l u t i o n s in f i r s t c a l c u l a t i o n
51 i f mode==’ f i r s t ’

49



52 t i c
53 s o l=eva l ( s t r c a t ( method , ’ ( lambda , t , x ,M,N, a , b , alpha ( i ) , tau ( j ) ,

r e a c t i o n ) ’ ) ) ;
54 elapsedTime=toc ;
55 %save s o l u t i o n s
56 path=char ( s t r c a t ( ’ . / ’ , method , ’ / ’ , r eac t i on , ’ / example58 ’ ,

num2str ( lambda ∗10000) , ’ / t e s t ’ , num2str ( j ) ) ) ;
57 mkdir ( s t r c a t ( path ) ) ;
58 save ( s t r c a t ( path , ’ / s o l s ’ , num2str ( i ) ) , ’ s o l ’ ) ;
59 %save e lapsed time f o r computation
60 f i l e I D = fopen ( s t r c a t ( path , ’ / t imeanderror s . txt ’ ) , ’ a ’ ) ;
61 f p r i n t f ( f i l e I D , ’%5s %d\n ’ , s t r c a t ( ’ time ’ , num2str ( i ) ) ,

elapsedTime ) ;
62 %save e r r o r in f i l e ( r e l a t i v e , i n f i n i t y norm)
63 load ( s t r c a t ( ’ . / r e f S o l u t i o n / f e tdcn / ’ , r eac t i on , ’ / example58 ’ ,

num2str ( lambda ∗10000) , ’ / exac tSo l ’ , num2str ( i ) ) , ’ exac tSo l ’ ) ;
64 e r r=norm( abs ( s o l ( end , : )−exac tSo l ( end , : ) ) , i n f ) /norm( exactSo l (

end , : ) ) ;
65 f p r i n t f ( f i l e I D , ’%6s %d\n ’ , s t r c a t ( ’ e r r o r ’ , num2str ( i ) ) , e r r ) ;
66 f c l o s e ( f i l e I D ) ;
67 makePics ( alpha , i , j , x , t , tau , so l , path )
68

69 %load s o l u t i o n s in next uses
70 e l s e i f mode==’ loade ’
71 path=char ( s t r c a t ( ’ . / ’ , method , ’ / ’ , r eac t i on , ’ / example58 ’ ,

num2str ( lambda ∗10000) , ’ / t e s t ’ , num2str ( j ) ) ) ;
72 load ( s t r c a t ( path , ’ / s o l s ’ , num2str ( i ) ) ) ;
73 makePics ( alpha , i , j , x , t , tau , so l , path )
74

75 %in case o f c a l c u l a t i n g r e f e r e n c e s o l u t i o n
76 e l s e i f mode==’ exact ’
77 t i c
78 exac tSo l=eva l ( s t r c a t ( method , ’ ( lambda , t , x ,M,N, a , b , alpha ( i ) , tau (

j ) , r e a c t i o n ) ’ ) ) ;
79 elapsedTime=toc ;
80 %save s o l u t i o n s
81 path=char ( s t r c a t ( ’ . / r e f S o l u t i o n / ’ , method , ’ / ’ , r eac t i on , ’ /

example58 ’ , num2str ( lambda ∗10000) ) ) ;
82 mkdir ( path ) ;
83 save ( s t r c a t ( path , ’ / exac tSo l ’ , num2str ( i ) ) , ’ exac tSo l ’ ) ;
84 %save e lapsed time f o r computation
85 f i l e I D = fopen ( s t r c a t ( path , ’ / t imeanderror s . txt ’ ) , ’ a ’ ) ;
86 f p r i n t f ( f i l e I D , ’%5s %d\n ’ , s t r c a t ( ’ time ’ , num2str ( i ) ) ,

elapsedTime ) ;
87 f c l o s e ( f i l e I D ) ;
88 makePics ( alpha , i , j , x , t , tau , exactSol , path )
89 end
90 end
91 i f mode˜= ’ exact ’
92 pr in t ( s t r c a t ( ’−f ’ , num2str ( l ength ( alpha ) +1) ) , s t r c a t ( ’ . / ’ , method , ’ / ’

