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ABSTRACT

An Exponential Time Differencing Scheme with a

Real Distinct Poles Rational Function for

Advection-Diffusion-Reactions systems

by

Emmanuel Asante-Asamani

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Bruce Wade

A second order Exponential Time Differencing (ETD) scheme for advection-diffusion-

reaction systems is developed by using a real distinct poles rational function for approx-

imating the underlying matrix exponentials. The scheme is proved to have second order

convergence. It is demonstrated to be robust for reaction-diffusion systems with non-smooth

initial and boundary conditions, sharp solution gradients, and stiff reaction terms. In order

to apply the scheme efficiently to higher dimensional problems, a dimensional splitting tech-

nique is also developed. This technique can be applied to all ETD schemes and is found, in

the test problems considered, to reduce computational time by up to 80%.
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Chapter 1

Introduction

Time-dependent advection-diffusion reaction equations are mathematical models of the form

∂ui
∂t

+∇ · (~ajuj) = ∇(Dj∇uj) + f(uj) j = 1, 2, 3, · · · s

which describe the time evolution of chemical or biological species in a fluid medium. Here,

~aj = (a1j, a2j, a3j) denotes the velocity field for each of s- species concentrations uj, Dj the

corresponding diffusion matrix and fj(u)a reaction term describing the interaction between

the various species. These equations are widely used as mathematical models for describing

transport of pollutants in the atmosphere [33,40], ground and surface water [17]; for tracking

progression of tumours [2, 6, 13, 29] and studying pattern formation in biological species

[22, 31]. In time, chemical reactions can have very fast and slow process thus creating a

multiscale phenomenon. In space the diffusion of species, resulting from either brownian

motion or concentration gradients, usually occurs at smaller length scales in comparison to

the transport from advection. The multiscale nature of these models results in stiff equations

which are challenging to solve numerically [15,36].

A standard numerical approach for solving these brand of problems is to use the method-

of-lines to reduce the partial differential equation (PDE) to an ordinary differential equa-

tion(ODE). Hairer & Wanner [15] define stiff equations as those for which explicit methods
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do not work. Implicit methods such as Runge-Kutta, Rosenbrock and Backward difference

schemes are known to effectively integrate stiff equations. Unfortunately, these methods are

computationally expensive and may be impractical for certain applications. To help reduce

the computational effort involved in integrating stiff problems other linearly implicit meth-

ods [1,20,34], semi-implicit methods [7], and projection methods [14] have been introduced.

The class of implicit-explicit methods, commonly refered to as IMEX schemes, have also

gained prominence in integrating stiff problems [17]. These schemes are designed to inte-

grate the stiff part of the problem implicitly and the non-stiff part explicity, thus ofsetting

any stability constraints while offering computational speed. While these schemes have been

largely sucessful in reducing the computational time, they are vulnerable to instabilities

when both the diffusion and reaction terms are stiff, or when mis-matched boundary and

initial conditions lead to spurious oscillation.

In order to solve a much broader range of problems, time integration schemes which

maintain stability when applied to non-smooth and stiff chemistry problems are of vital

importance. More recently Exponential Time Differencing (ETD) schemes have been devel-

oped [8,19,24], which make use of a single step representation of the evolutionary dynamics

followed by an appropriate discretization of the exponentials that arise. A major attrac-

tion of these schemes is in the exact treatment of the linear part of the model through the

exponential solution operator, and the semi-implicit treatment of the reaction terms. Vari-

ants of the proposed ETD scheme have been developed over the years which adopt different

approximations to the integral of the non-linear reaction term [11, 16, 19]. B. Kleefeld et

al. introduced an ETD Crank -Nicolson Scheme [21] which utilizes a Padé-(1,1) rational

approximation for the matrix exponential. The resulting scheme, though highly efficient, is

not L-stable and hence does not damp out spurious oscillations generated by non-smooth

initial and boundary conditions. A follow-up paper [37] addresses this problem by proposing

the use of a Padé-(0,2) rational approximation, which is L-acceptable. However, the partial

fraction decomposition of this approximation, used in deriving the scheme, has complex poles

2



and requires complex arithmetic in all applications, which may slow the evolution process,

depending on the matrices.

For multidimensional systems, the discretized diffusion matrices are often largely sparse

with wide bands, which tend to slow down direct solvers during evolution. In [4] an ETD-

LOD scheme was developed to reduce the storage requirements for solving higher dimensional

problems and speed up the evolution through extrapolation of a first order ETD scheme and

a simple type of locally one-dimensional (LOD) splitting to achieve second order accuracy.

In this work, we present a new Exponential Time Differencing Scheme, ETD-RDP, which

utilizes a non-Padé rational approximation with real and distinct poles for approximating

the matrix exponentials. The scheme is L-stable and thus damps out spurious oscillations.

The added advantage of having real and distinct poles for the partial fraction decomposition

is that we avoid complex arithmetic and can take advantage of parallel implementation to

speed up computation. We compare the performance of the scheme to well known time

integrations schemes. We also present techniques to speed-up evolution through different

types of locally one-dimensional-splitting and without using extrapolation. Instead, we work

directly with a second order ETD scheme. In the first approach we break up the PDE into

sub-problems and apply a Strang composition of the sub-solution operators to recover the

solution. The second method uses an integrating factor substitution to achieve a natural

splitting of the PDE along its spatial dimensions. We apply the technique to split the second

order ETD-RDP and ETD-CN schemes and examine its performance.

In the remainder of this chapter, some standard time discretization schemes are intro-

duced which will later be used for investigating the performance of ETD-RDP as well as a

brief introduction to Pad/’e rational functions. We close with some introductory material

on semi-group theory and its application to reaction diffusion equations is provided. The

ETD-RDP scheme is developed in chapter two along with an analysis of its absolute stability

region. Chapter three provides a description of the proposed dimensional splitting techniques

along with algorithms for implementing them for ETD-RDP and ETD-CN for two dimen-

3



sional problems. We show in chapter 4 that our proposed scheme is second order accurate

and provide numerical tests to support its performance on some well known stiff problems

in chapter five. Chapter six highlights some recommendations and possibile directions for

future work..

1.1 A Survey of Time Discretization Schemes for Stiff

Problems

Runge-Kutta Schemes(RKS)

Consider the general non-autonomous formulation of an intial value problem for a system of

ordinary differential equations

ut = G(t, u), t > 0, u(0) = u0 (1.1)

with G : R × Rm → Rm and u0 ∈ Rm. In the case of an advection-diffusion-reaction

equation reduced to a system of ODEs through a method-of-lines discretization we have

G(t, u) = −Au+f(t, u) with differential matrix A and nonlinear reaction term f . Discretizing

in time by setting tn = nk, n = 0, 1, 2, · · · with time step 0 < k < 1 and integrating from

tn to tn+1 we obtain the single step evolution

u(tn+1) = u(tn) +

∫ tn+1

tn

G(t, u(t))dt.

The main idea of a Runge-Kutta scheme is to approximate the integral by an appropriate

quadrature rule and estimate the solution as

un+1 = un + k
s∑
i=1

bjG(tni, uni), (1.2)

4



where uni is an approximation to the solution u(tni) at the quadrature node

tni = tn + cik, ci ∈ [0, 1], i = 1, 2, · · · s with s being the stage order. Each intermediate ap-

proximation uni is obtained by performing a similar integration on (1.1) but from tn to tni,

and afterwards approximating the resulting integral by an appropriate quadrature rule to

obtain,

uni = un + k

s∑
j=1

aijG(tnj, unj), i = 1, 2, · · · s. (1.3)

The form of the coefficient matrix A = (aij) and quadrature coefficient b = (b1, b2, · · · , bs)

defines the type of Runge-Kutta scheme. The Butcher-array

c A

bT

=

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...

cs as1 . . . ass

b1 · · · bs

provides a convenient means of representing these methods. A general procedure for im-

plementing Runge-Kutta methods is to solve the system (1.3) for the intermediary solu-

tions and substitute them into the main scheme (1.2). Explicit Runge-Kutta schemes have

strictly lower triangular coeffiecient matrix, A and so require minimal computational ef-

fort. A common example is the Forward Euler scheme which is a single stage RKS with

A = 0, c = 0, b = 1. For implicit methods, where A tends to have non-zero diagonal enteries,

a Newton-type iteration is required for obtaining intermediate solutions if G is nonlinear func-

tion of the unknown solution u. Of particular importance are diagonally implicit RK schemes

(DIRK), for which A is lower triangular with non-zero diagonal elements. These methods

offer significant savings in computational time compared to methods having aij 6= 0, j > i

because each intermediate approximation can be obtained sequentially. A more efficient

subclass of DIRK shemes, the singly diagonally implicit (SDIRK) schemes, have identical

5



diagonal entries. This permits, in the case where G is linear, the use of a single LU decom-

position for recovering all the intermediate solutions. Another class of implicit RK schemes

are the Labatto schemes. For these schemes the coefficients ci are chosen as the zeros of the

polynomial

ds−2

dxs−2
(xs−1(x− 1)s−1)

and the quadrature coefficients bj chosen to satisfy

s∑
i=1

bic
q−1
i =

1

q
q = 1, · · · , 2s− 2.

For our numerical tests we will consider the Labatto IIIA for which the quadrature coefficients

aij are chosen such that

s∑
j=1

aijc
q−1
j =

cqi
q
, i = 1, · · · , s q = 1, · · · , s

and the Labatto IIIB scheme for which aij must satisfy

s∑
j=1

bic
q−1
i aij =

bj(1− cqj)
q

, j = 1, · · · , s q = 1, · · · , s.

Second order Labatto IIIA and Labatto IIIB along with other implicit Runge-Kutta schemes

implemented in this work are presented in Table A12. For a more indepth discussion of

Runge-Kutta methods see Hairer & Wanner[15].

Rosenbrock Schemes

Rosenbrock schemes are Runge-Kutta type methods which require the solution of a linear

system of algebraic equations to obtain intermediate approximations instead of the nonlinear

systems resulting from most implicit Runge-Kutta schemes. In this way they help to reduce

computational time. Consider the system of odes (1.1) with G(t, u) = G(u), a nonlinear

6



function of u. Applying a diagonally implicit RK scheme leads to the discretization

un+1 = un +
s∑
i=1

biki

ki = kG

(
un +

i−1∑
j=1

aijkj + aiiki

)
i = 1, · · · s.

Now consider the first order approximation of G,

k̂i = kG(gi) + kG ′(gi)aiik̂i i = 1, · · · s

with

gi = un +
i−1∑
j=1

aij k̂j

and k̂j the approximate value of kj. Set J = G ′(gi) = G ′(un) so that the jacobian need not

be computed at each stage, then the s-stage Rosenbrock scheme is given as

k̂i = kG

(
un +

i−1∑
j=1

aij k̂j

)
+ kJaiik̂i i = 1, · · · s

un+1 = un +
s∑
i=1

bik̂i.

Notice that the intermediate approximations k̂i can now be obtained by solving successive

linear algebraic equations with matrix (I − kJaii). In this way the Newton iterative pro-

cedure is avoided. To improve the accuracy of the intermediate approximations the linear

combination kJ
∑s

j=1 γij k̂j is used instead of kJaiik̂i with γij chosen to minimize error and

7



improve stability. Thus the general s-stage Rosenbrock scheme becomes

k̂i = kG

(
un +

i−1∑
j=1

aijkj

)
+ kJ

i∑
j=1

γijkj i = 1, · · · s

un+1 = un +
s∑
i=1

bik̂i.

For our numerical experiments we implement the 2-stage second order L-stable scheme

un+1 = un +
3

2
k̃1 +

1

2
k̃2, (1.4)

k̃1 = kG(un) + γkJk̃1

k̃2 = τG(un + k̃1)− 2k̃1 + γkk̃2

with γ = 1 + 1
2

√
2 from ([17],pg 154). For an indepth discussion of the stage order and

stability requirements of Rosenbrock schemes see [15].

Linear Multistep Schemes

Linear multistep methods make use of multiple approximations from previous time levels to

compute the current solution. They have the general form,

q∑
j=0

αjwn+j = k

q∑
j=0

βjG(tn+j, wn+j) n = 0, 1, 2, · · · .

The scheme is explicit if βq = 0 and implicit otherwise. A major advantage of Linear

multistep methods over Runge-Kutta is the need to solve just one nonlinear system instead

of s for an s-stage Runge-Kutta method. However, the requirement for q starting values can

lead to loss of accuracy or stability if not computed at very small time steps. For sufficiently

smooth G the method has order p if

q∑
j=0

αj = 0;

q∑
j=0

αjj
i = i

q∑
j=0

βjj
i−1 for i = 1, 2, 3, · · · p [17, Pg. 172].

8



A very popular multistep method, particularly for stiff problems, is the backward difference

formula (BDF) introduced by Curtis & Hirchschfelder [10]. It requires

βq = 1, βj = 0 (0 ≤ j ≤ q − 1)

and αj chosen conveniently to attain an optimal order of accuracy. In this work, ETD-RDP’s

performance is compared to the second order backward difference scheme (BDF2)

3

2
un+2 − 2un+1 +

1

2
un = kG(un+1). (1.5)

For a more comprehensive discussion of multistep methods see Hairer & Wanner [15].

IMEX Schemes

IMEX methods have emerged as competitive schemes for time integration of problems com-

prising very stiff and mildly or non-stiff parts. Advection-diffusion equations fit very well

into this category with the advective parts being non-stiff and the diffusion part stiff. Also,

some advection-diffusion reaction equations with mild or non-stiff reactions are also suitable.

Consider seperating the ODE system (1.1) into the form

ut = G0(t, u(t)) + G1(t, u(t)) (1.6)

where G0(t, u(t)) represents the non-stiff component and G1(t, u(t)) the stiff part. The seper-

ation of the stiff and non stiff parts allows the use of implicit schemes, which are known

to have excellent stability properties to handle the stiffness while using explicit methods to

speed up computations of nonstiff parts. In this way the entire computation is performed

in an efficient and stable manner. The implicit method could be a one-step or multistep

method[9]. Here, the performance of ETD-RDP is explored against the following 2nd order

IMEX schemes:

9



(a) IMEX-θ

un+1 = un + kG0(tn, un) + (1− θ)kG1(tn, un) + θkG1(tn+1, un+1) θ ≥ 1

2

which combines the explicit Euler method with the A-stable implicit θ-method.

(b) IMEX-CNLF

un+1 − un−1 = 2kG0(tn, un) + kG1(tn+1, un+1) + kG1(tn−1, un−1)

developed by combining the explict midpoint (Leap-Frog) with the implicit trapezoidal

rule (Crank Nicolson).

(c) IMEX-BDF2

3

2
un+1 − 2un +

1

2
un−1 = 2kG0(tn, un)− kG0(tn−1, un−1) + γkG1(tn+1, un+1)

+ 2(1− γ)kG1(tn, un)− (1− γ)kG1(tn−1, un−1). γ ≥ 0

derived from a combination of the explicit and implicit two-step BDF schemes. Here,

we take γ = 1 as recommended by Hundsdorfer & Verwer [17].

