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ABSTRACT

ASYMPTOTIC PROBABILITY OF INCIDENCE RELATIONS OVER FINITE FIELDS

by

Adam Buck

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Jeb Willenbring

Given four generic lines in FP3, we ask, ”How many lines meet the four?” The answer

depends on the field. When F = C, the answer is two. When F = R, the answer is either

zero or two.

If we work over a finite field Fq, there are only finitely many projective lines. We compute

the probability four lines are met by two. The main result is that as q approaches infinity,

this probability approaches 1/2. Asymptotically, the other half of the time zero lines will

meet the four.
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1 Introduction

Schubert calculus is a branch of enumerative geometry. Roughly speaking, a Schubert prob-

lem seeks to count the number of subspaces satisfying a collection of Schubert conditions.

A Schubert condition specifies a set of subspaces of a fixed dimension which meet a flag

in a particular way. These terms are rigorously and neatly defined using the language of

Grassmannians. Before providing such definitions, we look at a specific Schubert problem in

geometric terms. We call this the Four Lines Problem. Examining the Four Lines Problem

over finite fields is the main topic of this dissertation.

Schubert calculus is named after its pioneer Herman Schubert (1848 - 1911). Schubert

was a German school teacher who never held a professorship, although he was offered multiple

positions. Schubert impressively answered many problems in enumerative geometry. Making

Schubert calculus rigorous is Hilbert’s 15th Problem [Hil02]. The problem remains only

partially resolved.

1.1 The Four Lines Problem

A basic Schubert problem is

How many lines in FP3 meet four generic lines in FP3?

We call this the Four Lines Problem over F. An instance of the Four Lines Problem refers

to answering this question for a specific set of four lines. The figure below shows an instance

of the Four Lines Problem over R where the answer is two.
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Figure 1.1: Four black lines are met by two blue lines. Image created using GeoGebra.

We shall rigorously define generic later, for now we provide an imprecise, and slightly

inaccurate, intuitive definition. A collection of lines is generic if no special relations exist

among them. An example of a special relation would be if any of the two lines intersected.

This is special in the sense that we typically do not expect two lines in FP3 to intersect.

1.1.1 The Complex Case

When F = C the answer two the Four Lines Problem is two. Historically, this was first

answered non-rigorously by Schubert. He looked at a specialized instance of the problem

where the answer is easily seen to be two. His principle of conservation of number then

states that if the answer is finite in a specific case, the answer will be the same finite number

in the generic case.

The particular specialized instance considered by Schubert is when the first two lines

intersect at a point P and the last two lines intersect at another point Q. In this case the

two lines meeting the four are easily found. The first is the line containing P and Q. The

second is the line of intersection between the plane containing first two lines and the plane
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containing the last two lines.

Figure 1.2: Two black lines meeting at the point P contained in the blue plane. Two more

black lines meeting at the point Q contained in the green plane. The two red lines meet the

four black lines. One red line contains P and Q. The other is the line of intersection of the

blue and green planes. Image created using GeoGebra.

Of course, it could also have been the case these two lines coincide. As is the case with

many enumerative problems, we would count this line with multiplicity two and thus the

principle of conservation of number is not violated.

We could consider an even more specialized instance of the Four Lines Problem where

all four lines are contained in the same plane. In this case, any line contained in this plane

meets the four, so there are infinitely many lines meeting the four. This does not violate

the principle of conservation of number since the principle only applies when the number of

solutions is finite.

We make a few remarks about the principle of conservation of number, although it is not

pertinent to the main result. The first rigorous treatment of Schubert’s principle was done
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by means of the cohomology theory of manifolds. The principle may be generalized to say

that cohomology classes are conserved. In the case of a specific instance having finitely many

solutions, counted with multiplicity, we happen to be conserving the cohomolgy class of a

point. However, even in the case where there are infinitely solutions, such as the instance

described in the preceding paragraph, a cohomology class is conserved. Details may be found

in [KL72] and are also described in generality Section 1.2 below.

1.1.2 The Real Case

The Four Lines Problem over R is more interesting. Here the answer is generically zero or

two. This non-unique answer to the Four Lines Problem leads to many interesting questions

referred to as reality problems. The answer to the Four Lines Problem over the finite fields

is also zero or two so we may ask analogous questions in these cases.

First we provide an intuitive argument to see why we have two answers in the real case.

Consider a generic instance of the Four Lines Problem over R. Considering these four real

lines as complex lines, we know there are two complex lines meeting the four. These two

complex lines are either real, in which case the answer to the problem over R is two, or the

two complex lines are not real, in which case the answer is zero. We will see when the answer

in the finite fields case is zero, we can find two lines in a degree two field extension which

meet the four.

A first interesting follow-up question to the Four Lines Problem over R is

Under what conditions is the answer two?

The Shapiro conjecture for Grassmannians gives a large set of instances of the Four Lines

Problem over R whose answer is two. The particular case of the Four Lines Problem is

resolved in [Sot00] using Grassmannians and Gröbner bases. The conjecture for Grassman-

nians is fully proved in [MTV09]. The conjecture may be stated more generally, where it is

not entirely true. This is discussed in [Sot10].
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Another question we may ask is

What is the ”probability” four ”random” lines are met by two?

We use quotes since there is ambiguity as to how to define probability. A careful formulation

is laid out in more generality in [BL20] and [BLLP19] and many asymptotic results are stated

and proved. Answering the above question for the case of finite fields is the main result of

this paper and is discussed in the next section.

1.1.3 The Case of Finite Fields

We shall see for any finite field the answer to the Four Lines Problem is generically zero or

two. Let Fq be the field with q elements. We may ask the question

Given four random lines in FqP3, what is the probability two lines in FqP3 meet the four?

As there are finitely many points and lines in FqP3, we may simply count the number of

instances of the Four Lines Problem whose answer is two. This is done in chapter 4. These

counts are verified via Mathematica for finite fields of prime cardinality less than or equal

to 19 in chapter 5.

The main result of this paper concerns the asymptotics of these probabilities.

Theorem 1. The probability four random lines in FqP3 are met by two lines in Fq is a

rational function in q approaching 1/2 as q approaches infinity. Further, the probability four

random lines are not met by any is also a rational function in q also approaching 1/2.

While the exact counts given in chapter 4 are sufficient to prove this result, we provide

another proof of the result in chapter 3. We relate a large subset of 4-tuples of lines in Fq

to monic quadratic polynomials over Fq. Under this correspondence the number of lines

meeting a 4-tuple is the number of solutions to this polynomial over Fq. The proof applies

in the real and complex cases as well.
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1.2 Schubert Problems

The Four Lines Problem is an example of a Schubert Problem. While the Four Lines Problem

is easy to phrase in terms of projective lines in FP3. Generalizations are much easier to phrase

in terms of Grassmannians. In this section, we briefly describe these generalizations. In the

case of F = C, solving Schubert problems is directly related to computing the cup product

in the cohomology ring of Grassmannians. This is not directly related to our main result

and details may be found in [Ful97].

Projective lines in FP3 are naturally in bijection with the Grassmannian of 2-planes in

4-space Gr2(F4). This correspondence is described in section 3.3. We may rephrase the Four

Lines Problem as

How many elements in Gr2(F4) meet four generic elements of Gr2(F4)?

As we discuss Schubert Problems in generality, we turn back to the Four Lines Problem as

a motivating example.

First, let E be a vector space of finite dimension m and let r ≤ m be an integer. Fix a

(full) flag

F• : 0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm = E (1.1)

For each Young diagram λ = (λ1, λ2, ...) with at most r rows and m− r columns, we have a

Schubert variety

Ω(F•) = {X ∈ Grr(E) : dim(X ∩ Fm−r+i−λi) ≥ i for 1 ≤ i ≤ r} (1.2)

and the collection of requirements that dim(X∩Fm−r+i−λi) ≥ i is called a Schubert condition.

Grr(E) may be given the structure of a projective variety via the Plücker embedding. The

Schubert varieties are irreducible subvarieties of Grr(E) and the codimension of Ωλ(F•) is |λ|.

A Schubert problem is determined by a collection of Schubert conditions. To be a Schubert

problem, the sum of the codimensions of these Schubert conditions should be the dimension
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of Grr(E) which is r(m−r). If we choose the flags for each Schubert condition generically, we

expect finitely many points in Grr(E) to be contained in the intersection of these Schubert

varieties.

For F = R or C, we use these variety structures to define generic. Consider a k-tuple of

Grassmannians (X1, X2, ..., Xk) ∈ Grr1 × Grr2 × · · ·Grrk . For each Zariski open set of this

variety, we may look at the possible answers to specific instances of a Schubert problem. We

call an answer to a Schubert problem generic if it is seen as an answer on every Zariski open

set. Once we have the generic answers, then we call the instances of a Schubert problem

generic if the instance has a generic answer.

In the case of Fq being a finite field, defining generic is more challenging. Since the

Grassmannian contains finitely many elements, every set is Zariski open. We may find the

probability a given number is an answer to a particular Schubert problem as a function of q.

We say an answer is a generic answer for all Fq simultaneously if the limit of this probability

is greater than 0 as q approaches infinity. After we have our generic answers, we may simply

declare any instance of a Schubert problem to be generic if it has a generic answer.

When λ = (k), we call Ωλ(F•) a special Schubert variety. It consists of those r-planes

which intersect Fm−r+1−k non-trivially. We shall use the term meet to mean intersect non-

trivially through this dissertation.

Let E = F4. Let r = 2 and fix four flags F 1
• , F

2
• , F

3
• , F

4
• Let λ = (1). Then Ωλ(F

i
•)

consists of those elements of Gr2(E) which meet F i
2 non-trivially. Notice F i

2 is a 2-plane, so

each special Schubert variety Ω(1)(F
i
•) consists of those 2-planes which meet a given 2-plane.

Translating this to the geometric formulation of lines in FP3, this corresponds to all lines

which meet a fixed line. We see that answering this instance of the Four Lines Problem

amounts to finding | ∩ Ω(1)(F
i
•)|.
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2 Preliminaries

In this chapter we recall basic definitions and properties of finite fields. We also look at

how polynomials over finite fields may factor. We also recall group actions, orbits, and

stabilizers. We describe these notions generally then look specifically at group actions of

the general linear groups on vector spaces and related objects. One such action is right

multiplication of a matrix by an element of GLr. We see the orbits of this action are in one-

to-one correspondence with row reduced echelon form matrices. Another important example

is the rational canonical form of a square matrix which serve as representatives of the orbits

under the action of conjugation.

2.1 Finite Fields

In this section we recall basic properties of finite fields and the factorization of polynomials

over finite fields. See [DF04]14.3 for details.