, r eac t i on , ’ / example58 ’ , num2str ( lambda ∗10000) , ’ / t e s t ’ , num2str (
j ) , ’ / comparefrac ’ , num2str ( l ength ( alpha ) +1) ) , ’−dpng ’ ) ;

93 end
94 hold o f f

50



95 end
96 hold o f f
97 end
98

99 f unc t i on makePics ( alpha , i , j , x , t , tau , so l , path )
100 %2D−p lo t
101 f i g u r e ( l ength ( alpha ) +1)
102 p lo t (−100:100 , s o l ( end , 1 0 0 : 3 0 0 ) ) ;
103 hold on
104

105 %3D−p lo t
106 f i g u r e ( i )
107 s u r f ( x (101 : 301 ) , t (1/ tau ( j ) : 1/ tau ( j ) : end ) , s o l (1/ tau ( j ) : 1/ tau ( j ) : end

, 1 0 1 : 3 0 1 ) ) ;
108 az =40; e l =40; view ( az , e l ) ;
109 x l a b e l ( ’ x ’ ) ;
110 y l a b e l ( ’ t ’ ) ;
111 z l a b e l ( ’u (x , t ) ’ ) ;
112 pr in t ( s t r c a t ( ’−f ’ , num2str ( i ) ) , s t r c a t ( path , ’ / s u r f ’ , num2str ( i ) ) , ’−

dpng ’ ) ;
113 end

51



B.3 Convergence and Efficiency

1 f unc t i on c o n v e r g e n c e a n d e f f i c i e n c y ( )
2 %a l l numerica l r e s u l t s can be reproduced by t h i s method
3 %the programs f o r each case has to be run be f o r e
4 %the method c r e a t e s convergence and e f f i c i e n c y p l o t s f o r a l l g iven
5 %parameters
6 %furthermore i t makes one convergence t a b l e r egard ing a l l g iven f r a c t i o n a l
7 %parameters f o r a comparison
8 methodList =[” f e tdrdp ” ,” f e tdcn ” ,” d iaz ” ] ;
9 r e a c t i o n L i s t =[” huxley ” , ” f i s h e r ” , ”homogen ” ] ;

10 lambdaList =[1 , 0 . 1 ] ;
11 a lphaL i s t =[1 2 3 4 ] ;%means alpha=2 1 .9 1 .8 1 .7
12 s t e p L i s t =[” t e s t 1 ” ,” t e s t 2 ” ,” t e s t 3 ” ,” t e s t 4 ” ] ;
13 produceData ( methodList , r e a c t i o n L i s t , lambdaList , a lphaLis t , s t e p L i s t ) ;
14 end
15

16 f unc t i on produceData ( methodList , r e a c t i o n L i s t , lambdaList , a lphaLis t , s t e p L i s t )
17 row={ ’ 2 ’ ’ 1 . 9 ’ ’ 1 . 8 ’ ’ 1 . 7 ’ } ;
18 f o r lambda = lambdaList %s e t lambda
19 path=s t r c a t ( ’ . / Thes i s / convergence / example58 ’ , num2str ( lambda ∗10000) ) ;
20 mkdir ( path ) ;
21 f o r r e a c t i o n = r e a c t i o n L i s t %s e t r e a c t i o n term
22 conv=ze ro s ( l ength ( s t e p L i s t ) ∗ l ength ( a lphaL i s t ) ,5 , l ength ( methodList )

) ;
23 f o r alpha=a lphaL i s t %s e t alpha
24 tab l e1 = [ ] ;
25 tab l e2 = [ ] ;
26 f o r method = methodList
27 s t epar ray1 = [ ] ;
28 s t epar ray2 = [ ] ;
29 f o r s tep=s t e p L i s t
30 %c o l l e c t data f o r convergence and e f f i c i e n c y p lo t
31 path=char ( s t r c a t ( ’ . / ’ , method , ’ / ’ , r eac t i on , ’ / example58