(d) IMEX-Adams

un+1 − un =
3

2
kG0(tn, un)− γkG1(tn+1, un+1)

+ (
3

2
− 2γ)kG1(tn, un) + (γ − 1

2
)kG1(tn−1, un−1).

which uses the explict and implicit two-step Adam’s methods. In our numerical exper-

iments the scheme with γ = 9
16

, known to provide maximum damping [3], is used.
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(e) IMEX-TR

u∗n+1 = un + kG0(tn, un) +
1

2
kγkG1(tn, un) +

1

2
kG1(tn+1, u

∗
n+1) (1.7)

un+1 = un +
1

2
kG(tn, un) +

1

2
kG(tn+1, u

∗
n+1).

which is derived by applying the implicit and explicit trapezoidal rule [17, Pg.391]. A

major limitation of this approach is in the application to reaction-diffusion equations

with stiff chemistry. Here, one is forced to use an explicit method to handle potentially

stiff reaction terms which can weaken the stability of the scheme. Details about the

stability of IMEX schemes for advection-diffusion reactions equations is discussed in

chapter 2. For a more detailed discussion of IMEX methods see [15].

1.2 Padé Rational Approximation

Padé schemes are rational functions which have high order of accuracy in approximating

the exponential, ez, for complex number z. There were introduced by Padé [28]. Existing

ETD-Padé schemes which use rational functions to approximate the matrix exponential use

Padé approximations. Though ETD-RDP is developed with non-Padé rational function, the

details in this section offer essential information with which to evaluate the performance of

the new scheme.

Theorem 1.2.1. [15, Thm 3.12] The (k,j)-Padé approximation to ez is given by

Rkj(z) =
Pkj(z)

Qkj(z)

where

Pkj(z) = 1 +
k

j + k
z +

k(k − 1)

(j + k)(j + k − 1)

z2

2!
+ · · ·+ k(k − 1) · · · 1

(j + k) · · · (j + 1)

zk

k!

11



Qkj(z) = 1− j

k + j
z +

j(j − 1)

(k + j)(k + j − 1)

z2

2!
− · · ·+ (−1)jj(j − 1) · · · 1

(k + j) · · · (k + 1)

zj

j!

with error

ez −Rkj(z) = (−1)j
j!k!

(j + k)!(j + k + 1)!
zj+k+1 +O(zj+k+2)

Here are some key results on rational function Rkj(z) that will be referenced from later

parts of the text.

Theorem 1.2.2. [5] If k = j the Rkj(z) is A-acceptable.

Theorem 1.2.3. [32] If j ≥ k then Rkj(z) is A0-acceptable.

Theorem 1.2.4. [12] If j ≥ k + 1 or j = s+ 2, then Rkj(z) is L-acceptable.

In the development of ETD-Padé schemes, the (0,1)-Padé

1

1− z

(1,1)-Padé

1 + 1
2

1− 1
2
z

and (0,2)-Padé

1

1− z + z2

2!

have so far been used to approximate ez. Table A13 summarizes some other well known

Padé approximations.

1.3 Semigroups of Semilinear Evolution Equations

The analysis of error in exponential time differencing schemes relies heavily on estimates

which can be obtained by employing principles from semigroup theory. Infact, the scheme

itself is derived from an exact evolution of semilinear parabolic problems whose existence and
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uniqueness is grounded in semigroup theory. This section therefore provides fundamental

results that will guide both the development of the scheme and its error analysis.

Strongly continous semigroups

Definition 1.3.1. Consider the one parameter operators

{S(t); t ≥ 0} defined on a Banach space B. If the operators satisfy

(a) S(0) = I

(b) S(t1 + t2) = S(t2)S(t1) = S(t1)S(t2)

(c) ‖ S(t) ‖≤ 1

(d) For any u ∈ B, S(t)u ∈ C([0,+∞), B)

then {S(t) : t ≥ 0} is a one-parameter strongly continuous semigroup of contractions or

simply a C0 semigroup in the Banach space B.

Definition 1.3.2. Suppose {S(t) : t ≥ 0} is a C0 semigroup defined on a Banach space B.

Let D be a subset of B such that for x ∈ D S(t)x is differentiable at t = 0 from the right i.e

D = {x ∈ B| lim
h→+0

S(h)x− x
h

exists}.

For x ∈ D, define the operator A as

−Ax = lim
h→+0

S(h)x− x
h

.

Then A, clearly linear, is said to be the infinitesmal generator of S(t).

Lemma 1.3.3. [39, Lem 2.1.1] For any x ∈ D, S(t)x ∈ C1([0,+∞), B). Morever for t ≥ 0

x− S(t)x =

∫ t

0

AS(τ)xdτ =

∫ t

0

S(τ)Axdτ

13



and

d(S(t)x)

dt
+ A(S(t)x) = 0.

It follows from this Lemma that u = S(t)x is a classical solution to the initial value

problem for the abstract first order evolution equation

du

dt
+ Au = 0 (1.8)

u(0) = x.

The infinitesmal generator A is proved to be closed and densely defined in [39]. A natural

question then becomes, for a given linear operator A, what properties would gaurantee that

A is the infinitesmal generator for a C0 semigroup. For that the following Hille-Yoshida

theorem is useful.

Theorem 1.3.4. [39, Thm 2.2.1] Let A be a linear operator defined in a Banach space B,

A : D(A) ⊂ B → B.

Then the necessary and sufficient conditions for A being an infinitesmal generator of a C0-

semigroup of contractions are

(i) A is a densely defined operator in B.

(ii) for all λ > 0, λI + A is a bijective mapping and

‖ (λI + A)−1 ‖≤ 1

λ

From the proof of this theorem given in [39], we see that the C0-semigroup generated by

A is constructed as the limit of a sequence of C0-semigroups (e−tAλ : λ > 0) each generated

by the bounded linear operator Aλ = 1
λ
(I − Jλ) with Jλ = (I + λA)−1. This construction

provides some motivation for the representation S(t) := e−tA.
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The next definition and lemma provide a convenient way of identifying the infinitesmal

generator of a C0 semigroup.

Definition 1.3.5. Let A be a linear operator defined in a Banach space B, A : D(A) ⊂

B → B. If for any x, y ∈ D(A) and any λ > 0,

‖ x− y ‖≤‖ x− y + λ(Ax− Ay) ‖,

then A is said to be an accretive operator. Morever, if A is a densly defined accretive

operator, and I + A is surjective, i.e R(I + A) = B, then A is said to be maximal accretive

operator, in short m-accretive

Lemma 1.3.6. [39, Lem 2.2.2] If A is m-accretive, then A is a closed operator and for all

λ > 0, R(I + λA) = B, and

‖ (I + λA)−1 ‖ .

Therefore the necessary and sufficient condition for A being an infinitesmal generator of a

C0 semigroup is that A is m-accretive.

Theorem 1.3.7. [39, Thm 2.2.2] Suppose that A is m-accretive in a Banach space B, and

u0 ∈ D(A), then (1.8) has a unique classical solution u such that

u ∈ C([0,+∞), D(A)) ∩ C1([0,+∞), B).

Moreover, the following estimates hold

‖ u(t) ‖ ≤‖ u0 ‖ ∀t ≥ 0

‖ du
dt

(t) ‖ ≤‖ Au0 ‖ ∀t ≥ 0

where D(A) is understood as a Banach space equipped with the graph norm.
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Consider now the semilinear evolution equation

du

dt
+ Au = F (u) (1.9)

u(0) = u0.

where A is maximal accretive operator from a dense subset D(A) in a Banach space B into

B, and F is a nonlinear operator from B into B. We are interested in the conditions under

which the problem admits a local classical or mild solution.

Definition 1.3.8. [39, Defn 2.5.1] Suppose F is a nonlinear operator from a Banach space B

into B. F is said to satisfy the local Lipschitz condition if for any positive constant M > 0,

there is a positive constant LM depending on M such that when u, v ∈ B, ‖ u ‖≤ M and

‖ v ‖≤M

‖ F (u)− F (v) ‖≤ LM ‖ u− v ‖ .

Theorem 1.3.9. [39, Thm 2.5.4] Suppose that A is m-accretive and F is a nonlinear operator

from a Banach space B into B satisfying the local Lipschitz condition. Then for any u0 ∈ B

there is a positive constant T > 0 depending on ‖ u0 ‖ such that problem (1.9) in [0, T ]

admits a unique local mild solution u ∈ C([0, T ], B) such that

u(t) = S(t)u0 +

∫ t

o

S(t− τ)F (u(τ))dτ ∀t ∈ [0, T ].

Furthermore if u0 ∈ D(A), then u is LIpschitz continuous in t ∈ [0, T ]. If B is a reflexive

banach space, then u is a classical solution.

Anaylic semigroups

Reaction diffusion equations fit well into the framework discussed above since the Laplacian is

an infinitesmal generator of a strongly continuous semigroup of contractions. Unfortunately,
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more general second order elliptic operators of the form

Au := −
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u (1.10)

which shows up in advection-diffusion equations do not generate c0 semigroups of contrac-

tions ([39],pg 59). The subsequent theory provides an extention of the previous theory to

cover this special case and offers a framework to support the application of ETD Schemes

to advection-diffusioni reaction equations.

Definition 1.3.10. Let

4 = {z : φ < argz < φ2}

with φ1 < 0 < φ2 and for z ∈ 4, let T (z) be a bounded linear operator. The family

T (z), z ∈ 4 is an analytic semigroup in 4 if

(i) z → T (z) is analytic in 4

(ii) T (0) = I and limz→0,z∈4 T (z)x = x for x ∈ B

(iii) T (z1 + z2) = T (z1)T (z2) for z1, z2 ∈ 4

Theorem 1.3.11. [39, Thm 2.6.2] Let T (t) be a uniformly bounded C0-semigroup. Let A

be the infinitesmal generator of T (t) and assume 0 ∈ ρ(−A). Then the following statements

are equivalent:

(a) T(t) can be extended to an analytic semigroup in a sector

4δ = {z : |argz| < δ}

and ‖ T (z) ‖ is uniformly bounded in every closed subsector 4̄δ, δ
′
< δ, of 4δ.

(b) There exists a constant C such that for every σ > 0, τ 6= 0,

‖ R(σ + iτ : −A) ‖=‖ ((σ + iτ)I + A)−1 ‖≤ C

|τ |
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(c) There exists 0 < δ < π
2

and M > 0 such that

ρ(−A) ⊃ Σ = {λ : |argλ| < π

2
+ σ} ∪ {0}

and

‖ R(λ;−A) ‖≤ M

|λ|

for λ ∈ Σ, λ 6= 0.

(d) T(t) is differentiable for t > 0 and there is a positive constant C such that

‖ AT (t) ‖≤ C

t
∀t > 0.

Now let S(t) be a C0-semigroup satisfying ‖ S(t) ‖≤ Mewt, then by the transformation

T (t) = S(t)e−wt the results in Theorem 1.3.11 can be generalised to cover the semigroup

S(t) (see [39, Remark 2.6.1]).

Application to reaction-diffusion equations

Consider the intial boundary value problem for the semilinear heat equation:

ut −∆u = f(u), (1.11)

u|Γ = 0,

u|t=0 = u0(x)
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where Ω is assumed to be a bounded domain in Rn with smooth boundary Γ. For convenience

of analysis, this problem can be converted to the abstract semilnear evolution equation:

du

dt
+ Au = F (u), (1.12)

u(0) = u0

with A = −∆, F (u) = f(u).

Theorem 1.3.12. [39, Thm 2.7.4] Suppose that f ∈ C1(R), and f
′
(u) is uniformly bounded.

Then for any u0 ∈ L2(Ω), problem (1.12) admits a unique mild solution u such that

u ∈ C([0,+∞), L2).

Furthermore, if u0 ∈ H2 ∩ H1
0 , then problem (1.12) has a unique classical solution u such

that

u ∈ C1([0,+∞), L2) ∩ C([0,+∞), H2 ∩H1
0 )

Theorem 1.3.13. [39, Thm 2.7.5] Suppose

f ∈ C3(R), f(0) = 0,

and n ≤ 3. Then for any

u0 ∈ H2 ∩H1
0

problem (1.12) admits a unique maximal classical solution u such that

u ∈ C1([0, Tmax), L
2) ∩ C([0, Tmax), H

2 ∩H1
0 ).

Furthermore, there is an alternative:

(i) either Tmax = +∞, i.e, there is a unique global classical solution,
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(ii) or Tmax < +∞, and

lim
t→Tmax−0

‖ u ‖H2= +∞.

Theorem 1.3.14. [39, Thm 2.7.6] Suppose that

f ∈ C1(R), f(0) = 0.

Then for any

u0 ∈ C0(Ω̄),

problem (1.12) admits a unique maximum mild solution u such that

u ∈ C([0, Tmax), C0(Ω̄).

Furthermore, there is an alternative:

(i) either Tmax = +∞, i.e, there is a global classical solution,

(ii) or Tmax < +∞, and

lim
t→Tmax−0

‖ u ‖C0(Ω̄)= +∞.

Theorem 1.3.15. [39, Thm 2.7.7] Suppose

f(u) = −u3 + u,

n ≤ 3, and

u0 ∈ H2(Ω) ∩H1
0 (Ω).

Then Tmax = +∞, i.e problem (1.12) admits a unique global classical solution u such that

u ∈ C([0, Tmax), H
2 ∩H1

0 ) ∩ C([0,+∞), L2).
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Chapter 2

The ETD Real Distinct Poles Scheme

(ETD-RDP)

2.1 Background to ETD Schemes

We are interested in deriving a numerical scheme for the initial value problem of the semi-

linear evolution equation:

ut + Au = f(u) (2.1)

u(0) = u0

in a complex Banach space B. We assume that A is a closed, densely defined linear operator,

with resolvent set ρ(A) of A such that, with δ ∈ (0, π
2
),

ρ(A) ⊃ Σδ = {z ∈ C;
π

2
− δ ≤ |argz| ≤ π, z 6= 0} ∪ {0} (2.2)

and that the resolvent R(z;A) = (zI − A)−1 satisfies

‖ R(z;A) ‖≤M(1 + |z|)−1. (2.3)
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Under these assumptions it follows from Theorem (1.3.11) that A is the infinitesmal

generator of a uniformly bounded strongly continuous semigroup E(t) = e−tA, t ≥ 0, which

may be expressed as

E(t) =
1

2πi

∫
Γ

e−ztR(z;A)dz (2.4)

where Γ = {z : |argz| = ψ ∈ (π
2
− δ, π

2
)} with Imz increasing along Γ. In addition we assume

that F is a sufficiently smooth nonlinear operator from B into B satisfying the local Lipschitz

condition.