2.1.1 Realizing Finite Fields

First, every finite field has a prime characteristic. For each prime p and positive integer s,

there is, up to isomorphism, exactly one finite field with q = ps elements; we denote the field

with q elements by Fq. When s = 1, the field Fp is isomorphic to Z/pZ. When s > 1, Fq

may be realized as the splitting field of xq− x over Fp. Elsewhere the notation GF(q) is also

used to denote the field with q elements.

The field extensions of Fq are precisely Fqn where n is a positive integer. Thus Fq is

a subfield of Fq′ if and only if q = ps and q′ = ps
′

and s′ divides s. The Galois Group

Gal(Fq/Fqn) is cyclic of order n and is generated by the Frobenius endomorphism, which

sends each element of Fqn to its p-th power.

Fq may also be realized as Fp [x] /〈f(x)〉. Where f(x) ∈ Fp [x] is a monic irreducible
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polynomial of degree s. As finite fields are unique, choosing different monic irreducible

polynomials to define Fq results in an isomorphic field.

2.1.2 Polynomials over Finite Fields

We shall be concerned with the factorization of polynomials over Fq, we have the following

Proposition 2. Every irreducible polynomial over a finite field Fq is separable. A polynomial

in Fq [x] is separable if and only if it is the product of distinct irreducible polynomials.

Thus factorization of polynomials over finite fields is similar to the familiar fields Q, R,

and C. See [DF04, 13.5] for an example of an inseparable irreducible polynomial over an

infinite field with finite characteristic.

There are qd monic polynomials of degree d in Fq [x]. We shall be interested in counting

the monic irreducible polynomials.

Proposition 3. There are

ψq(n) =
1

n

∑
d|n

µ(d)qn/d

monic irreducible polynomials of degree d.

Where µ : N≥0 → {−1, 0, 1} is the Möbius function. Recall µ(k) = 0 if k is not square

free, otherwise µ(k) = (−1)n where n is the number of distinct prime factors of k. To prove

Proposition 3, we use the Möbius inverseion formula. If f(n) is a function defined on the

nonnegative integers and F (n) =
∑

d|n f(d), then

f(n) =
∑
d|n

µ(d)F (n/d). (2.1)

See [DF04]14.3 for more information on the Möbius inversion formula.

Proof. Let ψq(n) be the number of irreducible polynomials of degree n over Fq. Consider

the field Fqn . Every element of Fqn is a root of exactly one monic irreducible polynomial of
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some degree d which divides n. We therefore have

qn = |Fqn| =
∑
d|n

dψq(d)

Using the Möbius inversion formula with f(n) = nψ(n) shows nψ(n) =
∑
µ(d)qn/d.

Definition 1. Define Iq, Fq, and Sq by

Iq = {f ∈ Fq [x] : f is monic irreducible quadratic over Fq [x]}

Fq = {f ∈ Fq [x] : f is monic quadratic with distinct linear factors over Fq [x] and f(0) 6= 0}

Sq = {f ∈ Fq [x] : f is monic quadratic and factors as a perfect square over Fq [x] and f(0) 6= 0}
(2.2)

Example 2.

|Iq| = 1
2

∑
k∈{1,2} µ( 2

k
)qk = 1

2
(−q + q2) =

(
q
2

)
|Fq| =

(
q−1
2

)
|Sq| = q − 1

. (2.3)

We may see |Iq| independent of Proposition 3 when q 6= 2. There is a two-to-one map

Fq2 − Fq → Iq which sends an element to its minimal polynomial over Fq. The cardinalities

of Fq respectively Sq follow from choosing two distinct roots respectively one distinct root

from F×q .

2.2 Group Actions

In this section, we record basic definitions and properties of group actions. The orbits and

stabilizers of group actions will provide a convenient framework for proving the main result.

See [DF04, 1.7, 4.1] for details.

Definition 3. A left action of a group G on a set S is a map from G× S to S written g · s

satisfying

10



1. g1 · (g2 · s) = (g1g2) · s for all g1, g2 ∈ G and s ∈ S; and

2. 1 · a = a for all s ∈ S.

The notion of a right action is defined similarly.

2.2.1 Orbits and Stabilizers

Definition 4. Given an action of a group G on a set S, the orbit and stabilizer of an element

s ∈ S, denoted Orb(s) and StabG(s) respectively are given by

Orb(s) := {g · s : g ∈ G} (2.4)

and

StabG(s) := {g ∈ G : g · s = s}. (2.5)

The orbits of a group action partition S and StabG(s) is a subgroup of G. The Orbit-

Stabilizer Theorem relates these notions.

Theorem 4 (Orbit-Stabilizer Theorem). Let G be a group acting on a set S and s ∈ S.

Then |G| = |Orb(s)||StabG(s)|.

We say an element g ∈ G acts trivially if g · s = s for all s ∈ S. We call a group action

trivial if every element of G acts trivially. We call a group action faithful if only the identity

element acts trivially.

2.2.2 k-transitivity

We say that a group action is transitive if for every s, t ∈ S, there exists g ∈ G such that

g · s = t. In other words, a group action is transitive if there is only one orbit.

Given a group action of G on a set S and a positive integer k, G also naturally acts on

Sk by

g · (s1, ..., sk) = (g · s1, ..., g · sk). (2.6)
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The orbits of the action on the k-tuples are more complicated. First, if S contains more than

1 element and k ≥ 2, the action is not transitive. To see this, let s 6= t ∈ S then (s, s, ..., s)

and (t, s, ..., s) are necessarily contained in separate orbits. If we restrict this action to the

set D of those tuples containing distinct elements,

D := {(s1, ..., sk) : si 6= sj ∀i 6= j}.

the action may be transitive. If this action is transitive, we say the original action of G on S

is k-transitive. In other words an action is k-transitive if any k-tuple of distinct elements may

be sent to any other k-tuple of distinct elements under the action of some group element.

2.3 Linear Algebra

In this section we recall the definition of the general linear group. The actions of the general

linear groups play important roles in the proving the main result. We also recall the row-

reduced echelon form, which provides a distinguished element of the orbits of the left action

of a general linear group. We also examine the action of conjugation on a general linear

group.

E will always denote a finite dimensional vector space of dimension m over a field F. All

vector spaces of a dimension m over F are isomorphic, thus E ∼= Fm. Let (e1, ..., em) denote

the standard basis for Fm.

2.3.1 The General Linear Group

The general linear group, denoted GL(E), is the set of invertible linear transformations

E → E whose group operation is given by function composition. Fixing a basis for E, we

have an isomorphism from GL(E) to the invertible m×m matrices over F. We denote this

group by GLm(F) or simply GLm when underlying field F is clear from context.

GLm is in one-to-one correspondence with (ordered) bases for E. If we fix a standard basis
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(e1, ..., em) for E, then g ∈ GLm corresponds to the basis (g(e1), ..., g(em)). This perspective

will prove useful in many proofs.

Proposition 5.

|GLm(Fq)| =
m−1∏
i=0

(qm − qi) (2.7)

Proof. We count the number of bases (x1, ..., xm) for Fmq . First, choose x1 ∈ Fmq − {0} to be

the first basis vector. The second basis vector x2 must be chosen from Fmq −〈x1〉. Proceeding

in this way the ith basis vector xi must be chosen from Fmq − 〈x1, ..., xi−1〉.

2.3.2 Row-Reduced Echelon Form

Let r, m be positive integers and let Mr,m denote the set of r ×m matrices with entries in

F. We write Mn in place of Mn,n. Let M ∈Mr,n, the row space of M is the span of the rows

of M viewed as vectors. The rank of M is the dimension of its row space. We say M is full

rank if the rank of M is equal to min(r,m). We denote the set of full rank matrices by M◦
r,m.

Consider the action of GLr on Mr,m by left multiplication. Two matrices in Mr,m are said

to be row equivalent, if they are contained in the same orbit; equivalently, if they have the

same row space. The row-reduced echelon form (RREF) of a matrix provides a distinguished

representative of each orbit. The RREF of a matrix is the unique matrix in each orbit

satisfying the following properties:

1. Each nonzero row has a 1 (called a leading 1 ) as its fist nonzero entry;

2. All other entries in the column of a leading 1 are 0;

3. All zero rows occur below every nonzero row; and

4. If two leading 1’s occur in the (i, j) and (k, l) entries and i < k, then j < l.

The number of leading 1’s is the rank of the matrix, which is also the dimension of the row

space of M .
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Example 5. Let r = 2 and m = 4. The full rank reduced row echelon form matrices are of

the forms1 0 ∗ ∗

0 1 ∗ ∗

 ,
1 ∗ 0 ∗

0 0 1 ∗

 ,
1 ∗ ∗ 0

0 0 0 1

 ,
0 1 0 ∗

0 0 1 ∗

 ,
0 1 ∗ 0

0 0 0 1

 ,
0 0 1 0

0 0 0 1


(2.8)

where ∗ denotes an arbitrary element of the field. If F = Fq, there are q choices for each

starred entry and we see there are q4 + q3 + 2q2 + q + 1 full rank RREF 2× 4 matrices.

2.3.3 Similarity Classes of the General Linear Group

Any group G acts on itself by conjugation:

g · s = gsg−1 (2.9)

for all g, s ∈ G. Note that G is acting on itself, thus S = G, so s is an element of G as a set.

We compute the action of g on s, by computing gsg−1 in G as a group.

The orbits of this action are called the conjugacy classes of G. Note that an element

g ∈ G will be alone its conjugacy class if and only if g is contained in the center Z(G) of G.

We call such a conjugacy class central. When G is a finite group, we may write the order of

G as the sum of the cardinality of its center and of its non-central conjugacy classes. This

is the class equation of G:

|G| = |Z(G)|+
k∑
i=1

|Orb(gi)|. (2.10)

where there are k non-central conjugacy classes and each gk is a representative of a distinct

conjugacy class.

Of particular interest is the case G = GLn. In this case, we call the orbits similarity

classes instead of conjugacy classes. Note that the term similarity class more accurately
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refers to the orbits of GLn acting on Mn, but we shall, by abuse of notation, use the term

in both contexts. Two matrices in the same orbit are said to be similar. The center of GLn

respectively Mn are the scalar matrices, those matrices of the form cI for c ∈ F× respectively

c ∈ F.

The rational canonical form provides a distinguished representative of each similarity

class. It is discussed in the proceeding paragraphs. We prefer this form over the Jordan

canonical form. The rational canonical form only uses entries from the field F, while the

Jordan canonical form may require use of entries from a field extension of F. Further, the

invariant factors, used in the rational canonical form, play an important role in the proofs

that follow.

We may view a finite dimensional vector space E over F as a module over F [t] by fixing

T ∈ GL(E) and letting t act as T . Since F [t] is a principal ideal domain, the invariant factor

form gives an isomorphism of F [t]-modules:

E ∼= F [t] /(f1(t))⊕ F [t] /(f2(t))⊕ · · · ⊕ F [t] /(fk(t)) (2.11)

where f1(t), f2(t), ..., fk(t) are monic polynomials of degree at least one satisfying the di-

visibility requirements f1(t)|f2(t)| · · · |fk(t). The polynomials fi(t) are called the invariant

factors and play an important role in determining the Rational Canonical Form of a matrix,

which in turn plays a major role in proving the main theorem.