’ , num2str ( lambda ∗10000) , ’ / ’ , step , ’ / t imeanderror s .
txt ’ ) ) ;

32 f i l e I D = fopen ( path , ’ r ’ ) ;
33 formatSpec = ’%s %12.6 f ’ ;
34 A = text scan ( f i l e I D , formatSpec ) ;
35 %convergence
36 s t epar ray1 =[ s t epar ray1 (A{2}(2∗ alpha ) ) ] ;
37 %e f f i c i e n c y
38 s t epar ray2 =[ s t epar ray2 (A{2}(2∗ alpha−1) ) ] ;
39 f c l o s e ( f i l e I D ) ;
40 end
41 tab l e1 =[ tab l e1 ; s t epar ray1 ] ;
42 tab l e2 =[ tab l e2 ; s t epar ray2 ] ;
43 end
44

45 %generate convergence p l o t f o r each method
46 xva lues =[0.1 0 .05 0 .025 0 . 0 1 2 5 ] ;
47 f o r i =1: l ength ( methodList )
48 l o g l o g ( xvalues , t ab l e1 ( i , : ) , ’−x ’ , ’ LineWidth ’ , 1 . 3 ) ;

52



49 hold on
50 end
51 x l a b e l ( ’ time step ’ , ’ FontSize ’ ,13) ;
52 y l a b e l ( ’ r e l a t i v e e r r o r ’ , ’ FontSize ’ , 13) ;
53 l egend ({”FETD−RDP” ,”FETD−CN” ,”FD”} , ’ FontSize ’ ,13) ;
54 path=s t r c a t ( ’ . / Thes i s / convergence / example58 ’ , num2str ( lambda

∗10000) , ’ / ’ , char ( r e a c t i o n ) ) ;
55 mkdir ( path ) ;
56 pr in t ( s t r c a t ( ’−f ’ , num2str (1 ) ) , s t r c a t ( path , ’ /

f r a c t i o n a l p a r a m e t e r c a s e ’ , num2str ( alpha ) ) , ’−dpng ’ ) ;
57 hold o f f
58

59 %Generate e f f i c i e n c y p lo t f o r each method
60 f o r i =1: l ength ( methodList )
61 l o g l o g ( tab l e1 ( i , : ) , t ab l e2 ( i , : ) , ’−x ’ , ’ LineWidth ’ , 1 . 3 ) ;
62 hold on
63 end
64 x l a b e l ( ’ r e l a t i v e e r r o r ’ , ’ FontSize ’ , 13) ;
65 y l a b e l ( ’ time ’ , ’ FontSize ’ ,13) ;
66 l egend ({”FETD−RDP” ,”FETD−CN” ,”FD”} , ’ FontSize ’ ,13) ;
67 path=s t r c a t ( ’ . / Thes i s / e f f i c i e n c y / example58 ’ , num2str ( lambda

∗10000) , ’ / ’ , char ( r e a c t i o n ) ) ;
68 mkdir ( path ) ;
69 pr in t ( s t r c a t ( ’−f ’ , num2str (1 ) ) , s t r c a t ( path , ’ /

f r a c t i o n a l p a r a m e t e r c a s e ’ , num2str ( alpha ) ) , ’−dpng ’ ) ;
70 hold o f f
71

72 %c o l l e c t data f o r convergence t a b l e f o r every method
73 f o r j =1: l ength ( methodList )
74 r a t e = [ 0 ] ;
75 alphavec =[ s t r2doub l e ( row{ alpha }) ] ;
76 f o r i =1: l ength ( s t e p L i s t )−1
77 tmp=log ( tab l e1 ( j , i ) / tab l e1 ( j , i +1) ) / log (2 ) ;
78 r a t e =[ ra t e tmp ] ;
79 alphavec =[ alphavec s t r2doub l e ( row{ alpha }) ] ;
80 end
81 subtab le =[ alphavec ’ xvalues ’ t ab l e1 ( j , : ) ’ t ab l e2 ( j , : ) ’