For initial data, u0 ∈ B, it follows from Theorem 1.3.9 that the problem (4.1) admits a

unique local mild solution satisfying the integral equation

u(t) = E(t)u0 +

∫ t

0

E(t− s)f(u(s))ds, ∀t ∈ [0, T ], (2.5)

where T > 0 depends on ‖ u0 ‖. Over the time interval [tn, tn+1] the solution satisfies the

recurrence relation

u(tn+1) = E(k)u(tn) +

∫ tn+1

tn

E(tn+1 − s)f(u(s))ds, k = ∆t

which after the change of variable s = tn + τk, is reduced to the more convenient form

u(tn+1) = E(k)u(tn) + k

∫ 1

0

E(k − τk)f(u(tn + τk))dτ. (2.6)

This equation is the basis for deriving all ETD schemes. ETD shemes have gained

popularity because the linear terms, which are typiclly the source of stiffness, are handled

exactly by the exponetial operator. The method of choice depends on the approach used

in estimating the integral and the matrix exponentials that emerge once the semigroup is

discretized, using say a finte difference method. Following the approach introduced by Cox

and Mathews [8], we use a linear approximation of the nonlinear functions to generate our
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second order scheme. Set g(τ) = f(u(tn + τk)) within the interval [0,1], then

ĝ(τ) = g(0) + [g(1)− g(0)]τ ≈ g(τ)

when substituted into Equation (2.6) with un+1 ≈ u(tn+1), transforms it to the form

un+1 = E(k)un +

(
k

∫ 1

0

E(k − τk)dτ

)
f(un)

+

(
k

∫ 1

0

E(k − τk)τdτ

)
[f(un+1)− f(un)] (2.7)

which is much more convenient to integrate. We give two brief Lemma’s for carrying out the

integration.

Lemma 2.1.1. Under the stated assumptions on A,

1.

k

∫ 1

0

E(k − τk)dτ = A−1(I − e−kA)

2.

I := k

∫ 1

0

E(k − τk)τdτ = A−1(I − e−kA) + k−1A−2(I − e−kA + kAe−kA)

Proof. From Lemma 1.3.7, we have for part 1,

d

dτ

(
A−1e−(1−τ)kA

)
= kAA−1e−(1−τ)kA

= ke−(1−τ)kA
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Consequently,

k

∫ 1

0

E(k − τk)dτ =

∫ 1

0

ke−(1−τ)kAdτ

=

∫ 1

0

d

dτ

(
A−1e−(1−τ)kAdτ

)
= A−1(I − e−kA).

Now for part 2, make the change of variable s = (1− τ)k, then

I =

∫ k

0

e−sA(1− k−1s)ds

=

∫ k

0

e−sAds− k−1

∫ k

0

e−sAsds

= II − III.

For II we make use of the result,

d

dτ
(A−1e−sA) = −A−1Ae−sA = −e−sA

to evaluate the integral,

∫ k

0

e−sAds = −
∫ k

0

d

dτ
(A−1e−sA)ds = A−1(I − e−kA)

For III, recognize that

d

ds
(sA−1e−sA) = A−1e−sA − se−sA.

Therefore

∫
e−sAsds =

∫
A−1e−sAds−

∫
d

ds
(sA−1e−sA)ds

= A−1(−A−1e−sA)− sA−1e−sA + C.
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Now for the definite integral,

III = k−1

∫ k

0

e−sAsds = −k−1A−2(I − e−kA) + A−1e−kA

= k−1A−2(I − e−kA + kAe−kA)

Substituting the result of this lemma into Equation (2.7) we arrive at the initial semi-

discrete form of the scheme

un+1 = e−kAun + A−1(I − e−kA)f(un) +
A−2

k
(kA− I + e−kA)[f(un+1)− f(un)] (2.8)

We consider this form as semi-discrete since the spatial A has not yet been discretized. Once

this is done, i.e by replacing the operator with an equivalent matrix, the scheme will be

fully discrete. The current scheme is however fully implicit and would require Newton-type

iterations to recover the approximate solution. For computational efficiency we seek a linearly

implicit implementation. By using the constant approximation f(u(tn + τk)) = f(u(tn)) in

Equation 2.6 and integrating, we obtain the first order accurate approximation

u∗n+1 = e−kAun + A−1(I − e−kA)f(un).

By setting f(un+1) = f(u∗n+1) in Equation 2.8, we obtain our final semi-discrete scheme

un+1 = e−kAun + A−1(I − e−kA)f(un) +
A−2

k
(kA− I + e−kA)[f(u∗n+1)− f(un)] (2.9)

u∗n+1 = e−kAun + A−1(I − e−kA)f(un)
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2.2 RDP Rational Approximation

One of the major concerns Cox and Mathews had with thier proposed ETDRK schemes was

in dealing with the numerical cancellation errors inherent in evaluating coefficients such as

A−1(I − e−kA), particularly when A has eigen values close to zero. Kassam and Trefethen in

[18] introduced a means of curbing this difficulty by using a contour integral to evaluate the

coefficient. Thier approach however depends heavily on choosing a contour in the complex

plane that completely encloses all the eigen values of A. This presents new challenges each

time the problem is changed or the spatial resolution is adjusted. In [21, 25, 26, 37] Padé

rational functions were used in approximating the matrix exponentials, leading to the class

of ETD Padé schemes. These schemes cleverly avoid numerical cancellation errors through a

series of matrix algebraic operations, performed after replacing the exponential matrix with

an appropriate Padé scheme. The ETD Crank Nicolson (ETD-CN) and ETD Padé(0,2)

(ETD-P02) are among existing ETD Padé schemes. A major concern with these schemes

is the lack of damping of the ETD-CN scheme as well as the complex poles that arise out

of the ETD-P02 scheme which further slow down the evolution. Also for multidimensional

problems, it would be advantageous to empoly parallel techniques to speed up evolution.

This would require a good seperation between the poles of the rational approximation, a

property which most Padé schemes lack. Therefore, to facilitate easy parallelization while

ensuring L-stability, second order accuracy and a relatively small error constant, we seek a

non-Padé rational function of the form

r(z) =
1 + a1z

(1− b1z)(1− b2z)
(2.10)

with a1, b1, b2 ∈ R, b1 6= b2.

Lemma 2.2.1. [35] if b1 + b2 + a1 = 1 and b1 + b2 − b1b2 = 1
2
, then r(z) is a second order

approximation to ez i.e

r(z)− ez = C3z
3 +O(zp+2)
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with error constant

C3 =
a1

2
− 1

6
. (2.11)

Proof. Consider the power series expansion of the exponential

ez = 1 + z +
z2

2
+
z3

3!
+ o(z4)

and the rational function

r(z) = 1 + (a1 + b1 + b2)z + (b2 + b1(a1 + b1 + b2)− b1b2)z2 + o(z3).

The coefficients of z and z2 clearly agree when b1 + b2 + a1 = 1 and

b1 + b2 − b1b2 = 1
2
. In the expansion of r(z) the coefficient of the z3 is calculated to be

a3 =
r(3)(0)

3!
= a1b1b2 + (b2

1 + b2
2)(a1 + b1 + b2)

making the error constant

C3 = a1b1b2 + (b2
1 + b2

2)(a1 + b1 + b2)− 1

6
.

Substituting our order equations and simplifiying we get

C3 =
1

3
− 1

2
(b1 + b2).

Now setting b1 + b2 = 1− a1 we obtain

C3 =
a1

2
− 1

6

27



Definition 2.2.2 (L-Acceptable). A rational approximation r(z) of ez is said to be A-

acceptable, if |r(z)| < 1 whenever Re(z) is negative and L-acceptable if, in addition |r(z)| →

0 as Re(z)→ −∞.

Lemma 2.2.3. The rational approximation (2.10) is L-acceptable if b1 > 0 and b2 > 0.

Proof. follows from Maximum-Modulus principle.

From the order equations in Lemma (2.2.1) we can deduce that the choice b1b2 = 1
2
− a1

leads to an L-acceptable scheme. Applying the result from Lemma (2.2.3) we have the

following corollary

Corollary 2.2.4. If a1 <
1
2

then the rational approximation r(z) is L-acceptable.

Notice that if a1 = 1
2
, then from the order equations, b1 + b2 = 1

2
, b1b2 = 0 which implies

either b1 = 1
2
, b2 = 0 or vice versa. Such a choice of a1 and b1 leads one to the [1/1] Padé

rational function

1 + 1
2
z

1− 1
2
z

which is A-acceptable (Figure 2.2,Theorem 1.2.2).

We are interested in deriving a rational approximation which is L-acceptable, has as small

an error constant as possible and has good separation between the real poles b1, b2 to facilitate

easy parallelization. Norsett and Wolfbrandt have shown in [27, Theorem 3.1] that rational

approximations of the form (2.10) have smallest error constant when b1 = b2 = b. Applying

this to the order equations we find that b = 1−
√

2
2
, a =

√
2− 1,results in the optimal error

constant 0.0404̄ when subtituted into (2.11).Therefore we would require
√

2 − 1 < a < 1
2
.

It is obvious from (2.11) that the error increases as a approaches 1
2

and decreases as it

approaches
√

2 − 1. Also, the L-acceptability of the approximation is threatened as we

approach 1
2

whereas values in the nieghborhood of
√

2− 1 threaten the capability to develop

parallel algorithms. Khaliq and Voss identified in [35] that the choice of a = 5
12

leading to

b1 = 1
4

and b2 = 1
3

gives an error constant of 0.0416̄ which is near optimal. The resulting
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rational approximation

r(z) =
1 + 5

12
z

(1− 1
4
z)(1− 1

3
z)

(2.12)

with partial fraction decomposition

= − 8

1− 1
4
z

+
9

1− 1
3
z

is L-acceptable (Figure 2.2) and permits easy parallelization. We call this rational function

the Real Distinct Poles (RDP) rational approximation.

Figure 2.1: L-Acceptability of RDP in comparison with Padé-(0,2), Padé-(1,1).

2.3 Derivation of ETD-RDP Scheme

For the convenience of deriving the numerical scheme we will assume that the operator A

has been discretized using an appropriate spatial discretization scheme to obtain a matrix.

Since A is invertible by assumption and r(z) is defined on the spectrum of kA we have the

representation

r(−kA) =

(
I − 5

12
kA

)[(
I +

1

3
kA

)−1(
I +

1

3
kA

)−1
]
. (2.13)
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Now, replacing the matrix exponentials in the semi-discrete scheme (2.9) by r(−kA) we

obtain the fully discrete scheme

vn+1 = r(−kA)vn + A−1(I − r(−kA))f(vn) +
A−2

k
(kA− I + r(−kA))[f(v∗n+1)− f(vn)]

(2.14)

v∗n+1 = r0(−kA)vn + A−1(I − r0(−kA))f(vn) (2.15)

where r0(z) denotes the [0/1] Padé approximation 1
1−z and vn+1 ≈ un+1.

Simplifying the predictor scheme (2.15)

v∗n+1 = (I + kA)−1vn + A−1(I − (I + kA)−1)f(vn)

= (I + kA)−1vn + A−1(I + kA− I)(I + kA)−1f(vn)

= (I + kA)−1vn + k(I + kA)−1f(vn)

= (I + kA)−1(vn + kf(vn).

Now for the main scheme, we first provide the following estimates,

A−1(I − r(−kA) = A−1

(
I −

(
I − 5

12
Ak

)(
I +

Ak

4

)−1(
I +

Ak

3

)−1
)

= A−1

[(
I +

Ak

4

)(
I +

Ak

3

)
− I +

5Ak

12

](
I +

Ak

4

)−1(
I +

Ak

3

)−1

= A−1

(
I +

Ak

4
+
Ak

3
+
A2k2

12
− I +

5Ak

12

)(
I +

Ak

4

)−1(
I +

Ak

3

)−1

= A−1

(
Ak +

A2k2

12

)(
I +

Ak

4

)−1(
I +

Ak

3

)−1

hence,

A−1(I − r(−Ak)) = k

(
I +

Ak

12

)(
I +

Ak

4

)−1(
I +

Ak

3

)−1

. (2.16)
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Similarly,

A−2

k
(r(−kA)− I + kA) =

A−2

k

[(
I − 5

12
Ak

)(
I +

1

4
Ak

)−1(
I +

1

3
Ak

)−1

− I + kA

]

=
A−2

k

[(
I − 5

12
Ak

)
−
(
I +

1

4
Ak

)(
I +

1

3
Ak

)
+ kA

(
I +

1

4
Ak

)(
I +

1

3
Ak

)]
(
I +

1

4
Ak

)−1(
I +

1

3
Ak

)−1

=
A−2

k

(
I − 5

12
Ak − I − kA

4
− 1

3
Ak − 1

12
A2k2 + kA+

1

4
A2k2 +

1

3
A2k2 +

1

12
A3k3

)
(
I +

1

4
kA

)−1(
I +

1

3
kA

)−1

Simplifying we have

A−2

k
(r(−kA)− I + kA) =

A−2

k

(
1

2
A2k2 +

1

12
A3k3

)(
I +

1

4
kA

)−1(
I +

1

3
kA

)−1

leading to,

A−2

k
(r(−kA)− I + kA) =

k

2

(
I +

1

6
kA

)(
I +

1

4
kA

)−1(
I +

1

3
kA

)−1

. (2.17)

Substituting (2.16) and (2.17) into the main fully discrete scheme (2.14), we obtain the final

scheme,

vn+1 =

(
I − 5

12
Ak

)(
I +

1

4
Ak

)−1(
I +

1

3
Ak

)−1

vn

+
k

2

(
I +

Ak

4

)−1(
I +

Ak

3

)−1

f(tn, vn)

+
k

2

(
I +

1

6
kA

)(
I +

1

4
kA

)−1(
I +

1

3
kA

)−1

f(tn+1, v
∗)

v∗n+1 = (I + kA)−1(vn + kf(vn).

Implementing the scheme as it currently is would involve six matrix solves and two matrix

multiplications, which would be highly inefficient. In an attempt to improve the compu-
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tational efficiency of the scheme, we make use of the partial fraction decomposition of the

rational functions,

(
I − 5

12
Ak

)(
I +

1

4
Ak

)−1(
I +

1

3
Ak

)−1

= 9

(
I +

1

3
Ak

)−1

− 8

(
I +

1

4
Ak

)−1

(
I +

Ak

4

)−1(
I +

Ak

3

)−1

= 4

(
I +

1

3
Ak

)
− 3

(
I +

1

4
Ak

)−1

(
I +

Ak

6

)(
I +

Ak

4

)−1(
I +

Ak

3

)−1

= 2

(
I +

1

3
Ak

)−1

−
(
I +

1

4
Ak

)−1

.

