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ABSTRACT

ASYMPTOTIC EXPANSION OF THE
L2:-NORM OF A SOLUTION
OF THE STRONGLY DAMPED WAVE EQUATION

by
Joseph Barrera

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Hans Volkmer

The Fourier transform, 7, on RY (N > 1) transforms the Cauchy problem for the strongly
damped wave equation uy; — Au; — Au = 0 to an ordinary differential equation in time ¢.
We let u(t, x) be the solution of the problem given by the Fourier transform, and v(t,§) be
the asymptotic profile of F(u)(t,£) = a(t, &) found by Ikehata in [4].

In this thesis we study the asymptotic expansions of the squared L?-norms of u(t,x),
u(t, &) — v(t,€), and v(t,&) as t — oo. With suitable initial data u(0,2) and u.(0,x), we
establish the rate of growth or decay of the squared L?-norms of u(t,z) and v(t,£) as t — co.
By noting the cancellation of leading terms of their respective expansions, we conclude that
the rate of convergence between (t,€) and v(t,€) in the L2-norm occurs quickly relative
to their individual behaviors. Finally we consider three examples in order to illustrate the

results.
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Chapter 1

Introduction

1.1 Motivation

In the analysis of linear partial differential equations (PDE), a common method is to use
the Fourier transform, which will be defined in a later section. Broadly speaking, the benefit
of this method is that the Fourier transform will reduce the original problem from a linear
partial differential equation in one of the variables to a linear ordinary differential equation
(ODE) of the other. This reduced problem is typically easier to solve, since linear ODE
and their solutions are well understood. With appropriate assumptions the solution in the
so-called Fourier space may be returned to the original setting by way of the Fourier inverse.

A straightforward and elementary example of this method at work is in deriving the

fundamental solution of the heat equation

v(t, z) — Av(t,z) =0, (t,r) € [0,00) x RY,

v(0,-) = vy € L*(RY),

where A denotes the spatial Laplacian on RY. Applying the Fourier transform to the PDE



and its initial condition, we obtain the equation

w(t,6) +1EF0(t,8) =0, (t,€) €[0,00) x RY,

0(0,€) = 00(§),

which has solution

B(t, &) = Bo(&)e P,

With the assumption vy € L*(RY), & € L*(R") and we obtain the fundamental solution

v(t, z) via the Fourier inverse
o(t, z) = F (g - e 1) ().
We are then interested in the behavior of the squared L?-norm

lo(t, |2 = /RNyv(t,x)Fdx

as t — oco. By the well-known Plancherel theorem (see Theorem 1 on p. 187 in Chapter 4

of [2]), the Fourier transform is an L?(R")-isometry, hence

lo(t, I = ot )lI3-

By imposing the additional assumption that vy € L*(RY), it is a property of the Fourier

transform that 9y € L>®(RY). It is then easily verified that for ¢t > 0

ot I = (e, )1 = [ o(©)Fe 1 de

MQWN—I Nys—
2%+1 F(i)t

[z

=0t ).



where M = ||g||oo and wy_; is the surface area of the (N — 1)-sphere in RY.

In his paper [11], Volkmer puts even stricter assumptions on the initial condition vy so as
to guarantee the existence of derivatives of 9y up to a chosen order (the exact assumptions will
be given in a later section). He then determines the asymptotic expansion of the squared
L*(RY)-norm ||v(t,-)||3. He does this by using the additional assumptions on the initial
condition and Plancherel’s theorem to instead study |o(¢,-)||3. By studying the problem
in the Fourier space, the solution 0(t,¢) is given explicitly and in terms of a differentiable
function vy(§).

We will employ this general strategy in the analysis of the problem we consider: the
strongly damped wave equation. The motivation for finding the asymptotic expansions of

course comes from Volkmer’s work in [11], and also from Ikehata’s work in [4].

1.2 The strongly damped wave equation in RY

For N € N we begin by considering the strongly damped wave equation in R*:

u(t, ) — Auy(t, x) — Au(t, z) = 0, (t,r) € (0,00) x RY, 1)
u(0,-) = ug € H*(RY), w,(0,-) = u; € L*(RY). |

It was determined in |9] by Ikehata, Todorova, and Yordanov that (1.1) admits a unique
weak solution u € C([0,00); H'(RY)) N C1([0, 00); L*(RY)).

It is the goal of this thesis to investigate two main problems.

1. Given suitable additional assumptions on the initial data uy and u;, determine the

asymptotic expansion of the squared L?-norm of the weak solution u(t,x) as t — oo.

To state the second problem, we need further context about the weak solution u(t, z). As dis-
cussed in the previous section, we will determine u(¢, x) with the help of the Fourier transform

F. In the Fourier space, Ikehata [4] found an asymptotic profile v(t, £) of F(u)(t,§) := u(t, §)



such that for space dimension N € N,

N
2

lat, ) — vt )l = O(t™2) (1.2)

as t — oo given additional assumptions on the initial data. In addition, for space dimension

N > 3, he found the following decay rate for the weak solution (¢, x):
lutt )l =05 (> o). (1.3)

(1.2) and (1.3) reveal that u(t,€) and v(t,&) tend to each other in norm faster than the
decay of u(t,z) in norm. This is a phenomenon similar to the diffusion phenomenon studied
by Volkmer in [11]. In his paper Volkmer studied the dissipative wave equation in addition to
the heat equation mentioned earlier. Given additional assumptions on the initial conditions
of each problem, he was able to exhibit the diffusion phenomenon and provide asymptotic
expansions of the norms of the solutions and the norm of the difference of the solutions. We

may now state the second main problem.

2. Given suitable additional assumptions on the initial data ug and u;, determine the
asymptotic expansion of the squared L*norm of the difference of the solution (t, £)

and its profile v(¢, &) in the Fourier space.

To determine the necessary additional assumptions on the initial data, we follow the
methods of Tkehata [4] and Volkmer [11] in that we use weighted L'-data. By doing so we
will be able to obtain asymptotic expansions of the desired norms up to a number of terms
dependent upon the L'-conditions plus an error term of lower order than all other terms.

We first introduce some notation.

Notation. First we let N = {1,2,...} denote the positive integers and Ny = {0,1,2,...}

denote the non-negative integers. Let N € N. Throughout this thesis the LI(R")-norm is



denoted by ||-||,. We also define for all € > 0 B, := {z € RV : |z|< €} to be the closed ball
of radius € in RY. Then we denote the L(B.)-norm by [|-||4.c.

For all & > 0 we define the weighted L!-space

LY (RY) = {gb e LY(RY)

/sz(l + )’ o(2)|dx < oo} .

The norm ||| z1er~y on the space LY (RY) is defined

18] 1.0 @ny:= /RN(l + |2))? |p(x)|de.

Lastly for all ¢ € LY(RY) we define the Fourier transform

_ 7 e 1 —iz-€
PO =9(0) = e [ o,
and the Fourier inverse
—1 - 1 &z
FrOa) = o || oede

We remark that for arbitrary ¢ € L?(R”), the Fourier transform is not given by the above
integral definition. Rather, for functions ¢; € L*(RY) N L?(RY) such that ||¢ — ¢;|l2 — 0 as
j — 00, ¢ is defined to be the unique L?*(RM)-limit of ggj as j — oo. More details can be

found on p. 189 in Chapter 4 of Evans’ Partial Differential Equations [2].

1.3 Assumptions

We assume that the space dimension is N € N and that there exists K € N such that

up, uy € L5 (RY)



where the functions vy € HY(RY) and u; € L*(RY) are the initial data of (1.1). Under
these assumptions both 4y and 4; are 2K-times continuously differentiable on RY, and in
particular at £ = 0. Thus we may choose 0 < § < 1 such that, in the closed d-neighborhood

of £ =0, the following Taylor approximations hold:

(&) = Y bet” + O(IE)*), (1.4)
lo|<2K -1

(&) = Y a7+ 0(EP"),
lo|<2K -1

where o € NI is a multi-index of order |o|= oy + ...+ oy (see Appendix A, p. 701 of 2]

for further details), and for all |o|< 2K — 1

= —<_i)|o‘ z%ug(x)dx
b = o! (2#)% /RN ole)de,
= —(_i)la‘ 2%uq(z)dx
o ol (2m)% /RN (@)de

We fix this chosen value of 0 < § < 1, and whenever § is hereafter referred to, we mean this
fixed value.

In this fixed closed d-neighborhood of £ = 0, we also have the Taylor approximations

EPag(e) = D 07+ O(El),

lo|<2K—1

i) + €L = D o+ O(IE"), (1.5)

lo|<2K—1

61 (E) + PO = ) do” + 01", (1.6)

lo|<2K—1

()P = > f.£7+O(E*), (1.7)

lo|<2K—1

(@1(8) + [ (€) a0 () = D 1.7+ O(|¢*), (1.8)

lo|<2K—1



where

0 all entries of o are <1
b, =
> bs_2c; otherwise,
{jloj>2}

/
Co =0, +b,,

da = Z chl,

Y+w=0c
fo=D_ bybs,
Ptw=0o
lU: Z ngu.w
Y+w=0c

With the definitions Py := (2m)""/2 [ uo(z)dz and P := (2m)" N2 [ox wi(z)dz, it is

easy to see that ag = P, and by = Py. Hence co = Py, do = |P1|%, fo = |P|?, and lo = P, Py.

1.4 Main results

Let us consider the strongly damped wave equation in RY as given in (1.1). Applying the

Fourier transform to (1.1), we obtain an ordinary differential equation in ¢

ﬂtt(ta 5) + |€|2at(tvf) + |£|2ﬂ(ta f) = 07 (t7§) S (07 OO) X RN)

w(0,-) = tg, U (0,-) = uy.

(1.9)

The solution to (1.9) is given by

a(t, €) = (w(€) + [¢*00(€))h(t, ) + o (§)D:h(L,€), (1.10)

where

ht, €)= ¢~ 252 SV — IEP/4) .
o /1= RS o




Therefore the weak solution of (1.1) under the Fourier transform is the inverse Fourier trans-
form of a(t, €), i.e., u(t,z) = F~1(4)(t, z). By Plancherel’s theorem the Fourier transform as
defined is an L?(R")-isometry (see Theorem 1 on p. 187 in Chapter 4 of [2|). Thus we will
rarely need to appeal to the weak solution wu(t, x), instead using @ (¢, &) whose form is given
explicitly.

Define

pa(t, €) = (@1 (&) + [€[*a0(€)) (. 6),

pa(t, ) = o (E)O(1,€),
g sin(t]¢)
G

vo(t,€) = Pre "5 cos(t|€]).

v (t, &) := Pe

Then u(t, &) = ui(t, &) + pa(t,§). With the definition v(t, &) = v1(t,€) + 1a(t, §), we wish to

find the asymptotic expansions of
lu(t, )5 and [t ) —v(t, )3 (t— o).

Indeed v(t,£) is the profile determined by Ikehata in his paper [4]. His main result from that

paper concerns the asymptotic behavior of ||a(t,-) — v(t,-)||3.

Theorem (Ikehata, 2014 [4]). Let N € N. Assume the initial data of (1.1) satisfy ug €
HYRY) N LYY(RY) and vy € L*(RY) N LYY RY). Then there exist constants o > 0 and

C > 0 such that ast — oo

N
N

~ _N _
lat, ) —v(t, )3 < C((Ilul||f+||uOII?+IIU1IIQLlJ(RN))t =+ [luoll T gyt

e w3+ o 3) ).

Additionally, in [4] Ikehata cites the paper [5], which he wrote with Natsume, to provide

the asymptotic behavior of |lu(t,-)||3. We give this result as a theorem as well.

8



Theorem (Ikehata and Natsume, 2012 [5]). Let N > 3 be an integer. Assume the initial
data of (1.1) satisfy ug € H*(RY)N LYY RY) and uy € LA(RY) N LYY(RY). Then there exist

constants n > 0 and C' > 0 such that as t — oo

N
2

_N _
lu(t, Iz < C<|P1|2(1 + )72 4 (PO | ual| 7o ey ) (1 +2)

_N_ _
+luoll T @)1+ +e "t(HUOH%JrHulH%))-

In fact, Tkehata and Onodera later proved in their paper [6] that, in space dimension

N € {1,2}, there are sharp growth rates as t — oo

|u(t,-)]|5 = O(log(t)) in dimension N = 2

|u(t,-)]|5 = O(t) in dimension N = 1,

where log(t) denotes the natural logarithm throughout this thesis.
As stated in section 1.2, we wish to extend the results of Ikehata [4], Ikehata—Natsume
[5], and Ikehata—Onodera [6] given above to full asymptotic expansions. To do so, we use

the fact that

i) = vl )l = [ la(t.€) vl O)Fds.
= litt,) = vl + [ i) - vt o),

€|=e

where € > 0 is an arbitrary constant. In the proof of the main theorem from [4], Ikehata
proved the following fact, which is helpful in determining the desired expansions. We state

the fact as a lemma.

Lemma (Tkehata, 2014 [4]). Let € > 0 be given. Then there exists some 1, > 0 depending

on € > 0 such that as t — 0o

/|£ it ) de = 0,



Furthermore, it is a routine exercise to verify that for any e > 0 and ¢t > 1,

/|£ vt o) = o 5).

Therefore for all € > 0, let n; > 0 be as given in the preceding lemma. Then as t — oo

/{|Ze|ﬁ(t,§) —v(t,§)]de < 2 </£|26|ﬁ(t,§)|2d§ + /|£Z€|,/(t7§)|2d§> _ O(e™),

where 7 = min{n,, %} We have shown that for all € > 0 there is some 1 > 0 such that

lut, )z = llatt, )z = llatt, )z +0(e™™)  (t = 00),

lact, ) — vt )z =llatt, ) — vt )z +0(e™) (= o0).

Thus all the interesting asymptotic behaviors of ||u(t, -)||3 and ||a(t, ) —v(t, -)||3 are captured
in any e-neighborhood of the origin. We let € equal the fixed value of 0 < § < 1, and hence

we are interested in the expansions of
la(t, )35 and Ja(t,-) —v(t, )55 (t— 00). (1.12)

We will compute (1.12) by noting ||u(t,-) — v(t,-)|55 = X (t) + Y (t) + Z(t), where

X(t) = [lpa(t, ) = walt, ) Iz, (1.13)
Y(t) = lpa(t, ) — va(t, )2, (1.14)
Z(t) = 2R (L, ) — (L, -), pa(t, -) — valt, )2, (1.15)

From here we write X (t) = Xq(t) + Xo(t) — X3(t), Y(t) = Y1(t) + Ya(t) — Y3(t), and Z(t) =
Zl (t) — Zg(t) — Zg(t) + Z4(t), where

Xi(t) = [l ) zs  Xa(t) =t )5 Xs(t) = 2R(ualt, ), i(t))as:

10



Vi(t) = |lpa(t, as  Yo(t) = valt, )35 Ya(t) = 2R(ualt,-), va(t,-)a.s;
Zi(t) = 2R(ua (t,-), palt, - ))as,  Zo(t) = 2R (i (t,-), va(t,-))2.s,

Z3(t) = 2%<V1(t7 ')’ FLQ(t7 '>>2,5’ Z4<t) = 2§R<V1(t’ ')7 V2(tv ')>276-

We also see that [|a(t,-)[|55 = X1(t) + Yi(t) + Z1(t).

Theorem 1. Let N, K € N. Let u(t,x) be the weak solution of (1.1) under the Fourier
transform with the initial data ug(x) and ui(x) satisfying ug € H*(RN) N LY2E(RY) and

uy € LA(RN) N LL2K (RY).

1. If N > 3, then

K—1
lu(t, I3 = l[att, )3 =S Wit 75 L oK 5H) (t— 00),
j=0
2. If N =2, then
7T|P1|2 K—1

lu(t, Iz = lla(t, )iz = In(t) + Z Wit7 +0(t™) (= o0),

3. If N =1, then
K-1

lut, )3 = it )3 = 7| PPt + 7R(PLRy) + > Wit 742 4 0(742) (1 = o0).

J=0

In all three cases the W; (j € {0,..., K —1}) are coefficients dependent on the space dimen-

sion N and the initial data uo(x) and uy(x).

Theorem 2. Let N, K € N. Let u(t,x) be the weak solution of (1.1) under the Fourier

transform with the initial data ug(x) and ui(z) satisfying ug € H*(RN) N LY2E(RY) and

11



up € L2(RN) N LY2E(RY). Consider the asymptotic profile of u(t,€) found by Ikehata in [4]:

vit.€) = P D et cos(lg),

where Py = (2m) ™2 [ox uo(2)dz and Py = (27) N2 [o v wi(z)dz. Then as t — oo

K-—1
lat,) —v(t, )3 =D Vit 7=+ 4 o= =3,

J=1

where the V; (j € {1,..., K — 1}) are coefficients dependent on the space dimension N and

the initial data up(x) and ui(x).

In the process of proving Theorem 2 we will find the asymptotic expansions of Xy (t), Ya(?),
and Zy(t). Since [[u(t,-)[|3 = v (t, )13 5+0(e™/%) = Xy(t) + Ya(t) + Zu(t) + O(e™/2), we

obtain the expansion of the squared L*-norm of the asymptotic profile v (¢, ).

Corollary 1. Let N, K € N. Let v(t,€) be the asymptotic profile of u(t, &) found by Ikehata
in [4].

1. If N > 3, then

K-1
(e, )3 =D Ut 7 3 O 5 ) (- 00),
§=0
2. If N =2, then
. 7P o K
It )z = =5 In(t) + MU +0t)  (t— o),
=0
3. If N =1, then
K-1 . )
vt )3 = 7| Pt + 7R(P ) + Y Ut T2 + Ot " F2)  (t = o0).
=0
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In all three cases the U; (j € {0,..., K—1}) are coefficients dependent on the space dimension
N and the initial data ug(z) € H*(RY) N LY?5(RY) and uy € L*(RYN) N LY E(RY) of (1.1).

The rest of this thesis is divided into four more chapters and an appendix. With Chapter
2 we prove Theorem 1, and with Chapter 3 we prove Theorem 2. Each of these chapters
is broken down according to dimension, as the proof techniques vary by dimension. Addi-
tionally any necessary lemmas are collected before proceeding with the proof, and recalled
as needed. The proofs of the cases of Corollary 1 are part of the proof of Theorem 2 and
are briefly mentioned when complete. Chapter 4 gives three examples of the theorems at
work. Chapter 5 concludes this thesis and considers the techniques used and how they might
be applied to similar problems. Finally, the Appendix contains Mathematica code used in

computing some coefficients.
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Chapter 2

Proof of Theorem 1

The proof will be broken into three cases. We begin with the case that the space dimension
is N > 3. Then we analyze the N = 2 case, and finally the V =1 case. Each of these cases
requires lemmas that provide the asymptotic expansions of integrals that will be encountered

in the analysis that follows.

2.1 The space dimension N > 3 case

2.1.1 Auxiliary lemmas

For 0 < e <2, m € Ny, and t > 0 define
Gln(t) = / 7™ exp(—tr® — irtv/d — r2)dr. (2.1)
0

G1,,(t) will be treated using the small perturbation method found on p. 96 in Chapter 5 of
de Bruijn’s Asymptotic Methods in Analysis [1|. This method can be described as follows.

Suppose the asymptotic expansion of an integral

/brmf(t,r)dr (meZ,t—c)

14



is known, and some function g(t,r) = Zi;é gr(t)r* + O(r7) can be expanded in a Taylor

polynomial with remainder for r € (a,b). Then the identity
b b b
[ rmsengtendr =3 a) [t sendes [ oem e nar

can be used to determine the asymptotic expansion of fab r™f(t,r)g(t,r)dr as t — ¢ by esti-
mating the integral with the O-term and using what is already known about the asymptotics
of the integral f; PRt r)dr.
With
g(t,r) == exp(irt(2 — V4 — r2)), (2.2)

we rewrite (2.1) as

Gln(t) = / ™ exp(—tr? — 2irt)g(t, r)dr. (2.3)
0

We consider the Taylor expansion of g(t,7) at r =0, g(t,7) = > o, gr(t)r*, where gi(t) is a

polynomial in ¢ of degree at most % (to be shown). The first few terms are

it it 2 it t? 5it it3
PRURE R B S LU S L D
glt,r) =14+ o = o oo~ oss” T\ Teasa 3a)” T

We need the following lemma.

Lemma 1. Let J € Ny and 0 < € < 2. Then there exists C; > 0 such that
Gi(tr) = glt,r) = > gelt)r* (2.4)

satisfies |gs(t,7)|< Cyt7r3) for0<r <eandt > 1.

Proof. Let 0 < e < 2. If J =0, then g,(t,7) = g(¢,r) and the result holds since |g(t,7)|< 1
for 0 <r <e IfJEN, welet f(r) :=r(2 — 4 —12). Then g(t,7) = &), For every

15



Il . 1
T - Nk J _is J—-1
e — E(zm) —/0 (J_1)|ze( )’ ds
k=0
1 X
< (J_1>!/0 (x —s)"tds
L,
Hence for t > 0 and 0 <r <,
J—1
1 o )’
g(t,r) — 2 E@tf( r)* S — (2.5)
=0

Now for every k € {0,...,J — 1}, use the Taylor expansion (f(r))* = fu(r) + fu(r), where
fr(r) is a polynomial in r of degree at most 3J — 1 and \fk(r)lg Crpr?? for 0 < r < e
We substitute the Taylor expansion for (f(r))* into (2.5) and note that 0 < f(r) < r® for

0 <r < € to obtain

ot,7) = S i) + )| <

<
—

tJng.

i

By the reverse triangle inequality

J-1 Il . 1
E k‘_ ktkfk; E Hiktkfk(r) < ﬁtjrg‘]
k=0 k=0
which implies
= L | 1
g(t,r) k:Ok " f(r g_ ot CRrtt ot

Letting ¢ > 1 gives the desired result. Note that we’ve also shown that deg(gx(t)) < £. O

We now prove the following proposition.
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Proposition 1. Let 0 < e <2 and m,Q) € Ng. Then ast — oo
Q-1
G5 (t) =D Bpnt ™" H 079,
n=0
where, forn € {0,...,Q — 1},

R me&N odd
B, €

1R m € Ny even.

Proof. Let 0 < e <2 and m,Q € Nyg. We define for k, J € Ny
Fi(t) .= / ¥ exp(—tr? — 2irt)dr
0

and

Gi7k7J(t) = / r* exp(—tr® — 2irt) g (t,r)dr.
0

Thus we obtain from (2.3) and (2.4)

By Lemma 1, for ¢t > 1

~ ) 1
|Gi,m,J(t)|§ CJtJ/ Tm+3J€—tr2dr = §C’JP(m+f§J—H)t
0

We now seek an asymptotic expansion of Ff(t) for k € Ny. Note that

Fi(t) = (/OOO — /OO) r* exp(—tr? — 2irt)dr;

(2.6)

(2.7)

(2.8)

the former term we denote by Fy(t), and the latter term is O(e **/2) as t — co. So the

asymptotic expansions of F(t) and F,(t) will be the same as long as FJ,(t) exhibits at most

17



sub-exponential decay.