rate ’ ] ;
82 ( alpha ) ∗ l ength ( s t e p L i s t )
83 ( alpha−1)∗ l ength ( s t e p L i s t )+1
84 f o r m=1:5
85 conv ( ( alpha−1)∗ l ength ( s t e p L i s t ) +1: alpha ∗ l ength (

s t e p L i s t ) ,m, j )=subtab le ( : ,m) ;
86 end
87 end
88 end
89

90 %Generate l a t e x convergence matrix f o r each method a f t e r
91 %c o n s i d e r i n g o f a l l a lphas
92 f o r j =1: l ength ( methodList )
93 path=s t r c a t ( ’ . / Thes i s / t a b l e / example58 ’ , num2str ( lambda ∗10000) ,

’ / ’ , char ( r e a c t i o n ) ) ;
94 mkdir ( path ) ;
95 c o l={ ’ a lpha ’ ’ tau ’ ’ e r r o r ’ ’ time ’ ’ r a t e ’ } ;

53



96 matr ix2 la tex ( conv ( : , : , j ) , s t r c a t ( path , ’ / ’ , methodList ( j ) , ’
f r a c t i o n a l p a r a m e t e r c a s e a l l ’ , ’ . tex ’ ) , ’ columnLabels ’ , co l , ’

a l ignment ’ , ’ c ’ ) ;
97 end
98 end
99 end

100 end

54



B.4 Numerical Methods

1 f unc t i on y=fetdrdp ( lambda , t , x ,M,N, a , b , alpha , tau , r e a c t i o n )
2 %t i s the time i n t e r v a l part ioned in N+1 part s by tau
3 %[ a , b ] i s the space i n t e r v a l and should get p a r t i t i o n e d in M+1 part s
4 %u0=[ k s i ( x0 ) , f i ( x1 ) , . . . , f i (xM−1) , k s i (xM) ] i s vec to r f o r t=0 de f ined on [ a ,

b ]
5 %k s i i s the func t i on f o r the boundar ies a and b
6 %i n i t i a l i z a t i o n s
7 h=(b−a ) /M;
8 A=ze ro s (M+1,M+1) ;
9 c o e f f s=g (M, alpha ) ;

10 u=f i ( a , b ,M, h) ;
11 y=ze ro s (N,M+1) ;
12

13 %Construct A
14 f o r i =1:M
15 f o r j =1: i−1
16 A( i , j )=c o e f f s ( i−j +1 ,1) ; %make use o f on d iagona l s always the same

??
17 end
18 end
19 A( 1 , : )=ze ro s (M+1 ,1) ;
20 A(M+1 , :)=ze ro s (M+1 ,1) ;
21 A=(A+transpose (A)+eye (M+1)∗ c o e f f s ( 1 , 1 ) ) ∗ (1/( hˆ alpha ) ) ; %use symmetry
22

23 %Construct B
24 e = ones (M+1 ,1) ;
25 B = spd iags ([−1∗ e 0∗ e 1∗ e ] , −1:1 , M+1, M+1) ;
26 B(1 ,1 ) =1;
27 B(1 ,2 ) =0;
28 B(M+1,M+1)=1;
29 B(M+1,M−1)=0;
30 B=1/(2∗h) ∗B;
31

32 I=eye (M+1,M+1) ;
33 %Construct F
34 %a t t e n t i o n f e t p does only get app l i ed on inner knots
35 co r r=u ( : , 1 ) ;
36 f o r k=1:N %time s t ep s
37 F corr=F( corr , lambda ,B,M, r e a c t i o n ) ;
38

39 pred=(I+A∗ tau ) \( co r r+tau∗F corr ) ;
40 F pred=F( pred , lambda ,B,M, r e a c t i o n ) ;
41

42 an=(I +1./3∗A∗ tau ) \(9∗ co r r +2∗tau∗F corr+tau∗F pred ) ;
43 bn=(I +1./4∗A∗ tau ) \(−8∗ corr −3/2∗ tau∗F corr −1/2∗ tau∗F pred ) ;
44 co r r=an+bn ;
45