After substituting these into the scheme and reorganization of the terms, a final efficient

scheme:

vn+1 =

(
I +

1

3
Ak

)−1

[9vn + 2kf(tn, vn) + kf(tn+1, v
∗)] (2.18)

+

(
I +

1

4
Ak

)−1

[−8vn −
3k

2
f(tn, vn)− k

2
f(tn+1, v

∗)]

v∗ = (I + Ak)−1(vn + kf(vn))

which we refer to as the Real Distinct Poles (RDP) Scheme. The scheme can be implemented

using the following algorithm:

(1) Solve for first order predictor v∗n+1

(I + Ak)v∗n+1 = vn + kF (tn, vn)

(2) Solve for an+1 (Processor 1)

(
I +

1

3
Ak

)
an+1 = 9vn + 2kF (tn, vn) + kF (tn+1, v

∗
n+1)

32



(3) Solve for bn+1 (Processor 2)

(
I +

1

4
Ak

)
bn+1 = −8vn −

3

2
kF (tn, vn)− k

2
F (tn+1, v

∗
n+1)

(4) Obtain approximate solution vn+1

vn+1 = an+1 + bn+1

2.4 Emperical Stability Analysis of ETD-RDP

Consider the scalar test equation

ut + qu = N(u). (2.19)

We apply the semidiscrete form of the second order ETD (2.9) to the scalar test equation

(2.19) leading to

un+1 = e−mun + kµ

[
(1− e−m)

m
− (m− 1 + e−m)

m2

]
un + kµ

(
(m− 1 + e−m)

m2

)
[
e−mun + kµ

(1− e−m)

m
un

]

with qk = m. Simplifying we obtain

un+1 = e−mun + kµ

[
(1− e−m)

m
+

(m− 1 + e−m)(e−m − 1)

m2

]
un (2.20)

+ (kµ)2

[
(m− 1 + e−m)(1− e−m)

m3

]
un (2.21)

As discribed in [1] we generate different stability boundaries on the plane (λr, λi) using
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the substitution,

µk = λ = λr + iλi

We look for the region in the complex-λ plane where the solution un remains bounded as

n→∞.The solution can be sought in the form,

un = zn where z = |z|eiθ

Cleary the solution grows with n if |z| > 1 and it decays if |z| < 1. Hence the boundary of

the stability region is determined by the condition |z| = 1. Thus, to find the boundary we

set z = eiθ with θ ranging from 0 to 2π.

substituting kµ = λr + iλi and Un = einθ we have,

ei(n+1)θ = e−meinθ + (λr + iλi)be
inθ + (λr + iλi)

2aeinθ

with,

b =
(1− e−m)

m
+

(m− 1 + e−m)(e−m − 1)

m2

a =
(m− 1 + e−m)(1− e−m)

m3

dividing through by einθ we have,

eiθ = e−m + (λr + iλi)b+ (λr + iλi)
2a

leading to,

(λr + iλi)
2a+ (λr + iλi)b = (cos(θ)− e−m) + i sin(θ) (2.22)

expanding out and comparing real and imaginary parts we have,
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(λ2
r − λ2

i )a+ λrb = cos(θ)− e−m (2.23)

2λrλia+ λib = sin(θ) (2.24)

solving,

λi =
sin(θ)

2λra+ b

substituting into (2.23) we have

aλ2
r − a

sin2(θ)

(2λra+ b)2
+ λrb = cos(θ)− e−m

which simplifies to

(4λ2ra
2 + 4λrba+ b2)λ2ra− sin2(θ)a+ λrb(4λ

2
ra

2 + 4λrba+ b2) = (cos(θ)− e−m)(4λ2ra
2 + 4λrba+ b2).

Expanding and reorganizing coefficients we obtain the quatic equation

Aλ4
r +Bλ3

r + Cλ2
r +Dλr − E = 0 (2.25)

where,

A = 4a3

B = 8a2b

C = 5b2a− 4a2(cos(θ)− e−m)

D = b3 − 4ba(cos(θ)− e−m)

E = a sin2(θ) + b2(cos(θ)− e−m)
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Thus our stability region will be defined by the system

Aλ4
r +Bλ3

r + Cλ2
r +Dλr − E = 0

λi =
sin(θ)

2λra+ b

To investigate the variation in stability regions for the various second order ETD schemes

we make the following substitution

ETDCN

e−m ≈
(1− 1

2
m)

(1 + 1
2
m)

(2.26)

ETDPade02

e−m ≈ 2

2 + 2m+m2
(2.27)

ETDRDP

e−m ≈ 9

1 + 1
3
m
− 8

1 + 1
4
m

(2.28)

(2.29)

Discussion of Stability

The stability regions of the three second order ETD schemes seem very similar except for

the observation that ETDCN appears to extend further outward than ETDPADE02 and

ETDRDP (Figure 2.2). Comparing ETD schemes to other second and third order schemes

we observe that if the eigen values resulting from our spatial discretization or from the
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Jacobian of the nonlinear term are real or have imaginary parts close to zero, we can expect

ETD to remain stable at about 1.2 times the timestep required for the implicit explicit

Adams-Moulton/ Adams Bashford scheme. This better stabiity property of ETD can be

attributed it’s somewhat semi implicitness.The method can be described as stiffly stable

according to the language of [2].

(a) (b)

(c) (d)

Figure 2.2: stability regions of (a) ETD-RDP (b) ETD-P02 (c) ETD-CN (d) second order
implict-explicit Adams-Moulton/Bashford scheme.

37



Chapter 3

Dimensional Splitting of ETD

Schemes

We propose two approaches for solving the multi-dimensional parabolic system:

ut + Au = f(u) in Ω, t ∈ (0, T ) (3.1)

u|∂Ω = g(x) (3.2)

u(·, 0) = u0 in Ω,

by solving a sequence of one-dimensional problems. Here Ω is a bounded domain in <d with

Lipschitz continuous boundary and A is matrix obtained by discretizing a diffusion operator

and g(x) denotes some prescribed boundary condition.

Lets consider a two-dimensional problem for a system of m reacting species, where the

diffusion operator has the natural splitting, Duxx + Duyy, and D ∈ <m×m is a diffusion

coefficient matrix. It is well know that the corresponding matrices A1 and A2, obtained

through a finite difference discretization, can be expressed in Kronecker product notation as

38



A1 = Im2 ⊗Bm1 ⊗D

A2 = Bm2 ⊗ Im1 ⊗D (3.3)

on an m1×m2 Cartesian grid where the Kronecker product of two matrices Am×n and Bp×q

is defined to be the mp× nq matrix

A⊗B =



a11B a12B · · · a1nB

a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB


.

Bn is the usual one-dimensional difference matrix, which has the form

Bn = − 1

h2



−2 1

1 −2
. . .

. . . . . . 1

1 −2


∈ <n×n, h =

1

n+ 1
.

in the case of homogeneous Dirichlet boundary conditions, and the corresponding form

Bn = − 1

h2



−2 2

1 −2
. . .

. . . . . . 1

2 −2


∈ <n×n, h =

1

n+ 1
.

for homogeneous Neumann boundary conditions. Im2 and Im1 are identity matrices. The
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diffusion coefficient matrix is of the form

D =



d1 0

0 d2
. . .

. . . . . . 0

0 dm


.

3.1 Integrating Factor Approach

Here we make use of a change of variable to obtain a natural dimensional splitting of ETD

schemes. Consider the change of variable

v = eBtu & vt = eBtut +BeBtu.

Substituting, vt = eBtF (u) − eBtAu + BeBtu. Suppose we choose B such that A and B

commute, then

vt + (A−B)eBtu = eBtF (u),

or,

vt + (A−B)v = eBtF (e−Btv).

In a two dimensional domain the splitting can be done as A = A1 + A2, and, with B = A1,

vt + A2v = eA1tF (e−A1tv).

Set eA1tF (e−A1tv) =: F̃ (v), thus

vt + A2v = F̃ (v), v(0) = u0, (3.4)

u = e−A1tv.
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By Duhamel’s principle on (3.4) and with change of variable t = tn + τ it follows that

v(tn+1) = e−kA2v(tn) +

∫ k

0

e−A2(k−τ)F̃ (v(tn + τ))dτ.

By a linear approximation of the non-linear function F̃ (v(tn + τ)) we generate the second

order semi-discrete scheme

vn+1 = e−kA2vn + A−1
2 (I − e−kA2)F̃ (v, tn) +

A−2
2

k
(A2k − I + e−A2k) (3.5)

×[F̃ (v(tn+1)− F̃ (v(tn)].

From (3.4) un = e−A1nkvn, we can rewrite the semidiscrete equation in terms of the original

variable un:

un+1 = e−kA1e−kA2u(tn) + A−1
2 (I − e−kA2)e−kA1F (un)

+
A−2

2

k
(A2k − I + e−A2k)[F (un+1 − e−kA1F (un)]. (3.6)

The matrix exponentials can be approximated using an appropriate rational approximation

to obtain a fully discrete scheme. The procedure can be easily extended to 3D to obtain the

semidiscrete scheme

u(tn) = e−kA3e−kA2e−kA1u(tn) + A−1
3 (I − e−kA3)e−kA1e−kA2f(u(tn))

+
A−2

3

k
(A3k − I + e−kA3)[f(u(tn+1))− e−kA2e−kA1f(u(tn))].

Finally we show that A1A2 = A2A1 by using standard properties of the Kronecker prod-

41



uct.

A1A2 = (Im2 ⊗Bm1 ⊗D)(Bm2 ⊗ Im1 ⊗D)

= Im2Bm2 ⊗Bm1Im1 ⊗D2

= Bm2 ⊗Bm1 ⊗D2

similarly

A2A2 = (Bm2 ⊗ Im1 ⊗D)(Im2 ⊗Bm1 ⊗D)

= Bm2Im2 ⊗ Im1Bm1 ⊗D2

= Bm2 ⊗Bm1 ⊗D2.

If the matrices do not commute, then errors from the splitting enter into the numerical

scheme and increase the overall global error. We provide details of an alternative dimensional

splitting for such cases.

3.2 Strang-Type splitting

In the first approach we split (3.1) by distributing the non-linear function evenly in each

coordinate direction as

ut = (−A1u+
1

2
F (t, u)) + (−A2u+

1

2
F (t, u))

and reformulate the initial value problem into the subproblems
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wt + A1w =
1

2
F (t, w) tn < t ≤ tn+1 w(tn) = wn (3.7)

vt + A2v =
1

2
F (t, v) tn < t ≤ tn+1 v(tn) = w(tn+1) (3.8)

with w0 = u0. Applying Duhamel’s principle to each of these equations results in sub-

problems and corresponding solution operators S1
∆t, S

2
∆t:

S1
∆tw(tn) = w(tn+1) = e−kA1w(tn) +

1

2

∫ k

0

e−(k−τ)A1F (tn + τ, w(tn + τ))dτ

S2
∆tv(tn) = v(tn+1) = e−kA2v(tn) +

1

2

∫ k

0

e−(k−τ)A2F (tn + τ, v(tn + τ)).

The one-step solution to (3.1) can then be estimated by

u(tn+1) ≈ [S2
∆t ◦ S1

∆t]w(tn),

which is known to be first order accurate( [17]), referred to here as Strang-simple splitting.

The second order accurate estimate

u(tn+1) ≈ [S1
∆t
2
S2

∆tS
1
∆t
2

]w(tn)

is referred to here as Strang-symmetric splitting. In each case the solution operators can be

approximated by an appropriate ETD Scheme to obtain a fully discrete scheme. This again
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has an easy extension to 3D where the equation will be split as

wt +A1w =
f(w)

3
tn < t ≤ tn+1 w(tn) = wn

vt +A2v =
f(v)

3
tn < t ≤ tn+1 v(tn) = w(tn+1)

st +A3s =
f(s)

3
tn < t ≤ tn+1 s(tn) = v(tn+1)

and an appropriate ETD scheme applied to solve each subproblem.

3.3 Application to ETD-RDP

Applying the ETD-RDP scheme to (3.5) we obtain

vn+1 =

(
I +

1

3
A2k

)−1

[9vn + 2kF̃ (vn) + kF̃ (vn+1)]

+

(
I +

1

4
A2k

)−1

[−8vn −
3k

2
F̃ (vn)− k

2
F̃ (vn+1)]. (3.9)

Making the substitution

vn+1 = etn+1A1un+1

we have

etn+1A1un+1 =

(
I +

1

3
A2k

)−1

[9etnA1un + 2ketnA1F (un) + ketn+1A1F (un+1)]

+

(
I +

1

4
A2k

)−1

[−8etnA1un −
3k

2
etnA1F (un)− k

2
etn+1A1F (un+1)]

which reduces to

ekA1un+1 =

(
I +

1

3
A2k

)−1

[9un + 2kF (un) + kekA1F (un+1)]

+

(
I +

1

4
A2k

)−1

[−8un −
3k

2
F (un)− k

2
ekA1F (un+1)]
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finally

un+1 =

(
I +

1

3
A2k

)−1

[e−kA1(9un + 2kF (un)) + kF (un+1)]

+

(
I +

1

4
A2k

)−1

[e−kA1(−8un −
3k

2
F (un))− k

2
F (un+1)].

Substituting the RDP rational approximation to the exponential e−kA1 we have

un+1 =

(
I +

1

3
A2k

)−1

[

[
9

(
I +

1

3
kA1

)−1

− 8

(
I +

1

4
kA1

)−1
]

(9un + 2kF (un)) + kF (un+1)]

+

(
I +

1

4
A2k

)−1

[

[
9

(
I +

1

3
kA1

)−1

− 8

(
I +

1

4
kA1

)−1
]

(−8un −
3k

2
F (un))− k

2
F (un+1)].

The full scheme is thus,

u∗ = (I + A1k)−1(I + A2k)−1(un + kF (un))

un+1 =

(
I +

1

3
A2k

)−1

[

[
9

(
I +

1

3
kA1

)−1

− 8

(
I +

1

4
kA1

)−1
]

(9un + 2kF (un)) + kF (u∗)]

+

(
I +

1

4
A2k

)−1

[

[
9

(
I +

1

3
kA1

)−1

− 8

(
I +

1

4
kA1

)−1
]

(−8un −
3k

2
F (un))− k

2
F (u∗)].

Algorithm

We implement the above scheme as follows,

45



Processor 1 Processor 2

(I + 1
3
A1k)a1 = un I + 1

4
A1k)b1 = un

c1 = 9a1 − 8b1

(I + 1
3
A1k)a2 = F (un) I + 1

4
A1k)b2 = F (un)

c2 = 9a2 − 8b2

(I + 1
3
A2k)d1 = 9c1 + 2kc2 = kF (u∗) I + 1

4
A2k)d2 = −8c1 − 3

2
kc2 − k

2
F (u∗)

un+1 = d1 + d2

3.4 Application to ETD-CN

We explore the performance of our splitting techniques with the ETD-CN scheme. By

applying the (1,1)-Padé approximation to the matrix exponential we obtain the following

estimates

e−Ak ≈
(
I − 1

2
kA

)(
I +

1

2
kA

)−1

,
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A−1(I − e−Ak) ≈ A−1

(
I −

(
I − 1

2
kA

)(
I +

1

2
kA

)−1
)

= A−1

(
I +

1

2
kA− I +

1

2
kA

)(
I +

1

2
kA

)−1

= k

(
I +

1

2
kA

)−1

,

and

A−2

k
(Ak − I + e−Ak) ≈ A−2

k

(
Ak − I +

(
I − 1

2
kA

)(
I +

1

2
kA

)−1
)

=
A−2

k
(Ak +

1

2
k2A2 − I − 1

2
kA+ I − 1

2
kA)

(
I +

1

2
kA

)−1

=
1

2
k

(
I +

1

2
kA

)−1

.