For each term F [t] /(f(t)) on the right side of 2.11, let f(t) = td+ad−1t
d−1+ · · ·+a1t+a0.

We may choose 1, t̄, t̄2, ..., t̄d−1 as a basis for F [t] /(g(t)). In this case the matrix of T has a

particularly nice form

Cf =



0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2
...

...
. . .

...
...

0 0 . . . 1 −ad−1
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called the companion matrix of f(t). Note that the characteristic polynomial of Ct is f(t).

Combining such bases for each term on the right side of 2.11, yields a basis with respect

to which the matrix of T is block diagonal with blocks Cf1 , Cf2 , ..., Cfk . This is the rational

canonical form of T or any matrix representing T .

We have two important facts about the invariant factors. The largest invariant factor fk(t)

is the minimal polynomial mT of T . The product of the invariant factors is the characteristic

polynomial cT of T . Thus the minimal polynomial divides the characteristic polynomial.

These facts are particularly useful in classifying linear transformations over low-dimensional

vector spaces since this heavily restricts the possibilities of the invariant factor decomposition

of a given linear transformation.

Example 6. Given M ∈M2, then M has either one quadratic invariant factor or two linear

invariant factors. If M has only one quadratic invariant factor f1, then f1 = cM = mM and

M = Cf1 . If M has two invariant linear factors f1, f2, then f1|f2 so f1 = f2. Since f1 and f2

are linear, their companion matrices are 1× 1 so M is a scalar matrix.

The above example plays an important role in finding the class equation of GL2(Fq).

Theorem 6 (The Class Equation of GL2(Fq)). The class equation of GL2(Fq) is

|GL2(Fq)| = (q − 1) + (q + 1)(q − 1) + · · · (q + 1)(q − 1)︸ ︷︷ ︸
(q−1) times

+ q(q + 1) + · · ·+ q(q + 1)︸ ︷︷ ︸
(q−1

2 ) times

+ q(q − 1) + · · · q(q − 1)︸ ︷︷ ︸
(q
2) times

.

(2.12)

Further, the non-central similarity classes have size (q + 1)(q − 1) when cM ∈ Sq; q(q + 1)

when cM ∈ Fq; and q(q − 1) when cM ∈ Iq.

Proof. First, |Z(GLn(Fq))| = q − 1 since the center consists of the non-zero scalar matrices.

In light of Example 6, the remaining non-central similarity classes may each be repre-

sented by the 2 × 2 companion matrix of their characteristic polynomial. We shall count
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how many elements of GL2 have a given characteristic polynomial. Consider the polynomial

c(t) = t2 − Tt − D for T,D ∈ Fq. To find the number of matrices with this characteristic

polynomial is to count the solutions (a, b, c, d) ∈ F4
q to

a+ d = T

ad− bc = D
(2.13)

since the characteristic polynomial of M ∈ GL2 is t2 − (a+ d)t− (ad− bc). We see T is the

trace and D is the determinant of M . As we are considering GL2, we have that D 6= 0.

First suppose, c(t) ∈ Fq factors into distinct linear factors so c(t) = (t − α)(t − β) for

some α 6= β ∈ F×q . First consider the 2 solutions (a, d) to a + d = T and ad = D, namely

(α, β) and (β, α). For each of these solutions, there are 2q − 1 solutions (b, c) to the second

equation in 2.13 since this amounts to finding solutions cd = ad−D = 0. Now consider the

q − 2 solutions (a, d) to a+ d = T and ad 6= D. For each of these q − 2 solutions, there are

q− 1 solutions (c, d) to the second equation in 2.13 since cd = ad−D 6= 0. Thus in the case

of c(t) ∈ Iq, there are 2(2q − 1) + (q − 2)(q − 1) = q(q + 1) solutions to 2.13 as claimed.

Next suppose, c(t) ∈ Iq. In this case there are no solutions (a, d) to a + d = T and

ad = D, otherwise c(t) would factor as (t − a)(t − d) over Fq. In this case there are q

solutions to a + d = T and ad 6= D. And, by the same argument above, for each of these q

solutions (a, d), there are q − 1 solutions (c, d), to the second equation of 2.13. Thus in the

case of c(t) ∈ Iq, there are q(q − 1) solutions to 2.13.

Finally, suppose c(t) ∈ Sq, so c(t) = (c−α)2 for some α ∈ F×q . The argument is similar to

the first case, however, in this case there is only one solution (a, d) to a+d = T and ad = D,

namely (α, α). For this solution there are 2q − 1 solutions (b, c) to the second equation in

2.13. The remaining q − 1 solutions to a + d = T are such that ad 6= D. For each of these

solutions (a, d), there are as above, q − 1 solutions (c, d) to the second equation of 2.13. We

have that (2q − 1) + (q − 1)2 = q2 matrices have c(t) as their characteristic polynomial,

however, one of these matrices is scalar so there are q2 − 1 = (q + 1)(q − 1) matrices in the
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non-central similarity class of a matrix with a perfect square characteristic polynomial.

It remains to count the number of similarity classes of each case. This was done in

Example 2.

An alternative proof of the class equation above, using the Orbit-Stabilizer Theorem,

may be found in [Mat12]. The proof presented above provides technique and detail used in

the main result. The above theorem may easily be altered to find the number and size of the

similarity classes of Mn(Fq) by simply allowing 0 as a root of the characteristic polynomials

considered.

Corollary 7. Let f ∈ Fq [x] be a monic degree 2 polynomial with nonzero constant term.

Then |Stab(Cf )| is q(q − 1) when f ∈ Sq, (q − 1)2 when f ∈ Fq, and (q + 1)(q − 1) when

f ∈ Iq.

Proof. This follows directly from the Orbit-Stabilizer Theorem, Theorem 6, and Proposition

5.
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3 The Grassmannian

As mentioned in chapter 1, we prefer to frame the Four Lines Problem in terms of the

Grassmannian of 2-spaces in F4. In this chapter we define the Grassmannians of r-spaces in

Fm. We also describe the natural bijection FPm−1 ↔ Gr1(Fm). This correspondence extends

so that we have a bijection

{(r − 1)-planes in FPm−1} ↔ Grr(Fm) (3.1)

for r = 1, ...,m. Realizing the Grassmannian as the row span of a (row-reduced Echelon

form) matrix provides a unique representative for each element of Grr. These matrices are

used in the computations of chapter 5.

First we define the Grassmannian.

Definition 7. Given a positive integer r, the Grassmannian of r-planes in E is

Grr(E) := {V ⊆ E : dimV = r} (3.2)

We will often write Grr and omit the underlying vector space E. We also define the

Grassmannian of E to be the set of all subspaces of E and denote it by Gr.

Let x1, ..., xk ∈ E. We denote the span of x1, ..., xk by 〈x1, ..., xk〉. Thus if x1, ..., xk are

linearly independent, 〈x1, ..., xk〉 ∈ Grk.

To explicitly realize the Grassmannian of r-planes in E, fix a basis for E. An r-space

X ∈ Grr is realized as the row span of M ∈ M◦
r,m. Two such matrices M,M ′ ∈ M◦

r,m

represent the same r-space if and only if there exists g ∈ GLr such that gM = M ′. We

therefore have a bijection.

Grr(E)←→ GL(r)\M◦
r,m (3.3)

We will often use the distinguished RREF matrix to represent these orbits. We also write
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[X] ∈M◦
r,m to represent the matrix corresponding to X ∈ Grr(E); the basis used to represent

[X] will be obvious from context.

3.1 The Cardinality of the Grassmannian

The goal of this section is to show |Grr(Fmq )| is the q-binomial coefficient
(
m
r

)
q
. To do so, we

look at the possible ’shapes’ of the free entries of the RRREF for full rank r ×m matrices.

Each ’shape’ is a Young diagram. The matrices with a given shape are the Schubert cells

with respect to the standard flag.

3.1.1 Partitions and Young Diagrams

Given an integer n, a partition λ of n, is a decreasing sequence λ = (λ1, λ2, ...) of non-negative

integers such that
∑
λi = n. The size of a partition λ is denoted |λ| and is equal to n. Such

a sequence converges to 0, and we often write a partition as a finite tuple of the positive

integers λ = (λ1, λ2, ..., λk), omitting the zeros. The number k is called the length of the

partition.

To each partition λ = (λ1, λ2, ..., λk) of n, there is an associated Young diagram consisting

of k left-justified rows of boxes; the ith rows containing λi boxes. We do not distinguish

between λ as a partition and λ as the associated Young diagram. Given two Young diagrams

λ and µ, we say µ is contained in λ, and write µ ⊂ λ, if µi ≤ λi for all i. Thus µ ⊂ λ if

the diagram µ fits inside the diagram λ. The figure below shows the complete containment

lattice of λ = (2, 2). We let {} represent the empty diagram.
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{}

Figure 3.1: Containment lattice of λ = (2, 2).

There is an obvious correspondence between these diagrams and the possible types of

RREF matrices in M◦
2,4 from Example 5. This correspondence generalizes, so that the

types of RREF matrices in M◦
r,m are in one-to-one correspondence with the Young diagrams

contained in the r × (m− r) diagram.

Given λ contained in the r × (m− r) diagram, we have the complimentary diagram λC

formed by removing λ from the r × (m − r) diagram and rotating the remainder 180 deg.

That is λC = (m − r − λr,m − r − λr−1, ...). For our purposes, in what follows, we prefer

the one-to-one correspondence between types of RREF matrices in M◦
r,m and the diagrams

contained in the r× (m− r) diagram be given by taking the complimentary diagram to the

one described in the previous paragraph.

3.1.2 Schubert Cells

In this section, we describe a cellular decomposition of Grr. First, we fix a (full) flag F•

F• : 0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm = E (3.4)
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so dimFi = i. For each Young diagram λ = (λ1, λ2, ...λk) with at most r rows and m − r

columns we define a Schubert cell

Ω◦λ = Ω◦λ(F•) = {V ∈ Grr : dimV ∩ Fk = i,m− r + i− λi ≤ k ≤ m− r + i− λi+1}. (3.5)

If we fix a basis (x1, x2, ..., xm) for E, thus associating Grr(E) with the RREF matrices in

M◦
r,m, such that Fi = 〈x1, ..., xi〉, then Ω◦λ consists of those RREF matrices whose shape is

given by λC .

Note, when F = C or R, Grr(E) has the structure of a manifold and the Schubert cells

provide a cellular decomposition of Grr(E). The closure of the Schubert cell Ω◦λ is the

Schubert variety Ωλ = ∪µ⊂λΩ◦µ.