For R(\) < 0 and z € C, let D,(z) denote the parabolic cylinder function

22

_z 00 2
Dy(z) :== %/0 s Lexp (—% - zs) ds

as found on p. 328 in Chapter 8 of [10| by Magnus, Oberhettinger, and Soni. With the

substitution r = —% in Fy(t), we obtain

~ oo 2
Fi(t) = (2t)k§1/ s* exp (—% — ZS\/Q_t) ds
0

= (2t)" T e k! D_j_1(iV/2t).

From p. 331 in Chapter 8 of [10], we know the asymptotic expansion of D)(z) as |z|— oo in
the set {z € C | |arg(z)|< 2%} C C, and obtain
P-1

Fi(t) = Fi(t) + O(e '/ = >~ At F 71 O (2.9)

p=0

as t — oo, where P € Ny and

W5, (57,

iy ) (2.10)

Ak,p =

with the Pochhammer symbol (a), denoting the rising factorial

=1 e
' ala+1)-...-(a+p—1) peN.

Our goal is to find an asymptotic expansion of G, (t) with @ € Ny explicit terms and
then a O-term. Combining (2.7) and (2.9), we see that the leading term is of order ™!

followed by order ¢t~™=2 ¢=™=3 ... Thus, we want the error term to be O(t~"~9~1). By
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the estimate (2.8), we know the error term éimJ(t) of G¢,,(t) is of order t~(™T/+1/2 S0 we
want —m —Q — 1 = —%‘]H, and thus choose J = J,,, o == m + 2Q + 1.

By substituting (2.9) into (2.7), as t — oo we have

3J-1 P-1
Gi,m(t) = gk(t) <Z Am+k’pt—m—k—p—1 + O(t_m_k_P_1)> + O(t_m_Q_1> (211)

p=0

=Y Bt OO, (2.12)

To compute the B,,,, we first recall g(t,r) := exp(irt(2 — V4 —12)) = >_02, ge()r*, if we
expand in a Taylor series at r = (0. We determined in Lemma 1 that for each £ € Ny,

deg(gx(t)) < [£]. In fact, we can say more about the coefficients of each gj,(¢). We instead

write
=3 L -vimey = 3 W vz
n' n! ’
n=0 n=0

We then consider the Taylor expansion at r = 0

= (2m — 3)!! 1 1
r(2—vV4d—r2)=2r(1- 1—7“2/4):z:w7‘2m+1 A S

— m! 23m—1 4 64
where we adopt the convention (—1)!!= 1 and for any m € Ny, m!! denotes the double
factorial )
1 m =0
mil=¢mim—2)-...-(3)(1) meNodd (2.13)
m(m—2)-...-(4)(2) m € N even.

So the preceding Taylor series contains only odd powers of r of degree at least 3 with positive
coefficients. (By plugging the Taylor expansion into the above expansion of g(t,7) we see
another justification for the claim deg(gx(t)) < %.)

Obtaining (2.12) from (2.11) is a matter of having the proper ranges on the indices k and

p and then rearranging terms according to the powers of t. To determine the range of the
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index k, we observe that any monomial in g (t) is of the form a(it)" for some 0 <! < £ and
a € R. For each 0 < p < P — 1 the contribution of this monomial to (2.11) is a monomial of
degree | —m — k — p — 1. So that this monomial is not absorbed into the O(t~™~%¢~1)-term
of (2.11) we require | —m — k —p —1 > —m — @, which implies —%k: —p—12> —Q since
0<I< % This implies k& < %(Q —1) - %p < %(Q — 1). Thus the range on the index k is
0<k<[3@Q-1).

Now let 0 < k < [3(Q —1)]. The fact that any monomial in gj(¢) is of the form a(it)"
for some 0 <[ < % and a € R can help us find the range on the index p as well. Start with
the contribution of that monomial to (2.11) as before. With the same reasoning we require
—%k —p—12> —Q, which implies p < Q — %k — 1. Therefore the range on the index p is
0<p<P—1where P= P, := LQ—%/{:J

Using a computer application such as Mathematica, one can write a program to compute

as many B,,, as desired. For any m € Ny we have

Bm,O = Am,O
Bm,l = Am,l (214)

7
Bo=Ana+ ZAers,o‘

Lastly we verify that for m,n € Ny

R meNodd
Bpn €

IR m € Ny even.

For each k, gr(t) is an even or odd polynomial in ¢ with k. (To see this, we use the
fact that g(—t,r) = g(t, —r) to compare the coefficients of the Taylor expansions of both
sides in a small e-neighborhood of r = 0.) Using the definition of Aj, in (2.10) we
see that ¢™**1A4, ., > 0, and so any term of the inner sum of (2.11) is of the form

bi—m—k=lg=m=k=p=1 where b > 0. We recall that any monomial of gi(¢) is of the form a(it)’,
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where a € R and 0 < 1 < [£] is even or odd with k (since gx(t) is even or odd with k). Thus

the contribution of (2.11) to (2.12) is of the form

a(it)lbifmfkfltfmfkfpfl — abilfkifmflt*m*(k+p*l)fl .

Since [ and k are either both even or both odd, [ — k is even. The contribution is just
ci—mtmme kD=l (2.15)

where ¢ € R. The coefficient ¢i~™"! of (2.15) is thus a contributing term of B,,, with
n = k+p— 1, and any other such term of B,,,, will also be of the form ¢i~™! with varying

¢ € R. Therefore for each m € Ny, z’m“Bmm € R and we deduce what was claimed. O

Lemma 2. For 0 < e <2 and m € Ny define

Ii (1) = / r™e sin? (tr/1 — 12 /4)dr. (2.16)
0
1. If m € Ny is even, then ast — oo
1

[in(t) = gREHEE S w097,

where () € Ny.

2. If m € N is odd, then ast — oo

where Q) € Ny.

21



Proof. Using the identity sin*(z) = 3 —  cos(2z), we obtain

N =

1 [ 1 [
If . (t) = 5/ rme = dr — 5/ et cos(trv/A — r2)dr. (2.17)
0 0
We note [ et dr = I et dr — [z rme~tdr, the latter term of which is

O(e™*/?) for all t > 1. Further, [;*r™e " dr = 1T (™ )t=™/2-1/2_ We also observe that

IS e cos(try/4d — r2)dr = R(G1,,(t)). By Proposition 1, for ¢ > 1 we may rewrite (2.17):
€ 1 OO m—tr? OO m_—tr? 1 €
I, (t) == rme " dr — e dr | — =R(GY,, (1))
’ 2 0 . 2 )
1/1 1 2\ 1 (&=
_ | pymtlN -5 —te = —m—n—1 —m—-Q—1
= <2r( )t E 0 )) SR (;Bm,nt +O(t ))
R(Bpa)t ™"+ O™ 9, (2.18)

for any @@ € Ny. We complete the proof by using that fact that B,,, € R if m € N is odd

and B,,, € 1R if m € Ny is even. O

Lemma 3. For 0 < e <2 and m € Ny define
I5,,(t) = /E e cos(try/1 — r2/4)dr.
0
1. If m € Ny is even, then ast — oo
Ft) = (R34 4 00,

where () € Ny.

2. If m € N is odd, then ast — oo

Q-1
1 o 1
I () = {05575 4 3 S Bl ™ 4 Om-a-1),
n=0



where Q) € Ny.

Proof. The proof is the same as the proof of Lemma 2, but instead we use the identity

cos?(z) = 3 + 3 cos(2x). O

Lemma 4. For 0 < e < 2 and m € Ny define
I3, (t) = / re " sin(try/1 — r2/4) cos(try/1 — r2/4)dr.
0

1. If m € Ny is even, then ast — oo

,_.

Q—
t m—n— 1+O(tfmefl)’

[\.')Ib—

n=0

where () € Ny.

2. If m € N is odd, then ast — oo
L5, (t) = Ot~ 797,

where () € Ny.

Proof. Using Proposition 1 and the identity sin(x) cos(x) = 3 sin(2z) we obtain

I3,,(t) = Pt sin(trv4 — r?)dr

)

S(GYm(t
<Z Byt ™ 4 O(thl)) (t>1)
%%(B

N | —

l\DHl\D)—‘
I | C\
[0}

-1

O

)T R OO (t>1).

3
I
o

for any Q € Ny. We complete the proof by using that fact that B,,, € R if m € N is odd

and B,,, € R if m € Ny is even. O
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2.1.2 Intermediate computations

We are now in a position to find the asymptotic expansion of ||u(t,-)||? as t — oco. Let us
first recall that since the Fourier transform as defined is an L*(RY)-isometry, ||u(t,-)||3 =
la(t,-)||3. Also recall that with the fixed 0 < § < 1, [Ja(t,-)||3 = |lu(t,-)[|55+O0(e™™) as
t — oo for some 7 > 0. Since ||u(t,-)||35 = Xi(t) + Yi(t) + Zi(t), we may determine the
asymptotic expansion in three steps. Over the next few sections, we will do so and arrive at
the proof of Theorem 1 part 1 (i.e., the space dimension N > 3 case). Let us assume that,
unless otherwise stated, K € N and the initial data of (1.1) satisfy ug,u; € L¥?E(RY) in

addition to the assumptions uy € H*(RY), u; € L*(RY) given in (1.1).

Expansion of X ()

We observe

X,(t) = A )+ o Fhts ) (2.19)

and substitute (1.6) and (1.11) into (2.19). After simplifying, we have a sum of integrals

indexed by the multi-indices o plus an integral of a O(|¢|**)-term. We estimate the integral

with the O(]¢|*)-term once, as all others may be estimated similarly.

M / 2K—2 7“5'2
< — e d
10t/ Iswgcs’ﬂ ‘

5
_ Mwy / p2E+N=3 —tr? 1.
1-462/4 ),

=0t K2t (t = o0)

2K eft|£|2Sin2(t|§|\/ 1—[¢§]2/4)
/MO“' ) P jep/a) ©

for some M > 0, where wy_; is the surface area of the (N — 1)-sphere in RY.

Therefore as t — oo

Xa(t) = P e U3 Ve S L P
ey /|€|<6§e e o)
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Observe that, aside from £7, the integrand of the preceding equation is radially defined in &.
Hence if even one entry of ¢ is odd, the integral equals 0. So the sum can in fact only range

over |o|< K — 1 if we replace o by 20. After that we switch to polar, and hence as t — oo

2 1—1r2/4 N
= Y D, / s 0GR, (220

lo|<K-1

where
r Ly, ...Tr 1
p, =201 1) N<0N+2). (2.21)
L(lo]+3)

Since 0 <0 <1< 2and 0 <r <4 we may write for L € Ny

1 L—-1 er -
1——?”2/4 = Z F + 0(7“ ) (2.22)
k=0

Then for each |o|< K — 1 we define L = L, := K — |o]€ N. We substitute (2.22) into
(2.20) and estimate the integrals with the O(r?%v)-terms (by choice of L,, each integral is
O(tK=N/2t1) as t — 0o). By Lemma 2 with @ = Q, 1= max{0, [K — 2|o|—2k — J + 1]},

we obtain as t — oo

Z Z dQUD / 2|o|+2k+N— 3 tr? sin (t 1 — 7"2/4)d7” + O(t_K_%'H)

lo|<K—-1 k=0
el N
Z Z 2D [12|a|+2k+N s O 2
<K 1 k=0
K—
Z (XP) — XP)i=3+ p o K-3 1), (2.23)

7=0

where
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. d22‘2+1 Bojgltokin-3n N >4devenand § —1<j< K -1
U — ) 2lo+2ktn=j— Y41
1,2 2

0 otherwise.

We note the extra conditions for X{j]Q. If N > 3is odd, then Byjg4n_312k,n € iR and

Lemma 2 only gives us X1 1. If N > 4is even but K < 7, then each power of ¢ from the

expansion is already on the order O(t~%—N/2+1),

Expansion of Yi(t)

We first observe
Vi) = [ lan(©P @i, €)% 2:20)
|€1<6

We then use (1.11) to obtain

Ot &) = e 5" (cos(t|§|\/1 " 1ER/4) — ”5‘ sin t\’j‘li V_1|§_||/§’ ) : (2.25)

which implies

— le?/4
_ lélsin(tlg] /1 —_|§|2/4) t|s|\/1 —I€P/ 4>> |
VI-IEP/A

<8th<t,£>>2=etlﬁl2<c082<tr£\ TP + L tww

(2.26)

In order to obtain an asymptotic expansion of Y;(t) that is not simply O(t=K—N/2+1)
as t — oo, we must further assume that K > 2. With this additional assumption, in the

neighborhood [£|< § we now truncate (1.7) to

@)=Y f.£7+O(E ). (2.27)

lo|<2K-3

Substituting (2.26) and (2.27) into (2.24) and estimating the integral with the O(|£[*~2)-
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term we obtain as t — oo

= Y L] €(@h(t.6)ds + O FE), (2.28)

loj<ak—3  IEI<d

Since 0;h(t, ) is radially defined in &, if some o satisfying |o|< 2K — 3 has an odd entry, the
integral in (2.28) vanishes. So we consider multi-indices with only even entries and switch

to polar:

Yilt)= > faD, / 2N =1 (g, 7)) 2dr + Ot K31 (t = o0).

lo|<K—2

Now writing (9;h(t,7))? as in (2.26), Yi(t) = YA(t) + YP(t) — YO (t) + Ot K-N/2+1) as

t — 00, where

Z fggD/ AoHN=1e=tr% 082 (19 /1 — r2 /4)dr, (2.29)

lo|<K—-2
J20 Do / 2o +N+1,— L2sin®(try/1 —r2/4)
7 d 2.
| 222 2 L—r2/4 " (20
Z oD, / 2lo+N ,— pesin(try/1 —r2/4) CO2S(t7" 1—1r2/4) o (2.31)
lo|<K—2 1—r?/4

We begin with Y/*(t). By Lemma 3 with Q = Q, := max{0, [K — 2[o|-5 — 1]}, we

obtain for ¢t — oo

Z foo Do 3 iy n1 (1)
lo|<K—2
K-1
N N
— (Y[J] + Y[ }) —5+1 + O(thngrl)’ (2.32>
Jj=0
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where

’ > BPer(+ 5 1) 1<j<K-1
}/171 = |U|:]_1

0 otherwise,
. > f% 2 Bojoj4n—1n N >4devenand T +1<j<K -1
Y1]2 = 2\0|+n—j———1

0 otherwise.

Remark. From the defintion of Ylbl] we see the necessity of the added assumption K > 2,

else no terms are contributed to the expansion.

For Y;2(t) we first substitute (2.22) into (2.30) with L = L, := K —|o|—2. Each resulting

integral with a O(r?tv)-term is O(t*K*Nﬂ“) as t — oo by choice of L,. Thus by Lemma 2

with @ = Q. = max{0, [ K — 2|o|—2k — 5 — 3]}, we have as t — o0
Lo— lf D,
N
Z Z izﬂ 2""*2”]\]*16’”2 sin?(try/1 — r2/4)dr + Ot %2+
lo|<K—-2 k=0
fQJ 0’ _K_N
Z Z AR 12|cr|+2k:+N+1(t) +O(t et
\<K 2 k=0
K-
N
=0 - v g o (2.33)
=0
where

SO Ber(j+45-1) 2<ji<K-1
Yl[ygz |o|+k=j—2

)

0 otherwise,

7

, S Lo Boipokintin N >4devenand § +3<j<K-1
Yﬂ — { 2lo|+2k+n=j—-F -3

0 otherwise.
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Remark. It is clear from the definition of Yl[jg that in order to obtain any terms in the

expansion of Y;B(t), K > 3 is in fact necessary.

—-1/2

Now before finding the expansion of Y,“(t) we first expand (1 — r2/4) in a Taylor

series in the d-neighborhood of r = 0:

L-1

= 3" o 4+ 0(), (2.34)

1
V1i=1r2/4 =
where L € Ny and, with the convention (—1)!!=1,

(2k — 1)1

7 (k € Np).

A =

We then substitute (2.34) into (2.31) with L = L, := K — |o|—1. Each resulting integral

with a O(r?Fe)-term is O(t~5~N/2+1) as t — oo by choice of L,. Hence as t — 0o

Lo—1
KN
YW = D, D FarDeili g onpn(t) + O3,
lo|<K—2 k=0

Then by Lemma 4 with Q = Q. := max{0, [K — 2|o|—2k — § — 2]}

K1
YO =Y Y st L o E ) (s o0), (2.35)
=0
where
> M%(BQWHQHN,H) N >4 even and %—i—QS j<K-1
Y = Q2lolt2ktn=j-§ -2

0 otherwise.

Using the fact that Y;(t) = YA(t) + Y2 (t) = Y.C (¢) + Ot~ K=N/2+1) as t — oo, we combine
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results (2.32), (2.33), (2.35) and obtain the expansion

=

i) =S (Vv v vl vt p o FE ) (s o0). (2.36)

<
I
o

Remark. Based on the above definitions of the Yl[f;, some Yl[il will not contribute to the

above expansion for certain values of N and K. For example, if N > 3 is odd, then only
Y1D1] and Ylbg will contribute to the expansion. Even then, YPQ does not contribute unless
K > 3. In fact we have a similar expansion when N > 4 is even but K < % + 1. There are
more cases depending on N and K, but ultimately all Yl[ﬂ] will contribute to the expansion

as given in (2.36) once N >4 is even and K > & + 4.

Expansion of Z(t)

Again we need to require K > 2 in order to obtain more than just a O(t~%~/2*1)_term for
the asymptotic expansion of Z;(t). Nonetheless we begin with
Zy(t) = 2R (/| 5(121(5) + Iflzﬁo(f))ﬁo(f)h(t,5)3th(t,§)d§) : (2.37)
&<

We substitute (1.8), (1.11), and (2.25) into (2.37) and estimate the resulting integral with
the O(|€>)-term; it is O(t~%~N/2+1) as t — co. Then switching to polar and using the
definitions of h(t, &) and 0;h(t, £), we obtain Z,(t) = Z{}(t)— ZB(t)+O(t~ KN/ 1) ast — oo,

where

ZA(1) = Z MRl D, /‘S (2ol 4N =2 —tr? sin(try/1 —r2/4) cos(try/1 — T2/4)dr, (2.38)

1—17r2/4

o] <K -1

b 2sin®(try/1 —r2/4)
ZB — D 2lo|+N—-1_—tr Sln( ) 9.
Pt)y= )" R() /O r e = dr (2.39)

lo|<K -1

Let us begin with Z{}(¢) by substituting (2.34) in (2.38) with L = L, := K — |o|. Each
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resulting integral with a O(r?t7)-term is O(t~%~N/2+1) as t — 0o. Hence as t — 0o

Lo—1
_K_N
Z(1) Z Z 2R (lao) Dok I3 gy s n—a(t) + O H 72,
lo|<K—1 k=0

By Lemma 4 with Q = Q, := max{0, [K — 2|o|—2k — 5]}

N

ZMt) = Z[j]t IR L O R (= 00), (2.40)
§=0
where
‘ Z—%(lgg)Dgak%(B2|a|+2k+N_27n) N24 even and % S] S K—-1
ZH — ) 2lof+2k4n=j-X

0 otherwise.

For ZP(t) we substitute (2.22) into (2.39) with L = L, := K — |o|—1. By choice of L,

each resulting integral with a O(r?"e)-term is O(t~5~N/2*1) as t — co. Hence

Z Z 120 Iy 2lo|+2k+N— 1 (1) + O(fK*%H) (t — 0).

lo|<K—-1 k=0

By Lemma 2 with @ = Qo := max{0, [K — 2|o|—2k — 5 — 1]}

N

ZE(t) = <ZP£ ZUNVI 3 L Ot KT ) (8 00), (2.41)

.
Il
o

where

| YAl -1 1<j<K-1
7V — lol+k=5-
1,2

0 otherwise,
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R(l20) Do ,
‘ > (222;@11 Bajg|+ok+N-1,, N >4 even and %—H <j<K-1
ZP;} — J2lol+2k+n=j— N1

0 otherwise.

Since Z,(t) = ZA(t) — ZP(t) + Ot~ %K ~N/?+1) we combine the results (2.40) and (2.41) to

obtain the expansion

Remark. It is worth noting that much like Y;(¢) only some ZH

actually contribute terms
to the expansion depending on N and K. For example if N > 3 is odd, then only Z%
contributes terms as long as K > 2 (which was assumed a priori). A similar thing happens
if N >4iseven but K < % It is not until we have N > 4 even and K > % + 2 that all
ZH will contribute to the expansion. Nonetheless, there is no harm in writing the expansion

for Z,(t) as in (2.42) since the definitions of the ZH capture the cases mentioned in this

discussion.

2.1.3 Asymptotic expansion of |ju(t,)||5 as t — oo

From the discussion at the beginning of section 2.1.2, [|u(t,-)||3 = [la(t, -)||3 ,4+O0(e™™) as t —
oo for some 7 > 0 dependent on the fixed 0 < & < 1. Since [|u(t,-)||3 5 = X1 (t) +Y1(t)+ Zu(t),

we combine results (2.23), (2.36), and (2.42) to obtain the asymptotic expansion

K—1
lu(t, )E =" Wit =2 L 0K =5 (¢ — oo),

j=0

where, for j € {0,..., K — 1},

Wy = X0 XB vl VA vl - v 28 - 2 7
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This completes the proof of Theorem 1 part 1.

The first three coefficients for each N >3

Let us assume that N > 3 is odd and K = 3. Then |ju(t,-)||? = Wot= N2+ 4 Wit N2 4

Wot—N/2-1 4 O(t—N/Q—Q) as t — 0o, where

doDg dyo Dy fODO %(lo)DO
Wo = 4 F(%—l% Wy = Z Ak+1 F(%>+ 4 F(%)_ 4 F(%?
lo|+k=1
dQUDJ f2aD0' f D
Wo= D T TG0+ 3, ZE TG+ )+ TG+ )
lo|+k=2 lo|=1

-y —%(12")&’?(% +1).

4k+1
lo|+k=1

It is a straightforward computation to verify that for m > 1 odd

R

D, = Ge{l,....m}),
Dy, = 3(\(31)7?2;!2 (je{l,...,m}), (2.43)
Doy = VTE D 45 (o)

where e; = (9;;)7, is a multi-index of magnitude one, and for any m € Ny, m!! denotes
the double factorial as given in (2.13). We remark that for m = 1, D, 4., = 0 vacuously.
We combine the results (2.43) with the identities dog = |P1|%, fo = |Po|?, lo = PP, and

Do = (N/2) to simplify each W; (j € {0, 1,2}) for dimension N > 3 odd.

Wy =

P2 —_— P2 . |PolPns  R(PPo)r* ﬁid
N-—2" ! 8 2 2 N 25

N

N|PPr%  N|Rr? NR(PP)r?
64 16 16 16

% N
Z §R l2e] Z d4e]
7j=1

+

Wy =

2 Z d2 el—i—ej

1<z<]<N

_|_
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In fact, it is again straightforward to verify that for m > 2 even

p, =200 e mp,
Dac; = ¢ (Qm;,, Ged{l,...,m)), (2.44)
B (2m)% o
DeiJrej (m+2) (2 7&] € {177m})

Remark. If we assume that N > 8 is even, then we obtain the exact same expressions for

the first K = 3 coefficients (Wy, Wi, and W3) as in the N > 3 odd and K = 3 case above.