Substituting these estimates into (3.6) yields the fully discrete split-ETD-CN scheme:

un+1 =

(
I − 1

2
kA1

)(
I +

1

2
kA1

)−1(
I − 1

2
kA2

)(
I +

1

2
kA2

)−1

un

+ k

(
I +

1

2
kA2

)−1(
I − 1

2
kA1

)(
I +

1

2
kA1

)−1

F (un)

+
k

2

(
I +

1

2
kA2

)−1
[
F (u∗)−

(
I − 1

2
kA1

)(
I +

1

2
kA1

)−1

F (un)

]

u∗ =

(
I − 1

2
kA1

)(
I +

1

2
kA1

)−1(
I − 1

2
kA2

)(
I +

1

2
kA2

)−1

un

+ k

(
I +

1

2
kA2

)−1(
I − 1

2
kA1

)(
I +

1

2
kA1

)−1

F (un).

(3.10)

To reduce the number of matrix solves we reorganize the scheme, taking advantage of
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commutativity:

un+1 =

(
I − 1

2
kA2

)(
I +

1

2
kA2

)−1(
I +

1

2
kA1

)−1(
I − 1

2
kA1

)
un

+ k

(
I +

1

2
kA2

)−1(
I − 1

2
kA1

)(
I +

1

2
kA1

)−1

F (un)

+
k

2

(
I +

1

2
kA2

)−1
[
F (u∗)−

(
I − 1

2
kA1

)(
I +

1

2
kA1

)−1

F (un)

]

which leads finally to the scheme

un+1 =

(
I +

1

2
kA2

)−1
[(

I − 1

2
kA2

)(
I − 1

2
kA1

)(
I +

1

2
kA1

)−1

un

)

+k

(
I − 1

2
kA1

)(
I +

1

2
kA1

)−1

F (un)

]

+
k

2

(
I +

1

2
kA2

)−1
[
F (u∗)−

(
I − 1

2
kA1

)(
I +

1

2
kA1

)−1

F (un)

]

Algorithm

We implement the above scheme as follows,

Processor 1 Processor 2

(I + 1
2
A1k)a = (I − 1

2
A1k)un (I + 1

2
A1k) = (I − 1

2
A1k)F (un)

(I + 1
2
kA2)u∗ = [(I − 1

2
kA2)a+ kb]

(I + 1
2
A2k)c = (F (u∗)− b)

un+1 = u∗ + 1
2
c
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Chapter 4

Error Estimates

We are interested in deriving error estimates for ETD-RDP in the discretization of the

semilinear evolution equation

ut + Au = f(u(t)) for t ∈ J = (0, T ], (4.1)

u(0) = ν.

We will consider the case where A is a self-adjoint positive definite operator with compact

inverse in a Hilbert space H. Suppose that the semilinear equation has a sufficiently smooth

solution u : [0, T ]→ V = D(A) with derivatives in V and that f : V → H is sufficiently often

Fréchet differentiable and satisfies the local Lipschitz condition. Under this assumption the

composition g : [0, T ] → H defined by t → g(t) = f(u(t)) is a smooth mapping. It is well

known that the solution to this problem satisfies the integral equation

u(t) = E(t)v +

∫ t

0

E(t− s)f(u(s))ds, (4.2)
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where E(t) := e−At is the analytic semigroup generated by A [39, Lemma 2.2.3, Theorem

2.6.2]. We will make extensive use of the recurrence relation,

u(tn+1) = E(k)u(tn) + k

∫ 1

0

E(k − sk)f(u(tn + τk))dτ (4.3)

obtained through the change of variables tn = nk with n ∈ N+, 0 < k ≤ k0 ∈ <+, and

s = tn + τk.

We will also make use of the following discrete Grownwall Lemma

Lemma 4.0.1. Suppose φj, Ψj ≥ 0 are discrete functions satisfying

δ−φj − c0φj − c1φj−1 ≤ Ψj, for j ≥ 1, δ−φj =
φj − φj−1

k

for some c0, c1 ≥ 0. Then there exists k0, c2, c3 ≥ 0 s.t

φj ≤ ec2tjφ0 + c3k

j∑
i=1

ec2(tj−ti)Ψi.

Also

c2 = (c0 + c1)(1 + c1k0)−1

and

c3 = (1− c2k0)−1.

Proof. Suppose c2k0 < 1. let Ij := (1− c2k)j be the integrating factor for k < k0. Then

δ−(Ijφj) = k−1(Ijφj − Ij−1φj−1)

= k−1(Ijφj − Ij−1φj + Ij−1φj − Ij−1φj−1)

= (δ−Ij)φj + Ij−1(δ−φj).
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Also,

δ−Ij = k−1[(1− c2k)j − (1− c2k)j−1]

= k−1[(1− c2k)j−1(−c2k)]

= −c2Ij−1.

Therefore,

δ−(Ijφj) = Ij−1(δ−φj − c2φj)

Assuming c1 = 0 then by our assumption,

δ−(Ijφj) ≤ Ij−1Ψj

subsequently

k
n∑
j=1

Ij−1δ−(Ijφj) ≤ k
n∑
j=1

Ij−1Ψj

applying the telescoping property we have

Inφn − I0φ0 ≤ k
n∑
j=1

Ij−1Ψj.
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Note that I0 = 1 and

I−1
n = (1− c2k)−n ≤ ec2nk = ec2tn

I−1
n Ij−1 = (1− c2k)j−nI−1

1

≤ ec2(tn−tj)(1− c2k)−1

≤ c3e
c2(tn−tj).

So,

φn ≤ ec2tnφ0 + c3k
n∑
j=1

ec2(tn−tj)Ψj.

To facilitate our analysis we will reformulate the ETD-RDP scheme (2.18) as

Un,2 = Ek,2Un + kEk,2f(Un)

Un+1 = Ek,1Un + k
2∑
i=1

pi(kA)f(Un,i) (4.4)

where Un,i ≈ u(tn + τik) with τ1 = 0, τ2 = 1 and Un,1 = Un.

(4.5)

The rational functions Ek,1, Ek,2, p1(kA), p2(kA), defined as

Ek,1 := r1(kA) = 9

(
I +

1

3
Ak

)−1

− 8

(
I +

1

4
Ak

)−1

Ek,2 := r2(kA) = (I + kA)−1

p1(Ak) = 2

(
I +

1

3
Ak

)−1

− 3

2

(
I +

1

4
Ak

)−1

p2(Ak) =

(
I +

1

3
Ak

)−1

− 1

2

(
I +

1

4
Ak

)−1
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are bounded on the spectrum of kA.

Next we prove another very useful Lemma,

Lemma 4.0.2. The time discretization scheme (4.4) applied to the semilinear problem (4.1)

is accurate of order 2.

Proof. It suffices to show, according to [30, Lemma 9.1] that

1.

r1(λ) = e−λ +O(λ3), as λ→ 0

and for 0 ≤ l ≤ 2

2.
2∑
i=1

τ lipi(λ) =
l!

(−λ)l+1

(
e−λ −

l∑
j=0

(−λ)j

j!

)
+O(λ2−l), as λ→ 0

.

The first part has been established in Lemma 2.2.1. For the second part, since τ1 = 0, it

remains to show that

(p1(λ) + p2(λ))− 1

λ
(e−λ) = O(λ2),

where we have taken τ 0
1 = 1,

p2(λ)− 1

λ2
(e−λ − 1 + λ) = O(λ),

and

p2(λ)− 2!

(−λ)3
(e−λ − (1− λ+

λ2

2
)) = O(1)

as λ→ 0. Now, expressing the rational function in Taylor series, we see that

p1(λ) =
2

1 + 1
3
λ
− 3

2(1 + 1
4
λ)

=
1

2
− 7

24
λ+

37

288
λ2 + · · · .
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and

p2(λ) =
1

1 + 1
3
λ
− 1

2(1 + 1
4
λ)

=
1

2
− 5

24
λ+

23

288
λ2 + · · · .

thus

p1(λ) + p2(λ) = 1− λ

2
+

5λ2

24
+ · · · .

It follows that,

(p1(λ) + p2(λ))− 1

λ
(e−λ − 1) =

1

24
λ2 + · · ·

= O(λ2), as λ→ 0.

Similarly

p2(λ)− 1

λ2
(e−λ − 1 + λ) =

1

8
λ+ · · ·

= O(λ), as λ→ 0.

Finally,

p2(λ)− 2!

(−λ)3
(e−λ − (1− λ+

λ2

2
)) =

1

6
+O(λ2)) = O(1), as λ→ 0.

Lemma 4.0.3 (Stability Estimate). Let Tj+1 and Tj,2 denote the local truncation errors

at the main and predictor stages of the scheme (4.4), then for k0 sufficiently small with

0 < k ≤ k0 and for t ∈ (0, T ], there exists a constant C, depending on T , such that the error
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at time tn has bound

‖ en ‖≤ Ck
n−1∑
j=0

Ψj+1 (4.6)

with

Ψj+1 = C ‖ Tj,2 ‖ +k−1 ‖ Tj+1 ‖, 1 ≤ j ≤ n, nk ≤ T

Proof. Substituting the exact solution into the numerical scheme, with u(tn + τ1k) = u(tn),

we have

u(tn + τ2k) = Ek,2u(tn) + kEk,2f(u(tn)) + Tn,2 (4.7)

u(tn+1) = Ek,1u(tn) + k
2∑
i=1

pi(kA)f(u(tn + τik)) + Tn+1 (4.8)

where local truncation errors at the main and predictor stages are denoted by Tn+1 and Tn,2

respectively.

We express the numerical error in the main scheme en+1 = Un+1 − u(tn+1) as

en+1 = Ek,1en + k
2∑
i=1

pi(kA)(f(Un,i)− f(u(tn + τik))− Tn+1.

Thus

‖ en+1 ‖ ≤‖ en ‖ +k ‖
2∑
i=1

pi(kA)(f(Un,i)− f(u(tn + τik)) ‖ + ‖ Tn+1 ‖ .

Applying the Lipschitz assumption on f and boundedness of the rational functions, our

estimate after shifting indices and setting C = C(ν, T ) becomes

‖ en ‖ ≤‖ en−1 ‖ +Ck ‖ en−1 ‖ +Ck ‖ en−1,2 ‖ + ‖ Tn ‖

55



where Un,1 − u(tn + τ1k) = en,1 = en.

Now,

en−1,2 = Un−1,2 − u(tn−1 + τ2k) = Ek,2en−1 + kEk,2(f(Un−1)− f(u(tn−1)))− Tn−1,2.

Taking norms and applying the Lipschitz assumption on f, we have for sufficiently small k

‖ en−1,2 ‖ ≤‖ en−1 ‖ +Ck ‖ en−1 ‖ + ‖ Tn−1,2 ‖

≤‖ en−1 ‖ + ‖ Tn−1,2 ‖ .

Applying this result to the global error bound, we obtain,

‖ en ‖≤‖ en−1 ‖ +Ck ‖ en−1 ‖ +Ck ‖ Tn−1,2 ‖ + ‖ Tn ‖

If we take φj =‖ ej ‖ and

Ψj = C ‖ Tj−1,2 ‖ +k−1 ‖ Tj ‖, 1 ≤ j ≤ n (4.9)

then an application of the discrete Grownwall lemma, noting that φ0 = 0, leads to the

following estimate

‖ en ‖≤ c3k

n−1∑
j=0

ec2(tn−1−tj)Ψj+1,

where c2 = C(1 + Ck)−1 and c3 = (1 + Ck). By assumption, we can choose k small enough

so that c2 ≤ C and c3 ≤ C. Thus on a bounded time domain, we have the desired result.

Theorem 4.0.4. Under the stated assumption on f , if we assume further that g(l)(t) ∈

D(A2−l) for l < 2, and the initial data v ∈ D(A3) then for the numerical scheme (4.4)
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applied to the semilinear problem (4.1), the following estimate for the error bound holds, for

t ∈ (0, T ]

‖ en ‖ ≤ Ck2

(
(log n+ 1)(‖ A2v ‖ + ‖ Av ‖) + t̄ sup

0≤s≤tn
‖ A2g(s) ‖ +t̄ sup

0≤s≤tn
‖ Ag(s) ‖

+ t̄ sup
0≤s≤tn

‖ Ag(1)(s) ‖ +

∫ tn

0

‖ g(1)(τ) ‖ dτ +

∫ tn

0

‖ g(2)(τ) ‖ dτ
)

where the constant C depends on T .

Proof. We proceed by finding optimal error bounds for the local truncation errors for the

main and predictor steps i.e. Tj+1 and Tj,2 respectively.

From Eq. (4.7)

Tj,2 = u(tj + τ2k)− Ek,2u(tj)− kEk,2f(u(tj))

= (E(k)− Ek,2)u(tj)

+ k

(∫ 1

0

E(k − sk)f(u(tj + sk))ds− Ek,2f(u(tj))

)
.

Setting
∫ 1

0
E(k − sk)f(u(tj + sk))ds = Ikf(u(tj,s)) and taking norms we have

‖ Tj,2 ‖ ≤‖ (E(k)− Ek,2)u(tj) ‖ +k ‖ Ikf(u(tj,s))− Ek,2f(u(tj)) ‖ .

Similarly, if we set
∑2

i=1 pi(kA)f(u(tj + τik))) = Qkf(u(tj,τi)) from Eq. (4.8) we have

Tj+1 = u(tj+1)− Ek,1u(tj)−Qkf(u(tj,τi))

= (E(k)− Ek,1)u(tj) + k (Ikf(u(tj,s))−Qkf(u(tj,τi))) .

Taking norms we find that

‖ Tj+1 ‖ ≤‖ (E(k)− Ek,1)u(tj) ‖ +k‖Ikf(u(tj,s))−Qkf(u(tj,τi))‖.
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First,

‖ (E(k)− Ek,2)u(tj) ‖ =‖ (e−kA − r2(kA))u(tj) ‖

=‖ (kA)−2(e−kA − r2(kA))(kA)2u(tj) ‖

= k2 ‖ (kA)−2(e−kA − r2(kA))A2u(tj) ‖

Employing spectral decomposition of A,

k2 ‖ (kA)−2(e−kA − r2(kA))A2u(tj) ‖ ≤ k2 sup
λ∈σ(kA)

|λ−2(e−λ − r2(λ))| ‖ A2u(tj) ‖ .