3.1.3 The q-Binomial Coefficients

The cardinality of Gr2(Fmq ) is given by the q-binomial coefficients, which we describe in

this section. The q-analog of an object, generalizes the object in such a way that the

(limiting) case q = 1 produces the original object. In this section only, we consider q as an

indeterminate. However, conveniently, the results will be used by letting q be a power of a

prime.

We define the q-analogue of a positive integer n by

[n]q = 1 + q + · · · qn−1. (3.6)

Notice the case q = 1, we have [n]1 = n. So this definition is a suitable q-analogue of an

integer. We then define the q-analogue of the factorial by

[n]q! = [1]q[2]q · · · [n]q. (3.7)

Since [n]1 = n, we also have [n]1! = n!. Further, we have the q-analogue of the binomial
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coefficients, which we refer to as the q-binomial coefficients.

(
n

k

)
q

=
[n]q!

[n− k]q![k]q!
(3.8)

Each q-binomial coefficient is obviously a rational function in q. Many of the familiar relations

among the binomial coefficients have q-analogues.

Proposition 8 (q-analogue of Pascal’s Triangle).

(
n+ 1

k + 1

)
q

=

(
n

k

)
q

+ qk+1

(
n

k + 1

)
q

(3.9)

Proof. (
n
k

)
q

+ qk+1
(
n
k+1

)
q

= [n]q !

[n−k]q ![k]q ! + [n]q !qk+1

[n−k−1]q ![k+1]q !

= [n]q !([k+1]q+qk+1[n−k]q !)
[n−k]q ![k+1]q !

= [n]q !((1+q+···qk)+qk+1(1+q+···qn−k))

[n−k]q ![k+1]q !

= [n+1]q !

[n−k]q ![k+1]q !

=
(
n+1
k+1

)
q

Corollary 9. The q-binomial coefficients are polynomials in q.

Proof. From the definitions, the q analogue of an integer and of the factorial are polynomials

in q and the q-binomial coefficients are rational functions in q. Notice
(
n
0

)
q

=
(
n
n

)
q

= 1 and

by Proposition 8 all q-binomial coefficients are products and sums of polynomials in q.

Proposition 10. Let k ≤ n be non-negative integers and λ be the (n−k)×k Young diagram.

Then (
n

k

)
q

=
∑
µ⊂λ

q|µ|. (3.10)

Proof. Let P (n, k, i) denote the set of Young diagrams contained in the (n− k)× k diagram
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with exactly i boxes. We wish to show

(
n

k

)
q

=

n(n−k)∑
i=0

|P (n, k, i)|qi. (3.11)

This will prove the proposition. We define φ : P (n+ 1, k+ 1, i)→ P (n, k, i)∪P (n, k+ 1, i−

k − 1). By

φ(µ1, µ2, ..., µn−k) =


(µ1, ..., µn−k) if µ1 ≤ k

(µ2, ..., µn−k) if µ1 = k + 1

(3.12)

This function is bijective and we have

k(n−k)∑
i=0

|P (n+ 1, k + 1, i)|qi =

(k+1)(n−k)∑
i=0

|P (n, k, i)|qi + qk+1

(k+1)(n−k−1)∑
i=0

|(P, n, k + 1, i)|qi.

This is the same recurrence relation for the q-binomial coefficients in Proposition 8. It

remains to see the trivial base cases

(
n
0

)
q

= 1 =
∑0

i=0 |P (n, 0, i)|qi(
n
n

)
q

= 1 =
∑0

i=0 |P (n, n, i)|qi.
(3.13)

Corollary 11.

|Gr2(F4
q)| = q4 + q3 + 2q2 + q + 1 = (q2 + 1)(q2 + q + 1) (3.14)

3.2 A Right Action on the Grassmannian

The left action of GLr on Grr is trivial since the elements of Grr are the orbits of the action

on M◦
r,m. However, letting g ∈ GLm act by right multiplication

[M ] · g = [Mg]
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gives a transitive right action of GLm on Grr. We may also speak of the right action of GLm

on the general Grassmannian. In this case the orbits are Gri for i = 0, 1, ...,m.

We say two elements X1, X2 ∈ Gr meet if X1 ∩ X2 6= {0}. Representing X1 and X2 as

row spaces of matrices [X1] and [X2], we have the following.

Proposition 12. X1, X2 ∈ Gr meet if and only if rank[X1] + rank[X2] > rank

X1

X2

.

The right action of GLm on Grm is not k-transitive for any k > 1 and 1 < r < m− 1. To

see this, note that the action of GLm on Gr commutes with intersections and direct sums.

(X1 ∩X2) · g = (X1 · g) ∩ (X2 · g) and (X1 ⊕X2) · g = (X1 · g)⊕ (X2 · g) (3.15)

LettingX1 = 〈e1, ..., er〉, X2 = 〈e2, e3, ..., er+1〉, andX ′2 = 〈e3, e4, ..., er+2〉. We see dimX1 ∩X2 =

r−1 and dimX1 ∩X ′2 = r−2 so (X1, X2), (X1, X
′
2) ∈ Gr22 are necessarily elements of distinct

orbits.

3.2.1 Orbits of Tuples of the Grassmannian

Many of the results in this section generalize, but we focus on the case E = F4 as this is

fundamental to the main result.

As mentioned, the right action of GL4 on Gr2 is not 2-transitive. The action of GL4 on

Gr2 ×Gr2 has three orbits which are determined by the dimensions of the intersections.

Proposition 13. There are three orbits of the right action of GL4 on Gr2×Gr2. They have

representatives (〈e1, e2〉, 〈e3, e4〉), (〈e1, e2〉, 〈e1, e3〉), and (〈e1, e2〉, 〈e1, e2〉). Further, if F = Fq

is a finite field, then

|Orb((〈e1, e2〉, 〈e3, e4〉))| = q4(q2 + 1)(q2 + q + 1)

|Orb((〈e1, e2〉, 〈e1, e3〉))| = q(q + 1)2(q2 + 1)(q2 + q + 1)

|Orb((〈e1, e2〉, 〈e1, e2〉))| = (q2 + 1)(q2 + q + 1)

(3.16)

25



Proof. Let (X1, X2) ∈ Gr2 ×Gr2. Then dim(X1 ∩X2) = 0, 1, 2.

Suppose first dim(X1∩X2) = 0. There exists x1, x2 ∈ X1 and x3, x4 ∈ X2 such that X1 =

〈x1, x2〉 and X2 = 〈x3, x4〉. Further, (x1, x2, x3, x4) is a basis for E since E = X1 ⊕X2. The

linear transformation defined by xi 7→ ei, shows this pair is in the orbit of (〈e1, e2〉, 〈e3, e4〉).

Next, suppose dim(X1 ∩X2) = 1. There exists, x1 ∈ X1 ∩X2, x2 ∈ X1 and x3 ∈ X2 such

that 〈x1〉 = X1 ∩X2, 〈x1, x2〉 = X1, and 〈x1, x3〉 = X2. Let x4 ∈ E − (X1 ⊕X2). The linear

transformation defined by xi 7→ ei shows this pair is the orbit of (〈e1, e2〉, 〈e1, e3〉).

Finally, suppose dim(X1 ∩ X2) = 2. Then X1 = X2 and since the action on Gr is

transitive, there is only one orbit for this pair.

Remark 3.2.1. We may also consider the action of GL4 on unordered pairs {Y, Y ′} for Y, Y ′ ∈

Gr2. In this case, there are still only three orbits, the pairs where Y = Y ′; the pairs where

Y 6= Y ′ but Y and Y ′ meet; and the pairs where Y and Y ′ do not meet.

Proposition 14. Let U = {(X1, X2, X3) ∈ (Gr2)
3 : Xi does not meet Xj for i 6= j}. The

action of GL4 on U is transitive. The stabilizer of an element of U is isomorphic to GL2.

Proof. We show there exists a basis (x1, x2, x3, x4) for E such that X1 = 〈x1, x2〉, X2 =

〈x3, x4〉, and X3 = 〈x1 + x3, x2 + x4〉.

First, since X1 does not meet X2 and each are 2-dimensional, E = X1 ⊕ X2. Since

X3 ⊂ E, there are vectors x1, x2 ∈ X1 and x3, x4 ∈ X2, such that X3 = 〈x1 + x3, x2 + x4〉.

It remains to show that no xi = 0. However, if any were 0, then X3 necessarily meets either

X1 or X2. This shows the action on U is transitive.

As there is only one orbit, we compute the stabilizer of the representative element

(X1, X2, X3) = (〈e1, e2〉, 〈e3, e4〉, 〈e1 + e3, e2 + e4〉) (3.17)
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Representing these Xi as the row span of 2× 2 matrices we have

[X1] =

1 0 0 0

0 1 0 0

 ; [X2] =

0 0 1 0

0 0 0 1

 ; [X3] =

1 0 1 0

0 1 0 1

 (3.18)

We represent an element of g ∈ GL4 in 2× 2 blocks A,B,C,D

g =

A B

C D

 . (3.19)

First we find g ∈ GL4 which fix the first component. Since

[X1] · g =

[
I 0

]A B

C D

 =

[
A B

]
, (3.20)

the matrix A must be invertible, To row reduce

[
A B

]
, we multiply on the right by A−1

and see that

[
I A−1B

]
must equal

[
I 0

]
so B is the zero matrix.

By a similar computation and argument for the second component, we conclude C is

the zero matrix and D is invertible. Putting both of these conditions together, we see that

g ∈ StabGL4
(X1, X2, X3) must have the form

g =

A 0

0 D

 . (3.21)

Such an element must also fix the third component.

[X3] · g =

[
I I

]A 0

0 D

 =

[
A D

]
(3.22)
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which is row equivalent to

[
I I

]
if and only if A = D.

Notice |Gr32| = (q4 + q3 + 2q2 + q+ 1)3 has leading term q12 and |U | = |GL4|
|GL2|

= q12− q9−

q8 + q5. Thus as q →∞, the probability a random element of Gr32 belongs to U approaches

1.

Proposition 15. Let U ⊂ (Gr2)
4 consist of the quadruples (X1, X2, X3, X4) such that

X1, X2, X3 pairwise do not meet and X1, X2, X4 pairwise do not meet. The orbits of the

GL4 on U are in one-to-one correspondence with the similarity classes of GL2.

Proof. We have at least one representative of any orbit of U of the form

(

[
I 0

]
,

[
0 I

]
,

[
I I

]
,

[
I M

]
) (3.23)

where M ∈ GL2. The first three components of 3.2.1 follow from Proposition 14. The fourth

component must be the row span of some full rank RREF 2× 4 matrix. If the leading ones

did not occur in the first two columns, then the fourth component would necessarily intersect

the second.

To see M ∈ GL2, suppose otherwise. Then M would row reduce to a matrix M ′ of the

form

1 ∗

0 0

,

0 1

0 0

, or

0 0

0 0

. Let g ∈ GL2, be a matrix which puts M into one of these

forms. Then M is row equivalent to

g ·
[
I M

]
=

[
g M ′

]
(3.24)

since the bottom row of M ′ consists of zeros, the bottom row of the overall matrix is seen

to meet X1. Thus M must be invertible.