Let us now assume that N = 4 and K = 3. Then ||u(t,-)||3= Wyt~ + Wit™2 + Wat ™3 +

O(t™) as t — oo, where

dODO dZUDJ dODO fODO §R<10)l)0
Wo = = 2T(1), leiHZ“ T D(2) = =B+ EET(2) - =S T(2),
dQJDU dODO f20’D0' fODO
Wa= > e - =5 Bii+ Y. T TE) + 5 T0)
|o|+k=2 lo|=1
R (1) Dy
+ (= R(lo) DoaoS(Bo) = Y — 75 T).

lo|+k=1

Each W; can be simplified by using the results for D, , Dy, and De, ., from (2.44). Ad-

ditionally we need the expressions for the B,,, given in (2.14) and the fact that oy = 1.

Hence
4
|P1|27T2 3|P1|27'[‘2 |P0|2 2 §R(P1P0 71'
W = —— W = N €5
0 5 1 3 + 5 8 Zl 2e;
7‘P1‘27T2 |P0|27T2 3§R<P1P0
Wy = 16 + i Z 2e; +—Zf263

9 4
— D Rlla) + ; dac, + ﬂ > dagecre)

j=1 1<i<j<4

We now assume that N = 6 and K = 3. Then [Ju(t, -)||3= Wot 2+ Wit 3+ Wyt 4+0(t )
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as t — oo, where

dol)o dQUZ)U fbl)0 3%([0)130
= I'(2 = r r ————7T
Wo = = 21(2), Wllgglﬂﬂ (38) + =7 T(B) - = —T().
doe D, doD fo0 Dy foD R(lay) Dy
Wo= >, ST - =57 Bat ), =T+ o) = > =T,
lo|+k=2 lo|=1 lo|+k=1

Again using (2.44) and (2.14), we may simplify each W.

— 6
|P1|27T3 |P1|27T3 |P0|27T3 §R(P1P0)7T3 7T3
We="1" 0 W= —~ =
0 4 ! s T o 2 13 le 2
3IP 2% 3|RPn® 3R(PIP)r® 7w o
- — 2N dy _
W 32 g 8 16 2= e T Zf%
7j=1 7j=1
3 6 3 6 3
- Z Z §R( 26]') + 39 Z d4ej + Z 2(ej+ey )
j=1 j=1 1<i<j<6

2.2 The space dimension N = 2 case

The low dimensional cases N = 2 and N = 1 must be treated separately since the integrals we
encounter will have singular integrands at 0. Such does not happen in the higher dimensional

cases N > 3.

2.2.1 Auxiliary lemmas

Lemma 5. For 0 <e <2 andt >0 we use (2.16) to define
IT (1) = / r e sin?(tr/1 — r2/4)dr.
0

If M € N, then as t — oo,

1
Ii () = 1 In(t) +
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B —2k—n -M
+ Y T S (Bag )t +O(t™M),

1<2k+n<M-1

where 7 is the Euler-Mascheroni constant and, using the convention (—1)!!=1,
1 k=0
B = (2.45)
—(2k=3)!
G2 keN.

Proof. For every t > 0, it is a routine argument to verify (using Lebesgue’s dominated
convergence theorem and the mean value theorem) that 47 _ (¢) = —I5,(¢) + I,(t), where

—1If ,(t) is as in (2.16) and

Li(t) = /06 V1—=r2/4e " sin(trv/4 — 12)dr.

By Lemma 2 with @ := M — 1, —If ,(t) thus has the following expansion as t — oc:

M-2
IS, (t) = g > Lp a2y Ot=M=1)
1,1 4 2 1n N
n=0

Turning to I;(t), we begin by expanding /1 — 72/4 in a Taylor series about = 0. Since

O<e<2 for0<r<e

V1-—1r2/4= iﬁkr% +0(r*t)y (L e Ny), (2.46)

where [ is as given in (2.45) for k € Ny. Substituting (2.46) into the definition of I;(¢) and

estimating the integral with the O(r?*)-term, we obtain

L-1 ¢
[1(t> = ﬁk/ r?keftrz Sin(tr /4 — 7”2)d7" + O<t7L7%>
k=0 0
L-1 1
= 3 - AS(Gal) + 06 (1 o0). 2.7
k=0
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We let L := M + 1 and substitute (2.12) into (2.47) with @ = Qx := max{0, L — 2k} to

obtain as t — o0

[1(t) - Z _5k%<B2k,n)ti2kinil + O(tiMil)

2k+n<M

= —BS(Boo)t '+ Y. =SBt F O
1<2k4+n<M—1

1 -1 —2k—n—1 —M-1
=5t Y —ASBant +O(™M)
1<2k+n<M-1

We combine the results for —I7 | (t) and I,(t) to obtain as t — oo

M-2

d € 1 -1 1 —n—2 —2k—n—1 —M-1

Ell,fl(t) =t T Z §Bl,nt + Z —BxS(Bak,n )t +O0(t ).
n=0 1<2k < M—1

This implies that for some constant C, as t — oo

M-—2
-1 o
It = m@%H7+§:2m+1ﬁiJ !
=0
ﬂk o —2k—n —-M
+ > 2k+nJ@mWﬁ +O(t™M).

1<2k+n<M-1

This fact is proven by modifying the proof given on p. 17 in Chapter 1 of [1].
To determine the constant C' we consider the asymptotics of the following integral for

0 < € < 2 (to be proved separately):

7, In(2)

Ji_a(t) = /0 rletr? sin®(tr)dr = iln(t) + 1 + +O0(t™) (t — 00). (2.48)

We now use the fact that [sin(tr) — sin®(tr/1 — 172/4)|< tr|l — /1 — r2/4|< % for 0 <
r < 2. Thus

s 1

2

— T30 (t—o0). (249)

€ € t ‘ —tr2 3 —
i) =TI § [ e ar < eyt =3
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Furthermore

1 In(2 1
Ji () =11 (t) = (Z In(t) + % + né ) + O(t‘l)) -2 In(t) + C + O(t—l))
In(2 In(2
2l oy 2 MY e o) @50
4 2 4 2
Considering (2.49) and (2.50) together, C'= T + @, which proves the lemma. O

We now must prove the claim about Ji () from Lemma 5.

Lemma 6. Let 0 < ¢ <2 and P € Ng. Then with J§_,(t) as defined in (2.48),

P
1 1 -1 /1
Jialt) = i)+ 1+ 3@+ > (5) PO (L o).
P p

Proof. Let 0 < e <2, P € Ny, and t > 0. Then by the mean value theorem and Lebesgue’s
dominated convergence theorem, %Ji_l(t) = Ji(t) — S(F§(t)), where F§(t) is as given in
(2.6) and

Ji(t) = —/ re " sin®(tr)dr.
0

We use the fact that sin®(z) = 1 — 1 cos(2z) to write

() =~ /O Cretdr 4 CR(E{ (1), (2.51)

We observe the integral in the first term of (2.51) [ re " dr = [ re " dr + O(e'/?)

as t — oo. From this fact and (2.9) we conclude that as t — oo

n

P-1 -1
d . 1. T, e e 5
i) =t 1+Z§A1,pt P2 Ot P2 — 1s<A0,S)t LLo@s),

p=0 s

where P € Nj is as given and S := P + 1. Simplifying we obtain

d 1 "1/1
€ — 41 | = —p—1 —P-2
7 Ji (1) 415 + E 1 (2>pt +O(t ) (t — 00).

p=1
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Therefore there is some constant C' such that
1 P11
€ _ = — - —p —P-1
Ji 4 (t) 1 In(t) +C + p§1 v (2)pt +O(t ) (t — o00). (2.52)

Now we must determine the constant C. To do so, we first note that Ji _;(f) = Jia(t) —

[ r=Ye~" sin(tr)dr, where for t > 0

€

Ji_1(t) :/ rle™ sin?(tr)dr-.
0

It is easily verified that as t — oo, [ r~le=" sin?(tr)dr = O(e~*"/?) = o(1), so we instead
study j17,1(t).

With the substitution s = v/tr we have J~17_1(t) = fooo s les sin?(v/ts)ds. Integrating by
parts we obtain

Ji1(t) = J(t) + J3(t) + Ja(t),

where

Jo(t) = /000 sIn(s)e " ds,
J3(t) = — /00 sn(s)e™*" cos(2v/ts)ds,
Ju(t) = —ﬂ/oo In(s)e* sin(2v/¢s)ds.

With the substitution u = s2,

Jo(t) = }1/000 In(u)e “du.

The integral
7 +n(a)
a

/000 In(u)e™*du = (R(a) > 0), (2.53)

where 7 is the Euler-Mascheroni constant, is a Laplace transform identity found on p. 443
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in Chapter 11 of [10] by Magnus et al. Therefore
To(t) = —%.

We now let fi(s) = —sln(s)e X (0.00)(8), Where x (00 () is the characteristic function
(0,00) (0,00)

of the set (0,00). Then f; € L'(R). Furthermore, for all ¢t > 0

J3(t) =R (/ fl(s)e_%‘/zsds)
= V2rR(f1(2V1)).
By Proposition 2.2.17 (Riemann-Lebesgue lemma) found on p. 105 in Chapter 2 of Grafakos’

Classical Fourier Analysis [3]

t—o00

Lastly for t > 0 we define
J5(t) == —\/Z/ In(s)e™* sin(2v/ts)ds.
0

Then
Ju(t) — Js5(t) = \/%/OO fa(s) sin(2v/ts)ds, (2.54)

where fy(s) = In(s)(e™® — e™*"). We integrate (2.54) by parts and use the fact that

lim; 0+ f2(t) = 0 to obtain

Ju(t) — J5(t) = %/000 f3(s) cos(2v/ts)ds

— %8? (/_Z fg(s)e%‘ﬁsds> ,
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where f3 := f} - X(0,00) € L'(R). Thus for ¢t > 0
10 = h(6) = |5 ROV,
and by the Riemann-Lebesgue lemma
Jim (4(0) = Jo(1)) = 0.

We use the fact that sin(2v/ts) = S(exp(2iv/ts)) and (2.53) to obtain

o (7 +1In(1 = 2iV1) 1 vl
Js5(t) = VIS ( Y > 41n(t)—|—§+§ln(2)+0(1) (t — o0).

Combining the results of the analysis of jL_l(t), we have

T alt) = () +0(1) = 3 In(e) + T+ 2 In(2) + o(1)

as t — oo. From (2.52) we have
. 1
Ji () = 31nt) +C + o)
as t — co. Thus C' = ? + £ In(2) and the proof is complete. O

2.2.2 Intermediate computations

As stated in the unnumbered lemma in section 1.4, Tkehata [4] showed that for the fixed 0 <
o<1, f > sla(t, €)|?d¢ is exponentially small as ¢ — co. We will instead find the expansion
of |lu(t,-)|55 = X1(t) + Yi(t) + Zi(t) as before. Additionally, the overlying assumption is
still that K € N with the initial data of (1.1) ug € H*(R?) N LY?%(R?) and u; € L*(R*) N
LY2K(R?). We will again comment on whether K should be larger, as necessary.

Over the next several sections, we will arrive at the proof of Theorem 1 part 2.
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Expansion of X/ (t)

With the assumptions on K and the initial data wug,u; of (1.1), we may use the argument

for the expansion of X;(t) from section 2.1.2 with N = 2 to obtain

Z 4, D, / 2lol-1,, _2sin?(tr 1_7“2/4)(17“4—0(25*]{)

lo|<K-1 1- T2/4

= X))+ XBt) + O(t™F) (t — 00),

where

4 : 2 2
A 4 _gesin®(try/1 —r2/4)
X{(t) = dODO/O re =y dr, (2.55)
sin?(try/1 — r2/4)
XP(t) = dse Dy / 2ot g—tr . dr. (2.56)
1<|a|<K 1 1-r*/4

To determine the expansion of (2.55), we expand (1 — r%/4)~! in a Taylor polynomial

with remainder as in (2.22), and define L := K € N. Thus with the identity dg Do = 27| P, |?,

K-1
P2 [ .
XAt) = —7;|2ki|1 i p2h—le=tr Sin2(tr\/m)dr+0(t_[()
k=0
S ulsly
= 27| Py IS _ Z L () O (= 00).

k=1

Then we use Lemma 5 with M := K and Lemma 2 with Q = @ := max{0, K — 2k}, and

simplify to obtain as t — co

K-1 2 2
A TP | Py J? 2 7T|Pl| il k
X{'(t) = 5 In(t) + 9 v+ 7P TIn(2) + s 22k+1 L Bijp |t
277‘P1‘ Br —2k—n W‘Pl‘ —2k—n -K
+ E —2k+ S(Bagn)t - E T Boj—1nt +0(1t™)
1<2k4+n<K-1 2§2k4kr;11§K71

7T‘P1‘2 K-l . .
= )+ D (X + XYL - XY o),
7=0
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where

DBE L x|PPn2) =0

g 2 . T 2 .
2'251‘1 I'(j) — —‘?' Bij1 1<j<K-1,
\

.
Gl > '%‘Pjﬁ%(lﬁk,n) 1<j<K-1
X]2 — J 2k+n=j

0 otherwise,
> By, 2<j<K -1

4k
2k+n=j
k>1

2%
=
I

0 otherwise.

To find the expansion of (2.56) we again expand (1 — r?/4)~! in a Taylor polynomial as
in (2.22) with L, := K — |o]| to obtain
Lo—1

Xy = Y Y B 0GR (tee) (257

1<|o|<K—1 k=0

We then substitute (2.18) into (2.57) with @ = Q. := max{0, K — 2|o|—2k} and simplify

to obtain

d3s Dy ol dys Dy lo|—2k—n _
XPty= > S ZT(ol+k)E— " T Bkt 27T+ O

4k+1 22k+1
1<|o|+k<K—-1 2<2|o|+2k+n<K—1
lo|>1 lo|>1
=Y (XU - XPht T o®) (= o0),
j=0

where

> BEeT(j) 1<j<K-1
i ol|+k=j
X7 = gy

0 otherwise,
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doo Dy .
Z 92kF1 BQ|U|+2k 1n 257 < K -1
i 2|o|+2k+n=j
X9 = jo|>1

0 otherwise.

Combining the results for X{}(¢) and X (t), we have the expansion as t — oo

K-1

)+ > (P + XYL - XV XY - Xt o). (2.58)
7=0

Remark. Both X{J]Q and Xl[]jl require K > 2 in order to contribute non-zero terms to the

expansion, and X H,) and Xﬂ require /X' > 3.

Expansion of Y (t)

We refer back to the expansion of Y;(¢) obtained in section 2.1.2. From there we see that
with K > 2, all steps from that section are valid here with N = 2. We arrive at Y)(t) =
YA +YER) - YE(#)+ Ot ) as t — oo, where Y/A(¢), Y,2(t), and Y,C(t) are as given in
(2.29)—(2.31) with N = 2. Since all powers of r in the resulting integrals are positive, we

obtain the same expansion for Yj(¢) as in the N > 3 cases. Namely

S04V -V - Ve 06 (oo (2.59)
Jj=0
where
(
: > Leler(j) 1<j<K-1
v = { el
0 otherwise,
:
v = 2Icf|+;j—fa2Da Bajojt1n 25 < K =1
0 otherwise,
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. > GErl() 2<j<K-1
Y1]3 — |0H’k:]72

0 otherwise,

Z %B2|0|+2k+3,n 4 < ] <K-1

yl[ﬁ — ) 20o|+2k+n=j—id
0 otherwise,
)
Y[ﬂ _ 2o|+2l§n=j%%<B2lg|+2k+2’n) 3§j SK_l
15 =
0 otherwise.

Expansion of Z,(t)

We refer back to earlier work from section 2.1.2 regarding the expansion of Z;(t). With
K > 2 all steps from that section are valid now with N = 2. We deduce once again that
Zi(t) = ZAt) - ZB(#) + O(t7K) as t — oo, where Z{A(t) and ZB(t) are as given in (2.38) and
(2.39) with NV = 2. Since all powers of r present in the resulting integrals are non-negative,

we obtain the same expansion for Z;(t) as in the N > 3 cases. In particular

K-1
Zi(t) =3 _(20) = 20y + ZP) T + 0tTF) (¢ — o0), (2.60)
7=0
where
)
A > —R(lae) Do S(Bojolorn) 1<j<K -1
ZH: 2|o]+2k-+n=j—1

0 otherwise,

| o RledPer(j) 1<j<K -1
7l _ ) jolvk=j-1
1,2

0 otherwise,
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R(l25) Do :
, > (22131 Bojgl4oks1n 25j<K -1
gl Jojol+2kn=j-2
1,3

0 otherwise.

2.2.3 Asymptotic expansion of |[u(t,)||5 as t — oo

We recall from section 2.1.2 that [|u(t,-)[|3 = ||la(t,-)||5 s+O(e™) for some 1 > 0 dependent
on the fixed 0 < 0 < 1. Since [Ja(t,-)||3 5 = X1(t) + Y1(t) + Z1(t), we combine results (2.58),

(2.59), and (2.60) to obtain the asymptotic expansion

,_ 7P’ N g oK
lu(t, )b = =5 (t) + Y- Wit 7 +0(") (= o),
j=0

where, for {0,..., K — 1},

W, = 0 X0 - 3 B X vy v - vl 2 - 2l 28

)

The first three coefficients

Let us assume K = 3. Then |u(t,")|? = ﬂ%ﬁln(t) + Wo + Wit™ + Wat™2 + O(t73) as

t — 00, where

P 2
wy = AL P i),
| Py dso D, D
Wy = '231| D(1) — 7| P *Buo + 27| P *BoS(Bo) + | —2—2T(1) + f°4 °r(1)
lo|=1
R(lo)D
— %(lo)DOOé0%<BO70) — %F(l),
7| P2 7| Py |? 7| Py |?
Wy = |251| r(2) — |21| Bl,l+2k+227r|P1|25k%(B%,n)— |41| Bio
dQJDa dQUDJ f20’DO' fODO
Z 4k+1 F(Q) - Z 9 BI,O + Z 1 F(Q) + B BI,O
|o|+k=2 lo|=1 lo|=1
jo]>1
foD R(l20) Dy R(lo)D
+ 75 T(2) = R(lo) DocoS(Boa) = Afk—flr(z) + ("2 ®Big

|o|+k=1
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We may simplify the W; (5 € {0,1,2}) by using the formula for D, as given in (2.21)

and the expressions for the B,,,, given in (2.14).

_ 2
7y | Py |? 9 m|P? 7w BR)? aR(PR) W
= — P l 2 —_ — - d €j
W + 7P In(2), W, ettt +4]Zl 2e;
7"|Pl‘2 W‘Po‘z PIPO T 2
W2 - - 32 S ‘I’ ZdZeJ + — Z erj - Z ;%(ZZEJ')

37r T
HET Z dae; + Ed2(61+62)'
1

2.3 The space dimension N =1 case

2.3.1 Auxiliary lemmas

Lemma 7. For 0 <e <2 andt > 0, we define

IT () = / r2etr? sin?(tr/1 — r2/4)dr.
0
If M € N, then ast — oo

s ™o _
I () = St \/2_152 +O@t™M).

Proof. Let 0 < e < 2,t >0, and M € N. Using integration by parts, I ,(t) = I,(t) +
Iy(t) + I3(t), where

L(t) = —e e sin?(tey/1 — €2/4),
L(t) = —2t/ e~ sin?(tr\/1 — r2/4)dr,
0

‘ d
I3(t) = /7“_1%[7“ 1—72/4)e™"" sin(2tr\/1 — r2/4).
0
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As t — oo,

L(t) = O(e ) = o@t™™).

Next, we note that I5(t) = —2tIf y(t). Thus by Lemma 2 with @Q := M,

Lt)=-Y2t: 4+ 0(t™)  (t— ). (2.61)

<5

To analyze I3(t), we first consider

t_1]3(t) = / T_ldi[r 1-—- 7‘2/4]6—tr2 sin(2try/1 —r2/4).
O T

Using the mean value theorem and Lebesgue’s dominated convergence theorem, we have that

%[t_lf?)(t)] = I4(t) + I5(t), where

¢ 4 2
L) = — / P /T2 A e sin(2tr/T— 2 A)dr,

_2/ V1=12/4—[r\/1—1r2/4] e """ cos(2tr/1 — r2/4)dr.

We now use the fact that £[r\/1—r2/4] = /1 —r?/4 — %(1 —12/4)71/2 to analyze both
I4<t> and I5(t)
First, I,(t) = I\(t) + IP(t), where

—/ ry/1—12/4e7 sin(trv/4 — 12)dr,
0

1 [ 2 sin(trv/4 — r?
IP(t) =~ [ rie ™ sin(tr L )d'r
4 0 1—T2/4

In I:}(t), we expand /1 —12/4 in a Taylor polynomial with remainder about r = 0 as in

(2.46), with L := M + 1. This choice of L makes the resulting integral with the O(r?%)-term
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of the order O(t~™~2) as t — oo. Thus as t — 00

M

LNt = BS(Gapa (1) + O 72).

k=0

We use the asymptotic expansion for G, () given in Proposition 1 with Q@ = Q) =
max{0, M — 2k} and recall that each Byyi1, € R, since 2k 4+ 1 is odd, to obtain IA(t) =
O(t™M=2) as t — oo.

We proceed in a similar fashion for I2(t) by expanding (1 —72/4)~'/2 in a Taylor poly-

nomial with remainder about r = 0 as in (2.34), with L := M. Then

M—

H

« —M—
(G ) + O(E2),

k=0
which can again be shown to reduce to IP(t) = O(t~™~2) as t — oo, since 2k + 3 is odd.
We combine the results for I7'(t) and IP(¢) with the fact I,(t) = I{(t) + IP(t) to obtain

L) =0t™M72)  (t—= o0). (2.62)

Now, I5(t) = 2R(G{4(t)) — R(GT4(t)). For both terms we apply Proposition 1 with
Q := M + 1 for the first term and @) := M for the second. Then since each By, Bs,, € iR,

we obtain

Lty =0t™M2) +o0t™M) =0t  (t— o0). (2.63)

We combine results (2.62) and (2.63) with the fact that L[t='I5(¢)] = L(t) + I5(t) to

obtain the expansion for any M € N
d._, —M-2
S0 = 06Nt 00),

which implies

t' L) =C+Oot™M)  (t— o).
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Thus

Lt)=Ct+0(t™)  (t = o). (2.64)

The constant C' = 7, which may be determined by comparing the asymptotic behavior of

I3(t) to that of the following integral for 0 < e < 2:
() = / e sin@tr)dr = Tk O(M) (5 00) (2.65)
0

The asymptotics of I. 3(t) are true for all M € N and will be proved separately.

We use the fact that |sin(2tr)—sin(2tr\/1 — r2/4)|< 2tr|1—y/1 — r2/4|< % for0 <r <2

to obtain

() — L)< %/ 2ot dy < EF(%)t_g _ il“(%)t_é 50 (to o). (2.66)
0
Further,
UL (1) — (1)) = g —CH+Ot™M Y 5 g O (t— o). (2.67)

Considering (2.66) and (2.67) together verifies the value C' = 7. To complete the proof of

the lemma, we combine the asymptotics I1(t) = O(t~*), (2.61), and (2.64) along with the

fact that IT ,(t) = 11(t) + Lo(t) + I3(t). O
We now must verify the following claim.
Lemma 8. For 0 < e <2 fized and for all M € N, (2.65) holds.