Since (e−λ − r2(λ)) ≤ Cλ2 for some C > 0,it follows that

‖ (E(k)− Ek,2)u(tj) ‖≤ Ck2 ‖ A2u(tj) ‖, 0 ≤ j ≤ n− 1. (4.10)

Next,

‖ Ikf(u(tj,s))− Ek,2f(u(tj)) ‖=‖
∫ 1

o

E(k − sk)f(u(tj + sk))ds− Ek,2f(u(tj))‖

= ‖
∫ 1

o

e−kA(1−s)g(tj + sk)ds− r2(kA)g(tj)‖

≤ ‖
∫ 1

o

e−kA(1−s)(g(tj + sk)− g(tj))ds‖

+ ‖
∫ 1

o

e−kA(1−s)g(tj)ds− r2(kA)g(tj)‖.
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Expanding g(tj +sk) in taylor series, we find that g(tj +sk)−g(tj) =
∫ tj+sk
tj

g(1)(τ)dτ , hence

‖
∫ 1

o

e−kA(1−s)(g(tj + sk)− g(tj))ds‖ = ‖
∫ 1

o

e−kA(1−s)
∫ tj+sk

tj

g(1)(τ)dτds‖

≤
∫ 1

o

‖e−kA(1−s)
∫ tj+sk

tj

g(1)(τ)dτ‖ds

≤
∫ 1

o

‖e−kA(1−s)‖
∫ tj+sk

tj

‖g(1)(τ)‖dτds

≤ C

∫ 1

o

∫ tj+sk

tj

‖g(1)(τ)‖dτds

≤ C

∫ tj+1

tj

‖g(1)(s)‖ds.

Also

‖
∫ 1

o

e−kA(1−s)g(tj)ds− r2(kA)g(tj)‖ = ‖
(∫ 1

o

e−kA(1−s)ds− r2(kA)

)
g(tj)‖

Set
(∫ 1

o
e−kA(1−s)ds− r2(kA)

)
= b(kA), then

‖ b(kA)g(tj) ‖ =‖ (kA)−1b(kA)(kA)g(tj) ‖

= k ‖ (kA)−1b(kA)Ag(tj) ‖

≤ k ‖ (kA)−1b(kA) ‖‖ Ag(tj) ‖

≤ k sup
λ∈σ(kA)

|λ−1b(λ)| ‖ Ag(tj) ‖ .

Now, |b(λ)| =
∣∣ 1
λ
(1− e−λ)− (1− λ+ 2λ2 +O(λ3))

∣∣ ≤ Cλ for some C > 0. Therefore

‖ b(kA)g(tj) ‖ ≤ Ck ‖ Ag(tj) ‖

59



and subsequently,

‖ Ikf(u(tj,s))−Ek,2f(u(tj)) ‖≤ Ck ‖ Ag(tj) ‖ +C

∫ tj+1

tj

‖g(1)(s)‖ds, 0 ≤ j ≤ n−1. (4.11)

By similar development, we have the following estimates for the local truncation error at the

main step,

‖ (E(k)− Ek,1)u(tj) ‖ =‖ (kA)−3(e−kA − r1(kA))(kA)3u(tj) ‖

= k3 ‖ (kA)−3(e−kA − r1(kA))A3u(tj) ‖

≤ k3 sup
λ∈σ(kA)

|λ−3(e−λ − r1(λ))| ‖ A3u(tj) ‖ .

Since (e−λ − r1(λ)) = O(λ3) by (4.0.2) , it follows that

‖ (E(k)− Ek,1)u(tj) ‖ ≤ Ck3 ‖ A3u(tj) ‖, 0 ≤ j ≤ n− 1.. (4.12)

Finally,

‖Ikf(u(tj,s))−Qkf(u(tj,τi))‖ = ‖Ikg(tj + sk)−Qkg(tj + τik)‖

= ‖
∫ 1

0

e−kA(1−s)g(tj + sk)ds−
2∑
i=1

pi(kA)g(tj + τik)‖.

Expanding g(tj + sk) and g(tj + τik) in Taylor series

g(tj + sk) = g(tj) + skg(1)(tj) +

∫ tj+sk

tj

(tj + sk − ε)g(2)(ε)dε

g(tj + τik) = g(tj) + τikg
(1)(tj) +

∫ tj+τik

tj

(tj + τik − ε)g(2)(ε)dε
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we have

‖Ikg(tj + sk)−Qkg(tj + τik)‖ ≤ ‖Ik

(
1∑
l=0

(sk)lgl(tj)

)
−Qk

(
1∑
l=0

(τik)lgl(tj)

)
‖

+ ‖Ik

(∫ tj+sk

tj

(tj + sk − ε)g(2)(ε)dε

)

−Qk

(∫ tj+τik

tj

(tj + τik − ε)g(2)(ε)dε

)
‖.

For the first part,

‖Ik

(
1∑

l=0

(sk)lgl(tj)

)
−Qk

(
1∑

l=0

(τik)lgl(tj)

)
‖ =‖

1∑
l=0

(∫ 1

0

e−kA(1−s)(sk)lds−
2∑

i=1

pi(kA)(τik)l

)
gl(tj) ‖

=‖
1∑

l=0

kl

(∫ 1

0

sle−kA(1−s)ds−
2∑

i=1

pi(kA)τ li

)
gl(tj) ‖ .

Set
(∫ 1

0
sle−kA(1−s)ds−

∑2
i=1 pi(kA)τ li

)
= bl(kA) then

‖
1∑
l=0

kl

(∫ 1

0

sle−kA(1−s)ds−
2∑
i=1

pi(kA)τ li

)
gl(tj) ‖ =‖

l∑
l=0

klbl(kA)gl(tj) ‖

≤
l∑
l=0

‖ klbl(kA)gl(tj) ‖ .

Now,

‖ klbl(kA)gl(tj) ‖ =‖ kl(kA)−(2−l)bl(kA)(kA)2−lgl(tj) ‖

= k2 ‖ (kA)−(2−l)bl(kA)A2−lgl(tj) ‖

≤ k2 sup
λ∈σ(kA)

|λ−(2−l)bl(λ)| ‖ A2−lgl(tj) ‖ .
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Since (4.4) is a scheme of order 2 it follows from [30, Lemma 9.1] that |bl(λ)| ≤ Cλ2−l.

Hence

‖ klbl(kA)gl(tj) ‖ ≤ Ck2 ‖ A2−lgl(tj) ‖ .

Therefore,
l∑
l=0

‖ klbl(kA)gl(tj) ‖≤ Ck2
(
‖ A2g(tj) ‖ + ‖ Ag(1)(tj) ‖

)
.

Now, for the second part

‖
∫ 1

0
e−kA(1−s)

∫ tj+sk

tj

(tj + sk − ε)g(2)(ε)dεds−
2∑
i=1

pi(kA)

∫ tj+τik

tj

(tj + τik − ε)g(2)(ε)dε‖ =

‖
∫ 1

0

(∫ tj+sk

tj

e−kA(1−s)(tj + sk − ε)g(2)(ε)dε

)
ds−

2∑
i=1

(∫ tj+τik

tj

pi(kA)(tj + τik − ε)g(2)(ε)dε

)
‖.

For the scheme (4.4) recall that τ1 = 0 and τ2 = 1, leaving us with

‖
∫ 1

0

(

∫ tj+sk

tj

e−kA(1−s)(tj + sk − ε)g(2)(ε)dε)ds−
∫ tj+1

tj

p2(kA)(tj + τik − ε)g(2)(ε)dε‖.

By setting ε = tj + τk, dε = kdτ in the first expression, we will have

‖
∫ 1

0

∫ s

0

e−kA(1−s)k(s− τ)g(2)(tj + τk)kdτds−
∫ tj+1

tj

p2(kA)(tj+1 − ε)g(2)(ε)dε‖,

which can be bounded above by

k‖
∫ 1

0

∫ s

0

e−kA(1−s)(s− τ)g(2)(tj + τk)kdτds‖+ Ck

∫ tj+1

tj

‖ g(2)(ε) ‖ dε

62



Examining the first term, we see that

‖
∫ 1

0

∫ s

0

e−kA(1−s)(s− τ)g(2)(tj + τk)kdτds‖ ≤
∫ 1

0

∫ s

0

‖ e−kA(1−s)(s− τ)g(2)(tj + τk) ‖ kdτds

≤ C

∫ 1

0

∫ s

0

‖ g(2)(tj + τk) ‖ kdτds.

Now substituting ε = tj + τk, and dε = kdτ ,

C

∫ 1

0

∫ s

0

‖ g(2)(tj + τk) ‖ kdτds ≤ C

∫ 1

0

∫ tj+sk

tj

‖ g(2)(ε) ‖ dεds

≤ C

∫ tj+1

tj

‖ g(2)(ε) ‖ dε.

Similar we can bound the second term as follows

‖
∫ 1

0

p2(kA)(1− τg(2)(tj + τk)kdτ‖ ≤
∫ 1

0

‖ p2(kA)(1− τ) ‖‖ g(2)(tj + τk)kdτ ‖

≤ C

∫ tj+1

tj

‖ g(2)(ε) ‖ dε.

Therefore,

‖ Ikg(tj+sk)−Qkf(u(tj+τik) ‖≤ Ck2
(
‖ A2g(tj) ‖ + ‖ Ag(1)(tj) ‖

)
+Ck

∫ tj+1

tj

‖ g(2)(ε) ‖ dε.

So the local truncation errors for the main and predictor steps will have the bounds,

‖ Tj,2 ‖ ≤ Ck2 ‖ A2u(tj) ‖ +Ck2 ‖ Ag(tj) ‖ +Ck

∫ tj+1

tj

‖g(1)(τ)‖dτ (4.13)

‖ Tj+1 ‖ ≤ Ck3 ‖ A3u(tj) ‖ +Ck3
(
‖ A2g(tj) ‖ + ‖ Ag(1)(tj) ‖

)
+ Ck2

∫ tj+1

tj

‖ g(2)(ε) ‖ dε

(4.14)
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for 0 ≤ j ≤ n − 1. Finally, substituting Equation(4.13) and (4.14) into Equation(4.9) and

making use of the stability estimate (4.6), we obtain

‖ en ‖ ≤ Ck2

n−1∑
j=0

(
k ‖ A3u(tj) ‖ +k ‖ A2u(tj) ‖ +k ‖ A2g(tj) ‖ +k ‖ Ag(1)(tj) ‖ +k ‖ Ag(tj) ‖

+

∫ tj+1

tj

‖ g(1)(τ) ‖ dτ +

∫ tj+1

tj

‖ g(2)(τ) ‖ dτ

)
. (4.15)

Now,

‖ A3u(tj) ‖ =‖ A3

(
E(tj)v +

∫ tj

0

E(tj − s)g(s)ds

)
‖

=‖ A3E(tj)v ‖ + ‖ A3

∫ tj

0

E(tj − s)g(s))ds ‖ .

But for 1 ≤ j ≤ n− 1

‖ A3E(tj)v ‖ =‖ AE(tj)A
2v ‖

≤‖ AE(tj) ‖‖ A2v ‖

by the analyticity of the semigroup we have from [39, Theorem 2.6.2]

‖ A3E(tj)v ‖ ≤
C

tj
‖ A2v ‖

For j = 0, it follows from our assumption on ν that ‖ A3v ‖≤ C hence

‖ A3E(tj)v ‖ ≤
C

tj+1

‖ A2v ‖, 0 ≤ j ≤ n− 1.
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Also

‖ A3

∫ tj

0

E(tj − s)g(s))ds ‖ =‖
∫ tj

0

AE(tj)E(−s)A2g(s)ds ‖

≤
∫ tj

0

‖ AE(tj) ‖‖ E(−s)A2g(s) ‖ ds

≤ C

tj+1

∫ tj+1

0

‖ A2g(s) ‖ ds

therefore

‖ A3u(tj) ‖ ≤
C

tj+1

‖ A2v ‖ +
C

tj+1

∫ tj+1

0

‖ A2g(s) ‖ ds.

Similarly,

‖ A2u(tj) ‖ ≤
C

tj+1

‖ Av ‖ +
C

tj+1

∫ tj+1

0

‖ Ag(s) ‖ ds

Substituting these results, Equation (4.15) becomes

‖ en ‖ ≤ Ck2

(
n−1∑
j=0

1

j + 1
‖ A2v ‖ +k

n−1∑
j=0

1

tj+1

∫ tj+1

0

‖ A2g(s) ‖ ds+
n−1∑
j=0

1

j + 1
‖ Av ‖

+ k
n−1∑
j=0

1

tj+1

∫ tj+1

0

‖ Ag(s) ‖ ds+ k
n−1∑
j=0

‖ A2g(tj) ‖ +k
n−1∑
j=0

‖ Ag(1)(tj) ‖ +k
n−1∑
j=0

‖ Ag(tj) ‖

+
n−1∑
j=0

∫ tj+1

tj

‖ g(1)(τ) ‖ dτ +
n−1∑
j=0

∫ tj+1

tj

‖ g(2)(τ) ‖ dτ

)
.

Upon taking summation through each individual term and simplifying the remaining expres-

sion, the desired result follows.
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which simplifies to give,

‖ en ‖ ≤ Ck2

(
(log n+ 1)(‖ A2v ‖ + ‖ Av ‖) + t̄ sup

0≤s≤tn
‖ A2g(s) ‖ +t̄ sup

0≤s≤tn
‖ Ag(s) ‖

+ t̄ sup
0≤s≤tn

‖ Ag(1)(s) ‖ +

∫ tn

0

‖ g(1)(τ) ‖ dτ +

∫ tn

0

‖ g(2)(τ) ‖ dτ
)
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Chapter 5

Numerical Experiments

We investigate the robustness of the ETD-RDP scheme on reaction-diffusion systems with

non-smooth initial and boundary data, stiff reaction terms, widely varying diffusion coeffi-

cients and in higher space dimensions. The accuracy of the scheme in all cases was measured

using relative error ‖u−û‖2‖u‖2 , with u and û being the reference and approximate solutions,

respectively. For test problems with an exact solution, the reference solution was chosen to

be the exact solution. For more complex problems without exact solutions the numerical

solution using BDF2 on a finer mesh was used as the reference solution. This approach, as

reported by Leveque [23], is well suited for recovering the rate of convergence of numerical

schemes, though it may not reflect the true error in using the numerical scheme. The rate

of convergence p was calculated using the relation

p ≈
ln( Ẽ(k)

Ẽ(k/2)
)

ln2

where ˜E(k) is the approximate error on the temporal resolution k. We will make extensive

use of the term ‘computationally efficient’. By this we mean that for a given time step, a

numerical scheme obtains higher accuracy with faster computational time. All computations

were performed on a Dell Precision T5610 with intel Xeon(R) Cpu E5-2630 v2 with 2.60GHz

× 17 cores and 32 GiB RAM. Computational time is reported in seconds for all test problems.
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For the general test problem

ut + Au = f(u) ∈ Ω (5.1)

u|Γ = 0

u|t=0 = u0(x)

where Ω is a bounded domain in Rd with smooth boundary Γ, and A represents the general

second order elliptic operator

Au ≡ −
n∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
) +

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u

with smooth coefficients aij(x), bi(x), c(x), we adopt the following abstract formulation to

facilitate investigation of the existence and regularity of solutions,

ut + Au = F (u) (5.2)

u(0) = u0

and set domain of A as D(A) = H2 ∪ H1
0 in the Banach space B = L2(Ω). It has been

established in [39, Pg. 74] that A is a sectorial operator and thus generates an analytic

semigroup in L2(Ω). In the special case of A = −∆ which is m-accretive (see [39, Theorem

2.7.2]) we have the result that A generates a C0- semigroup of contractions.