We let the stabilizer of the first three components act on the fourth component and we
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remain in the same orbit. Thus X4 =

[
I M

]
is in the same orbit as

g−1
[
I M

]g 0

0 g

 =

[
I g−1Mg

]
(3.25)

for any g ∈ GL2. Thus we see the orbits are in one-to-one correspondence with the similarity

classes of GL2 as claimed.

Given (X1, X2, X3, X4) ∈ U , we may choose a distinguished representative of the form

(3.2.1) where M is in rational canonical form. The stabilizer of (X1, X2, X3, X4) has the

same size as the stabilizer of M with respect to the action of conjugation.

The next proposition describes all orbits of Gr32. The sizes of these orbits allow for an

efficient computation of the exact counts of the number of ways exactly two lines meet four.

Proposition 16. Let GL4 act on (Gr2(F4))3. There are 17 orbits of this action. The tables

below provides a representative of each orbit, as well as the stabilizer of the representative.
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Oi X3 Stabilizer |StabGL4
| |Oi|

O1 〈e1 + e3, e2 + e4〉


a1 a2 0 0

b1 b2 0 0

0 0 a1 a2

0 0 b1 b2

 (q2 − 1)(q2 − q) q5(q + 1)(q − 1)2|Gr2|

O2 〈e1, e2 + e3〉


a1 0 0 0

b1 b2 0 0

0 0 b2 0

0 0 d3 d4

 q2(q − 1)3 q4(q + 1)2(q − 1)|Gr2|

O3 〈e3, e1 + e4〉


a1 0 0 0

b1 b2 0 0

0 0 c3 0

0 0 d3 a1

 q2(q − 1)3 q4(q + 1)2(q − 1)|Gr2|

O4 〈e1, e3〉


a1 0 0 0

b1 b2 0 0

0 0 c3 0

0 0 d3 d4

 q2(q − 1)4 q4(q + 1)2|Gr2|

O5 〈e1, e2〉


a1 a2 0 0

b1 b2 0 0

0 0 c3 c4

0 0 d3 d4

 (q2 − 1)2(q2 − q)2 q4|Gr2|

O6 〈e3, e4〉


a1 a2 0 0

b1 b2 0 0

0 0 c3 c4

0 0 d3 d4

 (q2 − 1)2(q2 − q)2 q4|Gr2|

Table 3.1: Orbit size and stabelizer of (X1, X2, X3) where X1 = 〈e1, e2〉 and X2 = 〈e3, e4〉
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Oi X3 Stabilizer |StabGL4
| |Oi|

O7 〈e2 + e3, e4〉


a1 0 0 0

b1 b2 0 0

−b1 0 b2 0

0 d2 d2 d4

 q2(q − 1)3 q4(q + 1)2(q − 1)|Gr2|

O8 〈e3, e4〉


a1 0 0 0

b1 b2 0 0

0 0 c3 0

0 0 d3 d4

 q2(q − 1)4 q4(q + 1)2|Gr2|

O9 〈e2, e4〉


a1 0 0 0

0 b2 0 0

c1 0 c3 0

0 d2 0 d4

 q2(q − 1)4 q4(q + 1)2|Gr2|

O10 〈e1, e4〉


a1 0 0 0

b1 b2 0 0

c1 0 c3 0

d1 0 0 d4

 q3(q − 1)4 q3(q + 1)2|Gr2|

O11 〈e2, e3〉


a1 0 0 0

0 b2 0 0

0 0 c3 0

d1 d2 d3 d4

 q3(q − 1)4 q3(q + 1)2|Gr2|

O12 〈e1, e2 + e3〉


a1 0 0 0

b1 b2 0 0

c1 0 b2 0

d1 d2 d3 d4

 q5(q − 1)3 q(q + 1)2(q − 1)|Gr2|

O13 〈e1, e3〉


a1 0 0 0

b1 b2 0 0

c1 0 c3 0

d1 d2 d3 d4

 q5(q − 1)4 q(q + 1)2|Gr2|

O14 〈e1, e2〉


a1 0 0 0

b1 b2 0 0

c1 0 c3 0

d1 d2 d3 d4

 q5(q − 1)4 q(q + 1)2|Gr2|

Table 3.2: Orbit size and stabelizer of (X1, X2, X3) where X1 = 〈e1, e2〉 and X2 = 〈e1, e3〉
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Oi X3 Stabilizer |StabGL4
| |Oi|

O15 〈e3, e4〉


a1 a2 0 0

b1 b2 0 0

0 0 c3 c4

0 0 d3 d4

 (q2 − 1)2(q2 − q)2 q4|Gr2|

O16 〈e1, e3〉


a1 0 0 0

b1 b2 0 0

c1 0 c3 c4

d1 d2 d3 d4

 (q − 1)4q5 q(q + 1)2|Gr2|

O17 〈e1, e2〉


a1 a2 0 0

b1 b2 0 0

c1 c2 c3 c4

d1 d2 d3 d4

 q4(q2 − 1)2(q2 − q)2 |Gr2|

Table 3.3: Orbit size and stabelizer of (X1, X2, X3) where X1 = X2 = 〈e1, e2〉

Proof. The verification of the stated stabilizers is a simple. We have
∑
|Oi| = |Gr2|3. It

remains to show the listed orbits are distinct. For i 6= j, we may distinguish Oi from Oj by

noticing |Oi| 6= |Oj| for most pairs (i, j). We analyze the cases where |Oi| = |Oj| below.

To distinguish O13, O14, and O16, notice that the second and third components of O13

are equal, while the first and third components of O14 are equal, and the first and second

components of O16 are equal. Similar reasoning distinguishes O5, O6, O15. To distinguish

O2, O3, O7, notice the first and third components of O2 meet, while the second and third

components of O3 meet, while the first and second components of O7 meet. Similar reasoning

distinguishes O4, O8, O9. The triples of orbits just distinguished form a single orbit if we allow

S3 ×GL4 to act on Gr32. This allows a shortcut in computational methods.

Finally, to distinguish O10 from O11, notice the components of O10 span F4 while the

components of O11 span a 3-dimensional subspace.

3.3 Projective Spaces and Projective Geometry

Projective space P(E) is the set of equivalences classes of E − {0} under the equivalence

relation ∼, where v ∼ w if there exists c ∈ F× such that v = cw. As E is m-dimensional

and isomorphic to all other vector spaces of dimension m over F, we speak of projective
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(m − 1)-space and denote it FPm−1. Projective space is the Grassmannian of 1-planes, i.e.

FPm−1 = Gr1.

The projective points of FP3 are lines through the origin in F4. If we fix the hyperplane

H1 = {(1, x2, x3, x4) ∈ F4}, most projective points intersect H1. Those projective points

which do not intersect H1 are contained in the hyperplane K1 = {(0, x2, x3, x4)}), and most of

these projective points intersect the plane H2 = {(0, 1, x3, x4)} a ”projective plane a infinity”.

The projective points that do not intersect H1 or H2, intersect either H3 = {(0, 0, 1, x4) ∈ F4}

a ”projective line at infinity” or H4 = {(0, 0, 0, 1)} a ”projective point at infinity”.

The figure below shows the analogous picture for FP2. We have two red lines through the

origin (points in the Grassmannian). One of the red lines meets the blue plane at a point

labelled [1 : y : z]. The other red line meets the ’line at infinity’ at a point labelled [0, 1, z].

The z-axis is the line represented by the point at infinity labelled [0, 0, 1]. We note there is

distinguished about these ’points at infinity.’ If we chose a different reference plane, some or

all of the points at infinity could meet the new reference frame.

Figure 3.2: Elements of Gr2 (red lines through origin) meeting the affine plane x = 1 or the

affine line x = 0 and y = 1 (line at infinity). The z axis is a line through the origin meeting

the point at infinity.
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We use projective coordinates to describe the points in FPm−1. Since FP3 = (E−{0})/ ∼,

the points (x1, x2, ..., xm), (cx1, cx2, ..., cxm) ∈ Fm are equivalent for all c ∈ F − {0}. We

denote this equivalence class by [x1 : x2 : · · · : xm] and sometimes omit the colons. Since not

all xi are 0, we made divide the projective coordinates by the leftmost xn which is non-zero.

Thus there is a unique representative of the equivalence class of the form

[0 : · · · : 0 : 1 :
xn+1

xn
: · · · : xm

xn
] (3.26)

which is simply the RREF of a 1×m matrix.

Given two distinct projective points p1, p2 ∈ FP3, there is a unique projective line con-

taining p1 and p2. The projective line through p1 and p2 is the plane through the origin

containing p1 and p2. If we view p1 and p2 as matrices, then the projective plane is described

as the row span of p1 and p2. Thus projective planes are in one-to-one correspondance with

Gr2. In general, projective (r − 1)-planes in FPm−1 are in one-to-one correspondence with

Grr(Fm).

3.4 The Four Lines Problem

In this subsection, let E be a vector space of dimension 4 over Fq. LetMq : (Gr2)
4 → P(Gr2)

be given by

(X1, X2, X3, X4) 7→ {Y ∈ Gr2 : Xi meets Y for all i} (3.27)

We call such a 4-tuple (X1, X2, X3, X4) ∈ (Gr2)
4 perfect if |Mq(X1, X2, X3, X4)| = 2. We

call a 4-tuple horrible if |Mq(X1, X2, X3, X4)| = 0. Let Pq denote the set of perfect 4-tuples

and Hq denote the set of horrible 4-tuples.

Theorem 17. Let E be a vector space of dimension 4 over Fq, then

lim
q→∞

|Pq|
|Gr42|

= lim
q→∞

|Hq|
|Gr42|

=
1

2
. (3.28)
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That is to say, the probabilities of random element of (Gr2)
4 is perfect or horrible each

asymptotically approach 1
2
.

Proof. Let Mq be as defined above. We shall restrict Mq to the subset U ⊂ (Gr2)
4 of

Proposition 15 and show that

lim
q→∞

|Pq ∩ U |
|Gr42|

= lim
q→∞

|Hq ∩ U |
|Gr42|

=
1

2
. (3.29)

Since the limits in (3.29) are a lower bound for the limits (3.28) and the limits sum to 1;

this will prove the theorem.

First, note that |M(X)| is constant on each orbit of U , since

M(X1, X2, X3, X4) · g =M(X1 · g,X2 · g,X3 · g,X4 · g). (3.30)

We compute |M(X)| on the distinguished representative of each orbit.