Proof. Let 0 < e <2 and M € N. We note that

t7 5(t) = </ —/ ) r~le " sin(2tr)dr,
0 €

the latter integral of which is on the order O(e*t€2/2) as t — o0.
The integral [~ r~le " sin(2tr)dr is related to the Fourier sine transform (defined on

p. 397 in Chapter 11 of [10]) of the function r—'e~*”. By p. 418 in Chapter 11 of [10], we
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have for all ¢ > 0

/ rle™ sin(2tr)dr = gerf(\/%),
0

where erf(t) denotes the error function. We appeal to p. 352 in Chapter 9 of [10] for the

asymptotics of the error function. Therefore

tlg@:g+ouéew+mef)=g+thw (t = o0),

which proves the lemma. O
Lemma 9. For 0 <e <2 andt > 0, we define

Is 1 (t) = / rle ™ sin(try/1 — r2/4) cos(tr/1 — r2/4)dr
0

1 €
= 5/ rle™ sin(trv/4 — r2)dr.
0

If M € N, then ast — o0

™ _
I5 (1) = 1 +0o@t™).

Proof. Let 0 < e <2, t >0, and M € N. We use the mean value theorem and Lebesgue’s

dominated convergence theorem to justify differentiation within the integral. Hence

d € €
EI&fl(t) = _13,1(75) + Il(t)7

where
L= ; /0 VI e cos(trVA= 1) dr
By Lemma 4 with @) := M — 1,
I, =0 ™" (t— o).
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To determine the asymptotics of I;(t), we note

Li(t) = /06 V1 =724 e cos(trv/4 — 12)dr. (2.68)

Into (2.68) we substitute (2.46) with L := M + 1. Hence

L) =" BR(G () + OEM72)  (t — ). (2.69)

We apply Proposition 1 to (2.69) with @ = @y := max{0, M — 2k + 1}. We also observe
that since each 2k (k € {0,..., M}) is even, every By, € iR. Thus [,(t) = O(t=M=3/2) =
O(t=M=1) as t — oo.

We combine the results for —I(t) and I;(t) to obtain £I5 () = O(t™™7') as t — oco.
Hence

I5_(t)y=C+o@™™) (t = o0).

We must determine the constant C'.

Since we are given M € N, Lemma 8 implies
tAMo:g+mr% (t = 00).
Since [sin(2tr) — sin(trv/4 — r2)|< 2tr|l — /1 — r2/4|< % for 0 < r <2, we obtain
17 € 2 A tpan,—8 _ Logy, 1
0

Further, for the given M € N,

@)Lt~ I, () =5 -C+0™M) 5 5 -C  (t— o). (2.71)
Considering (2.70) and (2.71) together implies C' = § and the proof is complete. O
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2.3.2 Intermediate computations

Our goal is to find the asymptotic expansion of the norm ||a(t,-)||3 = ||a(t, )3 as t — oo.
By Ikehata’s lemma from section 1.4, for the fixed 0 < § < 1, f|§|>5\ﬁ(t,£)]2d£ decays
exponentially as t — oo. As with the higher dimensional cases, we instead compute the
expansion of [|a(t,-)[|3 s = X1(t) + Yi(t) + Z1(t). We also assume K € N and the initial data
of (1.1) satisfy up € H*(R) N L»*K(R) and u; € L?*(R) N L"?5(R). These assumptions will

enable us to prove Theorem 1 part 3 over the next few sections.

Expansion of X ()

We follow the work in finding the expansion of X;(t) outlined in section 2.1.2. Let us keep in
mind that the dimension N = 1, and so the “multi-indices" are simply non-negative integers.
We thus arrive at one-dimensional version of (2.20). In particular, X;(t) = X(t) + XE(t) +

O(t~K+1/2) as t — oo, where

1 : .2 2
A 9 o _g2sin®(try/1 —r2/4)
X (t) = 2| P /o r-‘e =y dr, (2.72)
K-1 ) )
try/1—1r2/4)
_N"og,, [ peze S dr. 2.73
; ’ /o b -4 (273)

To analyze X{}(t) we substitute (2.22) into (2.72) with L := K to obtain as t — 0o

X t) = 2| PPE (1) + Iy o) + OtEFS) (2.74)

We treat the first term of (2.74) by using Lemma 7 with M := K. The sum in (2.74) is
treated by Lemma 2 with @ = @ := max{0, K — 2k + 1}. Therefore we have the asymptotic

expansion

P2 ) )
X0 = wlPif't = VAP + Z PP - et o




K-1
=7l P+ Y X Ot (5 0), (2.75)

J=0

where
—\/T|PLJ? j=0

2 . .
PTG -3) 1<j<K-L

bl _

Turning to XPZ(t), we substitute (2.22) into (2.73) with L = L, := K — 0. Then as

t — 00,
K-1Le—1
20 _ 1
XP(t) = Z Z %Ii2o+2k—2(t) +O(t 5z,
o=1 k=0

We again apply Lemma 2 with Q) = @y := max{0, K — 20 — 2k + 1} to conclude

d20’ —o—k+ L _ 1
XPw= > gl + k= Ltmo=k+z ot K+z)
1<o+k<K-1
o>1
K-1
=N XTI O E )t 00), (2.76)
j=0

where

> (-3 1<j<K-1
xp, = {7

0 otherwise.

We combine the results (2.75) and (2.76) with the fact that X;(t) = X(t) + XE(t) +

O(t~K+1/2) as t — oo to obtain the asymptotic expansion:

K-1
Xi(t) = a PP+ D (X + XTIt o) (E— o0). (2.77)

J=0
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Expansion of Y (t)

We proceed as in the expansion of Y;(t) from section 2.1.2 with N = 1. Therefore as t — oo,

Yi(t) = Yi(6) + Y2 () — YO () + O(tF+1/2), where

K-2 s
VW) = 3 28 [ e coser T AN
o=0 0
YB(t) B K-2 f20 /(S 2042 —tr? SiHQ(tr\/m)d
1 - 2 g ¢ 2 r,
= 2 Jo 1—1r2/4
1 - 20 T e .
o=0 0 1— 7"2/4

We note that each of the powers of r in the preceding integrals is a non-negative integer,

so the analysis from section 2.1.2 carries over. Thus

K—1
YA =D VT L0 (1 o), (2.78)
§=0
where
faj—2 . .
vl _ PET(j—3) 1<j<K-—1
=
0 otherwise.
Furthermore,
K-1
o X
VP = 3oV £ 00 (o o), (279
§=0
where
. Y BElG-1) 2<j<K-1
}/1;72 g U"l’k:]*Q
0 otherwise,
and

Combining the fact Yi(t) = Y A(t) + Y2 (#) — YO (t) + Ot K+Y/2) as t — oo with (2.78),
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(2.79), and (2.80), we obtain

N

Yi(t) = (Y[J] + Y o) (- o0). (2.81)

<
Il
o

Expansion of 7 (t)

Let us begin by assuming that K > 2. With this assumption, we may repeat the analysis
of the expansion of Z;(t) from section 2.1.2 with N = 1 to obtain Z,(t) = ZA(t) + ZE(t) —

ZC(t) + O(tK+1/2) as t — oo, where

6 ) )
Z4(t) :4%@0)/ - pesin(try/1 —r2/4) cos(try/1 —r /4)de (2.89)
0 1—7r2/4
K-1 5
.2 1 —7r2/4) cos(try/1 —r2/4)
ZP(t) =Y 4R(l, / 20 sint dr, 2.83
= v [ e S
K— 5 22 2
Crn oy _gp28in“(try/1 —1r2/4)
Z (t)_gzﬂzzre(z%) /0 27 D (2.84)

To find the expansion of Z{(t), we substitute (2.34) into (2.82) with L := K. Then
K-1
— 1
ZMt) = AR(PLPy) IS _ (1) + Z AR(PLPo) a3 5,y () + Ot K 2). (2.85)

k=1

We use Lemma 9 with M := K to treat the first term of (2.85). We treat the sum in (2.85)

by using Lemma 4 with @ = @} := max{0, K — 2k}. Thus
ZMt) = aR(PLPy) + Ot 5%2)  (t = o0). (2.86)

To analyze ZZ(t), we substitute (2.34) into (2.83) with L = L, := K — ¢. Then
K-1L,

= Z AR(PLR) kL 5 4o 1 (1) + O(7F2) (8= 00).

o=1 k=0
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Again we use Lemma 4, now with Q) = Q. := max{0, K — 20 — 2k}. We have
ZB(t) =0t K*2)  (t = o). (2.87)

We note that ZE(¢) in (2.84) is the one-dimensional analog of ZZ(t) from section 2.1.2.

Since the powers of 7 in (2.84) are non-negative, the analysis carries over and we obtain
K-1
; -1 1
ZO() =Y 2P+ 0t E) (- o0), (2.88)

7=0

where

> TG -3) 1<j<K-1
0 otherwise.

Combining results (2.86), (2.87), and (2.88) with the fact that Z,(t) = Z{(t) + ZE(t) —

ZC(t) + O(tK+1/2) as t — oo, we obtain

Zi(t) = aR(PLRy) — Y 2Vt 1 Ot 5%2) (1 = o0). (2.89)

2.3.3 Asymptotic expansion of ||u(t,-)||3 as t — oo

We use the facts that ||u(t,-)]|3 = ||a(t, )]z = ||a(t, -)Hgﬁ—l—O(e_"t) ast — oo and ||(t, )H%5 =
Xi(t) +Yi(t) + Z1(t) to combine results (2.77), (2.81), and (2.89) and obtain the asymptotic

expansion

K-1
lu(t, )3 = 7| PPt + 7R(PLR) + > Wit 745 + Ot 42)  (t — o),
j=0

where, for j € {0,..., K — 1},

W, = b+ P v e v - 2
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This expansion proves part 3 of Theorem 1.

The first three coefficients

Let us assume K = 3. Then |lu(t,-)||? = 7| P|*t + 7R(PL Py) + Wot/2 + Wit =12 4 Wiyt =3/2 +

O(t~°/?) as t — oo, where

_ AP

d
Wo=—vARE,  Wi=120T(3)+ 2r() + D) - Urd),
|1D1|2 d20' f2 fo R(lay)
Wy = % + Z 22k+1 2 (%) + ﬁr(%) - 92k+1 F(%)
o+k=2 o+k=1

o>1

Each of the W; (5 € {0,1,2}) may be simplified to obtain

_ 7P le\/7?]P1]2+\/?\P0\2_\/E9%(P1P0)+\/7?d2’

8 2 9 2
W = VAR VAR VIRPR) | Vrds  VEf  VTR(E) | Vds
2 64 16 16 16 4 4 4

Remark. It is worth noting that the values for the W; (j € {0, 1,2}) are precisely what we

would obtain, if we let N =1 in section 2.1.3.
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Chapter 3

Proof of Theorem 2

3.1 The space dimension N > 3 case

Now that we have found the asymptotic expansion of ||u(t,-)||3 as ¢ — oo in dimension
N > 3, we seek the full asymptotic expansion of ||a(t,-) — v(t,-)||2 as t — oo in dimension
N > 3. To do this we need to finish computing the expansions of X (t), Y (¢), and Z(t),
each given in (1.13), (1.14), and (1.15), respectively. But before we are able to find these
expansions, we must first study the expansions of some more integrals that will appear in

the analysis.

3.1.1 Auxiliary lemmas

Lemma 10. For 0 < e <2, m € Ny, andt > 0 define

G;m(t) = / r’m exp(—tr2 —irty/1 —r2/4 + irt)dr. (3.1)
0
If Q € Ny, then ast — o0

Gg,m(t) = Cmmt*?*a*g + O(tif*in)’
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where, forn € {0,...,2Q — 1},

R neNyeven
Crn €

IR neN odd.

Proof. Let 0 < € < 2 and m € Ny. With g(t,7) = exp(irt(2 — V4 —r?)) as in (2.2), we
rewrite (3.1) as

Gg’m(t):/ Tme_”2g(§,r)d7’. (3.2)
0

Expanding g(%,7) in a Taylor series about r = 0, we obtain g(£,7) = > 7, gx(£)r*. By

Lemma 1 with ¢t > 2, we have that for any J € Ny there exists C'; > 0 such that

N Cy
19,(5, )< 7t (3.3)
We then rewrite (3.2) as
3J—1 € €
— 7'2 m _— T2~
G5 (1) = ng.(%)/ ptket dr+/ e gy (5, r)dr.
o 0 0

By the estimate (3.3), for t > 2 the final term is O(¢~(™+/*1/2), Thus as t — oo

3J-1

Gy (t) = Z gk(%)/ Pkt g 1 Ot
. 0

_m4J41
2

)

ge(BD(HE)E T3 O ). (3.4)

Let @ € Ny and suppose that, after collecting terms according to the power of ¢, we want
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the first 2Q) € 2Nj terms of the above expansion and then a O-term. Then as t — oo

201
m_n__ 1 1
om(t) = Coamt™ 27272 +O(t727972) (3.5)
n=0
So that the error terms of (3.4) and (3.5) agree, we require that —% — @ — % =0 % — %,

which is equivalent to J = 2Q).
Observe that C,,,, is the coefficient of t~™/277/2=1/2 when the sum (3.4) is rearranged

according to the powers of ¢. Each term gy (%)['(Ztitl)i=m/2=k/271/2 hag leading degree

and only if n = k—2j. Since j < g, this implies that § < n, which in turn implies 0 < k£ < 3n.
So for fixed m € Ny and n € {0,...,2Q — 1}, to compute C,,,, we must find the first 3n + 1
terms of (3.4) and look for the coefficient of t=/27"/2=1/2 after collecting terms according to
the powers of t.
For m € Ny, we may compute the first few C,,,, using a computer algebra system like
Mathematica,
Cno = 5T(5)

C’m71 — ip(m_H)

16
Clo = —2—;61“(7”) (3.6)
Cmi = 2;6 (%) - 6114“771510)
Cma = 1961608 (55 - 20148 -

We now determine if C,,,, is real or purely imaginary depending only on n. Suppose
n >0 is even and fix 0 < k < 3n. Then a generic term of 1 g (4)T(ZEEEL)g=m/2=k/271/2 g of
the form a(it)'t=™/27%/2=1/2 where a € R and 0 <[ < § In order for this term to contribute
to Cpn s it must hold that the powers of ¢ are equal, i.e., [ — % — g — % =-—9—5— %, which

is equivalent to n = k — 2[. Since n is assumed to be even, it must hold that £ is even. So

in fact, only even 0 < k < 3n are able to contribute terms to C,,,, if n is even. Since k is
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even, gk(%) is an even polynomial in ¢, and thus [ is even. Hence for even n, any contributing
term to C,,, is real, and thus C,,,, € R. A similar argument shows that if n is odd, then

Con € iR. 0

Lemma 11. For 0 < e <2, m € Ny, and t > 0 define

Sm(t) = / ™ exp(—tr? —irty/1 — r2/4 — irt)dr.
0

3,m

If Q € Ny, then ast — oo

-1
§7m<t) _ Bm’ntfmfnfl + O(timi@il),

Lo

S
I
o

where, forn € {0,...,Q — 1},

R meN odd

B, €
R m € Ny even.

Proof. Let 0 < e <2 and m € Ny. We observe that G5, (t) is closely related to G, ():

gm(t) = / rm exp(—tr2 — Qirt)g(%, r)dr,
0

where g(t,7) = exp(irt(2 — v4 — 12)) as in (2.2). The analysis of G ,,(t) carries over. Since

we now have the argument % instead of ¢ in g, for ) € Ny the expansion is

Q
L

G5

3,m

)= Bu t "ot ™9 (t— ).

3
Il
=)

The Bmm satisfy an € iR if m is even, and an € R if m is odd, just like B,, ,,. Further,

the Bm,n can be computed on a computer algebra system like Mathematica; the first three
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are

Bm,o - Am,O
Bm,l = Am,l (37)

~ 7
Bpo=Ana+ gAm+3,0-

m
Lemma 12. Let m € Ny, 0 < e < 2, and t > 0. Define
Hi,, (1) == / et sin(trv/1 — r2/4) sin(tr)dr,
0
Hj (1) = / pmeir? cos(try/1 —r2/4) cos(tr)dr.
0
1. If m € Ny is even, then ast — o0
Q-1
‘F[6 t :HE t = _Cm ntiminil O timi -3 s 38
L (t) = H (t) nzzoz ant 2RO 272) (3.8)

where () € Ny.

2. If m € Ny 1s odd, then ast — oo

R—1
m m 1 ~
Z 5Cmant 37" F 4 O 37972) = 3 S Bt O,
n=0
(3.9)
R—1 1.
Z “Chant F I 4 Ot @) 5B WL O R,
n=0

where ), R € N.

Proof. Let 0 < ¢ < 2 and m € Ny. We use the fact that sin(z)sin(y) = 1(cos(z — y) —
cos(z + y)) to obtain

H6

1,m

(1) = SR n(1)) — SR(C (1) (3.10)
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We apply lemmas 10 and 11 to (3.10) to find that as t — oo

1 =y 1 1 1 R-L
Hls,m(t) = 5%(2 Cm,nt_?_i_i + O( 2 _2)) _ 5%(2 Bm’nt—m—n—l + O(t_m_R_l))’
n=0

where @, R € Ny. We now recall the following: for any m € Ny, C,,,, € iR if n € N is odd
and C),,, € Rif n € Ny is even; and Bm,n € iR if m € Ny is even and Bm,n ceRifmeN,
is odd. If m € Ny is odd, (3.9) is immediate by linearity of R(-). If m € Ny is even, then by
setting R > () we obtain (3.8).

To prove the claims about Hj, (t), we use the fact that cos(x)cos(y) = 3(cos(x —y) +

cos(z + y)) and repeat the previous argument.

Lemma 13. Let m € Ny, 0 < e < 2, and t > 0. Define

H;,,(1) = / Pt sin(tr/T— 12 /4) cos(tr)dr,
0

Him(t) 3:/ Tme*tﬂ COS(W’m) Sin(tr)dr.
0

1. If m € Ny is even, then ast — oo

R—1 1
HS,,(t) = —5%(Bm,n)t—m‘”‘1 +Oo@ ™
L ! 1 (3.11)
=2 53(Can)t E RO E O,
n=0
R—1 1 ~
Hip(8) = Y =58 Bra)t™™ " 4O
n=0
K| .
2 5 3(Conanin)t™F T O E ),
n=0

where @), R € Ny.
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2. If m € Ny is odd, then ast — oo

Q-1
1 . -
Hg’m(t) - §§(Om72n+l)t—7—n—l + O(t_T_ _%)7 (312)
n=0
Q-1 1
m m 1
Hi,m(t) = 5%(Cm72n+1)t_7_n_1 —+ O(t_?_ _5)7
n=0

where () € Ny.

Proof. Let 0 < € < 2 and m € Ny. We use the fact that sin(z) cos(y) = 3(sin(z +y) +sin(z —
y)) to obtain

5 (1) = ~5 (G5 (1) — 53(Gin (1), (313)

We apply lemmas 11 and 10 to (3.13) to find that as t — oo

R—1 2Q-1
1 ~ 1 m_n_ 1 m 1
H; (1) = =59 (;Bm,nt—m—”—l + O(t‘m‘R‘1)> -39 ( nzzo Connt ™2 7577 + O(t—z—Q‘z)),
where @), R € Ny. By the facts about Bmm and C),,, we recalled in the proof of Lemma 12
we conclude that if m € Ny is even, then (3.11) follows from linearity of &(-). If m € Ny is
odd, then by setting R > ) we obtain (3.12).
To prove the claims about Hf,,(t), we use the fact that cos(z)sin(y) = 3(sin(z +y) —

sin(x — y)) and repeat the previous argument. O

3.1.2 Intermediate computations

We are now in a position to find the asymptotic expansions of the remaining parts of X(¢),
Y(t), and Z(t). In doing so, we will be able to determine the asymptotic expansion of
|a(t, ) — v(t,-)||3 as t — oo. Using results about X;(t), Y1(¢), and Z;(t) from section 2.1.2
and the sections that follow, we will be able to prove Theorem 2 for the dimension N > 3
case. Let us assume that K € N and the initial data of (1.1) satisfy ug € HY(RY)NLM2E(RY)

and u; € L?(RY) N LY2K(RN).

65



Expansion of X,(t)

Xﬂ%ﬂﬂﬁ@q %wﬂgm>

We switch to polar and use the fact that sin*(z) =  —  cos(2z) to obtain

1
5 C
0 2
Xo(t) = D0|P1|2/ rN 73T sin? (tr)dr

0

Dal P12 g Dal Pal2 0
=201 ’2 1 / PN =Bt — —0|2 d / N3t cos(2tr)dr. (3.14)
0 0

As t — oo the integral in the first term of (3.14) is iD(& — 1)t~ /2+1 4 O(e%"/2). The
integral in the second term of (3.14) equals R(Fg_5(t)), where F(¢) is as in (2.6). Thus by
(3.14) and (2.9), as t — oo

Do| Py ?

Xo(t) = 1

P-1
N Dyl Py |?
A P LR YO MR CI TSGR E)

p=0

By definition of Ay, in (2.10), the sum in (3.15) vanishes unless N > 4 is even. And if N > 4
is even, we require K > & else each term of the sum in (3.15) is O(¢~%~"/2"1). In any case

we choose P :=max{0, [K — & + 1]} so that OtV +2~F) = O(t~%~/2*1). Thus

Xo(t) = Z X2 Lo K3t (s o0), (3.16)
5=0
where )
Lol (5 — 1) j=0
X2m1 = —%WAN%J;%H N > 4 even and % —1<j<K-1
0 otherwise.
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Expansion of X;(t)

We observe

tle|?

X(t) = 2R (a /Ig 0 + eFaole)

sin(t[¢])
§

h(t,ods) |

We substitute (1.5) and (1.11) in to the above expression for X3(t) and estimate the resulting

integral with the O(|¢|*)-term to find it is O(t~5~N/2*1) as ¢ — co. Thus as t — 0o

& g2 5! — [§12/4) sin(t[¢]) kN
= Prey [ gremee AV R de | + o
" |a|§<—1 s €12/1T = [€2/4 ( )
= IR(Pycoy 20 7t‘5|2SiIl(t|§| 1—€]2/4) Sin(t|§|)d L0 t*Kf%Jrl
a|ng<—1 (ficar) |£\§6€ e €12/ 1 — [€]?/4 E+0( )

5 : — 7
— Z 23%(151620)1)0/ 2l +N=3 ~tr? sin(try/ 11 r é;lism(tr) i+ O(t_K_%“),
0 —r

lo|<K—1

(3.17)

The second equality follows from the fact that if |o|< K — 1 has an odd entry, then the
integral evaluates to zero.

We use (2.34) in (3.17) with L = L, := K — |o| to get rid of the denominator in the
integrals. By choice of L,, the integrals with the O(r?l)-terms are all O(t=5—N/2+1) a5

t — oo. Thus

Lo—1
Xg(t) = D Y R(Pres) Do H) gpopopin—s + O 27) (k= 00).  (3.18)
lo|<K—1 k=0

Since N > 3 we may use Lemma 12 in (3.18) with @ = Q, = K — |o|—k and R =

Ry := max{0, [K — 2|o|—-2k — £ + 1]} to obtain that as ¢ — oo

=

Xa(t) = S (XY = XPhyi=3+ L o K-, (3.19)

<.
I
o
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where

bl 5
X311 = R(Prc2o) Do Colo| 4254+ N—3,2n5
otk in=;

, > %(plc%)Daakémaugkﬂ\/,g,n N >4 even and % —1<<K-1
X?EJ]Q — D2lo|+2k+n=j—N 41

0 otherwise.

