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ABSTRACT

GAUSSIAN PROCESS REGRESSION FOR LARGE

DATA SETS

by

Nicolas Kuhaupt

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Jugal Ghorai

Gaussian Process Regression is a non parametric approach for estimating

relationships in data sets. For large data sets least square estimates are not

feasible because of the covariance matrix inversion which requires O(n3) com-

putation. In Gaussian Process Regression a matrix inversion is also needed,

but approximation methods exists for large n. Some of those approaches

are studied in this thesis, among them are the random projection of the co-

variance matrix, Nyström method and the Johnson-Lindenstrauÿ Theorem.

Furthermore sampling methods for Hyperparameter estimation are explored.

ii



Table of contents

1 Introduction 2

2 Theory 5

2.1 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . 5

2.2 Rank Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Random Projection . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Nyström method . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Johnson-Lindenstrauÿ Theorem . . . . . . . . . . . . . 26

2.3 Estimation of Hyperparameter . . . . . . . . . . . . . . . . . . 36

2.3.1 Maximum likelihood function . . . . . . . . . . . . . . 36

2.3.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Application 54

4 Conclusion and outlook 59

A Mathematical Background 61

B R Code 62

References 71

iii



List of figures

1 Histogram of σ2, θ1, θ2 (1) . . . . . . . . . . . . . . . . . . . . 56

2 Histogram of σ2, θ1, θ2 (2) . . . . . . . . . . . . . . . . . . . . 58

3 x1 vs y and predictions . . . . . . . . . . . . . . . . . . . . . . 59

4 x17 vs y and predictions . . . . . . . . . . . . . . . . . . . . . 59

iv



ACKNOWLEDGEMENTS

First I would like to acknowledge my supervisor Prof. Dr. Jugal Ghorai. He

lay the basis for my thesis, prepared a lot of theory in his seminar and has a

style of explaining concepts intuitively which helped understanding a lot.

Furthermore I would like to acknowledge Prof. Dr. Anjishnu Banerjee whose

Thesis was also an inspiration for me and motivated the problems I was

working on.

Thanks go to the Math Department of University of Wisconsin - Milwaukee

and University of Ulm. There are to many people who made my studies a

great experience to name them all.

I want to acknowledge my family back home in Germany who I left behind

for one year but nonetheless supported me and who made all that possible

for me. My deepest owing to all of them!

Last I would like to acknowledge my friends and roommates who grow dear

to my heart and have been a family to me in the last 10 months.

v



1 Introduction

Data is growing rapidly in all areas. Not only online data is doubling ev-

ery year but also new technologies like genome sequencing contribute to a

rapid growth [1]. It is estimated, that 80% of data is unstructured. Recent

algorithms in arti�cial intelligence are nonetheless able to make sense out

of unstructured data which makes those data also prone to statistical meth-

ods. Furthermore algorithms also tend to produce data. For example IBM�s

Watson, one of the leading arti�cial intelligence algorithms has opened an

API which is dedicated to recognize emotions in all kind of media. In conse-

quence out of every media new data can arise. And to name one last recent

development among others: The internet of things. Nearly every new tech-

nology is connected to the internet, from cars to refrigerators and health care

technologies. Measurements are therefore cheap and easy and produce tons

of data in consequence. On the other side technology also improves compu-

tational capacity which results in faster and cheaper computation. Moore

predicted in 1965, that every two years the number of transistors per chip

double[2]. This is known as Moore�s Law and until today his prediction is

closely matched. However, if we assume a doubling rate on both side, com-

putation and data growth, the missing variable are the algorithms which use
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the computation capacity to make sense out of the data. Statistical methods

like least square estimation need O(n3) time. So the growth of computation

capacity does not keep up with the data growth, if we want to apply the

precise techniques we have. One refers to this as Big Data problem or simply

big n problem. Workarounds and approximations are needed which build

the �eld of machine learning. This is the motivation for this thesis. Here

one technique among many is explored: The Gaussian Process Regression.

Computationally O(n3) is also needed for an inversion of the covariance ma-

trix but many di�erent approximation methods exists which reduce it to an

inversion of lower rank.

The procedure in this thesis is roughly the following: We will introduce

the theory of Gaussian Process Regression and replace the Gaussian Process

based on n observations by a Process based on m observations with m << n.

This makes the process smoother and enables us together with the presented

Woodbury matrix identity to invert only an m×m matrix instead of n× n.

Next we face approximation methods which make the computations e�cient.

The approximation methods we present here are: Rank reduction by random

projection, the nyström method and an algorithm which combines the John-

son Lindenstrauÿ Theorem and the idea of the nyström method. Last, we
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assume a certain covariance function for the Gaussian Process and want to

learn the parameters from the given Data. Two methods will be presented:

The maximum likelihood maximization and a Bayesian approach where we

sample the parameters from their priori distribution. The needed sampling

methods will be introduced.

Among those methods we implemented the random projection method for

rank reduction and the marginal likelihood maximization for estimating the

hyperparameters and tested it on a real data set from a robot arm.

Chapter 2 is dedicated to the theory and mathematical background. First in

2.1 the basics of Gaussian Process Regression are introduced, in 2.2 the big

n problem will be faced by the 3 di�erent approaches. In 2.3 the techniques

to estimate the parameters of the covariance function are described. Here

three important and widely applicable algorithms are stated and intuitive

reasoning for their steps is given: Acceptance and rejection method, Gibbs

sampling and the Metropolis Hastings algorithm. In chapter 3 an example

application is given with a random projection and a data set of a robot arm

SARCOS. We end with a conclusion in chapter 4.

3



2 Theory

2.1 Gaussian Process Regression

For a Gaussian Process we assume that every �nite subset of , say n obser-

vations has a multivariate normal distribution ∼ N(~µ,Kn×n) where ~µ is a

vector of n means andKn×n a n×n covariance matrix. Therefore every single

observation is normal distributed ∼ N(µ, σ2) for some mean µ and variance

σ2. The next step to a Gaussian Process in a continuous space is to de�ne

the normal distribution over functions. The Gaussian Process is therefore

fully speci�ed by two functions, the mean function m(x) and the covariance

function or covariance kernel K(x, x) and we write ∼ N(m(x), K(x, x)). For

Gaussian Process Regression we want to learn about the parameters of the

two functions from the given data. This enables us to understand the data

better and make predictions at unobserved points. Often the mean functions

is a priori chosen to be 0, which does not mean that the posteriori mean is

0 in general. However, other settings are possible, for example we can set a

�xed mean function or a set of basis functions. We then want to learn about

the weights for the basis functions. In the later case we would have a linear

model as a mean function and the Gaussian Process models the residuals.
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In practice this is used to incorporate prior knowledge about the data or be-

cause of interpretation purposes. Furthermore we have to assume a certain

structure of the covariance function whose parameters we want to learn.

A widely used covariance function which will be of further interest for us is

the squared exponential function:

cov(x, y) =
1

θ1

∗ exp
[
−(x− y)2

θ2

]
(1)

We call the parameters θ1 , θ2 hyperparameter. Later a noise variance σ2 will

be added. Those are the parameters we want to learn from the data. Let�s

make a few observations on the squared exponential covariance function:

1. In general we expect in a regression context that points which are close

to each other are also more informative. In Gaussian Process settings

the covariance function takes care of this. Note that for x→ y we have

cov(x, y)→ 1
θ1

2. We call a covariance function stationary if it depends on |x− y| which

is the case in the squared exponential covariance function. This results

in translation invariance: the covariance depends only on the distance

between the observations.
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3. In general we need the covariance function to ful�ll cov(x, y) = cov(y, x)

respectively to be symmetric. Observe that this is matched in the case

of squared exponential covariance function. Furthermore the squared

exponential function is not only a continuous one (as it is composed of

continuous functions) but also very smooth [3].