5.1 Model semilinear problem with exact solution

In order to validate the second order accuracy of the ETD-RDP scheme, we applied it to

the semilinear test problem from [16]

∂u

∂t
− ∂2u

∂x2
=

1

1 + u2
+ Φ(x, t) (5.3)
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for x ∈ [0, 1] and t ∈ [0, 1] subject to homogeneous Dirichlet conditions. For

Φ(x, t) = x(1− x)et + 2et − 1

1 + x2(1− x)2e2t

the exact solution for the test problem becomes u(x, t) = x(1− x)et. The second-order con-

vergence of the scheme is validated by the grid refinement studies in Table 5.1. In comparison

with existing second order ETD schemes, ETD-RDP is computationally more efficient than

ETD-Padé(0,2) (Figure 5.1(a),Table A1). While ETD-CN appears superior to ETD-RDP in

this case, its inability to damp spurious oscillations makes it unsuitable for solving problems

with non-smooth data (Figure 5.5b,c) or problems having significant advection components.

Some of the more common time stepping schemes, used particularly by engineers, are back-

ward Euler (BE), Crank-Nicolson (CN) and BDF2. Comparing ETD-RDP to these schemes,

we find it to be a hundred times faster Figure 5.1(b) with comparable accuracy (Table A2)

once an appropriate time resolution is chosen. One reason for this superior computational

speed is the absence of a Newton iteration in the ETD-RDP algorithm. The larger class

of time discretization schemes i.e. implicit Runge-Kutta (IRK) schemes, which typically

require Newton solve, also lag behind ETD-RDP in computational speed (Figure 5.1(d)). It

is worth noting that ETD-RDP has better accuracy than the SDIRK scheme (Figure 5.1(c),

Table A2). Finally, comparing ETD-RDP to IMEX schemes, we find ETD-RDP is more

accurate (Figure 5.2(a)) and computationally more efficient (Figure 5.2(b), Table A3).

k h Error Order Time
0.050000 0.050000 2.9755 ×10−4 - 0.00237
0.025000 0.025000 8.4801 ×10−5 1.81 0.00464
0.012500 0.012500 2.2857×10−5 1.89 0.00977
0.006250 0.006250 5.9423×10−6 1.94 0.02184
0.003125 0.003125 1.5136×10−6 1.97 0.05134

Table 5.1: Examining order of convergence of ETD-RDP for semilinear test problem.
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(a) (b)

(c) (d)

Figure 5.1: Log-log plots showing (a) computational efficiency of ETD-RDP over ETD-CN
and ETD-Pade(0,2); (b) faster computational time compared with BE, CN and BDF2 (c)
better accuracy and (d) more efficiency in comparison to standard Runge-Kutta schemes.
In all cpu time vs error plots, lower (for better time efficiency) and left (for better accuracy)
is preferable.

5.2 Allen-Cahn Equation

We consider the Allen-Cahn equation with solution regions near ±1 that are flat and where

the interface does not change for a relatively long period of time, then changes suddenly.

The equation, taken from [21], is:

∂u

∂t
= ε

∂u2

∂x2
+ u− u3, x ∈ [−1, 1]

u(x, 0) = 0.53x+ 0.47 sin(−1.5πx), t > 0

u(−1, t) = −1, u(1, t) = 1.
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(a) (b)

Figure 5.2: Log-log plots showing (a) accuracy and (b) efficiency of ETD-RDP compred to
standard second order IMEX schemes for semilinear test problem.

We put our problem in the form (5.1) by setting ũ = u− x thus

∂ũ

∂t
= ε

∂ũ2

∂x2
+ (ũ+ x)− (ũ+ x)3, x ∈ [−1, 1] (5.4)

ũ(x, 0) = 0.53x+ 0.47 sin(−1.5πx)− x, t > 0 (5.5)

ũ(−1, t) = 0, ũ(1, t) = 0. (5.6)

We now have homogenous Dirichlet boundary conditions and with little algebra can imme-

diately see that ũ(x, 0) ∈ H2 ∪ H1
0 . It follow from Theorem 1.3.15 that the test problem

admits a unique global classical solution.

The second-order accuracy of ETD-RDP for this problem is shown in Table 5.2. We

also investigate the sensitivity of existing ETD-Padé schemes to varying diffusivity ε, in

comparison to ETD-RDP. We find that ETD-CN tends to degrade in accuracy as ε increase,

while ETD-RDP remains accurate as shown in Figure 5.3. We also notice from Figure

5.3 and Table A4 that ETD solutions to Allen-Cahn equation have comparable accuracy

to BDF2 with much faster computational time. As expected ETD-RDP is computationally

more efficienct than standard Runge-Kutta and Rosenbrock schemes (Figure 5.4(a)) without

compromising the accuracy (Figure 5.4(b),Table A5) ).
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(a) ε = 0.01 (b) ε = 1

(c) ε = 5 (d) ε = 10

Figure 5.3: Log-log plots showing efficiency of ETD-RDP over ETD-CN with varying diffu-
sivity for the Allen-Cahn Equation.

5.3 Enzyme Kinetics

We consider the two-dimensional enzyme kinetics reaction-diffusion problem [4]

∂u

∂t
= d

(
∂2u

∂x2
+
∂2u

∂y2

)
− u

(1 + u)
, 0 < x, y < 1, t > 0, (5.7)

with homogeneous Dirichlet boundary conditions and initial condition,

u(x, y, 0) = 1, 0 ≤ x, y ≤ 1

which are mismatched and tend to generate spurious oscillations. Clearly, f ∈ C1(R),

f ′(u) is uniformly bounded in Ω = [0, 1] and u(x, y, 0) ∈ L2(Ω), thus from Theorem 1.3.12

the problem admits a unique mild solution.
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k h Error Order Time
0.1000 0.1000 1.5246 ×10−2 - 0.00287
0.0500 0.0500 3.7895 ×10−3 2.01 0.00422
0.0250 0.0250 9.9047×10−4 1.94 0.00936
0.0125 0.0125 2.4628×10−4 2.01 0.02339

Table 5.2: Examining order of convergence of ETD-RDP for Allen-Cahn Equation after 2
secs with ε = 0.01.

(a) (b)

Figure 5.4: Log-log plots showing efficiency of ETD-RDP over standard Runge-Kutta and
Rosenbrock schemes with ε = 0.01 for Allen-Cahn equation.

The second order accuracy of ETD-RDP for this problem is seen in Table 5.3. Examing

the damping effect of the scheme, it is clear from Figure 5.5 (a-b) that its performance is

superior to ETDCN which fails to recover the solution profile. Except on very fine grids,

where ETD-CN regains its accuracy, ETD-RDP appears to be the most efficient among ETD-

Padé schemes (Figure 5.5 (c-d)). Although the performance of ETD-CN can be improved

by the use of initial smoothing steps (Figure 5.7 (a)), ETD-RDP still remains the most

efficient scheme across varying diffusion coefficients (Figure 5.7). Table A6 shows ETD-RDP

to be 144 times faster than BDF2 for the same level of accuracy. We also compared the

performance of ETDRDP to some standard IMEX methods. As expected, IMEX-TR AND

IMEX-CNLF, which are not L-stable, fail to recover the solution profile on coarse grids

(Figure 5.6 (b-c)). With regards to efficiency, ETD-RDP clearly out performs all the IMEX

schemes considered with enhanced computational efficiency when dimensional splitting is

employed (Figure 5.6 (d)). The splitting techniques show second order convergence and are
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significantly faster than the regular ETD-CN and ETD-RDP scheme when applied to the

enzyme kinetics problem (Figure 5.8,Table A8 & A10).

(a) ETD-RDP (b) ETD-CN

(c) Efficiency

Figure 5.5: (a-b) Solution of the 2D enzyme kinetics after 1 sec of simulation using time
step of 0.05 and with diffusion coefficient d=0.25. (c) Log-log efficiency plot for ETD-Padé
schemes. (d) Log-log plot showing convergence of ETD-Padé schemes.

5.4 The Brusselator System

Finally, we investigate the computational efficiency of the ETD-RDP scheme for a system

of coupled reaction-diffusion equations using the Brusselator model from [38]:

ut = ε1∆u+ A+ u2v − (B + 1)u,

vt = ε2∆v +Bu− u2v,
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k h Error Order Time
0.1000 0.0250 1.6811 ×10−4 - 0.05242
0.0500 0.0250 7.1119×10−5 1.24 0.10457
0.0250 0.0250 2.1345×10−5 1.74 0.20885
0.0125 0.0125 5.7778×10−6 1.89 0.39058

Table 5.3: Examining order of convergence of ETD-RDP for 2D Enzyme Kinetics Equation
after 1 second.

where the diffusion coefficients are ε1 = ε2 = 2 × 10−3, and the chemical parameters are

A = 1, B = 3.4. At the boundary of the domain, Neumann conditions are imposed

∂u

∂n
|∂Ω =

∂v

∂n
|∂Ω = 0, with Ω = [0, 1]d

The initial conditions are

u(x, y, 0) =
1

2
+ y, v(x, y, 0) = 1 + 5x.

As expected the scheme is second order convergent (Table 5.4). Notice from Figure 5.9

and Table A7 that ETD-Padé-(0,2) is about 10 times slower than ETD-RDP. We associate

the delay in computation to the complex arithmetic performed as a result of complex poles

introduced by the Padé-(0,2) rational approximation. Thus for multidimensional, multicom-

ponent reaction-diffusion problems ETD-RDP is preferable to ETD-Padé-(0,2). From Figure

5.9(c,d) we see that while the IMEX methods are more efficient than the regular ETD-RDP,

an application of dimensional splitting speeds up the algorithm significantly recovering the

dominance of ETD-RDP over IMEX methods. The splitting methods attain the expected

second order convergence (Figure 5.10).

On average we observe an 85% reduction in the computational time across all the methods

due to splitting (Table A9& A11).
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(a) IMEX-BDF2 (b) IMEX-TR

(c) IMEX-CNLF (d) Efficiency

Figure 5.6: (a-c) Solution of the 2D enzyme kinetics after 1 sec of simulation using time step
of 0.05 and with diffusion coefficient d=0.2. (d) Log-log efficiency plot comparing ETD-RDP
with IMEX schemes.

k Error Order Time
0.1000 2.4996×10−1 - 0.01595
0.0500 4.8185×10−2 2.38 0.02807
0.0250 1.2986×10−2 1.89 0.05611
0.0125 3.3708×10−3 1.95 0.06974

Table 5.4: Order of convergence of ETD-RDP for 2D Brusselator after 2 seconds with ∆x =
0.05.
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(a) d1 = 0.2, d2 = 0.2 (b) d1 = 0.5, d2 = 0.5

(c) d1 = 0.1, d2 = 0.1 (d) d1 = 0.3, d2 = 0.2

Figure 5.7: Log-log plots of efficiency of ETD Padé Schemes with varying diffusion coefficients
for enzyme kinetics equation.

(a) ETD-RDP (b) ETD-CN

Figure 5.8: log-log efficiency plots comparing dimensional splitting techniques to standard
ETD schemes for Enzyme Kinetics Equation.
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Figure 5.9: Efficiency of ETD Padé schemes for Brusselator equation

(a) ETD-RDP (b) ETD-CN

Figure 5.10: log-log efficiency plots comparing dimensional splitting techniques to standard
ETD schemes for Brusselator Equation.
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Chapter 6

Conclusion and Recommendation

We have derived a new second-order L-stable ETD Runge-Kutta type scheme which uses

a rational approximation with real, distinct poles to approximate the matrix exponentials.

We proved the second order accuracy and find that it has a stability region similar to es-

tabilished ETD schemes as well as some well known implicit-explicit schemes. To improve

the computational speed when simulating multidimensional problems we have introduced

dimensional splitting techniques, currently developed for finite difference discretizations but

can be extended to other spatial discretization schemes, which can be appplied to problems

with both Dirichlet and Neumann boundary conditions.

Examing the performance of the scheme when applied to stiff reaction diffusion equations,

we find it to be computationally faster than most implicit and diagonally implicit Runge-

Kutta schemes, with the same level of accuracy as SDIRK scheme. For problems with

non-smooth data, we have shown ETD-RDP to be a better alternative to IMEX-CNLF and

IMEX-TR schemes which have very poor damping properties. For most of the test problems,

we found the performance of RDP to be comparable to IMEX-BDF2 and IMEX-Adams

schemes without dimensional splitting and computationally more efficient when splitting

was applied. Compared to standard ETD Padé schemes, ETD-RDP has better damping

properties than ETD-CN and is computationally more efficient than ETD-Padé02 scheme.
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By comparing the standard ETD-RDP and ETD-CN scheme on several test problems, we

demonstrated empirically that the dimentional splitting techniques are second order accurate.

The proposed splitting methods significantly reduce the computational time required in

evolving reaction diffusion systems, in some cases up to 80%.

We recommend future efforts to explore the performance of the scheme for problems

with significant advection terms and evaluate the performance of the dimensional splitting

techniques to 3D problems with parallelization.
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tion paraboliques, Numer. Math. 35 (1980), 257–276.

[10] C.F. Curtis and J.O. Hirchfelder, Integration of stiff equations., Proc. Nat. Acad. Sci. U.S.A 38 (1952),

33–53.

81



[11] Q. Du and W. Zhu, Analysis and applications of the exponential time differencing schemes and their

contour integration modifications, BIT Numer Math 45 (2005), 307–328.

[12] B.L. Ehle, On padé apprximations to the exponential function and a-stable methods for the numerical

solution of initial value problems, Research Rep. CSRR 2010, Dept. AACS, University of Waterloo.

(1969).

[13] R.A. Gatenby and E.T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Research 56

(1996), 5745–5753.

[14] W. Gear and I. Kevrekidis, Projective methods for stiff differential equations: Problems with gaps in

thier eigevalue spectrum, SIAM Journal on Scientific Computing 24 (2003), 1091–1106.

[15] W. Hairer and G. Wanner, Numerical solution of time-dependent advection-diffusion-reaction equations,

Springer-Verlag Berlin, 1991.

[16] M. Hochbruck and A. Ostermann., Explicit exponential runge-kutta methods for semilinear parabolic

problems, SIAM J Numer Anal 43 (2005), 1069–1090.

[17] W. Hundsdorfer and J.G. Verwer, Numerical solution of time-dependent advection-diffusion-reaction

equations, Springer-Verlag Berlin, 2003.

[18] A.K. Kassam and L.N. Trefethen, Fourth-order time stepping for stiff pdes, SIAM J. Sci. Comput 26

(2005), 1214–1233.