The 2-planes in Gr2 which meet X1, X2, X3 are

Yt =

1 t 0 0

0 0 1 t

 ; Y∞ =

0 1 0 0

0 0 0 1

 (3.31)

for t ∈ Fq. We may test which of these subspaces meets X4 by stacking the matrices Yt and

X4. If the determinant of the matrix is 0, the spaces X4 and Yt meet. First, if M is the

identity matrix, then X3 = X4 and X4 meets Yt for all t ∈ Fq ∪{∞}. Now suppose M is not

the identity matrix. If t ∈ Fq, then the determinant of

X4

Yt

 is −cM(t), the negative of the

characteristic polynomial of M . When t = ∞, the determinant is −1. Thus the number of

lines meeting the four is the number of solutions to cM(t) = 0 over the field Fq.
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We have

Pq ∩ U =
⋃
f∈Fq

Orb(Cf )

Hq ∩ U =
⋃
f∈Iq

Orb(Cf )
(3.32)

As |Orb(()Cf )| = |Orb(()Cg)| if f, g ∈ Fq or if f, g ∈ Iq. Since GL4 is acting and has order

(q4 − 1)(q4 − q)(q4 − q2)(q4 − q3) we have

Orb(Cf ) =
|GL4|
|StabCf |

=


(q4−1)(q4−q)(q4−q2)(q4−q3)

(q−1)2 if f ∈ Fq

(q4−1)(q4−q)(q4−q2)(q4−q3)
(q+1)(q−1) if f ∈ Iq

(3.33)

Multiplying the above quantities by the number of each type of orbit we have

|Pq ∩ U | = (q−1)(q−2)(q4−1)(q4−q)(q4−q2)(q4−q3)
2(q−1)2

|Hq ∩ U | = q(q−1)(q4−1)(q4−q)(q4−q2)(q4−q3)
2(q+1)(q−1)

(3.34)

The leading term of each is 1
2
q16, while the leading term of |(Gr2(F4

q))
4| is q16. This shows

the limits in (3.29) are as claimed.
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4 Exact Counts

In this chapter, we find and prove an exact count of Pq.

|Pq| = 1
2
q7(q + 1)2(q2 + 1)(q2 + q + 1)(q3 + 5q2 − q + 1)

= 1
2
q7(q9 + 8q8 + 19q7 + 29q6 + 33q5 + 27q4 + 17q3 + 7q2 + 2q + 1)

(4.1)

The approach is different from the previous chapters. We define a function from ’bipartite

labelings’ of bipartite graphs with four edges and no isolated nodes to (unordered) instances

of the four lines problems where the answer is at least two. We call those ’bipartite labelings’

where the answer is two, perfect. We show the perfect bipartite labelings covers all elements

of P and that the number of ’bipartite labelings’ which map to the same element of P is the

cardinality of the corresponding ’bipartite automorphism group’.

4.1 Bipartite Graphs

A bipartite graph consists of disjoints sets of nodes A and B along with a set of edges E ⊂

P(AtB) which are two element sets {v1, v2} such that |{v1, v2}∩A| = 1 and |{v1, v2}∩B| = 1.

A graph is called bipartite if there exists a bipartition of the nodes into sets A and B as

above. Note that this bipartition is not unique unless the graphs is connected.

Given a bipartite graph (A,B, E), define Bip(A,B, E), the bipartite automorphism group

of G to be the set of graph auotomorphisms φ such that φ(A) = A or φ(A) = B. The

next example highlights the difference between graph automorphisms and bipartite graph

automorphisms.

Example 8. Consider the graph G below

-1 -2 -3 -4

1 2 3 4
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We have

G = ({−4,−3,−2,−1, 1, 2, 3, 4}, {{−1, 1}, {−2, 2}, {−3, 3}, {−4, 4}}).

The set of graph automorphisms are the signed permutations of 1, 2, 3, 4, which contains

24 · 4! = 384 elements. Notice G is bipartite with bipartition A = {−1,−2,−3,−4} and

B = {1, 2, 3, 4}. Then Bip(A,B, E) ∼= S2 × S4 has 2 · 4! = 48 elements. Thus not all graph

automorphisms are bipartite graph automorphisms.

Notice also that the bipartite automorphism group depends on the chosen bipartition of

the nodes, as the next example illustrates.

Example 9. Let G = ({1, ..., 9}, {{1, 7}, {2, 7}, {3, 8}, {4, 8}, {5, 9}, {6, 9}}). Consider the

bipartitions A tB and A′ t B′ of the nodes given by

A = {1, 2, 3, 4, 5, 6}

B = {7, 8, 9}

A′ = {1, 2, 3, 4, 9}

B′ = {5, 6, 7, 8}

each of which show G is a bipartite graph. If we draw the G with the nodes belonging to A

above the nodes belonging to B we represent G as

1 2 3 4

7 8

5 6

9

Note that Bip(A,B, E) ∼= S3×S2×S2×S2, since permuting {7, 8, 9} induces a permutation

on {{1, 2}, {3, 4}, {5, 6}} and we may then permute the elements in each set.

However, if we draw the graph placing the nodes of A′ above the nodes of B′ we have
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1 2 3 4

7 8 5 6

9

And we see Bip(A′,B′, E) ∼= S2×S2×S2×S2 since permuting 7 and 8 induces a permutation

on {{1, 2}, {3, 4}} and 9 must remain fixed. Thus Bip(A,B, E) 6∼= Bip(A′,B′, E), though

(A t B, E) and (A′ t B′, E) represent the same graph.

As it will be important later, if we delete the nodes 5, 6, and 9 to form a new graph G ′.

1 2 3 4

7 8

the associated bipartitions AtB and A′tB′ are identical and the bipartite automorphism

group with respect to these bipartitions is S2 × S2 × S2.

Further, if instead we delete the nodes 3, 4, and 8 to form a bipartite graph G ′′, the

associated bipartitions AtB and A′ tB′ are different. We demonstrate this by putting the

nodes of A respectively of A′ above and the nodes of B respectively B′ below.

1 2 5 6

7 9

1 2

5 67

9

In both cases the bipartite automorphism groups are S2 × S2 × S2. However, for every

φ ∈ Bip(A,B,G ′′) we have φ(A) = A. Whereas there exist bipartite automorphisms φ′ ∈

Bip(A′,B′,G ′′) such that φ′(A′) = B′.

In what follows we will need to consider all bipartite graphs (A,B, E) with four edges

and no isolated nodes, as well as Bip(A,B, E). The table below provides an exhaustive list

of such bipartite graphs, where the bipartition is given by taking A to be the set of nodes

placed above and the nodes of B placed below. The table also provides a set of generators

for their bipartite automorphism groups. The graphs G3 and G9 were analyzed in the last

example.
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i Gi Bip(Gi) |Bip(Gi)|

1

1 2 3 4

5 6 7 8 〈(12)(56), (13)(57), (14)(58), (15)(26)(37)(48)〉 48

2

1 4 3 2

5 7 6 〈(32), (14)(57)〉 4

3

1 4 3 2

5 6 〈(14), (13)(24)(56)〉 8

4

1 3 2

5 6 〈(12)(56)〉 2

5

1 3 2

5 7 6 〈(15)(27)(36)〉 2

6

1 2

5 6 〈(12), (15)(26)〉 8

7

3 2 1

6 5 〈(23)〉 2

8

1 2 3 4

5 〈(12), (13), (14)〉 24

9

3 2 1

6 5 7 〈(23), (16)(25)(37)〉 8

10

3 2 4 1

6 5 〈(23), (24)〉 6

Table 4.1: Each graph Gi has bipartition Ai ⊆ {1, 2, 3, 4} and Bi ⊆ {5, 6, 7, 8}. Bip(Gi) is

given by a set of generators of S8 using cycle notation.

To end this section we provide a definition of a bipartite labelling of a bipartite graph.

We shall use certain bipartite labelings by elements of Gr2 to find the exact counts. Let

(A,B, E) be a bipartite graph and (C,D) be a pair of sets. Let α : A → C and β : B → D be

injections, then we call (α, β) a bipartite labelling of (A,B, E) by (C,D). That is, we label
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the nodes of A by elements of C and the nodes of B by elements of D.

4.2 The Correspondence

Recall M : Gr42 → P(Gr2) sends (X1, X2, X3, X4) to those set of 2-planes which meet each

Xi. Notice, thatM is invariant under any permutation of the components (X1, X2, X3, X4).

To simplify matters, let IS be the function from the 4-elements subsets {X1, X2, X3, X4} to

the elements of Gr2 which meet each Xi.

We shall compute the preimage of {Y, Y ′} under IS. First we show that if Y and Y ′

meet, then IS−1({Y, Y ′}) = {}. Thus if {Y, Y ′} ∈ Im(IS) then Y and Y ′ do not meet.

Proposition 18. IS−1({Y, Y ′}) = {} if Y and Y ′ meet.

Proof. Let Y, Y ′ ∈ Gr2 meet. Then there exists y1,∈ Y − Y ′, y2 ∈ Y ′ − Y , and y3 ∈

Y ∩ Y ′, such that Y = 〈y1, y3〉 and Y ′ = 〈y2, y3〉. Let X1, X2, X3, X4 ∈ Gr2 all met Y and

Y ′. Then for each Xi, either y3 ∈ Xi or Xi = 〈y1 + aiy3, y2 + biy3〉 for some ai, bi ∈ F.

Consider Y ′′ = 〈y1 + y2, y3〉. Notice Y ′′ is distinct from Y and Y ′′, but meets all Xi. Thus

{Y1, Y ′, Y ′′} ⊂ M({X1, X2, X3, X4}) 6= {Y, Y ′}.

Thus if {Y, Y ′} is in the image of IS, Y and Y ′ do not meet. Let X1, X2, X3, X4 ∈ Gr2

be distinct and each meet Y and Y ′, then

Xi ∩ Y = 〈yi〉

Xi ∩ Y ′ = 〈y′i〉
(4.2)

for some nonzero yi ∈ Y and y′i ∈ Y ′. Note that neither 〈y1〉, ..., 〈y4〉 nor 〈y′1〉, ..., 〈y′4〉 are

necessarily distinct. Each {X1, X2, X3, X4} meeting Y and Y ′ correspond to a bipartite

labelling by (Gr1(Y ),Gr1(Y
′)) of exactly one of the graphs Gi. Each Xi is represented by

an edge of the graph as the direct sum of the labels of the nodes it connects. For example,

if all 〈yi〉 and all 〈y′i〉 are distinct, this corresponds to the graph G1. We necessarily have

{Y, Y ′} ⊆ IS({X1, X2, X3, X4}), it remains to consider whether any other Y ′′ ∈ Gr2 meets
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all Xi. If no such Y ′′ exists, we call the bipartite labelling perfect and (X1, X2, X3, X4) is a

perfect 4-tuple. The next lemma will help us to determine which bipartite labelings of the

graphs Gi are perfect.

Proposition 19. Let Y ∈ Gr2. And (Y1, Y2, Y3, Y4) be a 4-tuple of distinct elements of

Gr1(Y ), then there exists a non-unique basis (v, w) for Y and a unique t ∈ F − {0, 1} such

that

Y1 = 〈v〉

Y2 = 〈w〉

Y3 = 〈v + w〉

Y4 = 〈v + tw〉.