Asymptotic expansion of X(¢) as t — oo

Combining results (2.23), (3.16), and (3.19) for X;(t), Xo(t), and X;5(t), respectively, with

the fact that X (¢) = X;(¢) + Xa(t) — X3(¢), we obtain the expansion as ¢t — oo

K-1

X(t)= YV R o), (3.20)

J:
where, for j € {0,..., K — 1},
VX — X[j] _X[j] XU] _X[J'} X[j]
i =41 12 T X571 31 T X302

The first three coefficients for each N > 3

Let us first assume that N > 3 is odd and K = 3, or that N > 8 is even and K = 3. Then

X () = Vi N2 X N2 XN L O N/272) as t — oo, where

doD Do|P|? _

‘/OX 04 0F<% - ].) + 0’4 1’ F(% - ].) - %(Plco)D()O[()CN_&Q,

doe Dy -

Vit = Z ik-ﬁ-l L(3) - Z R(Prc20) Doy Cojo| 21+ N—3,20,

|lo|+k=1 lo|+k+n=1
X dQJDJ N D

Vo= Z 4k+1 F(7 + 1> - Z g'%(1[)1020)DoOékaa\+21c+1\/—3,2n-

|o|+k=2 |o|+k+n=2

We recall facts (2.43) and (2.44) from section 2.1.3 about the D,, the identities for the
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Con.n given in (3.6), and that dg = |P;|? in order to simplify each VX (i € {0,1,2}).

N(N +2)|PPr? 7% & &
VX =0 VX - AT d e R(P e
" , ' 512 +2N; 2¢; N; (Preae;)
VX —N(N* 4 20N3 — 628 N2 — 4208N — 18048)| P[> 2 . 1 i
: 3145728 16 2
N N
(N2 4+ 6N — 56)7% I oy
- 1024 Z R(Prex,) + 4N +2) > dae, + AN+2) Z dy(ei+ey)
Jj=1 1<1<]<N
372 N %
— ———— ) R(Picy, R(PyCoe,re
2(N+2),Z (Preae;) = Z 1Coerte))
j=1 1<2<]<N

Remark. In the case N > 3 odd and K = 3, the only terms from (3.20) that contribute
non-zero terms for some j € {0,1,2} are XE]I, Xg]l, and X?E]}l These terms are exactly the
terms that contribute similarly for the case N > 8 even and K = 3. It is straightforward to
verify that the quantities obtained above for the VjX are valid for the case N > 8 even and
K =3.

In the case N € {4,6} and K = 3, all five terms of (3.20) contribute non-zero terms to
the expansion for some j € {0,1,2}. Nonetheless, through a straightforward (yet slightly
longer) computation, it can be shown that the quantities obtained above for the VjX are

valid for the case N € {4,6} and K = 3 too.

It is also worth noting that in all cases the ¢t~/?**'_term vanishes.

Expansion of Y5(t)

We use the fact that cos?(z) = 1 + £ cos(2z) and then switch to polar to obtain

Y(t) = |Pof? /|£ e sl e

Dol B> [° 2 Dol [° .
_ 0|2 0] / FN=1—tr dr—l—%/ rN e cos(2tr)dr. (3.21)
0 0
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The asymptotics of the integral in the first term of (3.21) are f06 rN=lemtr gy = 17Xy N2 4

1
2
O(e™"°/2) as t — co. The integral in the second term of (3.21) equals R(FY_,(t)). Thus,

combining (2.9) and (3.21) we obtain as t — oo

!

-1

Do| Pol?
2

D 2
_ DolR? .
4

Ya(t) ¥ R(Ay_1,)t NP+ 0@t NP, (3.22)

Stz +

3
I
=)

Much the same as with X5(¢), the sum in (3.22) vanishes unless N > 4 is even, and even so,
every term is O(t~*~N/2+1) unless K > & 4 2. Regardless, we choose P := max{0, [K —

2 — 17} so that O(t=V~-F) = O(¢t~K=N/2*1). Therefore

K-1

Yalt) = Y YR T L oK) (1 ), (3.23)
=0
where )
Pl () j=1
YZ[]l} = %POPAN,Ljfgf1 N>4devenand § +1<j<K-1
0 otherwise.

\
Remark. We observe from the definition of Yz[]l} that the asymptotic expansion of Y5(t) has

no terms unless K > 2.

Expansion of Y;(t)

t]e|2

Ya(t) = 2R <P0 /Ig |<5a0(£)6_ : cos(t]§|)8th(t,§)d§>.

Using (2.25) we obtain Y3(t) = Y4(t) — Y.2(¢), where

Yii(t) = 2% (Po /5|<5 iao(€)e " cos(t]é] /T — [€[2/4) COS(tlél)dé) : (3.24)

Y2(t) = R (Po /|£ . fio€) g]e—ter Sl V\}%COSWD%) . (3.25)
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Let us assume that K > 2. Then into both (3.24) and (3.25) we substitute (1.4) truncated
t0 D 7\51<or 3 0oE7 + O(I]*"72). Estimates of the integrals with the O(|¢[*"~?)-terms are,
respectively, O(t K~N/2+1) and O(t—K—N/2+1/2) as t — oo, both of which are O(t~K~N/2+1)

as t — o0o. Therefore as t — oo

v =2 | S R [ e cosltiely/T— /) costtlel)dg | + 0@ E)

lo|<2K -3 l§l<é
5
- Z QR(PObZU)Da/ PHTEN=Le=t cos (/1 — 12 /4) cos(tr)dr + Ot~ K2+
lo|<K—2 0
= > 2R(Pobar) Do Hy iy (1) + O~ =5+h), (3.26)
lo|<K—2

The second equality is obtained by noting that multi-indices |o|< 2K — 3 with any odd
entry yield an integral that evaluates to zero, then switching to polar and using linearity of
We now apply Lemma 12 to equality (3.26) with Q = Q,r := K —|o|—1 and R = R, :=

max{0, [K — 2|o|—% — 1]}. Thus as t — oo

=

YA =S (v v i o R, (3.27)
J

Il
=}

where
)
A > R(Pob2o)DoCogpn—1on 1<j<K-—1
Y = { loltn=i-1
0 otherwise,
)
S° R(Pobay) Dy Bojojyn-1n N>4devenand & +1<j<K —1
Y3[]2] — {2ol+n=j-Y -1
\ 0 otherwise.

We now reduce Y;2(t) as we did with Y;*(t). Any multi-index o (|o|< 2K — 3) with an
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odd entry yields and integral that evaluates to zero. So we only consider those multi-indicies

with even entries, and then switch to polar. So as t — oo

- Ao [ el SHE VT = TER74) cos(]) d>+OtKgH
<KZ g’ Vil ) e

= (pob% D / 2lo|+N - r2 SlIl( 1— 7’2/4) COS(tT) dr 4 O(t—K—%H)_
1—1r2/4

(3.28)

We substitute (2.34) into (3.28) with L = L, := K —|o|—1. By choice of L, each integral

with a O(r?be)-term is O(t~5=N/2+1) as t — oo. Therefore as t — oo

Ls—1

=Y. D R(Rby,)D a/ 202N =02 in (/T — 12]4) cos(tr)dr+O(t K2 +)
lo|<K—2 k=0
Lo—1
N
Z Z (Pobag) DycvyHs o2k (t) + Ot~ =2+, (3.29)
lo|<K—2 k=0

We now apply Lemma 13 to (3.29) with R = R, := max{0, [K — 2|o|-2k — § — 2]}

and @ = Qo := K — |o|—k — 1 to obtain

N

VW) = S0 v o) (15 ), (3:30)
§=0
where
)
> WO(BQMHHNTL) N >4 even and %+2 <j<K-1
y;)[ﬂg — J2lo[+2k4n=j-Y 2
0 otherwise,
)
‘ —7%(130112“)%%O(C2|o—|+2k+N 1) 2<j<K-—-1
Y?}Q — { lol+k+n=j—2
0 otherwise.
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Remark. We observe that unless K > 3, the asymptotic expansion of Y;Z(¢) will not have

any non-zero terms.
Combining the fact that Y3(t) = Y;A(t) — Y.B(¢) with results (3.27) and (3.30) for Yi(¢)
and Y;2(t), respectively, we conclude that as t — oo,

K-

H

R e R ) [ R O] (e} (3.31)
7=0

Asymptotic expansion of Y (t) as t — o

We combine results (2.36), (3.22), and (3.31) for Yi(t), Ya(t), and Y3(t), respectively, with

the fact that Y (t) = Yi(¢) + Ya(t) — Y3(¢) to obtain the expansion as t — oo
K-1 . .
Y(t)=Y Vit oot (3.32)

J=0

where, for j € {0,..., K — 1},
V=Y v e - -V e - Y - Y v v

The first three coefficients for each N > 3

We first assume that N > 3 is odd and K = 3, or that N > 8 is even and K = 3. Then

Y (t) = V5t N2 L VY N2 LY N21 L Ot N/272) as ¢ — oo, where

D Do|Pyl? _
vy =0 V= f°4 Py + 0’4 d T(X) — R(Pobo) DoCh 1,0,
O'DO' D —
— Z f2 7 rg+1)+ fomor(% +1) — R(Pobae) DeChi2o/—1,2n
lo|=1 lo|+n=1
%(Pgbo)DoO&oo
5 S(Cn)-
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We may simplify each V¥ (i € {0,1,2}) with the identities for the C,,,, given in (3.6).

N(N? — 10N + 40)|P0|27r% T 1 _
vy — 020 Z 2, > R(Poba,).

Jj=1

Remark. It is worth noting that in the computation of the VY the only terms from (3.32)
that contribute a non-zero quantity for some j € {0, 1,2} are Ylbl], Yl[%], YQ[JE, Yy Ul and V] -
These are exactly the terms that would contribute similarly in the cases N > 4 even and
K = 3. In fact, it is straightforward to show that the quantities obtained above for the
VjY are valid for N > 4 even and K = 3. Additionally it is worth noting that both the

t=N/2+1_term and t~/2-term vanish.

Expansion of Zy(t)

We begin with

Zo(t) = 2R (Po /|£ JOGE EPao(e)e L (t,0) COS(t|§|)d€) a3

We then substitute (1.11) and (1.5) into (3.33), and estimate the resulting integral with the
O(|€])?%)-term and find it is O(t~K=N/2+1) as t — co. After eliminating the integrals that

evaluate to zero, and then switching to polar we obtain as t — oo

=3 2R(Pocas D/ oot N2 STV = /) cos(tr) sty
1—1r2/4

lo|<K-1

(3.34)
Into (3.34) we substitute (2.34) with L = L, := K — |o|. The resulting integrals with

the O(r?")-terms are all O(t~5~N/2¥1) as t — co. Thus as t — oo

Lo—1
Zo(t) = Z 22% Pycay) Dy ozk/ Aol +2k+N =2t gin (/1 — 2 /4) cos(tr)errO(t_K_%H)
lo|<K—1 k=0
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Ls—1

- Z Z 2§R(POCQU)DaakH§,2\al+2k+N—2(t) + O(t_K_%H)- (3.35)

lo|<K—-1 k=0

Let us now apply Lemma 13 to (3.35) with R = R, , := max{0, [K — 2|o|—-2k — £} and
Q = Qs =K —|o|—k. Then as t — oo

=

Zo(t) = S (ZF) + ZP eIt p o KR, (3.36)

J

Il
=)

where
.
, > —R(Pocao) Do S(Bosonin-2,n) N>4even and §<j<K-—1
ZQ[J]1 — 2lof+2k4n=j-X
0 otherwise,
\
, —R(Pocao) Do S(Cojpp2kiN-22041) 1 <j< K -1
7l _ ) jol+ktn=j-1
2,2
0 otherwise.

\

Remark. To obtain any non-zero terms for Z5(t), K > 2 is necessary.

Expansion of Z5(t)

We begin with

Zs(t) = 2R (P1 /5 . ﬁo(g)e—“fath(t,g)Sing:ﬂ)dg) .

Using the definition of 0;h(t, ) as given in (2.25), we obtain two new integrals. Into each of
the resulting integrals, we substitute (1.4) and estimate the O(|¢|?%)-terms; they are both
O(t=K=N/2+1) as t — oo. We then get rid of the terms which evaluate to zero (Jo|< 2K — 1

with an odd entry) and switch to polar to find Z3(t) = Z5'(t) — Z2(t) + Ot~ K-N/2+1) as

I6)



t — 00, where

0
ZiNt) = Z 29?(P11_)20)D0./ pPloHN =26t cos(tr(v/1 — r2/4)) sin(tr)dr,
0

lo|<K—1
- J 2 8in(t 1 —17r2/4))sin(t
ZP) = 3 R(Pib)D, / 2ot +N-1 -2 ST r/A)sin) o 5.87)
lo|<K—1 0 1—r?/4
To find an expansion for ZZ'(¢), we observe that
Z3t) = Y 2R(Pibae)DoHY o o(t). (3.38)

lo|<K~1

Therefore by applying Lemma 13 to (3.38) with R = R, := max{0, [K — 2|o|-5]} and
Q = Q, := K — |o]|, we obtain

N

Zt) = <Z£,”1 + ZONE o R (3.39)

<.
Il
o

as t — oo, where

> —§R(Plgga)DG%(Bg‘UHN,z,n) N >4 even and % <j<K-1
Z:L)j]l — 2|a|+n:j—%

0 otherwise,
, > R(Piboe) DoS(Copprn-sont1) 1<j<K—1
Z0) = { lol+n=j-1

0 otherwise.

\

To find the expansion for ZB(t), we first substitute (2.34) into (3.37) with L = L, := K —
|o|—1. With this choice of L,, each resulting integral with a O(r?t)-term is O(t~K—N/2+1)

as t — oo. Then

Lo—1
= D > R(Piboo) DoiH] yipp o (8) + O3 (3.40)
lo|]<K—1 k=0
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as t — oo. We now apply Lemma 12 to (3.40) with @ = Qu,; = K — |o|]—k — 1 and

R = R, := max{0, [K — 2|o|—-2k — & — 1]} to obtain

K-1
Z3(t) = Y (25— Zi)t =y O e, (3.41)

5=0

as t — oo, where

( —
. w(}maw%ﬂqun 1<j<K-1
Zg;, — { lol+k+n=j-1
0 otherwise,

, > —m(ng)Dgak Bojoy2k+N—1,n N >4 even and E+1<j<K-1
Z[J] — 2|a’|+2k+n:j_ﬂ_1
3,4 2

0 otherwise.

Remark. We observe from the definitions of the Zgl (i € {1,...,4}) that the expansion of

Z3(t) has no non-zero terms unless K > 2.

Since Z3(t) = Z3(t) — ZEB(t) + Ot~ K=N/2+1) we combine results (3.39) and (3.41) for

Z3\(t) and ZB(t), respectively to obtain the asymptotic expansion as t — oo

=

Zy(t) = (28 + 28y — Zdh + Zg = o R, (3.42)

<.
Il
o

Expansion of Z,(t)

Finally we seek the expansion of

20~ (R [ ) o S U] 1)
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Switching to polar and using the identity sin(z) cos(z) = } sin(2z) we obtain

0
Zy(t) = §R(P1P0)DO/ rN =267t sin(2tr)dr
0

5
= —R(PP)) DS (/ V2 exp(—tr? — 2itr)dr>
0

= —R(PLPy)DoS(Fi_,(1)), (3.43)

where F}(t) is as in (2.6). We now use (2.9) in (3.43) with P := max{0, [K — 5]} to obtain

ast — oo
P-1
D N
Zy(t) = Z _%(Plp())DO%(AN_Z,,)t‘N‘p“ + O(t_K_?'H)
p=0
K-1
N . N
= 2 o E Y, (3.44)
7=0
where
A0 —éR(Pl.PO)DO%(AN_Z’j_%) N>4evenand § <j<K-1
41 —

0 otherwise.

Asymptotic expansion of Z(t) as t — oo

Let us combine results (2.42), (3.36), (3.42), and (3.44) for Z,(t), Za(t), Z3(t), and Z4(t),
respectively, with the fact that Z(t) = Z1(t) — Za(t) — Z3(t) + Z4(t) to obtain the expansion

ast — oo
K-1

Z(t) = Z ‘/th—j—%‘*‘l + O(t_K_%'H)’ (3.45)

=0
where, for j € {0,..., K — 1},
V7 2 B - ) - B 2B - 2 - A 2

)

]
1 .
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The first three coefficients for each N > 3

We initially assume that N > 3 is odd and K = 3, or that N > 8 is even and K = 3. Then

Z(t) = VZt N2 L V2 N2 V2 N2 L O N/272) as t — 0o, where

R(I _ _
%Z = O, ‘/1Z = — (—O)F(%) + %(PoC())D()Oéo%(CN,Q’l) — %(Plbo)D()%(CN,QJ)
R(Prb
+ (170)04001\[_1707
R(loe) D, _
vi= Y Moy S R Dok S Copenin )
|o|+k=1 |o|+k+n=1 B
- R(Pibay ) D, cx
Z§R(P1b2a)Dg%(Cz|g|+N—2,2n+l)‘l‘ Z (71 22> k02\0\+2k:+N—1,2n
lo|+n=1 |o|+k+n=1

We simplify the V.7 (i € {0, 1,2}), using the identities (2.43) and (2.44) we have for D,

from section 2.1.3 and C,, ,, from (3.6):

VZ =0, VZ =0,

iz _ “N(V? 2N ¢ 56)R(PLPy)ms 7% i Rl )
2 2048 4=
N + 2 W% a N —6)r% -
\SR PUCZe] (3—2) Z %(Plbge].).
j=1 j=1

Remark. Much the same as the V;-Y, only some terms from (3.45) will contribute non-zero
terms for some j € {0,1,2}. These terms are Zl[{]Q, ZQ[{]Q, Z?E{]za and Zz,[jz]g, which just so happen
to be the terms that contribute similarly for the case N > 6 even and K = 3. It is then
straightforward to verify that the above quantities for the V7 (j € {0,1,2}) are valid for
N > 6 even and K = 3. For the case N =4 and K = 3, in addition to those already listed,
the terms ZE]I, Zg]l, ZPE{]I, and Zﬂ also contribute non-zero terms for some j € {0,1,2}.
Nonetheless, upon simplifying, we find that the quantities above for the VjZ (7 € {0,1,2})

are also valid for the case N =4 and K = 3.
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3.1.3 Asymptotic expansion of ||i(t,-) — v(t,-)||3 as t — oo

Let us recall that for the fixed 0 < § < 1 there exists > 0 such that ||[a(¢, ) — v(t,-)||3 =
Ja(t, ) —v(t, - )|55+0(e™™) = X(t)+Y (t)+ Z(t) + O(e™) as t — oo. We will now combine
the results from the prior analysis to obtain the full asymptotic expansion of ||a(t, ) —v (¢, -)||3
as t — oo in a single closed form for N > 3.

Let N > 3 and K > 1 be integers as given in the statement of Theorem 2. Then as

t — 00
K-1 . N
la(t, ) = v(t, )3 = lla(t, ) — v(t, )35 +0(e™™) =Y _ V72 4 O 2, (3.46)
=0

where V; = VX + VY + V7 for every j € {0,..., K —1}. If we can verify that V; = 0,
then (3.46) matches the statement of Theorem 2 and the proof is complete. To do so, we
determine the first three coefficients V4, Vi, and V5.

Assume that N > 3 and K = 3. Since for i € {0, 1,2} the V.X, V¥ and V7 are given in
a common form for N > 3, we have ||a(t, ) — v(t,-)||2 = Vot~ N/2H 4 Vit N2 4 vyt =N/2=1

O(t=N/?72) as t — oo, where

N(N +2)|P|*r% T
V=0, V= ( )| P [*
512 f
v (V! 4 20N° — 628N — 4208N — 18048)| P, |27 . N(N% = 10N + 40)| Py|?7r >
2T 3145728 1024
N(N2—2N +56)R(PP)r? 7% o (N2 46N —56)1% e ., ~
_ N dy, R(Pycae
2048 16 ; 2; 1024 Z (Picze,)
N N N N N N N N
T2 T2 T2 N+2)r2
+ e Z erJ T Z éR(POerJ) I Z %(126]) ( 32) Z R(Pocze.)
j=1 j=1 j=1 j=1
N N N N
(N —6)r2 _ 3z T2
T 39 Z §R(P1b2ej) + m Z d4ej Z d2(el+e])
j=1 j=1 1<Z<]<N
372 N )
— % p e:) — P, e;+e
2(N +2) 2 R(Piewe) (N +2) 2 RPiexeirey)
j=1 1<i<j<N
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Indeed Vi = 0 and so completes the proof of Theorem 2 for space dimension N > 3.

3.1.4 Asymptotic expansion of ||v(t,-)||3 as t — oo

Let us again recall that for the fixed 0 < § < 1, ||v(t, )3 = ||1/(t,-)||§75+0(e*t52/2) =
Xo(t) 4 Ya(t) 4+ Zu(t) + O(e7°/2). We then combine results (3.16), (3.23), and (3.44) to

obtain the proof of Corollary 1 part 1 and the expansion as t — oo

=

2 .
[t = It ) 3a+0(™ %) = Y U721 o K31,

<.
Il
=)

where, for j € {0,..., K — 1},
U, = XU] —|—Y[j] + Z[j]
J 2,1 2,1 4,1

The first K = 3 coefficients for dimension N > 3 odd or N > & even are

N
2

_ PP Ui | Py|*

U L B
0 N_27 9 9

Uy = 0.

The coefficients for N = 4 are

Uo: |P1|27T2’ Ulz |P1|27T2 |P0|27T2, U2:3|P1|27T2—§R(P1]50)7T2,
2 4 2 8 2
Finally, the coefficients for N = 6 are
‘P1‘2’/T3 |P0|27T3 3’P1’27T3
Up=— U, = Uy =— )
0 4 ’ 1 9 3 2 16

Remark. For each N > 3 the first coefficient U, in the expansion is equal to that of
|u(t, )||3 = ||a(t,-)]|3. This leads to the cancellation of the leading terms when considering

the expansion of ||u(t,-) — v(t,-)||3.
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3.2 The dimension N = 2 case

3.2.1 Auxiliary lemma

Lemma 14. For 0 < e <2 andt > 0, define
Hi _(t) = / pletr? sin(try/1 — r2/4) sin(tr)dr.
0

If M € N, then ast — oo

1
Hi (t)= 7 ()+ + )+ Z 01 ont™" +Z Bmt—”—1
+ Z L\Y(szn)t_%_nvL Z —L\S(CQMnH)t_k_n
2(2k +n) ’ 2(k +n) ’
1<2k+n<M—1 1<k+n<M—1
M1 M-l

— (B )t ™" —3(Coans )t +O™).