Now we will make some general observations about Gaussian Processes which

we will need throughout the thesis. Let (t1, ..., tn) be the points at which we

make the observations and Y (t) the corresponding observed value. Now we

can model Y (t) as:

Y (t) = w(t) + ε(t) (2)

where w(t) models the Gaussian Process and we have w(t) ∼ N(0, Kn×n) for

some n×n covariance matrix Kn×n and the noise ε ∼ N(0, σ2). We will now

modify w(t) in 3 steps:

First: At the moment we incorporate all n observations. This makes predic-

tions computationally di�cult for big n as it will include inversion of a n×n

matrix. Therefore we will choose a subset of observations at (t∗1...t
∗
m) from

(t1, ..., tn) with m << n and replace w(t) by E[w(t)|(w(t∗1)...w(t∗m))]. (t∗1...t
∗
m)
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are also called knots. We will discuss the choice of the knots later in section

2.2.1. Some notation �rst:

Kn×n is a n× n matrix with (i, j)th element K(ti, tj)

K∗m×m is the covariance matrix of the knots with (i, j)th element K(t∗i , t
∗
j)

K∗1×m(t) is the covariance of t with (t∗1...t
∗
m).

K+
n×m is the covariance matrix with (i, j)th element K(ti, t

∗
j)

~w∗ = (w(t∗1), ..., w(t∗m))T

~w = (w(t1), ..., w(tn))T

Then we observe that

(
~w

~w∗

)
∼ N

(
~0,

(
Kn×n K+

n×m

K+
n×m

T
K∗m×m

))

and (by Appendix Lemma 8) we have that

w(t)|~w∗ ∼ N
(
K∗1×m(t)(K∗m×m)−1 ~w∗, K(t, t)−K∗1×m(t)(K∗m×m)−1K∗m×1(t)

)

Second: Replace w(t) by

w̃(t) = E[w(t)|~w∗] = K∗1×m(t)(K∗m×m)−1 ~w∗

7



Then

E(w̃(t)) = E
[
E(w(t)|~w∗)

]
= E(w(t)) = 0

and

V ar(w̃(t)) = V ar(K∗1×m(t)(K∗m×m)−1 ~w∗)

= K∗1×m(t)(K∗m×m)−1V ar(~w∗)(K∗1×m(t)(K∗m×m)−1)T

= K∗1×m(t)(K∗m×m)−1(K∗m×m)(K∗m×m)−1K∗m×1(t)

= K∗1×m(t)(K∗m×m)−1K∗m×1(t)

In short:

w̃(t) ∼ N(0, K∗1×m(t)(K∗m×m)−1K∗m×1(t)) (3)

And we have Y (t) = w̃(t) + ε(t)

Third: We observe that the variance of the process w̃(t) underestimates the

variance of w(t) as

V ar(w̃(t)) = K∗1×m(t)(K∗m×m)−1K∗m×1(t) < K(t, t) = V ar(w(t)) (4)
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since

V ar(w(t)|~w∗) = K(t, t)−K∗1×m(t)(K∗m×m)−1K∗m×1(t) > 0 (5)

To remedy the underestimation we add an extra noise ε̃ [4] with

cov(ε̃(s), ε̃(t)) = K(s, t)−K∗1×m(s)(K∗m×m)−1K∗m×1(t) (6)

to obtain �nally

Y (t) = w̃(t) + ε̃(t) + ε(t) (7)

and

cov(Y (s), Y (t)) = K̃(s, t) + [K(s, t)− K̃(s, t)]I(s, t) + σ2I(s, t) (8)

with K̃(s, t) = K∗1×m(s)(K∗m×m)−1K∗m×1(t).

Note 1

The constructed covariance matrix has to be non degenerate to be invert-

ible. To ensure this we show that the covariance matrix is positive de�nite

9



respectively for every n× 1 vector ~u of non-zero real numbers we have

~uT1×ncov(Y (t1), ..., Y (tn))~un×1 > 0

Proof.

~uT1×ncov(Y (t1), ..., Y (tn))~un×1

= ~uT1×n
[
K+
n×m(K∗m×m)−1K+

m×n + (Kn×n −K+
n×m(K∗m×m)−1K+

m×n)In×n + σ2In×n
]
~un×1

= ~uT1×nK
+
n×m(K∗m×m)−1K+

m×n~un×1+

~uT1×n
[
(Kn×n −K+

n×m(K∗m×m)−1K+
m×n)In×n + σ2In×n

]
~un×1

Further we de�ne ~vT1×m = ~uT1×nK
+
n×m and therefore

~uT1×nK
+
n×m(K∗m×m)−1K+

m×n~un×1 = ~vT1×m(K∗m×m)−1~vm×1 ≥ 0

sinceK∗m×m is a covariance matrix and therefore positive-semide�nite by de�-

nition. Observing that σ2 > 0 and from (5) that (Kn×n−K+
n×m(K∗m×m)−1K+

m×n)ii >

0 for i = 1, ..., n �nishes the proof.

Note 2
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For predictions at an unobserved point t0 we use the following:

Ŷ (t0) = K1×n(t0)(Kn×n + σ2In×n)−1~Yn×1 (9)

Observe that this is a linear combination of the observations Y (t1), ..., Y (tn).

2.2 Rank Reduction

In the following section we will face the "big n" problem in Gaussian Process

Regression through three di�erent approaches. In section 2.2.1 we will take

a subset of observations which will be chosen through a random projection.

In the next section we will exploit three important Theorems to rewrite

the covariance kernel and the Gaussian Process in terms of a series of its

eigenvalues and eigenfunctions and truncate this series. Last in section 2.2.3

we will use matrix approximation techniques based on Johnson-Lindenstrauÿ'

Theorem. However, in all sections we will make use of the Woodbury Matrix

Identity, which allows to reduce the calculation of the inverse of a n × n

matrix to the inversion a m×m matrix with m < n if the n× n matrix has

a certain structure.

Theorem 1 (Woodbury Matrix Identity)
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(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

for A ∈ Rn×n, U ∈ Rn×m, C ∈ Rm×m, V ∈ Rm×n and m < n.

Proof. A fast forward way is by multiplication of (A + UCV ) on both sides

and derive the Identity matrix from the right hand side. However, we follow

a di�erent approach by blockwise elimination. Let:

[
A U

V −C−1

][
X

Y

]
=

[
I

0

]

Matrix multiplication leads to

AX + UY = I (10)

V X − C−1Y = 0 (11)

Solving (11) for Y and plug into (10) leads to

AX + UCV X = I

X = (A+ UCV )−1 (12)

From (10) we can also get: X = A−1(I − UY ) which we plug into (11) to

12



get:

V A−1(I − UY ) = C−1Y

V A−1 = C−1Y + V A−1UY

V A−1 = (C−1 + V A−1U)Y

Y = (C−1 + V A−1U)−1V A−1

plugging Y back into (10) gives:

AX + U(C−1 + V A−1U)−1V A−1 = I

X = A−1 − A−1U(C−1 + V A−1U)−1V A−1

This together with (12) �nishes the proof.