(4.3)

Proof. Let Y1, Y2, Y3, Y4 be distinct elements of Gr1(Y ). Since Y = Y1⊕Y2, we have Y1 = 〈v′〉

and Y2 = 〈w′〉 for some v′ ∈ Y1 and w′ ∈ Y2. Since Y3 is a subspace of Y , there exists non-

zero a, b, c, d ∈ F such that Y3 = 〈av′ + bw′〉 and Y4 = 〈cv′ + dw′〉. Further, since Y3 6= Y4,

ad− bc 6= 0.

Notice Y3 = 〈v′ + b
a
w′〉 and Y4 = 〈v′ + d

c
w′〉. Letting v = v′ and w = b

a
w′, we have desired

basis with t = ad
bc

. Since a, b, c, d are non-zero and ad 6= bc, t cannot equal 0 or 1.

Suppose we are given a bipartite labelling (α, β) by (Gr1(Y ),Gr1(Y
′)) of a graph. Then

we may choose a basis (v, v′, w, w′) such that Y = 〈v, w〉 and Y ′ = 〈v′, w′〉 and

α(1) = 〈v〉 β(5) = 〈v′〉

α(2) = 〈w〉 β(6) = 〈w′〉

α(3) = 〈v + w〉 β(7) = 〈v′ + w′〉

α(4) = 〈v + tw〉 β(8) = 〈v′ + t′w′〉

(4.4)

for some t, t′ ∈ Fq−{0, 1}. If G has fewer than 8 nodes, we ignore the extraneous outputs of

the functions. With respect to such a basis, the matrices representing X1, X2, X3, X4, Y, Y
′

are particularly simple.
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Suppose we have a bipartite graph G = (A,B, E) and a bipartite labelling (α, β) by a

pair (Gr1(Y ),Gr1(Y
′)) where Y, Y ′ ∈ Gr2 do not meet. To this data we may associate a four

element subset of {X1, X2, X3, X4} ⊂ Gr2 by taking each edge {Yi, Yi} ∈ E to Xi = Yi ⊕ Y ′i

for i = 1, 2, 3, 4. By construction we have

{Y, Y ′} ⊆ M({X1, X2, X3, X4})

with equality if and only if there does not exist Y ′′ ∈ Gr2 distinct from Y and Y ′ which

meets all Xi. We call this bipartite labelling perfect. In this case all 4! = 24 permutations

of (X1, X2, X3, X4) are perfect. However, any bipartite automorphism of G gives rise to the

same set {X1, X2, X3, X4}.

Proposition 20. If i = 7, 8, 9, 10, then all bipartite labelings of Gi by (Gr1(Y ),Gr1(Y
′) are

not perfect.

Proof. For i = 7, 9, 10, notice Y ′′ = α(1) ⊕ β(6) meets all Xi. For i = 8, notice each Xi

meets all Xj.

With one technical exception for G1, we shall show all other bipartite labelings of Gi by

(Gr1(Y ),Gr1(Y
′)) are perfect for i = 1, 2, 3, 4, 5, 6.

First, with respect to the basis (v, v′, w, w′), the RREF matrices representing Y and Y ′

are

[Y ] =

1 0 0 0

0 0 1 0

 and [Y ′] =

0 1 0 0

0 0 0 1

 (4.5)

The graphs Gi were carefully labelled so that all graphs contain the edges {1, 5} and {2, 6}.

Thus with respect to the basis (v, w, v′, w′) we may assume the matrices representing X1 and

X2 are

[X1] =

1 0 0 0

0 1 0 0

 and [X2] =

0 0 1 0

0 0 0 1

 . (4.6)
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Any Y ′′ ∈ Gr2 meeting X1 and X2 is non-uniquely represented by a matrix of the form

[Y ′′] =

a a′ 0 0

0 0 b b′

 (4.7)

for some a, b, a′, b′ ∈ Fq. First note if a = a′ = 0 or b = b′ = 0, then [Y ′′] is not full rank

and does not represent an element of Gr2. If a = b = 0, then [Y ′′] is row equivalent to [Y ′].

Likewise if a′ = b′ = 0, then Y ′′ is row equivalent to [Y ]. We call any of these cases trivial.

Proposition 21. The bipartite labelings of G1 are perfect if and only if t 6= t′.

Proof. The matrices of X3 and X4 are

[X3] =

1 0 1 0

0 1 0 1

 and [X4] =

1 0 t 0

0 1 0 t′

 (4.8)

We stack the matrices [X3] and [X4] on [Y ′′]. If the determinant of both of these matrices is

0, then Y ′′ meets all Xi. In this case we have

det



1 0 1 0

0 1 0 1

a a′ 0 0

0 0 b b′


= a′b− ab′ (4.9)

and

det



1 0 t 0

0 1 0 t′

a a′ 0 0

0 0 b b′


= a′bt′ − ab′t (4.10)

Thus Y ′′ meets all Xi when a′b−ab′ = 0 and a′bt′−ab′t = 0. The first equation says a′b = ab′.

If a′b 6= 0, this implies t = t′. If a′b = ab′ = 0, then we must have a trivial solution. This
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means there exists Y ′′ ∈ Gr2 distinct from Y, Y ′ if and only if t = t′.

Proposition 22. All bipartite labelings of Gi by (Gr1(Y ),Gr1(Y
′)) are perfect for i =

2, 3, 4, 5, 6.

Proof. For i = 2, 3, 4, 5, all Gi contain the edge {3, 6} so we have

[X3] =

1 0 1 0

0 0 0 1

 (4.11)

For Y ′′ to meet X3 we must have

det

X3

Y ′′

 = a′b = 0 (4.12)

For i = 6, we let X3 correspond to the edge {1, 6}. In which case

[X3] =

1 0 0 0

0 0 0 1

 (4.13)

Conveniently, this results in the same determinant as (4.12).

To conclude the proof, we form X4 from the remaining edge of Gi. The table below shows

the matrix representing X4 as well the det

X4

Y ′′

.

i [X4] det

2
[
1 0 t 0

0 1 0 1

]
a′b− ab′t

3
[
1 0 t 0

0 1 0 0

]
−ab′t

4
[
1 0 1 0

0 1 0 0

]
−ab′

5
[
1 0 1 0

0 1 0 1

]
a′b− ab′

6
[
0 0 1 0

0 1 0 0

]
−ab′
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For each of the above determinants to simultaneously be 0 along with the determinant ab′

from X3, the solutions (a, a′, b, b′) are necessarily trivial so no Y ′′ ∈ Gr2 − {Y, Y ′} meets all

Xi. All bipartite labelings of these graphs are perfect.

Theorem 23. If Y, Y ′ ∈ Gr2 do not meet, then

|IS−1({Y, Y ′})| = 1

48
q3(q + 1)2(q3 + 5q2 − q + 1) (4.14)

Proof. The number of bipartite labelings of G1 by (Gr1(Y ),Gr1(Y
′) is

(q + 1)!

(q + 1− 4)!

(q + 1)!

(q + 1− 4)!
. (4.15)

To each bipartite labelling we may find a unique (t, t′) ∈ Fq−{0, 1} as in Proposition 19, and

the biparite labelling is perfect if and only if t 6= t′. Thus (q−3)/(q−2) of these labelings are

perfect. As stated earlier, two bipartite labelings correspond to the same {X1, X2, X3, X4} if

and only if there is a bipartite automorphism between them. We divide the number of perfect

bipartite labelings of G1 by Bip(G1) = 48 to obtain the number of elements inM−1({Y, Y ′})

whose associated bipartite graph is isomorphic to G1

(q − 3)(q + 1)!(q + 1)!

48(q − 2)(q − 3)!(q − 3)!
(4.16)

For i = 2, 3, 4, 5, 6, since every bipartite labelling of Gi is perfect, the number of elements

in M−1({Y, Y ′}) whose associated bipartite graph is isomorphic to Gi is given by

1

|Bip(Gi)|
(q + 1)!

(q + 1− |Ai|)!
(q + 1)!

(q + 1− |Bi|)!
(4.17)

Summing these expressions for i = 2, 3, 4, 5, 6 along with (4.16). Gives the desired result.

Corollary 24. |Pq| = 1
2
q3(q + 1)2(q2 + 1)(q2 + q + 1)(q3 + 5q2 − q + 1)

Proof. We multiply (4.14) by 24q4(q2 + q + 1)(q2 + 1) since there are 24 ordered 4-tuples of
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a 4 element set and there are q4(q2 + q + 1)(q2 + 1) choices for {Y, Y ′} ⊂ Gr2 such that Y

and Y ′ do not meet.
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5 Appendix

5.1 Mathematica code

In this section, we verify the exact counts in the previous section using Mathematica. We

first present a brute force approach to verify the counts for the cases q = 2, 3. We then take

advantage of the action of GL4 on Gr32 to greatly improve efficiency to check the cases for

all primes less than 19.

We provide wall clock run times for all computations using Wolfram Mathematica 12.0

Student Edition with an Intel Core i5-3470 3.2GHz Quad-Core processor.

First, we create a user-defined function IS[X,S] which accepts as inputs X ∈ Gr2 and

S ⊆ Gr2 and returns those elements of S which meet X.

1 IS[X_, S_] :=

2 Module [{T = {}, i},

3 If[Length[S] > 0,

4 For[i = 1, i <= Length[S], i++,

5 If[MatrixRank[Join[X, S[[i]]], Modulus -> q] < 4,

6 AppendTo[T, S[[i]]]

7 ]

8 ]

9 ];

10 T

11 ]

Listing 5.1: The Intersection Set Function

After assigning a prime value to q, the following code generates Gr2(F4
q), by creating all

full rank RREF matrices.
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1 Gr = {{{0, 0, 1, 0}, {0, 0, 0, 1}}};

2 For[i = 0, i < q, i++,

3 AppendTo[Gr, {{0, 1, i, 0}, {0, 0, 0, 1}}];

4 For[j = 0, j < q, j++,

5 AppendTo[Gr, {{1, i, j, 0}, {0, 0, 0, 1}}];

6 AppendTo[Gr, {{0, 1, 0, i}, {0, 0, 1, j}}];

7 For[k = 0, k < q, k++,

8 AppendTo[Gr, {{1, i, 0, j}, {0, 0, 1, k}}];

9 For[l = 0, l < q, l++,

10 AppendTo[Gr, {{1, 0, i, j}, {0, 1, k, l}}];

11 ]

12 ]

13 ]

14 ];

Listing 5.2: Generating the Grassmannian

5.2 Naive Approach

Since GL4 acts transitively on Gr2, we do not need to check all 4-tuples (X1, X2, X3, X4) ∈

Gr42. We fix X1 = 〈e1, e2〉 and let X2, X3, X4 range over all elements of Gr2. We then multiply

these counts by |Gr2|.