46 y (k , : )=co r r ;
47 end
48 end
49

55



50 %Gruenwald−Letnikov−C o e f f i c i e n t s i t e r a t i v e
51 f unc t i on c o e f f s=g (M, alpha )
52 c o e f f s=ze ro s (M+1 ,1) ;
53 c o e f f s ( 1 , 1 )=gamma( alpha+1)/(gamma( alpha /2.+1) ˆ2) ;
54 f o r i =2:M+1
55 c o e f f s ( i , 1 )=c o e f f s ( i −1 ,1) ∗(1−(( alpha+1)/( alpha /2.+( i −2)+1) ) ) ;
56 end
57 end
58

59 f unc t i on y=f i s h e r (u)
60 y=1−u ;
61 end
62

63 f unc t i on y=huxley (u)
64 gamma=0.005;
65 y=(1−u) . ∗ ( u−gamma) ;
66 end
67

68 f unc t i on y=homogen (u)
69 y=0∗u ;
70 end
71

72

73 %func t i on f o r non−l i n e a r part
74 f unc t i on y=F(u , lambda ,B,M, r e a c t i o n )
75 y=ze ro s (M+1 ,1) ;
76 y ( : , 1 )=u ( : , 1 ) ;
77 y=−lambda .∗ y . ∗ (B∗y )+y .∗ eva l ( s t r c a t ( r eac t i on , ’ ( y ) ’ ) ) ;
78 y=y ( : , 1 ) ;
79 end
80

81

82 %f u n c t i o n s f o r boundary and i n i t i a l c o n d i t i o n s
83 f unc t i on y=k s i 1 ( t )
84 y=0;
85 end
86 f unc t i on y=k s i 2 ( t )
87 y=0;
88 end
89 f unc t i on y=f i ( a , b ,M, h)
90 counter =1;
91 y=ze ro s (M+1 ,1) ;
92 f o r x=a : h : b
93 i f x==0
94 y ( counter , 1 ) =0.1 ;
95 e l s e
96 y ( counter , 1 ) =0;
97 end
98 counter=counter +1;
99 end

100 y (1 )=k s i 1 (0 ) ;
101 y (M+1)=k s i 2 (0 ) ;
102 end

56



1 f unc t i on y=fe tdcn ( lambda , t , x ,M,N, a , b , alpha , tau , r e a c t i o n )
2 %t i s the time i n t e r v a l part ioned in N+1 part s by tau
3 %[ a , b ] i s the space i n t e r v a l and should get p a r t i t i o n e d in M+1 part s
4 %u0=[ k s i ( x0 ) , f i ( x1 ) , . . . , f i (xM−1) , k s i (xM) ] i s vec to r f o r t=0 de f ined on [ a ,

b ]
5 %k s i i s the func t i on f o r the boundar ies a and b
6

7 %i n i t i a l i z a t i o n s
8 h=(b−a ) /M;
9 A=ze ro s (M+1,M+1) ;

10 c o e f f s=g (M, alpha ) ;
11 u=f i ( a , b ,M, h) ;
12 y=ze ro s (N,M+1) ;
13

14 %Construct A
15 f o r i =1:M
16 f o r j =1: i−1
17 A( i , j )=c o e f f s ( i−j +1 ,1) ; %make use o f on d iagona l s always the same

??
18 end
19 end
20 A( 1 , : )=ze ro s (M+1 ,1) ;
21 A(M+1 , :)=ze ro s (M+1 ,1) ;
22 A=(A+transpose (A)+eye (M+1)∗ c o e f f s ( 1 , 1 ) ) ∗ (1/( hˆ alpha ) ) ; %use symmetry
23