Note 3

In our context the matrix A will be a diagonal matrix and therefore the

inverse of A is just the reciprocal of its diagonal elements. Further observe

that on the right hand side of the Woodbury Matrix Identity we need to

invert a m×m matrix instead of n× n on the left hand side.

13



2.2.1 Random Projection

Let φm×n be a random permutation of In×n which cuts of after row m. We

can obtain the knots in the following way:

 t∗1
...

t∗m

 = φm×n

t1...
tn



and

w(t∗1)
...

w(t∗m)

 = φm×n

w(t1)
...

w(tn)



As developed in section 2.1 we now have:

Y ∼ N(0, K̃(s, t) + [K(s, t)− K̃(s, t)]I(s, t) + σ2I(s, t))

with

K̃(s, t) = K∗1×m(s)(K∗m×m)−1K∗m×1(t).

The advantages of this approach are obvious: It is simple to implement

and computationally undemanding. Furthermore in [5] this approach shows

14



better accuracy in both simulated and real data prediction in comparison to

more sophisticated knot choices for example equidistant knots, which require

further computation.

2.2.2 Nyström method

The goal in this section is to rewrite the Gaussian Process w(t) and the

covariance kernel K(s, t) as a series of its eigenfunctions and eigenvalues and

cut them o� after the mth summand with m << n which will give us an

approximation where we can apply the Woodbury matrix identity. In order

to do so we need a little theory:

De�nition 1 (Eigenfunction)

Let K(s, t) = cov(s, t) be a covariance function. Then we call φ1, φ2, ..., φn

eigenfunctions of K with corresponding eigenvalues λ1, ..., λn if it satis�es the

following integral equation:

∫
K(s, t)φi(s)ds = λiφi(t) (13)

Theorem 2 (Mercer's Theorem)
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Let K be a continuous Kernel and T = [a; b] ⊂ R, then TK has an orthonormal

basis of eigenfunctions {ψi}i∈N and corresponding eigenvalues {λi}i∈N, λi >

0 ∀i ∈ N in L2(T,BT , v), and

K(s, t) =
∞∑
j=1

λjψj(s)ψj(t) s, t ∈ T

where this convergence is absolute and uniform on T.

Proof. Without proof.

Note 4

The assumption that the kernel is continuous is generally ful�lled for covari-

ance functions. Especially for the squared exponential covariance function

as de�ned in (1) we see that it is a composition of continuous functions and

therefore continuous.

Mercer's Theorem therefore allows us to rewrite the covariance matrix as a

series of its eigenvalues and eigenfunctions. Next Karhunen-Loève Expan-

sion allows us to write the process w(t) in terms of its eigenfunctions and

eigenvalues:

Theorem 3 (Karhunen-Loève Expansion)

For any centered X = {X(t), t ∈ T} on a compact T with continuous co-

16



variance function K, there exists a family {ξ}∞n=1 of uncorrelated random

variables with Eξn = 0 and Eξ2
n = 1 such that

X(t) =
∞∑
n=1

√
λnξnψn(t) (14)

where {ψ}∞n=1 is an orthonormal basis of eigenfunctions, λn are the eigenval-

ues corresponding to ψn and the above expansion holds in L2(Ω,F ,P).

Proof. Without proof.

Note 5

The process X needs to be centered in Karhunen-Loève Theorem, i.e. E(X) =

0 in T . This is ful�lled for w(t).

This allows us to rewrite the process w(t) as w(t) =
∑∞

j=1

√
λjej(t)ξj with

ξj iid ∼ N(0, 1).

Theorem 4 (Eckart-Young-Mirsky Theorem)

Let A = UnΣnV
T
n be a singular value decomposition of A with U and V

unitary matrices and Σ diagonal matrix with diagonal elements (σ1, ...σn)

such that σ1 ≥ σ2 ≥ ... ≥ σn. Then the best rank k approximation to A in

17



terms of the Frobenius norm is given by

Ak =
k∑
i=1

uiσiv
t
i (15)

where ui and vi are the i
th row of U and V respectively.

To prove the Eckart-Young-Mirsky Theorem we need the following

Lemma 1

For the Frobenius norm of a matrix A ∈ Rn×m it holds that:

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

|ai,j|2 =
√
Tr(AAT ) =

√
Tr(ATA) (16)

with Tr(AAT ) the trace of AAT .

Proof of Lemma. To see that this equality holds examine the diagonal entries

of AAT :

(AAT )1,1 = a2
1,1 + a2

1,2 + a2
1,3 + ...+ a2

1,m

(AAT )2,2 = a2
2,1 + a2

2,2 + a2
2,3 + ...+ a2

2,m

...

(AAT )n,n = a2
n,1 + a2

n,2 + a2
n,3 + ...+ a2

n,n

18



and we see that summation over the diagonal elements gives the Frobenius

norm.

Proof of Theorem. Let B be a matrix of the same dimensions as A. We will

show that B has the form of Ak in order to minimize ‖A− B‖F . We de�ne

D = UTBV . =⇒ B = UDV T

Hence

‖A−B‖2
F = ‖UΣV T − UDV T‖2

F = ‖U(Σ−D)V T‖2
F

=
Lemma 1

Tr(U(Σ−D)V T (U(Σ−D)V T )T )

= Tr(U(Σ−D)V TV (Σ−D)TUT ) =
V unitary

Tr(U(Σ−D)(Σ−D)TUT )

= Tr(U(Σ−D)(U(Σ−D))T ) = Tr((U(Σ−D))TU(Σ−D))

= Tr((Σ−D)TUTU(Σ−D)) = Tr((Σ−D)T (Σ−D))

= ‖Σ−D‖2
F =

Σ diagonal matrix

∑
i

|σi −Dii|2 +
∑
i 6=j

|Dij|2

=
∑
i≤k

|σi −Dii|2 +
∑
i>k

|σi −Dii|2 +
∑
i 6=j

|Dij|2

and we observe that for D of rank k this is minimized by Dii = σi for i ≤ k

and Dij = 0 for i 6= j and hence B = UDV T matches Ak

19



Note 6

In the Theorem of Eckart-Young-Mirsky it is made use of singular value

decomposition. However, as in our setting the covariance matrix K is diago-

nalizable, we can make use of eigendecomposition K = EΛET where E is a

n ×m matrix whose columns are the eigenvectors and Λ a diagonal matrix

with the eigenvalues as its diagonal elements. Now with the Eckart-Young-

Mirsky Theorem it follows that the best approximation to K is by its largest

eigenvalues.

Conclusion

The covariance of the approximated process is given by

K = En×mΛET
n×m + σ2In×n (17)

(Note that we can apply the Woodbury Matrix Identity to calculate the in-

verse) and for predictions we can use the formula derived from the Karhunen-

Loève Expansion:

Y (t) =
m∑
j=1

√
λjej(t)ξj (18)

with ξj iid ∼ N(0, 1).

However, the Rank Reduction through Truncated Series Expansion is ap-
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plicable if we already know the eigenvalues and eigenvectors. Otherwise

computation takes time O(n3) and we have not gained anything since matrix

inversion also takes O(n3). Therefore we will next derive an approximation

method for eigenvalues and eigenfunctions.