+n:1 2n\$ 0 +Z \5 02nt1)t T+ O

Proof. Let 0 < e < 2,t>0,and M € N. Using the mean value theorem and Lebesgue’s dom-
inated convergence theorem, it is a routine argument to show that < Hf _,(t) = —Hf ,(t) +

Hi(t) + Hsy(t), where

= / V1 =72/4 7 cos(try/1 — r2/4) sin(tr)dr,
0

and Hf,(t) and H3(t) are as given in lemmas 12 and 13, respectively.

By Lemma 12 with @) :== M and R := M — 1, and the fact that C, o = %, as t — oo

: Ly, 1 —n—1 | IS 1 ~M-1
—Hi,(t) = _Zt + Z _501,2nt Z 3 Din +O(t ). (3.47)
n=1 n=0

Similarly, by Lemma 13 with R := M and ) := M + 1, and the facts that B070 = —%
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and Cpy = 15, as t — o0

M-1 M
. 7 1, =~ . 1 o o
Hy(t) = @t t Z _5%(BO,n)t '+ Z —5%(00,2%1)75 Lyo™-Y.  (3.48)
n=1 n=1

To determine the asymptotic expansion of H;(t), we expand /1 —72/4 in a Taylor
polynomial with remainder about » = 0 as in (2.46). We then estimate the resulting integral

with the O(r?")-term and find it to be O(t~%~'/2) as t — oo, where L € N. Hence as t — 0o

t) = i BrHS 5 (t) + O(t7172). (3.49)

Let L := M+1 and substitute the result of Lemma 13 into (3.49) with R = Ry := max{0, L—

2k} and Q = @, := L — k so that both O-terms are instead O(t~™~1). Thus as t — oo

Hi(t) = Z _%‘f(B?kn)t ol Z ?\Y (Coponi)t F "1+ O@E M.

2k+n<M k+n<M

We use the facts that 5y =1, 3070 = —%, and Cp; = 1%‘ to obtain as t — oo

H,y ( t‘ Y ——J (Bagn)t "1 Z 5 (Carpne SO, (350)

1<2k+n<M— 1 1<k+n<M— 1

We now combine results (3.47), (3.48), and (3.50) with the fact that £LHf_,(t) =

—H; | (t) + Hi(t) + H$o(t) to obtain as t — oo

d 1 M-1 1 M—-2 1
EHf,—l(t) = Zt_l + (Z —501,27115_"_1 + Z §B1,nt_”_2 + O(t_M_1)>

n=1 =0
+ ( > —%\S( T Y —\v (Coponyr )t "1 +O(tM1)>
1<2k+n<M—1 1<k+n<M— 1
M-—1 1 1
+ (Z —53(Boa)t ™"+ Z S(Cogni )"+ O(t—M—1)> .
n=1 n=1
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Therefore there is some constant C' such that as ¢t — oo

HS . (t C C ST B at
0= J00 0+ X Lo
Bk e Y& 5 —2k— 6k ke
— 2 X(Bop, )t — T Y(Ogponrg )t "
- Z 2(2k+n)‘s( 2kn) - Z 2(k+n)‘$( 2kant1)
1<2k+n<M—1 1<k+n<M-—1
M—-1 1 M—-1 1
—(Bo )t ™" —3(Coans1 )t " +O@1M).
+ £ 271\;( 0 + ; \S 0.2 +1) + ( )

To determine the constant C' we proceed as in the proof of Lemma 5 and compare Hf _(t)

to Ji _;(t). Since [sin®(¢tr) —sin(try/1 — r2/4) sin(tr)|< tr]1— /1 — r2/4|< % for0 <r <2,
€ € l ‘ 2 —tr? t 3\, —3 1 3y, —1
’J17_1(t) - H1,_1(t)|§ Z re dr < gr(§)t 2 = gF(Q)t 2 =0 (t — OO) (3.51)
0

Furthermore

Ji i (8) — Hi () = G In(t) + + + (@) O(tl)) -

1 1 In(2
Considering (3.51) and (3.52) together, C'= T + é ),

3.2.2 Intermediate computations

We may now set about proving the dimension N = 2 case of Theorem 2. The proof will rely
on the previous results for X (¢), Y1 (), and Z;(t), as well as the results of the following several
sections. As usual, K € N and the initial data of (1.1) satisfy ug € H'(RY)N LY25(RY) and

uy € LA(RN) N LY2K (RY),
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Expansion of X,(t)

Let us recall that for ¢ > 0

_Xb(t)::|l%|2/£r<6e‘“ﬂ2§2%§%¥12d§.

Upon switching to polar, we see that Xy(t) = 27| Py[*J] _;(t), where J{ _,(t) is as given in

(2.48). We apply Lemma 6 with P = K — 1 to obtain the asymptotic expansion of Xs(t) as

t — oo:
| P J? = il K
X(t) = =5 Int) + ZO Xt + 0™,
j:

where

) mAAE 4 7| PP In(2) =0

X2,1 = )
—m2E(3), 1<j<K-—1.

Expansion of X;(t)

(3.53)

We analyze X3(t) as in section 3.1.2 and obtain (3.17) with N = 2. In particular, X;(t) =

X&) + XB(t) + Ot K) as t — oo, where

_ 6 s T 7274) &
Xé/-l(t) = 2§R(PICO)DO/ T—le_t,,. Sln(tr\/ir/) Sln(t?‘)d
0

T?
1—r2/4
5 . .
D try/1 —1r2/4 t
XgB(t) = Z 2%(P102U)Dg/0 2lol=1,—tr? sin(tr 1 _Tré/ism( r) 0

1<]o|<K -1

We first consider X3!(¢). We substitute (2.34) into (3.54) with L := K. Then
K—1

X3 (t) = Ax|PPH] L (8) + Y Ax|PiPagHY o 1 (8) +O(EF) (= o0).
k=1
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For the first term of (3.56) we use Lemma 14 with M := K. Therefore as t — oo

S

Am|PUPH] () = 7| PPn) + S (XY 4+ XYL+ XD+ o),

7=0
where
¢
XU my|Pr|*+27| P [*In(2) =0
3,1 —
T 2 ~ _ |
| 7 (Cry = Bujor + S(Bog) + 3(Copj)) 1<j <K -1,
; 2 %lpyﬂ%(é%,n) 1<j<K-1
\ 0 otherwise,
¢
[j] kz wo(@m b)) 1<j<K-1
X33 — +n=j
\ 0 otherwise.

For the sum in (3.56) we use Lemma 12 with @ = @ := K — k and R =

max{0, K’ — 2k}. Thus as t — oo

K-1 K-1
Y dn| PP o (1) = > (X = Xt + 0",
k=1 Jj=0
where
4
> 27m|PiPagCor1on 1<j<K—1
X = |+
0 otherwise,
;
S 2n|P Py Bop1, 2<j<K—1
/I
0 otherwise.

86

Ry,



Thus as t — o

N

XA(t) = 7| P 2In(t) + (Xg]1 + X0+ XY+ XYL - X 4 o). (3.57)

J

Il
=)

We now consider XZ(¢). Into (3.55) we substitute (2.34) with L = L, := K — |o|. Then
by choice of each L,, as t — oo
Lo—1

XPW = Y D 2R(Picas) Do H gy g 1 (1) + O 5). (3.58)

1<|o|<K—1 k=0

We apply Lemma 12 to (3.58) with Q = Qo4 := K — |o|—k and R = R, := max{0, K —
2|o|—2k}. Then as t — oo

xXEy =" (XY - XUy o), (3.59)

where

> R(Picae) Dok Copyon—1on 1< j<K—1
xgh= ¢
\ 0 otherwise,
%
R(Pic2o) Doty Baojojron-1n 2<j<K—1
S
0 otherwise.

\

Since X3(t) = X3'(t) + XP(t), we combine their expansions (3.57) and (3.59) to obtain

the expansion as t — oo

N

X4(t) = 7| P [*In(t) + (X?EJ{+X[J]+X§;+X§L XVL 4+ XVl — XUy 4 O(t75). (3.60)

J

I\
=)
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Asymptotic expansion of X(¢) as t — oo

We combine results (2.58), (3.53), and (3.60) with the fact that X (t) = X, (¢) + Xa(t) — X3(t)

to obtain the expansion as t — oo

where, for j € {0,..., K — 1},

V¥ =P XH b+ X2 X - - - X

)

|
ol
+
ok

|
ol
+
ol

The first three coeflicients

Let us assume that K = 3. Then X (¢) = V5* + Vit + V%2 4+ O(t73) as t — oo, where

P |? P |?
v = % + 7| P In(2) + % + 7| Py PIn(2) — my| Py 2—2x| P PIn(2),
7| Py |? dow Dy
X = %m) —a|Pi*Bro + 20| PGS (Boa) + Y =4 T(1)
lo|=1
7T|P1|2 1 2 >, & D x 20 (D
— 5 5 — 27T|P1| (CLQ — Bl,O + \S(Bo,1> -+ J(CQg)) — 27T|P1| 60\9(B071)
1
- Z _ZW’P1’2ﬂk%<02k,2n+l> - 271'|P1|2041O1,0 - Z %(Plcza)Doaoch
k+n=1 lo|=1
W’P1’2 7T‘P1‘2 27T‘P1‘2ﬁk 7T|P1|2
‘/2X — > F(Q) — 5 Bl,l + Z T%(ng’n) — 1 BLO
2k+n=2
dQO—DO— dQO—DO— 7T|P1|2 1
Z Ak+1 ['(2) - Z 9 Bio — 4 2 )
lo|+k=2 lo|=1
lo[>1
27| Py |? ~ ~ 27| Py |? ~
- ‘2 i (Cia— Bia +S(Bog2) + 3(Cop)) — Z M%(B%,H
2k+n=2
27| Py |? ~
- Z _wg(oﬂcﬁnﬁ-l) - Z 27T|P1|2ak;02k—1,2n + 27T|1D1|2OélB1,0
k+n=2 k+n=2
E>1
- Z %(-PICZU)DoakCQ\UH-Qk—I,Qn + Z §R(P1020)D0a031,0'
|o|+k+n=2 lo|=1
lo[>1
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Each of the VX (j € {0,1,2}) can be simplified using the formulas we have for the By, n,

By, and Cy, ,, from (2.14), (3.7), and (3.6), respectively. Hence

2
7rP m 5
vX—o0, V¥= | 1] _Zd%_gzla%(ﬂcgej),
757|P2 3nm 37 =
VX = - - e éR P e de-
5 1096 +16j1 2e; — 1282 1C2e;) ;m
31 <

=1

Expansions of Y5(¢) and Y;(?)

_ T _
3 Z R(Prcae,) + 16d2(1 1) 83?(P1C2(1,1))-

To find the asymptotic expansions of Y5(¢) and Y3(t), we refer back to section 3.1.2. From

that analysis we see that all integrals obtained will have positive powers of r if N = 2. So

the analysis carries over and we may use the results from those sections. In particular,

K-1
Yo(t) =Y Y+ 0)  (t — o0),
j=0
where .
| Po|? C
TO j=1
YVQ[,JI] = 7T|P0|2A17j,2 2 Sj S K—-1
0 otherwise.
And
K—1 . . .
Va(t) =Y (vl + vl v —viht T o) (¢ - 00),
§=0
where

. > R(Pobao)DoCololiron 1< j <K —1
}/371 — |0'|+Tl:]—1

0 otherwise,
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(
il L \+Z< 2%<Pobza)DaBz|g|H,n 2<j<K -1
32 = 7T
0 otherwise,
> —
) > MG (Byakgen) 3<j<K -1
Y373 — !/ 2|o|+2k+n=5-3
0 otherwise,
; —
; 2 _%(PObQsz)Ddak%(C2|a|+2k+2,2n+1) 2<j<K-1
Yz,)[]i —  lo|+k+n=j—2
0 otherwise.
\

Asymptotic expansion of Y (t) as t — oo

We combine results (2.59), (3.61), and (3.62) with the fact that Y'(¢) = Yi(¢) + Ya(t) — Y3(t)

to obtain the expansion as t — oo
K-1
Y(t)=>Y Vit +01t™"),

J=0

where, for j € {0,..., K — 1},

V=Yl v - Y - Y e - v - v g+ vl

J )

The first three coefficients

We assume that K = 3. Since the expansion of Y (¢) is as given in the N > 3 case, but with
N = 2, it follows that the coefficients obtained in section 3.1.2 are valid here with N = 2.

Thus Y(t) = VY + YY1+ V) t72 + O(t3) as t — oo, where

v 3mB? o 2 T e _
j=1 j=1
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Expansions of Z5(t), Z3(t), and Z4(t)

To determine the asymptotics of Zs(t), Z3(t), and Z,(t), we again refer to section 3.1.2. The
analysis in that section yields integrals with non-negative powers of r if N = 2. So the results

from those sections are valid here, and we obtain the following asymptotic expansions.

K—1
Zo(t) = 3 (ZY + ZINtT + O(t7K)  (t — o), (3.63)
=0
where
(
il Z A _%(POCQU)Doak%(32\o|+2k,n) 1 S.] <K-1
22371 — {2|o|+2k+n=j-1
0 otherwise,
)
, > —R(Pocao) Do S(Colp42kont1) 1< j<K -1
22[112 — { lof+ktn=j-1
0 otherwise.
\
Zo(t) = D (Zih + Zsh — Zss + Z{)7 + O(tF) (¢ = o0), (3.64)
§=0
where
~R(Pib2y)DoS(Bajon) 1<j<K—1
Z:L)j]l — ) 2ol4n=j-1
0 otherwise,
‘ > R(Piba)DoS(Copjans1) 1<j<K—1
Z:[f]g — ) lo]+n=j-1
0 otherwise,
; —
, MBbae)Datk Oy 1 opizn 1< j <K —1
Z0L = dlolthtn=j-1
0 otherwise,
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R(Prbao) Do 13 .
meoPﬂlﬂrl,n 2<y <K-1

Z:[){L — J2lo|+2k+n=j—2
0 otherwise.
K-1
Zit)y =Yzt o) (t — o0), (3.65)
=0

where

(4] —2mR(P1Py)S(Agj1) 1<j<K-1
Z4,1 -
0 otherwise.

Remark. We note that for both the Y;(¢) (i € {2,3}) and Z;(t) (i € {2,3,4}), no terms are

contributed to the asymptotic expansions unless K > 2.

Asymptotic expansion of Z(t) as t — oo

We combine the results (2.60), (3.63), (3.64), and (3.65) with the fact that Z(t) = Z;(t) —

Zsy(t) — Z3(t) + Z4(t) to obtain the following expansion as ¢ — 0o:
K—1
Z(t) =Y VAT + 0™,

J=0

where, for j € {0,..., K — 1},

V= 2y 2+ 2 24 2 2B 2 2 2B 7

The first three coefficients

We assume that K = 3. Since the expansion of Z(t) is as given in the N > 3 cases, but with
N = 2, it follows that the coefficients obtained in section 3.1.2 are valid with N = 2. Thus

Z(t) =V + Z8 + VEt2 4+ O(t73), where
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77T§R(P1P0) 2 2 2

z T T b T E
‘/2 = _T — Z Z%(lgej) + g Z%(Plb%j) + g Z%(POCQGJ')'

J=1 J=1 Jj=1

3.2.3 Asymptotic expansion of ||i(t, ) — v(t,-)||3 as t — oo

We proceed as in section 3.1.3. For the fixed 0 < § < 1 there exists n > 0 such that
lat,-) = v(t, I3 = lla(t, ) — v(t,)35+0(e™) = X () + Y () + Z(t) + O(e™™) as t — oc.
We combine the results of the analysis for the case N = 2 to obtain the full asymptotic
expansion of ||a(t,-) — v(t,-)||3. Further, we suppress the O(e~")-term since it is dominated
by the larger O(t~%)-term.

Let K > 1 be an integer as given in the statement of Theorem 2. Then as t — oo

K-1

la(t ) = v(t, )5 = Y Vit +0@™"),

=0

where V; = VjX + VJ.Y + VjZ for each j € {0,..., K —1}. To complete the proof of Theorem
2 for dimension N = 2, we must verify that V, = 0.
For dimension N = 2, let K = 3. Then ||a(t, ) — v(t,-)||3 = Vo + Vit™ ' + Vot 2 + O(t73)

as t — oo, where

2
m P T _
%:O, ‘/1:|—1 _ZdQGJ_§Z§R(PlcQGj)7
57| P 3| B2 TRR(PP) 3w 37 o7 2
= - vy e; P e - e;
Vo=~ T e 128 +16j e, 1282% 1026,) + 7 D Fae

2 2 2
™ = ™ ™ - _
-7 ; R(Fobae,) = 7 ; Rlae,) + 3 ; R(Pibae,) + 5 ; R(Pocs,)

2
3T 3T
27 E d4ej ded
6 = 8

2
R(Prcse,) + 6 — =R(Picaiy))-
-1

da1,1) g

J

This completes the proof of Theorem 2 for dimension N = 2.
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3.2.4 Asymptotic expansion of ||v(t,-)||3 as t — oo

Let us again recall that for the fixed 0 < § < 1, [[p(t, )3 = [[v(t,")|3,+0(e/?) =
Xo(t) + Ya(t) + Zu(t) + O(e7'9*/?). We then combine results (3.53), (3.61), and (3.65) to

obtain the proof of Corollary 1 part 2 and the expansion as t — oo

_ 16 P |*n S 3
It )13 = e V540 5) = P ) + 3 0 + 06,
=0

where, for j € {0,..., K — 1},
0= i)+ 14+ 28

The coeflicients associated with K = 3 for dimension N = 2 are

P 2
=T i ),
P Py|? _
U1:—| 14| W+‘ 02‘ 7TﬂL%(PlPo)W,
. 3|P1|27T |P0|27T %(Plp(])ﬂ'
Uy = — 6~ 4 + 5 )

3.3 The space dimension N = 1 case

3.3.1 Auxiliary lemmas

Lemma 15. For 0 < e <2 andt > 0, define
J(t) == /E r=2e7"" sin?(tr)dr. (3.66)
0
If M € N, then as t — o0,
JE,(t) = gt - gté + oM,
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Proof. Let 0 < e <2 and M € N. We first note that

J(t) = ( /O T / oo) r~2e7 sin®(¢r)dr.

The latter integral is O(e */2) as t — co. The former integral we denote by J_o(t). It is
then routine to verify using the mean value theorem and Lebesgue’s dominated convergence

theorem that for every fixed t > 0

oo 1 o0 oo
—J 5(t) = —/ et cos(2tr)dr — —/ e dr + / rte™ sin(2tr)dr.

The first and third integrals are Fourier cosine and sine identities and are treated using
p. 402 and p. 418 in Chapter 11 of [10], respectively. The second term equals —%Et*1/2.
Therefore, for every t > 0

%j_Q(t) - gt‘ée_t VTt T erf(V3).

Thus there is some constant C' such that for all ¢ > 0

J_o(t) = gt;e_t - \/T%té + gterf(\/i) +C.

As t — 0+, the left hand side tends to zero and the right hand side tends to C. Thus C' = 0,

and as t — o0

J (1) = gtée_t - gté + gterf(\/%) +0(e" 7).

We appeal to p. 352 in Chapter 9 of [10] for the asymptotics of the error function to

obtain as t — oo




=T gté +o@M),

proving the lemma. O]

Lemma 16. For 0 < e <2 andt > 0, define

Hi _,(t) = / r2e sin(try/1 — r2/4) sin(tr)dr.
0

Then as t — oo, Hf _,(t) = 3t+O(t*%). If M € N, the full asymptotic expansion ast — oo

18

s I (677 a1
Hi ,(t)= =t —Clgpt "2 — = _3(C S Elmas
1-2(t) 5t T Z 0,2 + Z 2k:+2n+1\f< 2h+1.2n+1)
n=0 0<k+n<M—1
o = 1
k —k—p—1L —n+3i
Y e S(Caaa) 4 Y — G
0<k+n<M-2 Ak +4dn+6 n=0 dn +2
M 9 o
C nt—n-l-% _ k C nt—k—n-l—%
+22n—1 02 > 2% +2om—1
n=1 1<k4+n<M
Q@ pale 1
k —k—n—i—l _n+l
— (! nl 2 — S(Capr1)t
i Z Ak + 4n +2 M2 * Z 2n + 16( Lant1) i
0<k+n<M—1 n=0
ﬁkz —k—n4+3 _M+1
+ T Copant "2 L OV T2).
T L o)
1<k+n<M

Proof. Let 0 < e < 2. Using integration by parts, Hf _,(t) = Hy(t)—2tH{ ,(t)+Hy(t)+Hs(t),

where H7 ((t) is as given in Lemma 12 and

Hy(t) = —e ‘e~ sin(tey/1 — €2/4) sin(te),
Hy(t) = t/o rld%[r\/ 1—r2/4)e" cos(try/1 — r2/4) sin(tr)dr,

Hj(t) = t/ r~le ™ sin(try/1 — r2/4) sin(tr)dr.
0

We first fix M € N. Then we note that Hi(t) = O(e ") = O(t~M*+1/2) as t — oo.
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Secondly, from Lemma 12, with Q) := M

—2LH o(t) = —2t (Z ~Clognt ™77 + O(t—M—)>

Coant ™3 + O(tM*3) (t — 00).

Mi

n=0

Next, we analyze Hs(t) as follows. Using the mean value theorem and Lebesgue’s domi-

nated convergence theorem, for every ¢ > 0, 4[t7'Hy(t)] = H3'(t) + HP(t) + HS (), where

Hi(t) = — /€ rd%[ 1- 7"2/4]6_" cos(try/1 — r2/4) cos(tr)dr,

/ V1= 12/4—[r\/1T = 72/4e " sin(tr\/1 — r2/4) sin(tr)dr,

HS (t) = /0 c;f“[ 1—r2/4]e™" cos(try/1 — r2/4) cos(tr)dr.

We use the fact that

d 1—7r2/2
— /1 =72/ = ——L° 3.67
dr[ /4 1—1r2/4 ( )
to obtain .
r 2 .
= — ———¢ " cos(try/1 — r2/4) sin(tr)dr
/ e e 4)sinr)
Jo Vit (3.68)

—tr3

cos(try/1 — r2/4) sin(tr)dr.

vt

Into both terms of (3.68) we substitute (2.22) with L := M + 1 and L := M, respectively.

Then
M M-l
¢ k rre _M-3
H2A(t) = Z _O‘kH4,2k-+1<t) + Z 7H4,2k+3(t) +O(™Mz) (t = oo). (3.69)
k=0 k=0

Now into both terms of (3.69) we enter the results from Lemma 13 with Q = Q. :== M —k+1
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and QQ = @ := M — k, respectively. We thus obtain as t — oo

e _3 Q hen_3 A3
HM) = > _7’“6(02“1%175 R Z’CS(OZHWH)I& Fn=3 L O@tM3).

0<k+n<M-1 0<k4+n<M -2

We again use (3.67) to simplify HP(t):
1 € €
HzB<t) - §H1,2(t> - Hl,O(t>‘ (3'70)

Into both terms of (3.70) we insert the results from Lemma 12 with @ := M and Q := M +1,

respectively. Thus as ¢ — oo
B/ 3 1 1 M3
Hy(t) = Z —Caont™ "2 + Z _§C0,2n 2+ 07 2).