24 %Construct B
25 e = ones (M+1 ,1) ;
26 B = spd iags ([−1∗ e 0∗ e 1∗ e ] , −1:1 , M+1, M+1) ;
27 B(1 ,1 ) =1;
28 B(1 ,2 ) =0;
29 B(M+1,M+1)=1;
30 B(M+1,M−1)=0;
31 B=1/(2∗h) ∗B;
32 I=eye (M+1,M+1) ;
33 %Construct F
34 %a t t e n t i o n f e t d does only get app l i ed on inner knots
35 %i n i t a l damping step we can c a l c u l a t e d i r e c t l y
36 pred=u ( : , 1 ) ;
37 F pred=F( pred , lambda ,B,M, r e a c t i o n ) ;
38 co r r =( I+tau∗A) \( pred+tau∗F pred ) ;
39 y ( 1 , : )=cor r ;
40

41 f o r k=2:N %time s t ep s
42 F corr=F( corr , lambda ,B,M, r e a c t i o n ) ;
43

44 an=(2∗ I+tau∗A) \(4∗ co r r +2∗tau∗F corr ) ;
45 pred=(−1)∗ co r r+an ;
46 F pred=F( pred , lambda ,B,M, r e a c t i o n ) ;
47

48 bn=(2∗ I+tau∗A) \( tau ∗( F pred−F corr ) ) ;
49 co r r=pred+bn ;
50 y (k , : )=co r r ;
51 end
52 end

57



53

54 %Gruenwald−Letnikov−C o e f f i c i e n t s i t e r a t i v e
55 f unc t i on c o e f f s=g (M, alpha )
56 c o e f f s=ze ro s (M+1 ,1) ;
57 c o e f f s ( 1 , 1 )=gamma( alpha+1)/(gamma( alpha /2.+1) ˆ2) ;
58 f o r i =2:M+1
59 c o e f f s ( i , 1 )=c o e f f s ( i −1 ,1) ∗(1−(( alpha+1)/( alpha /2.+( i −2)+1) ) ) ;
60 end
61 end
62

63 f unc t i on y=f i s h e r (u)
64 y=1−u ;
65 end
66

67 f unc t i on y=huxley (u)
68 gamma=0.005;
69 y=(1−u) . ∗ ( u−gamma) ;
70 end
71

72 f unc t i on y=homogen (u)
73 y=0∗u ;
74 end
75

76 %func t i on f o r non−l i n e a r part
77 f unc t i on y=F(u , lambda ,B,M, r e a c t i o n )
78 y=ze ro s (M+1 ,1) ;
79 y ( : , 1 )=u ( : , 1 ) ;
80 y=−lambda .∗ y . ∗ (B∗y )+y .∗ eva l ( s t r c a t ( r eac t i on , ’ ( y ) ’ ) ) ;
81 y=y ( : , 1 ) ;
82 end
83

84

85 %f u n c t i o n s f o r boundary and i n i t i a l c o n d i t i o n s
86 f unc t i on y=k s i 1 ( t )
87 y=0;
88 end
89 f unc t i on y=k s i 2 ( t )
90 y=0;
91 end
92

93 f unc t i on y=f i ( a , b ,M, h)
94 counter =1;
95 y=ze ro s (M+1 ,1) ;
96 f o r x=a : h : b
97 i f x==0
98 y ( counter , 1 ) =0.1 ;
99 e l s e

100 y ( counter , 1 ) =0;
101 end
102 counter=counter +1;
103 end
104 y (1 )=k s i 1 (0 ) ;
105 y (M+1)=k s i 2 (0 ) ;
106 end

58



1 f unc t i on s o l=diaz ( lambda , t , x ,M,N, a , b , alpha , tau , r e a c t i o n )
2 %M+1 i s the space dimension
3 %N+1 i s the time dimension
4 %time i n t e r v a l i s [ 0 ,T] and t i s the mesh on i t
5 %s p a t i a l i n t e r v a l i s [ a , b ]
6 %alpha i s order o f f r a c t i o n a l d e r i v a t i o n
7 %k s i 1 and k s i 2 are the boundary cond . whi l e f i i s the i n i t i a l cond i t i on
8 %( in s epe ra t e f u n c t i o n s above )
9