The procedure to derive the approximation is roughly the following: We

calculate eigenvectors and corresponding eigenvalues of a sub matrix. Those

are then used to extend it to an approximation of eigenvalues and eigenvectors

of the full matrix. Therefore, last, we know by Mercer's Theorem that if

we have the eigenvalues and eigenvectors we have an approximation to the

matrix. Let�s start o� with some theory:

We want to �nd the eigenfunctions Φ() of the covariance kernel as de�ned in

De�nition 1: ∫ b

a

K(x, s)Φi(s)ds = λiΦi(x) (19)

(This integral equation is also known as a Fredholm integral equation of

the second kind and no analytical solution is known). Nyströms method to

approximate an integral is to replace the integral by a weighted sum and a

21



choice of knots (s1, ..., sm) where we evaluate the corresponding functions:

∫ b

a

K(x, s)Φi(s)ds ≈
m∑
j=1

wjk(x, sj)Φi(sj) (20)

Therefore we have to �nd approximations φ̃ and λ̃ such that

m∑
j=1

wjk(x, sj)φ̃i(sj) = λ̃iφ̃i(x) (21)

Lets further give each point equal weight by choosing wj = 1
m
for j = 1...m

and choose the knots sj = xj for j = 1, ...,m (which corresponds to m

observations):

1

m

m∑
j=1

k(x, xj)φ̃i(xj) = λ̃iφ̃i(x) (22)

Lets now assume we plug in (x1, ..., xm) for x. Then we arrive at the matrix

eigenproblem

Km×mU = Λ(m)U (23)

where Λ(m) is a m×m diagonal matrix with diagonal elements λ
(m)
1 , ..., λ

(m)
m ,

K a m×m matrix with (i, j)th element K(xi, xj) and U a m×m matrix and
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orthonormal. If we compare (22) and (23) we arrive at an estimator for λi:

λi ≈
λ

(m)
i

m
(24)

and for φ̃i(x) for orthogonality ( 1
m

∑m
k=1 φi(xk)φj(xk) = δi,j) we have:

φ̃i(xj) ≈
√
mU

(m)
j,i (25)

Now lets isolate φ(x) in 22 to get

φ̃i(x) ≈ 1

mλi

m∑
j=1

k(x, xj)φi(xj) (26)

and plug in 24 and 25 we get:

φi(x) ≈
√
m

λ
(m)
i

m∑
j=1

k(x, xj)U
m
k,i =

√
m

λ
(m)
i

k1×m~u
(m)
i (27)

where k1×m is the vector (K(x1, x1), K(x1, x2), ..., K(x1, xm))T .

The same technique can be applied to get an approximation to an n × n

matrix by calculating only the eigenvectors and eigenvalues of a m×m sub
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matrix. For example in Williams and Seeger [6] they derive the following:

λ
(n)
i =

n

m
λ

(m)
i for i = 1, ...,m

~u
(n)
i =

√
m

n

1

λ
(m)
i

Kn,m~u
(m)
i for i = 1, ...,m

where λ
(m)
i and ~ui

(m) are the calculated eigenvalues and eigenvectors of a

m×m sub matrix and λ
(n)
i and ~ui

(n) are the approximated values for the full

matrix. With the approximated eigenvalues and eigenvectors and the help

of Mercers Theorem we can approximate a n× n matrix by:

K̃n×n =
m∑
i=1

λ
(n)
i U

(n)
i (U

(n)
i )T

=
m∑
i=1

n

m
λ

(m)
i

√
m

n

1

λ
(m)
i

Kn×m~u
(m)
i

√
m

n

1

λ
(m)
i

(~u
(m)
i )TKT

n×m

=
m∑
i=1

Kn×m~u
(m)
i (λ

(m)
i )−1(~u

(m)
i )TKT

n×m

= Kn×m
[ m∑
i=1

(λ
(m)
i )−1~u

(m)
i (~u

(m)
i )T︸ ︷︷ ︸

K−1
m×m

]
KT
n×m

Conclusion
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The Nyström method allowed us to calculate only m eigenwerte and approx-

imate the n × n matrix by K̃ = Kn×mK
−1
m×mK

T
n×m. Adding noise σ2In×n

allows use of the Woodbury Matrix Identity to calculate the inverse.

2.2.3 Johnson-Lindenstrauÿ Theorem

The intuition of the Johnson-Lindenstrauÿ Theorem is that we project a set

of points of a high dimensional space into a lower dimensional space and

the distance between points experiences nearly no distortion. Therefore the

mapping into a lower dimensional space obtains characteristics of a higher

one. This has some useful application for the Gaussian Process as we can

approximate the calculation through ones in a lower subspace and are there-

fore computationally less expensive. Let's state the Theorem �rst and prove

it later:

Theorem 5 (Johnson-Lindenstrauÿ Theorem)

Let 0 < ε < 1 and

k ≥ 4
(ε2

2
− ε2

3

)−1

ln(n) (28)

and V a set of n points ∈ Rd. Then there exists a map f : Rd 7→ Rk, such
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that ∀u, v ∈ V we have

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2. (29)

Furthermore this map can be found in randomized polynomial time.

Note 7

The points u and v are here mapped from a d-dimensional space into a k-

dimensional space with k < d.

In the proof we need the following

Lemma 2

Let X ∼ N(0, 1). Then we have:

E(esX
2

)) =
1√

1− 2s
(30)
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Proof.

E(esX
2

) =

∫ ∞
−∞

esX
2

f(x)dx =

∫ ∞
−∞

esX
2 1√

2π
e−

X2

2 dx

=
1√
2π

∫ ∞
−∞

e−X
2( 1

2
−s) =

u=x
√

1
2
−s

1√
2π

∫ ∞
−∞

e−u
2 1√

1
2
− s

du

=
1√
2π

1√
1
2
− s

∫ ∞
−∞

e−u
2

du︸ ︷︷ ︸
Gaussian integral

=
1√
2π

1√
1
2
− s

√
π =

1√
1− 2s

The next Lemma gives bounds for a projection of a d-dimensional random

vector onto its �rst k coordinates, which we will use to prove the Johnson-

Lindenstrauÿ Theorem.

For the following let X1, ..., Xd ∼ N(0, 1), ~Y = 1
‖X‖(X1, ..., Xd) and ~Z ∈ Rk

the projection of ~Y onto its �rst k coordinates and L = ‖Z‖2 with µ =

E(L) = k
d

Lemma 3

For k < d we have

(I) For β < 1

P
(
L ≤ βk

d

)
≤ β

k
2

((1− β)k

d− k

) d−k
2 ≤ exp

(k(1− β + lnβ)

2

)
(31)
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and (II) for β > 1 we have:

P
(
L ≥ βk

d

)
≤ β

k
2

(
1 +

(1− β)k

d− k

) d−k
2 ≤ exp

(k(1− β + lnβ)

2

)
(32)

Proof. We prove part (II):

P
(
L ≥ βk

d

)
= P

(X2
1 + ...+X2

k

‖X‖
≥ kβ

d

)
P
[
d(X2

1 + ...+X2
k) ≥ kβ(X2

1 + ...+X2
d)
]

= P
[
d(X2

1 + ...+X2
k)− kβ(X2

1 + ...+X2
d) ≥ 0

]
= P

[
exp(d(X2

1 + ...+X2
k)− kβ(X2

1 + ...+X2
d)) ≥ 1

]

since ex > 1 for x positive and ex < 1 for x negative, we can introduce a

t > 0 in the exponential function and get:

= P
[
exp
(
t(d(X2

1 + ...+X2
k)− kβ(X2

1 + ...+X2
d))
)
≥ 1
]

(33)

for the following estimation observe that if t(d(X2
1 + ...+X2

k)−kβ(X2
1 + ...+

X2
d)) is negative, we have that P

[
exp
(
t(d(X2

1 +...+X2
k)−kβ(X2

1 +...+X2
d))
)
≥
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1
]

= 0 and E(ex) > 0 for every x. For t(d(X2
1 + ...+X2

k)−kβ(X2
1 + ...+X2

d))

being positive P
[
exp
(
t(d(X2

1 + ...+X2
k)− kβ(X2

1 + ...+X2
d))
)
≥ 1
]

= 1 and

E(ex) ≥ 1 for every x ≥ 1. Hence:

P
[
exp
(
t(d(X2

1 + ...+X2
k)− kβ(X2

1 + ...+X2
d))
)
≥ 1
]

≤ E
[
exp
(
t(d(X2

1 + ...+X2
k)− kβ(X2

1 + ...+X2
d))
)]

= E
[
exp
(
(td− tkβ)(X2

1 + ...+X2
k)− tkβ(X2

k+1 + ...+X2
d))
)]

=
Xi∼N(0,1) for all i=1,...,d

E
[
exp
(
(td− tkβ)(X2)

)]k
E
[
exp
(
− tkβ)(X2)

)]d−k
=

Lemma2
(1− 2(td− tkβ)−

k
2 (1 + 2tkβ)−

d−k
2

=: g(t)

for td− tkβ < 1
2
and tkβ < 1

2
and from (33) t > 0.

=⇒ 0 < t < 1
2kβ

Now we want to �nd the smallest t, for which this holds. Solving g'(t)=0

leads to:

t∗ = − 1− β
2β(d− kβ)

(34)
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And �nally:

P
(
L ≥ βk

d

)
≤ g(t∗) = (1− 2

1− β
2β(d− kβ)

kβ)−
d−k
2 (1 + 2

1− β
2β(d− kβ)

(d− kβ))−
k
2

=
[
1− (1− β)k

d− kβ

]− d−k
2
( 1

β

)− k
2

=
[d− kβ − k + kβ

d− kβ

]− d−k
2
β

k
2 = β

k
2

[d− kβ
d− k

] d−k
2

= β
k
2

[
1 +

(1− β)k

d− k

] d−k
2

Now we show the second inequality of part(II):

β
k
2

(
1 +

(1− β)k

d− k

) d−k
2

= exp
[k

2
ln(β) +

d− k
2

ln
(
1 +

(1− β)k

d− k
)]

≤
(63)

exp
[k

2
ln(β) +

d− k
2

(1− β)k

d− k

]
= exp

[k(ln(β) + 1− β)

2

]

which �nishes part (II). Part (I) is shown in the same way and therefore

omitted.

Proof Johnson-Lindenstrauÿ Theorem. Let vi ∈ V and v′i be the projection of

vi into a k-dimensional subspace S. To apply lemma 3 we de�ne L = ‖vi−v′i‖2

30



and µ = k
d
‖vi − v′i‖2 which leads to:

P(L ≤ (1− ε)µ) ≤ exp
(k(1− (1− ε) + ln(1− ε))

2

)
≤

Appendix(62)
exp
(k

2

[
ε−

(
ε+

ε2

2

)])
= exp

(
− kε2

4

)
≤

by assumption
exp(−2ln(n)) =

1

n2

From part (II) of Lemma 3 we get:

P(L ≥ (1 + ε)µ) ≤ 1

n2
(35)

De�ning f(vi) =
√

d
k
v′i and plugging in leads to:

P
(
‖f(vi)− f(vj)‖2 ≤ (1− ε)k

d
‖vi − vj‖2

)
= P

(
‖v′i − v′j‖2 ≤ (1− ε)‖vi − vj‖2

)
≤ 1

n2

and

P
(
‖v′i − v′j‖2 ≥ (1 + ε)‖vi − vj‖2

)
≤ 1

n2
(36)

So the chance that a pair of points lies outside of the interval [(1− ε), (1 + ε)]

is at most 2
n2 . Combining all n points gives the probability that for the map
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f at least one point is outside of the interval

n(n− 1)

2

2

n2
= 1− 1

n
(37)

The probability of the complement (that every point is inside of the interval)

is therefore at least 1
n
. This shows that the map can be found by repeating

the projection n times and therefore in randomized polynomial time. [7]

In terms of matrices the result from [8] is of particular interest because it

gives even higher probabilities for �nding a good approximation by random

projection and will be used in the stated algorithm.

Theorem 6

Let A ∈ Rm×n, 0 < ε ≤ 1 and S ∈ Rr×n matrix with iid zero-mean and

entries +1 and −1 with r = O(k
ε

+ klogk). Furthermore let Ak be the best

rank k approximation to A and AST ,k be the best rank k approximation of

the projected matrix AST . Then with probability at least 1
2
the following

holds:

‖A− AST ,k‖F ≤ (1 + ε)‖A− Ak‖F (38)

Proof. Without proof
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Last in this section we will present an algorithm which combines the ideas

of the Nyström method and Johnson-Lindenstrauÿ Theorem:

Algorithm 1

Input: Covariance Matrix Kn×n, dimension of reduction m, dimension of

Johnson-Lindenstrauÿ mapping reduction I

Output: Covariance approximation of the form Kn×m(Km×m)−1Km×n

1. Simulate Ωn×I with iid ∼ N(0, 1) and calculate

Pn×I = Kn×nΩn×I (39)

2. Calculate eigendecomposition of Pn×I and form matrix Φn×m with m

eigenvectors of largest eigenvalues.

3. K̄m×m = ΦT
m×nKn×nΦn×m

4. Choleski factorization gives

K̄m×m = Bm×mB
T
m×m (40)
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5. Set the Nyström factor Cn×m = Kn×nΦT
n×m(BT

m×m)−1

6. Singular value decomposition of Cn×m yields

Cn×m = Un×mΣm×mV
T
m×n (41)

Note 8

Now we can approximate Kn×n by K̃n×n = Cn×mC
T
m×n which leads to two

di�erent representations:

K̃n×n = Cn×mC
T
m×n = Un×mΣm×mV

T
m×nVn×mΣm×mU

T
m×n

= Un×mΣ2
m×mU

T
m×n

and

K̃n×n = Cn×mC
T
m×n = Kn×nΦT

n×m
(
BT
m×m

)−1(
Bm×m

)−1
Φm×nKn×n

= Kn×nΦT
n×m

(
Bm×mB

T
m×m

)−1
Φm×nKn×n

= Kn×nΦT
n×mK̄

−1
m×mΦm×nKn×n

= Kn×nΦT
n×m

(
ΦT
m×nKn×nΦn×m

)−1
Φm×nKn×n
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So we have the familiar form where we can by adding a noise variance σ2 use

the Woodbury Matrix Identity.

2.3 Estimation of Hyperparameter

In this section techniques for learning the parameters of the covariance func-

tion from the data are developed. From the data one can get di�erent es-

timators for the parameters by choosing di�erent knots, di�erent starting

points for simulation or just because of the nature of random variables we

need to simulate in the procedure. By generating enough of the parameters

we can derive all the characteristics of a distribution, even though we do not

know the density function. For example with the law of large numbers we

can estimate the mean µ̂ = E(x) = 1
n

∑n
i=1 xi etc.