Using (3.67), we obtain

¢ 1
Hct:/—e” cos 1 —172/4) cos(tr)dr
£ = [ e costir T ) ostan

1 € 2
- —/ S cos(try/1 —r2/4) cos(tr)dr.
2 Jo 1—1r2/4

(3.71)

Into both terms of (3.71) we substitute (2.34) with L := M + 1 and L := M, respectively.

Soast — o0
M—1

(07 .
Z oy o Z o M2 akpa(t (3.72)

k=0
We use the result from Lemma 12 to simplify both terms of (3.72), with Q@ = Qy := M —k+1

and QQ = Q := M — k, respectively. Thus as t — oo

« a . f
Hzc(t) - Z ch%’%t_k_n_% + Z __k02k+2,2nt_k_n_% + O(t_M_%).

4
0<k+n<M 0<k+n<M—1

We now combine the results for Hi'(t), HZ(t), and HS(t) to obtain the expansion as
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t — 00

d Qf k—m— (077 —k—mp—5
dt[ “THy(t)] = Z —70(021%1 ont1)t L Z Z%(C2k+3,2n+l)t bn=3
0<k+n<M—1 0<k-+n<M—2
~— 1 —n—§ —n—— —k— n——
+ Z ZCZ,2nt 2 + Z ——Co onl Z _C2k onl
n=0 0<k+n<M

o} 3 a3
+ Z _IkCQkJrQ’Znt k 2 +O(t M 2).

0<k+n<M—-1

We integrate both sides with respect to ¢ and then multiply both sides by ¢ to obtain the

expansion as t — 00

O —k—n+1
Hs(t) = Cqt —(C na1)t 2
2(%) 1t + Z 2k+2n—|—1\y< 2k+1,2n+1)
0<k+n<M—-1
N M-1
k 1 o1
- C n C nt nta
+ Z ik 1+ 4n 16 S(Coptsont1)t 2 4 Z n 2,2
0<k+n<M—2 n=0
M
-Coaat~ ntg —C LR
2 2 02 > 2% +2n—1
n=0 0<k+n<M
Qg —k—n+1 —M+1
— nt 2 4+ Ot z),
> Ak 4 4n + 2 222 O )
0<k+n<M—-1

where (] is a constant yet to be determined.
Now we determine the asymptotic expansion of Hs(t) similarly to Hy(t). We use the
mean value theorem and Lebesgue’s dominated convergence theorem to determine that for

every t > 0, £[t Hy(t)] = —HS,(t) + Hj'(t) — Hf (t), where

= /06 V1 = r2/4e7 cos(try/1 — 12 /4) cos(tr)dr. (3.73)

We use Lemma 13 with () := M + 1 to obtain the expansion

M—-1

—Hg, (1) =)

n=0

Cl 2n+1 ni% + O(tiMig) (t — OO)

l\DI»—
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Similarly, we use Lemma 12 with ) := M + 1 to obtain the expansion
—Hj (1) Z__Cﬂ2n T O(MoR) (t = 00).
We analyze Hj'(t) by substituting (2.46) into (3.73) with L := M + 1 to obtain
M
3
= BeHsp(t) + Ot M72)  (t — o0).
k=0
We now use the result of Lemma 12 with () = Q) := M — k + 1 to obtain
= Poyuatrtpouid
3 5 L2kon .

0<k+n<M

Now we combine the results for —H5,(t), H4'\(t), and —Hj (t) to obtain the expansion

ast — oo

d gy |

dt[ “THy(t)]= 53 S(Chrant1)t 14 Z _OQk 2nt_k_n“+z——00 gnt_”_’—i—O(t M“)
n=0 0<k‘+n<M

We integrate both sides with respect to ¢ and then multiply both sides by ¢ to obtain the

expansion as t — 00

B

2k +2n —1

=0

0219,211

S(Crant1)t” "ty oy Z

0<k+n<M

Moo
+Z()2n—

. Coont "% + Ot~ M*2),

where () is a constant yet to be determined.
We combine the asymptotic expansions we found for Hy(t), —2tHf o(t), Ha(t), and H3(t)
with the fact that Hi o(t) = Hi(t) — 2tHjo(t) + Ha(t) + H3(t) to determine that

tLHL (1) =C+O0(t73)  (t— o),
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where C = C + (O,
To determine the constant C, consider J¢,(t) as given in (3.66). Since [sin®(tr) —

sin(try/T — r2/4) sin(tr)|< tr|1 — /1 — 72/4|< &2 for 0 < 7 < 2, we obtain
-1y 7e € 1 ‘ —tr? 1 —1 -1
t (1) — Hi 5(t)|< 1/ e dr < gl“(l)t =0t ) —0 (t —o00). (3.74)
0
Furthermore,

I () — HE (1) = g —C+O(t3) > g O (t— o). (3.75)
Considering (3.74) and (3.75) together gives us the value C' = %

Finally we arrive at the asymptotic expansion of Hi ,(t) as t — oo:

M—-1
e o1 (672 —k—mal
H () ==t —Cyopt™ "2 —(C nt1)t 3
1—2(t) 5 + E 0,2 + E 2k—|—2n—|—1\9< 2%+1,2n+1)
n=0 0<k+n<M-1

Qg o~ k—n—1 —ntd
B — Tl " — C a2
+ Z 4k‘+4n—|—6\g( okt3.2n+1)1 2 HZO n 2.2

0<k+n<M—-2

M
2 5
Cognt ™+ 7 Ot
+22n—1 02 > 2% +2n—1 M
n=1 1<k4+n<M
a = 1
k —k—n+3 —n41
— Corgont P4y — S(Chgnir)t "3
2 Trang el Z 2n 10 (CLantt)
0<k+n<M—1 =0

+ Z 2k+2 2k,2 : + O( 2)
1<k+n<M

Lemma 17. For 0 < e <2 andt > 0, define
Hy (t) = / rte™ sin(tr\/1 — 12/4) cos(tr)dr.
0
Then H5_,(t) = 3+O0(t™/?) ast — oo. If M € N, the full asymptotic expansion of HS_,(t)
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ast — oo 18

M—2
€ n—i B —k—n+1
H t C )t 2 = Copont 3
3. n + o 1,2 +1) + Z YD —] 2k,2
n=0 1<k+n<M—1

M-1 1
+;2 —

hum

100,2nt7n+% + O<th+%)

Proof. Let 0 < € < 2 and t > 0. Using the mean value theorem and Lebesgue’s dominated

dH§ 4 (t) = —Hg,(t) + Hi(t) — Hio(t), where

convergence theorem, 7

— /06 \/me_”’2 cos(tr/1 —r2/4) cos(tr)dr, (3.76)

and Hj,(t) and Hfy(t) are as given in lemmas 13 and 12, respectively.

Fix M € N. Then by the result of Lemma 13 with @) := M

i

S(Chons )2+ 0 M72) (1 — 00).

DN | —

_Hg,l(t) =

i
o

Similarly, by the result of Lemma 12 with ) := M
M-l
—Hio(t) = Z —=Coant™ "2+ Ot M 2) (t — 0).
7 n=0 2

We begin the analysis of Hy(t) by substituting (2.46) into (3.76) with L := M. Then

M—

,_.

BHs o (t) +O(t™M72) (1 — o0). (3.77)
k=0

We substitute the result from Lemma 12 into (3.77) with ) := M —k to obtain the expansion

)= > %c%%t s L 0@ M7r) (E— o0).

0<k+n<M—-1

We now combine the expansions of —Hg,(t), Hi(t), and —Hj (t) with the fact that
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LHS _\(t) = —Hs,(t) + Hi(t) — H{y(t) to obtain the expansion as t — 0o

d =1 3
€ n—§ k —k—n—1
H3 W 5 I(Cron1)t "2 + Z ?CQk,Znt k=n-3
n=0 1<k4+n<M-1
M1
+ Y —=Coaut "2 40O M2

1
Hs () =C+ Z - %(Cl,2n+1)t_n_% + Z _Llcgmnt_k_%%

n=0 1<k+4n<M—1 2k +2n —

M—-1 1
+;2 -

1(1072”15*”*% + Ot M),

where C' is a constant yet to be determined.
To determine the constant C, we recall the definition of I5(t) from (2.65). In particular,

we found that for the fixed M € N
@) 'L(t) = T+ 0™ (t— o). (3.78)

We first use the fact that |sin(tr) cos(tr) —sin(try/1 — r2/4) cos(tr)|< tr|l — /1 — 1r2/4|< %

for 0 < r < 2 to obtain
@) (1) — HS (1)< %/0 e dr < ér(g)t—i L0 0 (t—o0). (3.79)
We then recall (3.78) and that H§_,(t) = C' + O(t7'/?) as t — oo, and obtain
(2) " T(t) — HY_,(t) = % —CHO(t3) > % O (t— o). (3.80)

We finally consider (3.79) and (3.80) together to see C' = 7, which completes the proof. [
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Lemma 18. For 0 < e <2 andt > 0, define

Hj_(t) == / rle cos(tr/1 —r2/4) sin(tr)dr.
0

Then Hi ,(t) = T4+0(tY?) ast — oo. If M € N, the full asymptotic expansion of Hi (t)

as t — oo is given by

M-—2
€ n—i Bk —k—n+1i
H t C )t 2 PR Copont 5
4, 4 + o 1,2 +1) + Z Y] 2k,2
n=0 1<k+n<M 1

+Z—

rl>l>1

C() Qnt_ +2 + O(t_M+ )

Proof. Let 0 < € < 2 and t > 0. Using the mean value theorem and Lebesgue’s dominated

convergence theorem, 4 Hf _(t) = —H§,(t) + Hi(t) + Hso(t), where

' de
- /OE V1 =72 /4e7" sin(tr/1 — r2/4) sin(tr)dr (3.81)

and H,(t) and Hj(t) are as given in lemmas 13 and 12, respectively.

Fix M € N. Then by the result of Lemma 13 with @) := M

S

-2

—Hj,(t) = —S(Chams )2 + Ot M 3) (t — 00).

i
()
l\DI»—t

Similarly, by the result of Lemma 12 with Q) := M
M1y
Hj (1) Z Coznf I 0>tV (t — 00).
We begin the analysis of Hy(t) by substituting (2.46) into (3.81) with L := M. Then
M-

Z —BrHT o, (t) + Ot~ M= ) (t — 00). (3.82)

)_l
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We substitute the result from Lemma 12 into (3.82) with @) := M —k to obtain the expansion

Ht)= Y —ZCupat™™ 240072 (t— o0).

0<k+n<M -1

We now combine the expansions of —Hj,(t), H(t), and Hj,(t) with the fact that

LHS _((t) = —Hg,(t) + Hi(t) + Hg,(t) to obtain the expansion as ¢ — oo

d H¢ — — 1 (O —n—3 ﬁkc —k—n—1
ai 1) = —5\9( Lons)t "2 + Z 5 2%,2nt 2
n=0 1<k4+n<M-1
M1

- Z L Coant ™™ 4 + Ot M1).

Integrating both sides with respect to ¢, we obtain

M—2
€ n—= ﬁk —k—n+1i
Hy (t)=C+ Z o S(Crans)t™" 72 + Z mc%,znt 2
n=0 1<k+ <M 1
+Z— -Coat~ s 4Ot M),
where C' = T is determined in the same way as in the proof of Lemma 17. In particular, we
compare HZ,_1(t) to (2t)~'I5(t), with I5(t) as given in (2.65). O

3.3.2 Intermediate computations

We are now in a position to prove the dimension N = 1 case of Theorem 2. The proof will
be carried out over the next few sections. We assume that K € N and the initial data of

(1.1) satisfy ug € H*(R) N LY?K(R) and u; € L*(R) N LYK (R).

Expansion of X,(t)
Fort >0

5
Xo(t) = |P1|2/_6 _t52smf(t£>d§— 2| P, ]2/ r=2e7" sin?(tr)dr.
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By Lemma 15 with M := K

Xo(t) = | P’ — VA P ts + Ot 5+3)

K-1
= 7|+ Y XPT o) (E— 0), (3.83)
=0
where
X2,1 =
0 otherwise.

Expansion of X;(t)

We may follow the work done in expanding X3(¢) in section 3.1.2 with dimension N = 1.

We obtain X3(t) = X4'(t) + X2(t) + O(t~K+1/2) where

5 — 2
XA®) = 4%(13100)/ - L2 sin(try/1 —r2/4) sin( tr - (3.84)
0 1—1r2/4
K-1 5 .
_ 2 1—1r2/4
= 24%(]31020)/ p2o=2etr sin(tr r/ )Sm@r)dr. (3.85)
— 0 1—1r2/4

Into (3.84) we substitute (2.34) with L := K. Then

K-—1
X (t) = AIPPH] 5(t)+ Y 4P PogH] 5 5(t) + O(t7FF3). (3.86)

k=1

To the first term of (3.86) we apply Lemma 16 with M := K. We then treat the sum in
(3.86) by using Lemma 12 with Q = Qy := K — k. Thus as t — oo
X (t) = 2| PP+ (XY + X + XF + X+ XL+ X
=0 (3.87)
+X[J] —I—X[j] _i_X:gg)_i_X:E’J]lo)t ]+2 —i—O(t K+2)
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where

X?Ej]l = —4|P|*Cy;,

) 4| P 2o
Xé{]Q _ Z m%((jzk-s-lgn—&-l)a

k+n=j 2‘] +1
24 .
j ) _QQle%(@Hs,an) 1<j<K-1
ngg)) k+n=j—1
0 otherwise,
. 2|P1|2
Xé{ll 2] + 102,2]'7
4 8P |2
4|P1|26Yk
X?[’J]ﬁ - Z 2k,2m
k+n=j+1 2j+1
1 2‘P1‘2Oék
X3[)J]7 - Z ————Cory2.2n,
vl 27 +1
. 4‘P1‘2
ngjé = _2] + 1%(01,2j+1),
/ 4| PyJ? By
Xi% - Z —————Co 2,
k4+n=j+1 2'] +1
> _2|P1|204k02k—2,2n 1<j<K-1
X:L,],]lo = kigﬁ
0 otherwise.

To analyze XZ2(t), we substitute (2.34) into (3.85) with L = L, := K — 0. Hence

K-1L,-1

X2(1) =" AR(Preae) o HY 500 5(1) + O(1752)

o=1 k=0

(t — 0).

We apply Lemma 12 with Q) = @, := K — 0 — k and simplify to obtain

K-—1
XP(t) =Y XJ 7t oRr)

J=0
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where

> 2R(Picao)okCorpon-2on 1<j<K—1
0 otherwise.
Since X3(t) = X4(t) + X2(t) + Ot~ 5+1/2), we combine (3.87) and (3.88) to obtain the
asymptotic expansion as t — 00

K-1
Xs(t) = 2n| PPt + (X5 + Xgly + X3 + X33 + X5k + X5 (3.89)
Jj=0 '

X0+ )l X o),
Asymptotic expansion of X (t) as t — oo

We combine results (2.77), (3.83), and (3.89) for X;(t), Xa(t), and X3(t), respectively, with

the fact that X (t) = X (t) + Xa(t) — X;5(t) to obtain the asymptotic expansion

K—

X(t) =Y V&5t o ) (t— o0),

J

[y

=

where, for j € {0,..., K — 1},
V¥ = XYL+ XP+ X5 - X - XY= XP— X5 - X - X — XY - X - X - X0 — X3

The first three coefficients

Let us assume that K = 3. It can then be shown that X (t) = ViXt'/2 + V;X¢ =12 £ VX¢73/2 4

O(t™5/?) as t — 0o, where

PyJ? d _
vX—o, vy = WIRE L VTG ),

512 2
VX . 7621\/E‘P1|2 + \/7_Td2 . 49\/7?%(?1C2) + ﬁd4 . ﬁ?R(Plc4)

2 1048576 16 1024 4 2
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We note that these are the values we obtain for the VjX ( € {0,1,2}) if N =1 in section

3.1.2.

Expansions of Y5(¢) and Y;(t)

To determine the asymptotic expansions of Y5(¢) and Y3(t), we may refer to the analysis in

section 3.1.2 with V = 1. We observe that none of the integrals obtained will have negative

powers of . The analysis carries over to this case and hence

where

and

where

K-1
Ya(t) = D Yt 7t 40t K4) (£ o0),
j=0
VElR2 s
I R
0 otherwise,
K-1
i i 1 1
Ya(t) = Y (VA = Vit it 1 oK) (t— o0),
j=0

S 2R(Pobay)Caron 1<j< K -—1
0 otherwise,

i > ‘ —R(Pobos ) xS (Coptorriont1) 2<j<K-—1
3/3732 = { otkin=j-2

0 otherwise,
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Asymptotic expansion of Y (¢) as t — oo
Since Y (t) = Yi(t) + Ya(t) — Y3(t) we combine results (2.81), (3.90), and (3.91) to obtain the
asymptotic expansion

K—

V()= VTt o) (1 ),

J

[y

J=0

where, for j € {0,..., K — 1},
VY — Y[j] Y[j] Y[j] . YU] Y[j]
j =Yt Y+ Yo 31t Y32

The first three coeflicients

Let us assume K = 3. It can then be shown that Y (t) = V) t'/24- VY t =124 V) 173124 O(t75/2)

as t — oo, where

VY =0, VY =0,

VY 3Ly/| Pyl? n Vifs  VTR(Pobo)
2 1024 4 2 ‘

The coefficients V" (j € {0,1,2}) match those from section 3.1.2 with N = 1.

Expansion of Zy(t)

Since K € N, we may refer to the work done in expanding Z»(t) in section 3.1.2 with NV = 1.

From (3.34), we have Zy(t) = Z3\(t) + Z2(t) + O(t~5+1/2) as t — oo, where

1—r2/4
B = J 9o 1 _gp2Sin(try/1 —r2/4) cos(tr)
ZQ@)::§:4maf5@g)o r = dr (3.93)
o=1
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Into (3.92) we substitute (2.34) with L := K. Hence

K-1
Z3(t) = AR(P P HS (1) + Y 4R(PLP) o H 1 () + O(t75F2)  (t — 00).  (3.94)
k=1
Into the first term of (3.94) we substitute the expansion of H3 _,(t) obtained in Lemma 17
with M := K. We also apply Lemma 13 with Q = Q := K — k to the sum in (3.94). Hence

ast — oo

N

ZMt) = TR(PLPy) + (Zg]1 + 25+ 20+ Z0)Its o E ), (3.95)

J

Il
=)

where

AR(P, P, .
Zm . - 2(]'_110)%(01,%—1) 1< J < K-1
21 =
0 otherwise,
\
(
. kZ 45;—1)?)5190%2 1<j<K-1
Zgp = =
\ 0 otherwise,
(
AR(Py By) , B
Zz{j;,): —2]10 1<j<K-1
0 otherwise,
)
> —2R(PLP) o 3(Cop—rong1) 2<j<K—1
2= i
0 otherwise.

To analyze Z2(t) we substitute (2.34) into (3.93) with L = L, := K — . Hence
K—1Ly—1

=> Z AR(Pocao )k H gy op 1 () + O(E7F3) (1 = o0).

o=1
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We then apply Lemma 13 with ) = Q. := K — 0 — k and simplify to obtain
2Bty =Y Z s p oK) (t — o0), (3.96)

where
> 2R(Pocae) ik S(Copyon-12n41) 2<j < K —1
0 otherwise.

Since Zy(t) = Z3(t) + ZE(t) + O(t~%+1/2), we combine (3.95) and (3.96) to obtain the

asymptotic expansion as t — 00

=

Zo(t) = iR(PLBy) + > (Z3h + 29y + Z9y + Z5, + ZVL )73 L o K+z).  (3.97)

J

Il
o

Expansion of Z5(t)

To analyze Z3(t), we refer to the expansion of Z3(t) in section 3.1.2 with N = 1. Then

Z3(t) = Z3Mt) + ZB(t) — Z§ (t) + Ot~ 5+1/2) as t — oo, where

Z3(t) = AR(Pibo) HY _y (t), (3.98)
K—-1 B

ZP(t) =Y AR(Pibo)H sy (1), (3.99)
o=1
K-1 5 . — .2 .

ZE() =S 2R(Pibay) / e U 11 L é jiSIH(tr)dr. (3.100)
o=0 0 -r

We obtain the asymptotic expansion of Z#(t) by applying Lemma 18 to (3.98) with
M = K. Thus

=

ZR) = aR(PLR) + Y (Z0 + 20y + 207t (t— o0), (3.101)

J

Il
o
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where

p

BAS(Cra) 1<j<K—1

0 otherwise,

. > —4%(;1?(1))& Cokon 1<j<K -1
32 = 9

\ 0 otherwise,
.
_AR(P1 Py) ; _
) _ 2]10 1<j<K-1
33 =
0 otherwise.

Ve

To obtain the expansion of ZZ(t), we apply Lemma 13 to (3.99) with Q = Q, := K — 0.

Therefore
K—1

i

Jj=0

I\J\H

+O( R (t = 00),

where

> 2R(Pibyy)S(Cog1onsr) 2<j<K—1

i o+n=j5—1
Zz,[fll = o>1

0 otherwise.

(3.102)

We finally note that (3.100) is the one-dimensional analog of (3.37) from section 3.1.2.

Since the powers of r are non-negative, we obtain a similar asymptotic expansion, but with

N = 1. Thus

7S (t) Z ZITE O RYE) (= o0),

7=0
where

S R(Piba)arxCopionon 1<j<K-—1
Z£]5 o+k+n=j—1

0 otherwise.

(3.103)

Since Zs(t) = Z{(t) + ZB(t) — Z§(t) + O(t~%+1/2), we combine (3.101), (3.102), and
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(3.103) to obtain the expansion as t — co

=

Zs(t) = aR(PLBy) + > (Z5 + 20y + 7 + 2V, — 2L yii+s, (3.104)

<
Il
o

Expansion of Z,(t)

From the definition of Z4(t), we see that
Zy(t) = 2R(PLRy) - t 1 I5(t),
where I3(t) is as given in (2.65) with ¢ = §. Therefore by Lemma 8,
Zu(t) = TR(PLPy) + Ot KF2) (¢t — o0). (3.105)

Asymptotic expansion of Z(t) as t — oo

We combine results (2.89), (3.97), (3.104), and (3.105) for Z,(t), Zs(t), Zs(t), and Z,(t),
respectively, with the fact that Z(t) = Z;(t) — Za(t) — Z3(t) + Z4(t) to obtain the asymptotic
expansion

K—1

Z(t) =Y VAT 0" (t— ),

J=0

where, for j € {0,..., K — 1},

Vi =2 - 2y 2 2l 2l 2 A A 2l 2l 2

J

The first three coefficients

Let us assume K = 3. It can then be shown that Z(t) = VZt/24-VZt 124 VE13/24.0(t75/2)

as t — oo, where
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_55VAR(PLR)  VAR(l) N 3vVTR(Pocs) N 5/TR(P1by)

Vs =
2 2048 4 32 32 ’

The V7 (j € {0,1,2}) agree with the coefficients obtained in section 3.1.2 with N = 1.

3.3.3 Asymptotic expansion of ||i(t, ) — v(t,-)||3 as t — oo

For the fixed 0 < 6 < 1, recall that for some n > 0 ||a(t,-) — v(t,)|3 = |a(t,-) —
v(t,)|I35+0(e™™) = X(t)+Y (t)+ Z(t) +O(e™™) as t — oo. We now combine the results we
have for dimension N = 1 to obtain the full asymptotic expansion of ||a(t,-) — v(t,-)||3. The
O(e™)-term will hereafter be suppressed since it is dominated by the larger O(t=%+1/2).
term.