10 %INITILIAZATION
11 %s t a r t c o e f f i c i e n t s
12 gk=c o e f f i c i e n t s ( alpha ,M−2) ;
13 %s p a t i a l mesh step
14 h=(b−a ) /M;
15 %i n i t i a l c ond i t i on
16 u=ze ro s (N,M+1) ; %a c t u a l l y we only need u as a vec to r
17 f o r i =1:M+1
18 u (1 , i )=f i ( x ( i ) ) ; %from 0 to M
19 end
20 %matrix
21 A=ze ro s (M+1,M+1) ;
22 A(1 ,1 ) =1;
23 A(M+1,M+1)=1;
24 %NUMERICAL METHOD
25 f o r n=0:N−1
26 %time step
27 tau=t (n+2)−t (n+1) ;
28

29 %A
30 eta=1+tau /(hˆ alpha ) ∗gk (1 )−tau∗ eva l ( s t r c a t ( r eac t i on , ’ (u (n+1 ,2:M) ) ’ ) ) ;
31 d1=tau /(hˆ alpha ) ∗gk (2 ) ;
32 d2=(( tau∗ lambda ) /(2∗h) ) ∗u(n+1 ,2:M) ;
33 d e l t a p=d1+d2 ;
34 delta m=d1−d2 ;
35 gkhat=tau /(hˆ alpha ) ∗gk ( 3 : l ength ( gk ) ) ;%gkhat only i n c l u d e s g2 to gM−1
36 f o r i =2:M
37 A( i , i )=eta ( i −1) ;
38 A( i , i −1)=delta m ( i −1) ;
39 A( i , i +1)=d e l t a p ( i −1) ;
40 end
41 f o r j =1:M−2%sub d iagona l s
42 f o r i =( j +2) :M
43 A( i , j )=gkhat ( i−j−1) ;
44 end
45 end
46 f o r j =4:(M+1)%super d i agona l s
47 f o r i =2: j−2
48 A( i , j )=gkhat ( j−i −1) ;
49 end
50 end
51

52 %v u ˆn
53 v=transpose ( [ k s i 1 ( t (n+2) ) u(n+1 ,2:M) k s i 2 ( t (n+2) ) ] ) ;
54 %f i n a l step , s o l v e equat ion system

59



55 u(n+2 , :)=A\v ;
56 end
57 s o l=u ( : , : ) ;
58 end
59

60 %i t e r a t i v e method f o r c o e f f i c i e n t o f the f r a c t i o n a l centred d i f f e r e n c e s
61 f unc t i on gk=c o e f f i c i e n t s ( alpha ,K) %K= 0 , . . . c a l u c l a t e s g1 , . . .
62 gk=ze ro s (K+2) ;
63 gk (1 )=gamma( alpha+1)/(gamma( alpha /2+1) ˆ2) ;
64 f o r k=0:K
65 gk ( k+2)=(1−(( alpha+1)/( alpha/2+k+1) ) ) ∗gk ( k+1) ;
66 end
67 end
68

69 f unc t i on y=f i s h e r (u)
70 y=1−u ;
71 end
72

73 f unc t i on y=huxley (u)
74 gamma=0.005;
75 y=(1−u) . ∗ ( u−gamma) ;
76 end
77

78 f unc t i on y=homogen (u)
79 y=0∗u ;
80 end
81

82 %f u n c t i o n s f o r boundary and i n i t i a l c o n d i t i o n s
83 f unc t i on y=k s i 1 ( t )
84 y=0;
85 end
86 f unc t i on y=k s i 2 ( t )
87 y=0;
88 end
89 f unc t i on y=f i ( x )
90 i f x==0
91 y =0.1;
92 e l s e
93 y=0;
94 end
95 end

60


	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2018

	Numerical Solutions of Fractional Nonlinear Advection-Reaction-Diffusion Equations
	Sophia Vorderwuelbecke
	Recommended Citation


	tmp.1545148452.pdf.pNkfF