2.3.1 Maximum likelihood function

One can obtain the parameters just by maximizing the marginal likelihood

function. For di�erent choices of data included to "train" the parameters we

obtain di�erent parameter estimators from which we can derive the distribu-

tion of the parameters.

What needs to be maximized for prediction purposes is the probability of the
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observed values y1, ..., yn, given t1, ..., tn and a certain structure of the covari-

ance kernel. We then maximize w.r.t the hyperparameters of the covariance

kernel. In section 2.1 we derived that

y ∼ N(0, K+
n×m(K∗m×m)−1K+

m×n︸ ︷︷ ︸
=:Kn×n

+σ2In×n) (42)

Then we obtain the marginal likelihood:

p(y|x) =
1√

(2π)k|Kn×n + σ2In×n|
exp
(
− 1

2
(y)T (Kn×n + σ2In×n)−1(y)

)

and the log marginal likelihood

logp(y|x) = −1

2
(y)T (Kn×n + σ2In×n)−1(y)− 1

2
log|Kn×n + σ2In×n| −

n

2
log2π

Now the log marginal likelihood can be maximized over the hyperparameters

of its covariance function.

2.3.2 Sampling

Here we will get familiar with three important techniques to simulate random

variables even though we do not fully know their density function and how
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to simulate them. First, the acceptance and rejection method enables us

to simulate random variables where the density function is known just by

simulating two other random variables. Next, with the help of the Gibbs

sampling, which uses basic properties of Markov chains, we can simulate

random variables when only their conditional distribution is known. Last the

Metropolis Hastings Algorithm tells us how to simulate when we know the

density function up to a multiplicative factor. By combining these techniques

one needs to assume a prior distribution of the hyperparameters and then by

multiple iterations of sampling and updating of the distribution parameters

one gets closer to the true distribution of the hyperparameters.

Acceptance and Rejection Method

The acceptance and rejection method enables us to simulate random vari-

ables from any density function without any transformations of the density

function (in contrast to the inversion method where the inverse of the cu-

mulative distribution function is needed and can be tedious to �nd in some

cases). The basic idea of this method is to sample from another density

function g where it is easy to sample from and whose support includes the

support of f . One can then accept a sample from g under some condition as
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a sample from f . If we look at the quotient f(x)
g(x)

we see that for f(x)
g(x)

> 1 it is

more likely that x is generated from f than from g. If we further "normalize"

this quotient by c = supx
f(x)
g(x)

we have that 0 ≤ f(x)
cg(x)

≤ 1. Now a sample y,

generated from g, will be accepted as sample from f if f(y)
cg(y)
≥ U with y ∼ g

and U ∼ U(0, 1).

Algorithm 2

Input: function f(x) from which we want to sample, function g(x) whose

support includes the support of f(x) and we are able to sample from, constant

c with supx[
f(x)
g(x)

] ≤ c

Output: X ∼ f(x)

1. Generate Y ∼ g

2. Generate U ∼ U(0, 1)

3. If ( f(Y )
cg(Y )

≥ U) then return X = Y

else go to step 1

We have to show two things about the algorithm: 1. The output of this al-

gorithm is sampled from f and 2. the algorithm terminates with probability

1.

First some notation:
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Let N be the stopping time of the algorithm and Rn the event, that the algo-

rithm terminates after iteration n respectively y ∼ g is rejected n− 1 times

as a sample from f. Formally:

Rn =
{
ω ∈ Ω : U1(ω) >

f(Y1(ω))

cg(Y1(ω))
, ..., Un−1(ω) >

f(Yn−1(ω))

cg(Yn−1(ω))
, Un(ω) ≤ f(Yn(ω))

cg(Yn(ω))

}
(43)

If we de�ne p as the probability that the algorithm ends in one certain iter-

ation, we have:

p = P
({
ω ∈ Ω : U(ω) ≤ f(Y (ω))

cg(Y (ω))

})
=

1

c
(44)

If we look at Rn as a random variable, we see that Rn has a geometric

distribution with 'winning' probability p and hence P(Rn) = p(1− p)n−1.

Lemma 4

Algorithm 2 terminates.

Proof.

P(N <∞) = P(R1 ∪R2 ∪R3 ∪ ...) =
Ri∩Rj=∅ for i 6=j

∞∑
n=1

P(Rn) =
∞∑
n=1

p(1− p)n−1

=
∞∑
n=0

p(1− p)n =
geometric sum

p

1− (1− p)
= 1
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Lemma 5

Output of algorithm 2 is sampled from f .

Proof.

P(X ≤ x) =
∞∑
n=1

P(X ≤ x ∩Rn)

=
∞∑
n=1

P
(
Yn ≤ x, U1(ω) >

f(Y1(ω))

cg(Y1(ω))
, ..., Un−1(ω) >

f(Yn−1(ω))

cg(Yn−1(ω))
, Un(ω) ≤ Yn(ω)

cg(Yn(ω))

)
=
∞∑
n=1

P
(
Yn ≤ x, Un(ω) ≤ Yn(ω)

cg(Yn(ω))

)
P
(
U1(ω) >

f(Y1(ω))

cg(Y1(ω))
, ..., Un−1(ω) >

f(Yn−1(ω))

cg(Yn−1(ω))

)

=
∞∑
n=1

P
(
Yn ≤ x, Un(ω) ≤ Yn(ω)

cg(Yn(ω))

)
(1− p)n−1

=
∞∑
n=1

[ ∫ x

−∞
P
(
Un ≤

f(y)

cg(y)

)
g(y)dy

]
(1− p)n−1

=
∞∑
n=1

[ ∫ x

−∞

f(y)

cg(y)
g(y)dy

]
(1− p)n−1 =

∞∑
n=1

F (x)

c
(1− p)n−1
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=
F (x)

c

∞∑
n=1

(1− p)n−1 =
geometric sum

F (x)

cp
=

(44)
F (x)

Gibbs sampling

In Gibbs sampling we basically draw samples from the conditional distribu-

tions of the random variables and rely that they will (after a "few" iterations)

converge to their joint distribution. To give the reasoning for that we need to

explore some basic concepts of Markov Chains. Markov Chains are stochas-

tic processes where the present state of the chain carries all the information

we need to predict the future, formally:

De�nition 2

Let (Ω,B) be a probability space and Xn : Ω 7→ S for n = 0, 1, 2, .... Then

Xn is called a Markov Chain if

P(Xn+1 ∈ A|Xn = xn, ..., X1 = x1) = P(Xn+1 ∈ A|Xn = xn) a.s.

for all n > 0 and A ∈ B(S). We call P(Xn+1 ∈ A|Xn = xn) the transition

probability as it gives us the probability to go from Xn = xn to Xn+1 ∈ An+1.
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For n = 0 we have P(X0 ∈ A) = π(A) which we also called the initial

distribution. A Markov Chain is called stationary, if the joint distribution of

{Xn, ..., Xn+k} is independent of n and k. Therefore P(Xn+1 ∈ A|Xn = x) is

independent of n and we can write P(A|x).

Note 9

We make use of regular conditional distributions as P(X = x) = 0 in a

continuous state space but we nevertheless like to make use of conditional

distributions P(Xn+1 ∈ A|Xn = xn).