Let K > 1 be an integer as given in the statement of Theorem 2. Then as t — oo

K-1

la(t, ) = v(t, )5 =Y Vit ™ +0™"),
=0
where V; = V}X + V}Y + VjZ for each j € {0,..., K — 1}. To complete the proof of Theorem
2 for dimension N = 1, we must verify that V5 = 0.
Let K = 3. Then |[a(t,-) — v(t,-)||2 = Vot'/2 + Vit™2 + Vot =32 + O(t7°/%) as t — o0,

where V; = V¥ + VY + V7 for each j € {0,..., K — 1}.

37| P2 d _
Vo =0, Vi = \/5%1‘21‘ +\/§ 2—\/7_1%(P1C2),
V= 76217 |P* | 31T Rl 55VaR(PLR) N Vdy  49y/TR(Picy) N VT fo
2 1048576 1024 2048 16 1024 4
\/E?R(Polb) \/7_T§R(l2> 3\/E§R<P002) 5\/%?]?(P1b2) \/7_Td4 \/7_T§R(P104)
B 2 IR 32 + 32 T T 2 '

Since Vg = 0, the proof of Theorem 2 for dimension N = 1 is complete. Since all dimension

N > 1 cases have been verified, here concludes the proof of Theorem 2.
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3.3.4 Asymptotic expansion of ||v(t,-)||3 as t — oo

Let us again recall that for the fixed 0 < § < 1, |lv(¢,-)]|3 = ||1/(t,~)||§75+0(e_t52/2) =
Xo(t) + Ya(t) + Zu(t) + O(e"*/?). We then combine results (3.83), (3.90), and (3.105) to
obtain the proof of Corollary 1 part 3 and the expansion as t — oo

K—1

52 — .
ot )3 = vt 35+0(e™ %) = 7| PP+ aR(PLPy) + > Ut 772 4+ O(t75+2),

J=0

where, for j € {0,..., K — 1},
0y = x5+ ¥

The coeflicients associated with K = 3 for dimension N = 1 are

7| Po|?
Up = —/7| P, Ulz—\/_|2°|, U, = 0.

This completes the proof of all three parts of Corollary 1. Furthermore, we have completed

the proofs of all three main results.
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Chapter 4

Examples

In this chapter we consider examples of (1.1) with different initial conditions and use Math-
ematica to plot the first few terms of the expansion of the squared L?-norms of the solution

against the actual values of the norms. The examples of initial conditions we consider are
1. up(z) =0 and uy (z) = e~ 1#°/2,
2. UO(I) = 67‘x|2/2 and UI(J}) = 07

3. Uo(l’) = Ul(l’) =Zy...- xN67|m|2/2.

4.1 uy(z) =0 and w(z) = e 112

This first example simplifies the problem significantly. We first note that the Fourier trans-
forms of the initial conditions are 1g(&) = 0 and 4, (€) = e 1€*/2. We appeal to (1.10) for the

solution to (1.9), which is the solution to (1.1) in the Fourier space.

a(t, &) = 01 (E)h(t, &) = 7%Sin(t|§| 1—[€)2/4)
u(t,§) = wm(§h(t, ) = e AN
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and, since Py = (2m) ™2 [L v uo(z)dz = 0 and P, = (27)" /2 [ox wi(x)dz = 1, the asymp-

totic profile v(¢,&) found by Ikehata in [4] is

sin(t|€])
R

v(t,§) =

To illustrate the three different solutions depending on space dimension, we examine
asymptotic behavior in dimensions N = 1,2,3. We note that u; € LY2E(RY) for any
N, K € N. Therefore we could find arbitrarily many terms in the expansions of ||u(,-)||3.
However, we will content ourselves with finding the terms associated with K = 3, as we

studied earlier in this thesis.

4.1.1 Dimension N =1

The computation of terms of the expansion of ||u(t, -)||3 associated with K = 3 can be found

in section 2.3.3. Therefore the asymptotic expansion of ||u(t,-)||3 as t — oo is given by

fu(t. I3 =t — vAth - VT3 VTt o)

Given in Figure 4.1 are two images. The image on the right compares the asymptotic
expansion of [[u(t,-)||2 (without the error term of order O(t=°/2)) with the actual values.
Note the scale as even for relatively small values of ¢, the approximation is very good. The
image on the left is there to provide the general shape of the graph of the actual values of
lut, -)3-

Next we consider the asymptotic expansion of ||i(t, ) — v(t,-)||3 as t — oo. The compu-
tation of the terms of the expansion can be found in section 3.3.3. Thus as t — oo,

3\/Et_% N 32709/7

3 5
=3 o@d.
512 oassre | - T o)

Indeed the solution u(t, £) of (1.1) in the Fourier space and its asymptotic profile v(t, ) tend
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— Actual values

— Asymplotic expansion — Actual values

300 -

54,7581
250¢

54,7581 F
200 54.7580
150€ 54,7580 F

3475791
100+

34,7579 F

t 199999 199999 200000 20.0000 20.0000

20 40 60 80 100

Figure 4.1: Graph of |lu(t,-)||3 (left), and plot comparing ||u(t,-)||3 to its asymptotic expansion
(right)

toward one another in norm. As stated in Theorem 2, we will see this rate of convergence
increase when the space dimension is larger. Figure 4.2 compares the asymptotic expansion

we derived with the actual values of ||a(t,-) — v(t,-)||3.

— Actual values —— Asymplotic expansion — Actual values

0001100 ¢

0002510 0.001099

0001098 |

0.0020¢ 0.001097 t

0.001096 F

0.0015p 0001095 |

L L L I L o 1 1 1 1
40 60 80 100 992 Q9.4 99.6 998 100.0

Figure 4.2: Graph of ||a(t,-) —v(t,-)||3 (left), and plot comparing ||@(t,-) —v(t, )| to its asymptotic
expansion (right)

4.1.2 Dimension N = 2

In space dimension N = 2, we determined that growth of the norms ||u(,-)||? would be on
the order of In(t) so long as Py = [g, ug(2)dz # 0. The asymptotic expansion of [|u(t,-)||3
as t — oo with K = 3 is given in section 2.2.3:

ol o

5
Ju(t )l = 5 n(t) + S+ wn(2) = 47 =

-2 -3
5 3 32t +O(t™7).
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Figure 4.3 compares the asymptotic expansion obtained for |Ju(t,-)||3 with the actual
values. We note the logarithmic growth of the norms of the solutions u(t¢, x) as discovered

from the analysis.

— Actual values

— Asymplotic expansion — Actual values
ash 9.83990 1
90t 9.83985 [
8S5[

9.83980 [

8OL
75F 9.83975[
70

L. 1 . . 1 1 L

y ' ; y ' y t 74992 74994 74996 T4998  T5.000

Figure 4.3: Graph of |lu(t,-)||3 (left), and plot comparing |ju(t,-)||3 to its asymptotic expansion
(right)

The terms of the asymptotic expansion of ||a(t,-) — v(t,-)||3 are given in section 3.2.3.
Thus as t = oo
T 235m

a(t, ) —v(t, )5 = =t + ——t 2+ 0@ ).

We observe the rate of convergence in norm is faster than in the one-dimensional case. Figure

4.4 exhibits the similarity between the expansion and actual values.

— Actual values

— Asymplotic expansion — Actual values

00041 0.0006874 ¢

00006872
0003

0.0006870
002 00006868 |
Q0o1L 00006866 ) . ) . ) )

t 7492 7494 T4D6 7498 75.00

10 20 30 40 50 60 70

Figure 4.4: Graph of ||[a(t,-) —v(t,-)||3 (left), and plot comparing ||@(t,-) — v (¢, -)||3 to its asymptotic
expansion (right)

120



4.1.3 Dimension N >3

The cases N > 3 all have solutions whose L2-norms decay over time. In the analysis we

t=N/2+1 We just consider the

determined that the decay rate ||u(t,)||3 is on the order of
problem (1.1) in R3, since the analysis of the other cases have similar results. We found the
terms of the asymptotic expansion of |lu(t,-)||3 corresponding to K = 3 in section 2.1.3. We

have the expansion as t — oo

3Wﬁt_% N 15my/7

_5 _7
3 ol 72 +0(t2).

lut, )13 = wv/mt 2 —

Figure 4.5 illustrates the similarity between the first few terms of the asymptotic expan-

sion obtained for ||u(t,-)||3 and the actual values.

— Asymptotic expansion — Actual values

035}
0301
025}

0201

1 1 1 1 L
400 600 800 000

Figure 4.5: Graph of |lu(t,-)||3 compared to its asymptotic expansion

The terms of the asymptotic expansion of ||a(t,-) — v(t,-)||3 are given in section 3.1.3.
The diffusion-type phenomenon mentioned in the Introduction is evident in the cases N > 3,
since the decay rate of ||a(t, ) — v(t,-)||3 is faster than that of ||u(t,-)||3 alone. We have the
asymptotic expansion as t — 00

157‘('\/%757% N 80247m+/m

_5 _T
512 Toassre | o O

lat, ) — v(t, )3 =

Once again in Figure 4.6 we compare the asymptotic expansion we obtained to the actual

values and note the similarities.
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— Asymptotic expansion — Actual values

0.00005 F
0.00004 F
0.00003 ¢

0.00002 t

0.00001

400 600 800 1000

Figure 4.6: Graph of ||(t,-) — v(t,-)||3 compared to its asymptotic expansion

4.2 w(z)=e 2 and w(z) = 0

For the second example we interchange the initial data. This simple change yields very
different results when compared to the last example. The Fourier transforms of the initial
conditions are ug(€) = e /2 and u,(€) = 0. The solution of (1.9) (and thus the solution of

(1.1) in the Fourier space) is given by (1.10):

ﬂ(tv 5) = |§|2ﬂ0<§) + aO(f)ath(t7§>
_ (COSWW) . l€lsintley T TEF7A |s|2/4>) |

2¢/1 = [¢]?/4

Since Py =1 and P, = 0, the asymptotic profile found by Ikehata in [4] is simply

tle]?

v(t,€) =5 cos(tle]).

We illustrate the asymptotic behavior in space dimensions N = 1,2, 3 as in the previous
example. Since ug € LYK(RY) for any N, K € N, we may find as many terms in the

expansions as desired. We will look at the expansions for K = 3.
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4.2.1 Dimension N =1

The terms of the expansion of |Ju(t,-)||3 may be computed from section 2.3.3. Hence as
t — o0
NV §+O(t_g).

Ju(t, )Il5 = S35t

Figure 4.7 illustrates the decay of the solution in the L?(R)-norm, as well as the similarity
between the actual values of [|u(t,-)||3 compared to the first few terms of its asymptotic

expansion.

— Actual values — Asymplotic expansion — Actual values
QOBR33 |
008832 L
00BE3] |

0.08830

t 99.92 99.94 99.96 99.98  100.00

Figure 4.7: Graph of |lu(t,-)||3 (left), and plot comparing ||u(t,-)||3 to its asymptotic expansion
(right)

Next in Figure 4.8, we compare the actual values of ||a(t,-) — v(t,-)||3 to that of the first

terms of its asymptotic expansion
127
it ) — vt = 2V L 0h) (¢ o).

The term in this expansion may be computed from section 3.3.3.
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— Actual values

— Asymplotic expansion — Actual values
0.0002230F
0.00201 0.0002225|
ooo1st 0.0002220
0.0002215}
0.0010[ 0.0002210}
0.0002205
00005 0.0002200} . . .
a0 60 R0 oo " 992 994 996 998 1000

Figure 4.8: Graph of ||a(t,-) —v(t,-)||3 (left), and plot comparing ||@(t,-) —v(t, )| to its asymptotic
expansion (right)

4.2.2 Dimension N = 2

We appeal to sections 2.2.3 and 3.2.3, respectively, for the asymptotic expansions of |Ju(t, -)||3

and [|a(t,-) — v(t,-)|?. Hence as t — oo

lu(t, )2 =S¢ = 22 4 o)

2 4
19
it ) = vt = 25t + 0.

Figures 4.9 and 4.10 show the relationship between the actual values of ||u(t,-)||3 and

|la(t,-) — v(t,-)||3 compared with the first terms of their asymptotic expansions.

— Actual values

— Asymplotic expansion — Actual values
0.a2[ 0020620 |
ool 0020615}
oosl 0.020610 |
0061 0.020605 |
o04b 0.020600 |
t ?4:92 ?4:94 ?4196 ?-’-1195 '.I‘SI_UU

Figure 4.9: Graph of |lu(t,-)||3 (left), and plot comparing ||u(t,-)||3 to its asymptotic expansion
(right)
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— Actual values

— Asymplotic expansion — Actual values
0.000190
0004
0.000185
0.003 [
0.000180 [
0002}
0.000175
00011 0.000170 |
: . . : : t
t 71 72 73 74 75

200 30 40 50 60 70
Figure 4.10: Graph of ||a(t,-)—v(t,-)||3 (left), and plot comparing ||4(t, ) —v(t, -)||3 to its asymptotic

expansion (right)

4.2.3 Dimension N >3

The asymptotic expansions of ||u(t,-)||3 and ||a(t, -) — v(t,-)||3 are given in sections 2.1.3 and

3.1.3, respectively. Ast — oo

Jut. )13 = TV - TV 4 o)

R 537/ _s 7
la(t,-) —v(t, )3 :10715 2+ 0(t2).

The figures 4.11 and 4.12 illustrate the closeness of the graphs of |lu(t,-)||3 and ||a(t, ) —

v(t,-)||3 to the first terms of their asymptotic expansions.

— Asymptotic expansion — Actual values

0.0008 -
0.0006
0.0004 -

0.0002 +

t

400 600 BOO 1000

Figure 4.11: Graph of ||u(t,-)||3 compared to its asymptotic expansion
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— Asymptotic expansion — Actual values

25% 1079}
2.x107%}
15x 107}
1.x 1079}

5.x 1077}

400 600 200 1000

Figure 4.12: Graph of ||a(t,-) — v(t,-)||3 compared to its asymptotic expansion

4.3 wy(z)=u(x)=x1-... TN o~ l?/2

In this example we use the same function for both initial conditions. These initial data
yield interesting results since they are non-zero, yet have zero integral on RY. The Fourier
transforms are 4o(€) = 61(€) = (—=i)Néy - ... - Ey e /2. The solution of (1.1) in the Fourier

space is given by (1.10):

8(t,€) = (in(6) + |EP0(E)A(t. ) + Go(€)4h(1.€)
Ve gy <s1n<t|§|\/1 WP/, Ilsin(riely/ T TEP7A)
V1 1ep/ N
1 cos(tlé] /I |s|2/4>).

Furthermore, since both initial data integrate to zero, Py = P, = 0 and thus the profile

found by Tkehata in [4] is
V(t7 5) = 07

and gives no information.

Since v(t, &) = 0, we note that ||u(t, ) ||3 = ||a(t,-)—v(t,-)||3. We only consider the former,
as both have similar asymptotic expansions and graphs. As with the previous examples, we
will find the expansions for space dimensions N = 1,2,3. Since ug,u; € LYK (RY) for all

K € N, we determine only the coefficients corresponding to K = 3.
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4.3.1 Dimension N =1

Since [Ju(t,-)||3 = ||a(t,-) — v(t,-)||3, the expansions of both can be computed from section

23.3. Ast —

lut, Iz = llatt, ) —v(t, )z = 5tz + =12

\/7_1' 1 5ﬁ 3 ,%
> gL o).

Figure 4.13 illustrates the common decay of both ||u(t,-)||? and ||a(¢,-) — v(¢,-)||% and

compares them to the first terms of their common asymptotic expansion.

— Actual values

— Asymplotic expansion — Actual values

0089221

0.08921

0.08920

0089191

008918

99.92 99.94 99.96 99.98 100.00

Figure 4.13: Graph of ||u(t,-)||3 = |la(t,-) — v(t,-)||3 (left), and plot comparing them to their
asymptotic expansion (right)

4.3.2 Dimension N = 2

Once again ||u(t,-)||3 = [Ja(t,-) — v(t,-)||5 and the asymptotic expansion can be computed

from section 2.2.3. As t — oo

lult, Iz = la(t,) —v(t,)llz = %ﬂ +0(t7).

In Figure 4.14 we can see the shape of the graph of ||u(t,-)||3, as well as the first term of

its asymptotic expansion.
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— Asymptotic expansion — Actual values
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0.0004 ¢
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Figure 4.14: Graph of ||u(t,-)||3 = ||a(t, ) — v(t,-)||3 compared to its asymptotic expansion

4.3.3 Dimension N >3

The dimension N > 3 cases are where interesting things start to happen. It turns out
that because of the choice of initial data, the coefficients of the expansion of |Ju(t,-)||3 =
|a(t, ) — v(t,-)||3 obtained for K = 3 are all zero. Thus the asymptotic expansion as t — oo

in this scenario (recall we use dimension N = 3) is

e, )13 = llat, ) = w(t, )3 = O(2).

We may still illustrate the decay of the function ||u(t,-)||3 (as in Figure 4.15), but since

we do not have any terms in the expansion, we cannot compare the two graphs aside from

noting how small the values of the function are.
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Figure 4.15: Graph of |Ju(t,-)||
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Chapter 5

Conclusion

We conclude this thesis by looking forward to extensions of this problem and to related
problems. Let us first recall Volkmer’s paper [11], in which he determined the asymptotic
expansions of the L2-norms of the weak solutions of the heat and dissipative wave equations,
as well as the expansion of the L?-norm of their difference. Additionally he was able to
determine the same expansions of any partial time and space derivatives. Doing the same
for the problem studied in this thesis is the next natural step when using Fourier transform
methods to analyze the strong damped wave equation (1.1), since the Fourier transform
changes spatial derivatives to multiplication. It is therefore the opinion of the author that
finding the expansion of the L?-norm of any partial space derivatives of the weak solution
of (1.1) should be a straightforward task. However, the time derivatives might be difficult
due to the increasing complexity of the time derivatives of the weak solution in the Fourier
space.
The other extension of this problem is to consider the Cauchy problem for the PDE

w(t, ) + (=) u(t, 2) + (=A)u(t,z) = 0, (t,z) € (t,2) x R,
(5.1)

u(0,7) = up(w), w(0,2) =u(z), x€RY,

129



where 0 < 7 < 60 < 7, and the operator (—A)” for o > 0 is defined by

(=2)7f) (@) = F (1) ().

Proper assumptions on the initial data would need to be found. However it is the opinion of
the author that similar asymptotic expansions to those in this thesis involving the solution of
(5.1) may also be obtained, since some results of Ikehata and Natsume in [5] seem to extend
nicely to this scenario.

We now look ahead to how the Fourier transform method can be used to study related
problems. We first look at the Cauchy problem for the generalized plate equation with a
structural damping in RN (N > 1)

g (t, ) + (—A) u(t, 1) + aA?u(t, z) — Au(t, ) =0, (t,z) € (0,00) x RY,

(5.2)
u(0,7) = up(w), wu(0,2) =ui(z), x€RY,

where a > 0 and 0 < 0 < 1. In their paper [7], Ikehata and Soga established asymptotic
estimates for the squared L?-norm of the difference of the Fourier transform of the weak
solution of (5.2) and the profile (¢, &) found in this thesis and Ikehata’s paper [4]. It is the
opinion of the author that the asymptotic expansion may be obtained using similar methods
to those found in this thesis.

We discuss one final problem for which the methods used in this thesis might be of use,
the wave equation with frictional and viscoelastic damping terms

g (t, ) + Ou(t, x) — Auy(t, ) — Au(t, x) = f(u), (t,r) € (0,00) x RY,
(5.3)

u(0,2) = uo(z), u(0,7) =ui(z), xRN

In general, f is a nonlinear function, but the Fourier transform method used in this thesis
seems particularly well-suited to the homogeneous case of (5.3) when f = 0. In their paper

[8], Tkehata and Takeda obtained asymptotic estimates of the squared L?-norm of the weak
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solution of the Cauchy problem for (5.3), which possibly can be extended to an asymptotic
expansion.

For all the problems in this discussion, considering the solutions of the PDEs in the
Fourier space could allow for expansions to be obtained, with strict enough conditions on

the initial data.
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Appendix

Computing By, n, Bm’n, and Cy, n, with

Mathematica

In the proofs of Proposition 1 and lemmas 10 and 11, we claimed the coefficients in the
expansions of G, (t), G5,,(t), and G5, (t) may be computed with a computer algebra
system like Mathematica. The following lines of code will return the first few terms in each
of the expansions.

These first three commands allow for us to set the desired accuracy. Since the accuracy
is currently set to 5, we are able to correctly determine, for any m € Ny, B,,,, and Bm’n for
0<n<b5-1=4,and Cp,,, for 0<n <2-5-1=09.
acc = 5;

Bacc = acc;
Cacc = 2xacc;

The following sequence of commands returns the coefficients in the expansion of G ,,(t),

where 0 < € < 2.

gl = Exp[Ixrxtx(2 - Sqrt[4 - r*2])]1; (x g[t,r] from the thesis x)

glcoeff[k_Integer] := SeriesCoefficient[gl, {r, 0, k}I;

Gl = Sum[glcoeff[k]xAa[m + k, pl*t~(-m - k - p - 1), {k, 0, 3/2x(Bacc - 1)}, {p, 0, Floor|

Bacc - 2/3xk] - 1}1;
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Bb[m, n_Integer] := Coefficient[Gl, t, -m - n - 1];

For[i = 0, i <= Bacc - 1, i++, Print["Bb[m,", i, "1", "=", Bb[m, i]]]

The following sequence of commands returns the coefficients in the expansions of G§,,(t)
and G5, (t), respectively, where 0 < € < 2.

g2 = Exp[Ixrx(t/2)*(2 - Sqrt[4 - r*2])1; (x g[t/2,r] from the thesis x)

g2coeff[k_Integer] := SeriesCoefficient[g2, {r, 0, k}];

G3 = Sum[g2coeff[k]+Aa[m + k, pl*t~(-m - k - p - 1), {k, 0, 3/2x(Bacc - 1)}, {p, 0, Floor|
Bacc - 2/3xk] - 1}]

Bbtilde[m, n_Integer] := Coefficient[G3, t, -m - n - 1];

For[i = 0, i <= Bacc - 1, i++, Print["Bbtilde[m,", i, "1", "=", Bbtilde[m, il]]

G2 = Apart[Sum[1l/2xg2coeff[k]*Gamma[(m + k + 1)/2]xt~(-(m + k + 1)/2), {k, 0, 3+Cacc}], t];

Cc[m, n_Integer] := Coefficient[Apart[G2xt~(m/2 + n/2 + 1/2), t], t, 0O];

For[i = 0, i <= Cacc - 1, i++, Print["Cc[m,", i, "]", "=", Cc[m, i]]]

To obtain numerical values for the coefficients, we need only insert the following line of

code defining Ay, for k,p € Ny as in (2.10) after the first three lines given above.

Aa[k—, p-] = k!+«Pochhammer[(k + 1)/2, p]+Pochhammer[(k + 2)/2, pl/((2*I)"~(k + 1)x*p!)
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