[19] A.Q.M. Khaliq, J. Martin-Vanquero, B.A. Wade, and M. Yousuf, Smoothing schemes for reaction-

diffusion systems with nonsmooth data, Journal of Computational and Applied Mathematics 223 (2009),

374–386.

[20] A.Q.M. Khaliq and B.A. Wade, On smoothing of the crank-nicolson scheme for nonhomogeneous

parabolic problems, J. Comput. Meths. in Sci. & Eng. 1 (2001), no. 1, 107–123.

[21] B. Kleefeld, A.Q.M. Khaliq, and B.A. Wade, An etd crank-nicolson method for reaction-diffusion sys-

tems, Numerical Methods for Partial Differential Equations 28 (2012), 1309–1335.

[22] S. Kondo and T. Miura, Reaction-diffusion model as a framework for understanding biological pattern

formation, Science 329 (2010), 1616.

[23] Randall J. Leveque, Finite difference methods for ordinary and partial differential equations, Society for

Industrial and Applied Mathematics (2007).

[24] J. Mart́ın-Vaquero and B.A. Wade, On efficient numerical methods for an initial-boundary value problem

with nonlocal boundary conditions, Appl. Math. Modelling 36 (2012), no. 8, 3411–3418.

82



[25] C. Moler and C.V. Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five

years later, Siam Review 45 (2003), no. 1, 3–49.

[26] C. Moler and C.Van. Loan, Nineteen dubious ways to compute the exponential of a matrix, Siam Review

20 (1978), 801–826.

[27] Syvert P. Norsett and Arne Wolfbrandt, Attainable order of rational approximations to the exponential

function with only real poles, BIT 17 (1977), no. 2, 200–208.
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Appendix

A: Convergence Tables for Numerical Experiments

k = h ErrorRDP Cpu Time ErrorECN Cpu Time
0.050000 5.9920×10−4 0.00099 3.1693×10−4 0.00071
0.025000 1.7084×10−4 0.00702 8.6607×10−5 0.00141
0.012500 4.6054×10−5 0.00456 2.2672×10−5 0.00331
0.006250 1.1973×10−5 0.01131 5.7943×10−6 0.00850
0.003125 3.0499×10−6 0.03141 1.4630×10−6 0.02421

k ErrorP02 Cpu Time ErrorBDF2 Cpu Time
0.050000 8.5674×10−4 0.00109 7.5726×10−5 0.01453
0.025000 2.2341×10−4 0.00261 1.7672×10−5 0.04919
0.012500 5.6679×10−5 0.00731 4.4568×10−6 0.17714
0.006250 1.4239×10−5 0.02294 1.1195×10−6 0.66461
0.003125 3.5654×10−6 0.07836 2.8056×10−7 2.63503

Table A1: Comparing ETD-RDP with other second-order ETD Padé schemes and BDF2
for the model semilinear problem. RDP, ECN and P02 refer to ETD-RDP, ETD-CN and
ETD-P(0,2) respectively.
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k = h ErrorBE Cpu Time ErrorRCN Cpu Time
0.050000 2.1410×10−3 0.01358 2.1081×10−5 0.01024
0.025000 1.0780×10−3 0.02974 4.9197×10−6 0.04612
0.012500 5.4105×10−4 0.09713 1.1319×10−6 0.18378
0.006250 2.7106×10−4 0.35765 2.8294×10−7 0.66128
0.003125 1.3567×10−4 1.38511 7.0734×10−8 2.68551

k ErrorSDIRK Cpu Time ErrorLBA Cpu Time
0.050000 9.8300×10−4 0.02508 1.7512×10−5 0.01524
0.025000 2.3908×10−4 0.06071 4.4776×10−6 0.04757
0.012500 5.8107×10−5 0.19610 1.1319×10−6 0.18360
0.006250 1.4152×10−5 0.87389 2.8294×10−7 0.67271
0.003125 3.4595×10−6 4.06289 7.0734×10−8 2.67684

Table A2: Computational time and accuracy grid refinement studies for backward Euler(BE),
Regular Crank-Nicolson(RCN), SDIRK and the LabattoIIIA scheme on the model semilinear
problem.

k = h ErrorIMBD2 Cpu Time ErrorIMTR Cpu Time
0.050000 2.1843×10−3 0.00077 6.7575×10−3 0.00159
0.025000 5.5907×10−4 0.00131 1.7097×10−3 0.00301
0.012500 1.4148×10−4 0.00335 4.2934×10−4 0.00637
0.006250 3.5589×10−5 0.00737 1.0754×10−4 0.01420
0.003125 8.9249×10−6 0.01996 2.6906×10−5 0.03356

Table A3: Computational time and accuracy grid refinement studies for IMEX-
BDF2(IMBD2) and IMEX-TR(IMTR), schemes generated for the model semilinear problem.

ε k=h ErrorRDP Cpu Time ErrorETDCN Cpu Time ErrorP02 Cpu Time ErrorBDF2 Cpu Time
0.01 0.0500 3.7970 ×10−3 0.00473 3.8205×10−3 0.00349 3.7514 ×10−3 0.00472 3.9457 ×10−3 0.005665

0.0250 9.9318×10−4 0.01053 1.0013×10−3 0.00798 9.8318×10−4 0.01132 9.9701 ×10−4 0.19231
0.0125 2.4696×10−4 0.02615 2.4901×10−4 0.02051 2.4443×10−4 0.03042 2.4745 ×10−4 0.0.71256

1 0.0500 6.0022 ×10−5 0.00474 1.2559×10−4 0.00350 6.0020 ×10−5 0.00470 4.4565 ×10−5 0.02903
0.0250 1.5035×10−5 0.01052 2.9445×10−5 0.00809 1.5035×10−5 0.01126 8.9798 ×10−6 0.11315
0.0125 3.7585×10−6 0.02653 7.1363×10−6 0.0204 3.7584×10−6 0.03026 2.4025 ×10−6 0.46971

5 0.0500 1.2019×10−5 0.00473 3.0970×10−3 0.00351 1.2019 ×10−5 0.00468 9.0928×10−6 0.01801
0.0250 3.0079 ×10−6 0.01051 7.4828×10−4 0.00796 3.0079×10−6 0.01121 2.8182 ×10−6 0.04285
0.0125 7.5206×10−7 0.02613 1.8553×10−4 0.02046 7.5206×10−7 0.03000 9.5933 ×10−7 0.10947

10 0.0500 6.0027×10−6 0.00474 7.1057×10−3 0.00352 6.0027 ×10−6 0.00469 3.9457×10−6 0.01487
0.0250 1.5039×10−6 0.01047 1.6784×10−3 0.00797 1.5039×10−6 0.01114 2.0139×10−6 0.03816
0.0125 3.7598×10−7 0.02619 4.1419×10−4 0.02045 3.7598×10−7 0.03009 5.5832 ×10−7 0.09154

Table A4: Comparing ETD-RDP with other second-order ETD Padé schemes for the Allen-
Cahn equation. ETD-CN means ETD Crank-Nicolson and P02 the ETD-Padé-(0,2) scheme.
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k=h ErrorRDP Cpu Time ErrorROB2 Cpu Time ErrorIRKLA Cpu Time ErrorSDIRK Cpu Time
0.1 1.5444×10−2 0.00210 1.0598×10−2 0.01887 1.0969×10−2 0.01752 1.1024×10−2 0.03610
0.05 3.8226×10−3 0.00415 2.4902×10−3 0.07339 2.5898×10−3 0.05553 2.6019 ×10−3 0.11239
0.025 9.9303×10−4 0.00941 6.0354×10−4 0.32931 6.2979×10−4 0.17095 6.3275 ×10−4 0.35611
0.0125 2.4649×10−4 0.02336 1.4914×10−4 1.56419 1.5586×10−4 0.63742 1.5659 ×10−4 1.25255

Table A5: Comparing ETD-RDP with other second-order Runge-Kutta and Rosenbrock
schemes.

k ErrorRDP Cpu Time ErrorETDCN Cpu Time
0.1000 1.269×10−2 0.05242 1.2213×101 0.02713
0.0500 5.2843×10−3 0.10457 2.1694×100 0.06069
0.0250 1.5809×10−3 0.20885 2.7427×10−2 0.12881
0.0125 4.3114×10−4 0.39058 4.2045×10−4 0.26287
k ErrorP02 Cpu Time ErrorBDF2 Cpu Time

0.1000 1.8762×10−1 0.22728 2.6071×10−1 4.01074
0.0500 4.6224×10−2 0.48037 4.6874×10−2 7.94775
0.0250 1.1755×10−2 0.90339 1.6258×10−2 12.74277
0.0125 2.977×10−3 3.95377 2.4235×10−3 28.96520

Table A6: Comparing ETD-RDP with other second order ETD Padé schemes and BDF2 for
the enzyme kinetics equation with d = 0.2 on a fixed grid with ∆x = 0.025. ETDCN refers
to ETD Crank-Nicolson Scheme with 4 steps of backward Euler smoothing.

k ErrorRDP Cpu Time ErrorECN Cpu Time
0.1000 2.4996×10−1 0.01595 2.5191×10−1 0.00664
0.0500 4.8185×10−2 0.02807 5.5150×10−2 0.01134
0.0250 1.2986×10−2 0.05611 1.4554×10−2 0.02266
0.0125 3.3708×10−3 0.06974 3.7325×10−3 0.04502
k ErrorP02 Cpu Time ErrorBDF2 Cpu Time

0.1000 2.6209×10−1 0.08602 2.4655×10−1 59.1874
0.0500 4.5198×10−2 1.2221 6.6237×10−2 55.4519
0.0250 1.2066×10−2 0.17521 1.7065×10−2 101.3988
0.0125 3.1222×10−3 0.26159 ×10−4 200.2900

Table A7: Comparing ETD-RDP with other second-order ETD Padé schemes and BDF2 for
the Brusselator Model after 2 secs with ∆x = 0.05.
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k = h ErrorRDP Cpu Time Rate ErrorSS Cpu Time Order
0.1000 5.6031 ×10−4 0.00485 - 1.5740×10−4 0.00591 -
0.0500 1.4888×10−4 0.02846 1.91 3.9406×10−5 0.01989 2.00
0.0250 3.8636×10−5 0.23314 1.95 9.8522×10−6 0.11013 2.00
0.0125 9.8825×10−6 2.49755 1.97 2.4612×10−6 0.82556 2.00
k = h ErrorSY Cpu Time Rate ErrorIF Cpu Time Order
0.1000 2.4955 ×10−4 0.00906 - 7.7449×10−5 0.00817 -
0.0500 6.3224×10−5 0.03255 1.98 1.7726×10−5 0.01698 2.13
0.0250 1.5931×10−5 0.18793 1.99 4.0984×10−6 0.11310 2.11
0.0125 4.0012×10−6 1.45993 1.99 9.5445×10−7 0.74388 2.10

Table A8: Convergence of ETD-RDP splitting methods for enzyme kinetics. RDP refers
to ETD-RDP scheme, SS the Strang simple splitting, SY the Strang symmetric and IF the
integrating factor method.

k = h ErrorRDP Cpu Time Rate ErrorSS Cpu Time Order
0.1000 3.2981×10−1 0.0074 - 2.7596×10−1 0.00870 -
0.0500 2.3382×10−1 0.02109 0.50 2.1380×10−1 0.01859 0.37
0.0250 8.0448×10−2 0.17208 1.54 7.7244×10−2 0.08954 1.47
0.0125 2.0789×10−2 2.24926 1.95 1.9850×10−2 0.46392 1.96
k = h ErrorSY Cpu Time Rate ErrorIF Cpu Time Order
0.1000 2.7382 ×10−1 0.01242 - 3.4223×10−1 0.00683 -
0.0500 2.1151×10−1 0.02739 0.37 2.2771×10−1 0.01520 0.59
0.0250 7.3634×10−2 0.12726 1.52 7.8393×10−2 0.07821 1.54
0.0125 1.8725×10−2 0.67638 1.98 2.0022×10−2 0.41840 1.97

Table A9: Convergence of ETD-RDP splitting methods for enzyme kinetics.

k = h ErrorECN Cpu Time Rate ErrorSS Cpu Time Order
0.1000 2.9447 ×10−4 0.00383 - 2.001×10−4 0.00280 -
0.0500 7.3406×10−5 0.01829 2.00 4.9598×10−5 0.00988 2.01
0.0250 1.8283×10−5 0.15366 2.01 1.2372×10−5 0.06054 2.00
0.0125 4.5594×10−6 2.28658 2.00 3.0914×10−6 0.44592 2.00
k = h ErrorSY Cpu Time Rate ErrorIF Cpu Time Order
0.1000 2.6199 ×10−4 0.00422 - 2.1989×10−4 0.00204 -
0.0500 6.4963×10−5 0.01641 2.01 5.4457×10−5 0.00854 2.01
0.0250 1.6204×10−5 0.09897 2.00 1.3581×10−5 0.0552 2.00
0.0125 4.0483×10−6 0.77917 2.00 3.3929×10−6 0.43117 2.00

Table A10: Convergence of ETD-CN splitting methods for enzyme kinetics.
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k = h ErrorECN Cpu Time Rate ErrorSS Cpu Time Order
0.1000 3.4490×10−1 0.00373 - 2.7937×10−1 0.01203 -
0.0500 2.3918×10−1 0.01281 0.53 2.1463×10−1 0.01203 0.38
0.0250 8.2716×10−2 0.10076 1.53 7.1545×10−2 0.05287 1.58
0.0125 2.1302×10−2 1.46030 1.96 1.8012×10−2 0.29253 1.99
k = h ErrorSY Cpu Time Rate ErrorIF Cpu Time Order
0.1000 2.7352 ×10−1 0.00670 - 3.4380×10−1 0.00270 -
0.0500 2.1028×10−1 0.01802 0.38 2.2550×10−1 0.00806 0.61
0.0250 7.2922×10−2 0.07947 1.53 7.6429×10−2 0.03883 1.56
0.0125 1.8468×10−2 0.43406 1.98 1.9321×10−2 0.22363 1.98

Table A11: Convergence of ETD-CN splitting methods for brusselator after 2 secs.

Numerical Method Butcher-array Scheme

Backward Euler
1 1

1
un+1 = un + kG(tn+1, un+1)

Crank Nicolson/ Labatto IIIA [15]
0 0 0
1 1

2
1
2

1
2

1
2

un+1 = un + k
2
G(tn, un) + k

2
G(tn+1, un+1)

Labatto IIIB [15]
0 1

2
0

1 1
2

0
1
2

1
2
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2
G(tn1, un1)
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2
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2
(G(tn1, un1) + G(tn2, un2)

SDIRK [17]
γ γ 0

1− γ 1− 2γ γ
1
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1
2
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un2 = un + k((1− 2γ)G(tn1, un1) + γG(tn2, un2))
un+1 = un + k

2
(G(tn1, un1) + G(tn2, un2))

Table A12: Some important first and second order Runge-Kutta schemes with γ = 1−
√

2
2

for SDIRK scheme.
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Table A13: Summary of some common Padé approximations
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