Note that a Markov Chain is fully speci�ed by its transition probability and

initial distribution. Our goal is to construct a Markov Chain which converges

to our desired multivariate distribution. The questions is now, how do we

construct such a Markov Chain? To answer this question we de�ne the

following:

De�nition 3 (Equilibrium distribution)

Let Px(Xn ∈ A) = P(Xn ∈ A|X0 = x) be the n steps transition proba-

bility starting at x. limn→∞ Px(Xn ∈ A) = π̄(A) is called the equilibrium

distribution, if it exists.

De�nition 4 (Invariant distribution)
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We call π an invariant distribution if it satis�es

π(A) =

∫
Px(Xn ∈ A)dπ(x) (45)

Lemma 6

Let {Xn}∞n=0 be a stationary Markov Chain. The invariant distribution π

and equilibrium distribution π̄, if it exists, are the same.

Proof. Suppose the limiting distribution π() on B(S) exists such that

lim
n→∞

Px(Xn ∈ A) = π̄(A) (46)

for all x ∈ S and A ∈ B(S).

Then

Pπ(Xn ∈ A) =

∫
P(Xn ∈ A|X0 = x)dπ(x) =

∫
Px(Xn ∈ A)dπ(x)

=⇒ lim
n→∞

Pπ(Xn ∈ A) =

∫
lim
n→∞

Px(Xn ∈ A)dπ(x)

= π̄(A)

∫
dπ(x) = π̄(A)

for all π.
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Now, looking at the next state of the Markov chain we get:

Pπ(Xn+1 ∈ A) =

∫
P(Xn+1 ∈ A|Xn = x)dPπ(Xn = x)

=

∫
p(A|x)dPπ(Xn = x)

and

lim
n→∞

Pπ(Xn+1 ∈ A)︸ ︷︷ ︸
=π̄(A)

=

∫
p(A|x)d lim

n→∞
Pπ(Xn = x)

=

∫
p(A|x)dπ̄(x)

Note 10

The motivation for the preceding lemma was to shift the problem of �nding

a distribution to which the Markov Chain converges to �nding an invariant

distribution.

Now suppose that X ∼ π. We condition X on its own values, namely

Y = f(X) for some f : S 7→ Rk for some k.

=⇒ p(A|x) = P(X ∈ A|Y = y) (47)
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Lemma 7

p(A|x) is a transition probability with invariant distribution π, i.e.

∫
p(A|x)dπ(x) = π(A) (48)

Proof. Let B(x) = {u : f(u) = f(x)} be the set of elements u ∈ S which are

mapped to the same element ∈ Rk as x and IA(x) be the indicator function:

IA(x) =


1 if x ∈ A

0 else

(49)

Then we have:

∫
p(A|x)dπ(x) =

X∼π and Bayes Theorem

∫ (π(A ∩B(x))

π(B(x))

)
π(x)dx

=

∫ (∫
IA(u)IB(x)(u)π(u)du

) π(x)

π(B(x))
dx

=
Fubini

∫
IA(u)

(∫ IB(x)(u)π(x)

π(B(x))
dx
)
π(u)du

=
u∈B(x)⇐⇒ x∈B(u)

∫
IA(u)

(∫ IB(u)(x)π(x)

π(B(u))
dx
)

︸ ︷︷ ︸
=1

π(u)du

=

∫
IA(u)π(u)du = π(A)
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Finally, for x = (x1, ..., xk) ∈ S ⊂ Rk we de�ne fi(x) = (x1, ..., xi−1, xi+1, ..., xk)

and obtain the algorithm for Gibbs sampling:

Algorithm 3

Input: starting values (x0
1, x

0
2, ..., x

0
n) for every variable, conditional distri-

butions π(xj|x1, ..., xj−1, xj+1, ..., xk) for all j = 1, .., k, integer m = number

of iterations

Output: samples from π(x1, ..., xk).

for i = 1 to m

generate xi1 ∼ π(x1|xi−1
2 , xi−1

3 , ..., xi−1
k )

generate xi2 ∼ π(x2|xi1, xi−1
3 , ..., xi−1

k )

...

generate xik ∼ π(xk|xi1, xi2, ..., xik−1)

end for

return (xm1 , ..., x
m
k )

Note 11

One can use the Gibbs sampling in two di�erent ways: Either one starts with

some x and accepts xm for some m as a random variable sampled from π and

starts all over again to sample the next one. Another approach is to sample
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xm for some large m and accept all x from a certain point, say xj with j < m.

The simulated values until j are also called burn-in period. The choice of

the length of the burn-in period is not obvious and generally longer ones are

preferable. For discussion see [9].

Metropolis Hastings Algorithm

It is often the case that a density function is given up to a multiplicative

factor, i.e.

π(x) ∝ f(x) (50)

where π(x) is the target density we want to sample from and f(x) is an un-

known density function. Finding the normalizing constant which ensures that

c
∫
π(x)dx = 1 is not always easy. The Metropolis Hastings Algorithm gives

us a solution for this problem by enabling sampling from density functions

which do not integrate to one. Metropolis Hastings algorithm is a Monte

Carlo Markov Chain (MCMC) algorithm. So it relies on many iterations

and also on the properties of Markov Chains. The basic idea is that the

Markov Chain moves through the domain of the density function and stays

more often in regions with high probability and less often in regions of the

domain with low probability. The states of the Markov Chain then build
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the samples. The decision if the Markov Chain moves to another state is

similar to the acceptance and rejection method, where a certain sample was

accepted by comparing it to a quotient of density functions. Although the

density is known up to a multiplicative factor, the quotient π(y)
π(x)

equals the

quotient of the "real" density. If the quotient is > 1 the generated sample is

more probable than the current one and is accepted as the next state of the

Markov Chain. If it is smaller than 1, then it is compared with a random

variable U ∼ U(0, 1) and accepted in case π(y)
π(x)

> U . It is rejected otherwise.

The question left is from which density the samples are generated. We call

this density p(·|x) also candidate generating conditional density and will de-

rive it in the following:

There are 4 requirements for p(·|x):

1.
∫
p(y|x) = 1 for π almost all x

2. p(·|x) converges to π, or equivalent:

∫
p(A|x)π(x)dx = π(A) for all A ∈ B(S) (51)

3. The Markov chain with transition probability p(y|x) and initial prob-

ability π(x) has to be ergodic, i.e. it is possible to go from every state
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to every other state.

4. It is easy to sample from p(·|x).

The strategy to construct such a p(y|x) is to start with some q(y|x) and

transform it in two steps, so that it satis�es the mentioned conditions.

First: It is possible that ∫
q(y|x)dy < 1 (52)

which means that at current state x it may not move to another state y and

is stuck. Therefore it is added another term r(x) and we get:

p(dy|x) = q(y|x)dy + r(x)δx(dy) (53)

where δx(dy) = 1 if x ∈ dy and 0 otherwise and r(x) = 1−
∫
q(y|x)dy. Hence

we can interpret r(x) also as the probability that the chain stays at x.

Second: It is possible that

π(x)p(y|x) 6= π(y)p(x|y) (54)
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which is needed for the second condition. w.l.o.g. let

π(x)p(y|x) > π(y)p(x|y) (55)

On the left hand side we have the probability of being at x and moving to y

and on the left hand side vice versa. We remedy this problem by multiplying

with an extra probability α(x|y) and α(y|x), also called 'probability of move'.