1 counts = {};

2 For[i = 1, i <= Length[Gr], i++,

3 IS2 = IS[Gr[[i]], IS1];

4 For[j = 1, j <= Length[Gr], j++,

5 IS3 = IS[Gr[[j]], IS2];

6 For[k = 1, k <= Length[Gr], k++,
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7 AppendTo[counts , Length[IS[Gr[[k]], IS3 ]]];

8 ]]];

9 Sort[Tally[counts ]]]

Listing 5.3: Naive Approach

The data from q = 2 and q = 3 is provided below. The the code above is too inefficient to

compute the values for q > 3. We introduce the nine orbit approach in the next section, to

compute the values for prime q less than or equal to 19.

Answer Number of instances Answer Number of Instances

q = 2

6.4sec

0

1

2

3

5

7

9

11

19

192

2880

15552

14976

7344

1584

112

234

1

q = 3

10600sec

0

1

2

4

7

13

16

22

49

69984

279936

1224720

478244

127008

15552

567

1008

1

Table 5.1: Number of instances of the Four Lines Problem with a given answer, where first

line is fixed.

5.3 Nine Orbit Approach

In Proposition 16, we established the action of GL4 on Gr42 has 17 orbits. If we also we let

S3 by permuting the components, the action of S3×GL4 on Gr3 has 9 orbits, and the orbits

of this action are unions of the orbits of the original GL4 action. The table below classifies

these orbits.

50



Θi Union of Oi Orbit size

Θ1 O1 q5(q + 1)(q − 1)2|Gr2|

Θ2 O2 ∪O3 ∪O7 3q4(q + 1)2(q − 1)|Gr2|

Θ3 O4 ∪O8 ∪O9 3q4(q + 1)2|Gr2|

Θ4 O11 q3(q + 1)2|Gr2|

Θ5 O10 q3(q + 1)2|Gr2|

Θ6 O12 q(q + 1)2(q − 1)|Gr2|

Θ7 O5 ∪O6 ∪O15 3q4|Gr2|

Θ8 O13 ∪O14 ∪O16 3q(q + 1)2|Gr2|

Θ9 O17 |Gr2|

Table 5.2: Orbits of action of S3 ×GL4 on Gr32 expressed as unions of orbits of GL4 action.

The code below chooses a representative (X1, X2, X3) ∈ Gr42 of each orbit. For each

representative, we solve the Four Lines Problem for (X1, X2, X3, X4) for each X4 ∈ Gr2.

1

2 For[ii = 1, ii <= 8, ii++,

3 Print[Timing[

4 q = Prime[ii];

5 IS1 = {{{1, 0, 0, 0}, {0, 1, 0, 0}}};

6 For[i = 0, i < q, i++,

7 AppendTo[IS1 , {{0, i, 1, 0}, {1, 0, 0, 0}}];

8 For[j = 0, j < q, j++,

9 AppendTo[IS1 , {{i, 0, 1, 0}, {j, 1, 0, 0}}];

10 AppendTo[IS1 , {{0, i, j, 1}, {1, 0, 0, 0}}];

11 For[k = 0, k < q, k++,

12 AppendTo[IS1 , {{i, 0, j, 1}, {k, 1, 0, 0}}];
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13 ]]];

14

15 IS2A = IS[{{0, 0, 1, 0}, {0, 0, 0, 1}}, IS1];

16 IS2B = IS[{{1, 0, 0, 0}, {0, 0, 1, 0}}, IS1];

17 IS2C = IS1;

18

19 IS3 = {

20 IS[{{1, 0, 1, 0}, {0, 1, 0, 1}}, IS2A],

21 IS[{{1, 0, 0, 0}, {0, 1, 1, 0}}, IS2A],

22 IS[{{1, 0, 0, 0}, {0, 0, 1, 0}}, IS2A],

23 IS[{{0, 1, 0, 0}, {0, 0, 1, 0}}, IS2B],

24 IS[{{1, 0, 0, 0}, {0, 0, 0, 1}}, IS2B],

25 IS[{{1, 0, 0, 0}, {0, 1, 1, 0}}, IS2B],

26 IS2A ,

27 IS2B ,

28 IS2C

29 };

30 counts = Table[{}, {i, 1, 9}];

31

32 For[n = 1, n <= 9, n++,

33 AppendTo[counts [[n]],

34 Length[IS[{{0, 0, 1, 0}, {0, 0, 0, 1}}, IS3[[n]]]]];

35 For[i = 0, i < q, i++,

36 AppendTo[counts [[n]],

37 Length[IS[{{0, 1, i, 0}, {0, 0, 0, 1}}, IS3[[n]]]]];

38 For[j = 0, j < q, j++,

39 AppendTo[counts [[n]],
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40 Length[IS[{{0, 1, 0, i}, {0, 0, 1, j}}, IS3[[n]]]]];

41 AppendTo[counts [[n]],

42 Length[IS[{{1, i, j, 0}, {0, 0, 0, 1}}, IS3[[n]]]]];

43 For[k = 0, k < q, k++,

44 AppendTo[counts [[n]],

45 Length[IS[{{1, i, 0, j}, {0, 0, 1, k}}, IS3[[n]]]]];

46 For[l = 0, l < q, l++,

47 AppendTo[counts [[n]],

48 Length[IS[{{1, 0, i, j}, {0, 1, k, l}}, IS3[[n]]]]];

49 ]]]]];

50 {q, Table[Sort[Tally[counts [[i]]]], {i, 1, 9}]}]

51 ]]

Listing 5.4: Nine Orbit Approach
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The table below summarizes all the data generative by the above code for prime q less

than or equal to 19. We notice the number of lines meeting four lines is either 0, 1, 2, q +

1, 2q + 1, q2 + q + 1, (q + 1)2, 2q2 + q + 1 or q3 + 2q2 + q + 1.

Θi Answer q = 2 q = 3 q = 5 q = 7 q = 11 q = 13 q = 17 q = 19

Runtime(sec) 0.03 0.17 sec 2.6 sec 18 300 860 5000 11000

Θ1

0

1

2

q + 1

2

12

18

3

18

36

72

4

200

150

450

6

882

392

1568

8

6050

1452

8712

12

12168

2366

16562

14

36992

5205

46818

18

58482

7220

72200

20

Θ2

1

2

q + 1

2q + 1

2

16

12

5

12

81

30

7

80

625

90

11

252

2401

182

15

1100

14641

462

23

1872

28561

650

27

4352

83521

1122

35

6156

130321

1406

39

Θ3

1

2

q + 1

2q + 1

2

16

12

5

12

81

30

7

80

625

90

11

252

2401

182

15

1100

14641

462

23

1872

28561

650

27

4352

83521

1122

35

6156

130321

1406

39

Θ4
q + 1

q2 + q + 1

28

7

117

13

775

31

2793

57

16093

133

30927

183

88723

307

137541

381

Θ5
q + 1

q2 + q + 1

28

7

117

13

775

31

2793

57

16093

133

30927

183

88723

307

137541

381

Θ6

2q + 1

q2 + q + 1

2q2 + q + 1

24

8

3

108

18

4

750

50

6

2744

98

8

15972

242

12

30758

338

14

88434

578

18

137180

722

20

Θ7

q + 1

2q + 1

(q + 1)2

6

27

2

48

80

2

480

324

2

2016

832

2

13200

3024

2

26208

4900

2

78336

10692

2

123120

14800

2

Θ8

2q + 1

q2 + q + 1

2q2 + q + 1

24

8

3

108

18

4

750

50

6

2744

98

8

15972

242

12

30758

338

14

88434

578

18

137180

722

20

Θ9

(q + 1)2

2q2 + q + 1

q3 + 2q2 + q + 1

16

18

1

81

48

1

625

180

1

2401

448

1

14641

1584

1

28561

2548

1

83521

5508

1

130321

7600

1

Table 5.3: Data from Nine Orbit Approach for prime q ≤ 19

If we assume the number of instances of the Four Lines Problem with a given answer is

a polynomial in q on each orbit, we may use the data from Table 5.3 to find an exact count

of Ad = {(X1, X2, X3, X4) ∈ Gr2 : |M(X1, X2, X3, X4)| = d}.

Proposition 25. If we assume the counts in Table 5.3 are polynomials in q, we have the

following.

54



Θi Answer q

Θ1

0

1

2

q + 1

1
2
q2(q − 1)2

q2(q + 1)

1
2
q2(q + 1)2

q + 1

Θ2

1

2

q + 1

2q + 1

q(q − 1)2

q4

2q(2q − 1)

2q + 1

Θ3

1

2

q + 1

2q + 1

q(q − 1)2

q4

2q(2q − 1)

2q + 1

Θ4
q + 1

q2 + q + 1

q4 + q3 + q2

q2 + q + 1

Θ5
q + 1

q2 + q + 1

q4 + q3 + q2

q2 + q + 1

Θ6

2q + 1

q2 + q + 1

2q2 + q + 1

q4 + q3

2q2

q + 1

Θ7

q + 1

2q + 1

(q + 1)2

q(q − 1)2(q + 1)

(q + 1)2(2q − 1)

2

Θ8

2q + 1

q2 + q + 1

2q2 + q + 1

q4 + q3

2q2

q + 1

Θ9

(q + 1)2

2q2 + q + 1

q3 + 2q2 + q + 1

q4

q3 + 2q2 + q

1

Table 5.4: Number of instances of the Four Lines Problem with a given answer on a repre-

sentative of each orbit

Proof. The counts in Table 5.3, take a representative (X1, X2, X3) ∈ Gr22 and solve all

instances of the Four Lines Problem (X1, X2, X3, X4) for all X4 ∈ Gr2. Thus if these counts

are polynomials in q, their degree is at most 4. We have 8 data points in Table 5.3.

If we multiply these counts by the corresponding orbit sizes and combine terms with the

same number of solutions, we achieve complete counts of the number of instances of the Four

Line with a given answer.
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|M(X1, X2, X3, X4)| Number of Instances

0 1
2
q7(q + 1)(q − 1)4|Gr2|

1 q6(q + 1)2(q − 1)2(q + 3)|Gr2|

2 1
2
q7(q + 1)2(q3 + 5q2 − q + 1)|Gr2|

q + 1 3q5(5q4 + 9q3 + q2 − q + 2)|Gr2|

2q + 1 q4(q + 1)2(7q2 + 12q − 1)|Gr2|

q2 + q + 1 2q3(q + 1)2(q2 + 2q + 3)|Gr2|

(q + 1)2 7q4|Gr2|

2q2 + q + 1 q(q + 1)2(q2 + 3q + 3)|Gr2|

q3 + 2q2 + q + 1 |Gr2|

Table 5.5: Number of instances of Four Lines Problem over Fq with given answer, assuming

the counts are polynomial in q
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