On the right hand side we make α(x|y) as large as possible, namely 1, to get:

π(x)q(y|x)α(y|x) = π(y)q(y|x)α(x|y) =
α(x|y)=1

π(y)q(x|y)

=⇒ α(y|x) =
π(y)q(x|y)

π(x)q(y|x)

Therefore the rule for choosing α(y|x) is:

α(y|x) =


min

(
π(y)q(x|y)
π(x)q(y|x)

, 1
)

if π(x)q(y|x) > 0

1 otherwise

(56)

Finally the transition kernel pMH(dy|x) is given by:

pMH(dy|x) = q(y|x)α(y|x)dy +
[
1−

∫
S
q(y|x)α(y|x)dy

]
δx(dy) (57)
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Before the algorithm is stated let's be more speci�c about the choice of q(y|x).

Here are three options:

1. Random Walk Chain

Set q(y|x) = q1(y − x) with q1(·) a multivariate density, for example

multivariate normal. The generated sample will then be added to the

current state, i.e. let x be the current state and Z ∼ q1. The new state

y is obtained by y = x+ z

2. Independence chain

The next state y is independent of the current state x, i.e. q(y|x) =

q2(y).

3. Independent choice derived from π(x)

If π(x) ∝ Ψ(x)h(x) with h(x) a known density and Ψ(x) uniformly

bounded, set q(y|x) = h(y) and a(y|x) = min
{

Ψ(y)
Ψ(x)

, 1
}
.

Last, for stating the algorithm we need a little bit notation: If r(x) 6= 0

then Q(y|x), the cdf of q(y|x) is not continuous respectively has jumps. Let

y1, ..., yk be the jump points and γ(y1|x), ...γ(yk|x) the size of the jumps.

Last, γ(x) =
∑k

i=1 γ(yi|x)

Algorithm 4 (Metropolis Hastings Algorithm)
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Input: transition kernel pMH(dy|x), starting point x0, n = number of sam-

ples needed, jump points (y1, ..., yk) and their jump sizes γ(y1|x), ...γ(yk|x)

Output: states of the Markov Chain respectively samples ∼ π(x)

if r(x) = 0

while (i < n)

generate U ∼ U(0, 1)

generate y ∼ pMH(dy|x)

if (U ≤ α(y|x))

set xi+1 = y and i = i+ 1

return (x1, ...., xn)

else

while (i<n)

generate U ∼ U(0, 1)

if (U < γ(x))

select one of {y1, ..., yk} with probability proportional

to their length γ(y1|x), ...γ(yk|x) and set xi+1 = yj and i = i+ 1

else

if (U ≤ α(y|x))

set xi+1 = y and i = i+ 1
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return (x1, ...., xn)

3 Application

As an example application the random projection method (2.2.1) and marginal

likelihood maximization (2.3.1) were implemented in R and tested with the

data set SARCOS. The code is given in Appendix B. Sarcos is a robot arm

with 7 joints. For every joint position, velocity and acceleration is measured

and served as the independent variables to predict the 7 torques. The con-

nection is not a static one because of the hydraulic nature of the arm. This

made it appropriate for statistic modeling. Furthermore the size of the data

set suggested use of approximation methods: 44484 x 28 observations. Fur-

thermore a test set of 4449 x 28 observations is used for cross validation.

Here the 21 inputs were used to predict the �rst torque. The data set was

already centered, i.e. the mean equals 0 in every dimension. This let us

also choose 0 as a mean function. Furthermore we made use of the squared

exponential function, which we restate here:

cov(x, y) =
1

θ1

∗ exp
[(x− y)2

θ2

]
(58)
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In the results of the computation the starting point for the hyperparameter

estimation θ1, θ2 and σ2 were crucial. The conjugate gradient method was

used for maximization of the log marginal likelihood. Prior examination of

the data let small values for the hyperparameters be reasonable, roughly

θ1 ≈ 1
9000

, θ2 ≈ 1
10000

and σ ≈ 1. So as a starting point 1 was chosen for

all parameters. Out of the 44484 observation n = 1000 were used together

with m = 400 knots. The estimations were made 1000 times and the plots

together with some important statistic measures are shown below:

mean median 95% con�dence interval 95% HPD

σ 8.984 17.3 [8.366 , 31.562] [8.270 , 30.385]

θ1 2.730 2.000 [-37.75 , 43.607] [-37.729 , 43.700]

θ2 14.610 9.274 [0.662 , 57.923] [0.143 , 46.774]

Although the results seem reasonable, predicting with those parameters (for

example the mean of every estimator) gives poor results. Estimators were

expected to be tighter concentrated and much smaller. For computational

reasons a slight modi�cation of the covariance function was made:

cov(x, y) = θ1 ∗ exp
(
(x− y)2θ2

)
(59)

where the hyperparameters were inverted. Starting values were now 9000
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(a) σ2 (b) θ1

(c) θ2

Figure 1: Histogram of σ2, θ1, θ2 (1)

for θ1 and 10000 for θ2. The results indicated that the conjugate gradient

method gets stuck in a local extrema. So the next idea was to use a random

grid of starting values as shown below:

From every point the log marginal likelihood was maximized and the 100 re-

sults were compared and the largest one was kept. The obtained distribution

of the parameters is shown below:
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mean median 95% con�dence interval 95% HPD

σ 717.587 6.489 [1.850 , 5463.814 ] [1.263, 2455.291]

θ1 7612.226 8272.148 [-2266.15 , 14039.17] [-1301.175 , 14574.128]

θ2 2083.991 2081.892 [-1710.406 , 7990.827 ] [-1301.175 , 14574.128]

With the median of every parameter predictions were made (shown in �gure 3

and 4). The black points are the actual values and the red ones the predicted.

Those observations were not included in the training of the parameters. x1

and x17 correspond to the 1st respectively 17th column of the data and y to

the 22nd. The standardized mean squared error is fund to be 0.0265.

Note 12

One can observe that the mean is no robust estimator as between the mean

and median of σ2 there is a big di�erence. This is the reason predictions were

made with the median. Also observe that those computations are not com-

putationally e�cient anymore. The conjugate gradient method got stuck in
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(a) σ2 (b) θ1

(c) θ2

Figure 2: Histogram of σ2, θ1, θ2 (2)

local extrema and did not �nd the global ones. We assume that because ex-

trema were often fund close to starting points. Other maximization methods

for example Broyden-Fletcher-Goldfarb-Shanno algorithm showed no supe-

riority. Nevertheless with the help of the grid we were able to make use

of the log marginal likelihood maximization and predictions gave reasonable

results.
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Figure 3: x1 vs y and predictions

Figure 4: x17 vs y and predictions

4 Conclusion and outlook

Gaussian Processes are a powerful tool for predictions. What is particular in-

teresting and surprising is that random projection methods perform very well
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[5]. They are computationally undemanding and are also easy to interpret

which in consequence makes them quite useful.

Conclusion (Limitations of Gaussian Process Regression)

Although they perform well in predictions, Gaussian Process have no easy

to interpret statistic which tells us about the relationship of the variables

or graphical output which enables a deeper understanding of the estimated

relationship in high dimensions.

Conclusion (Outlook)

Besides other machine learning algorithms one can also use Gaussian Pro-

cesses for classi�cation problems. Furthermore we did not explore any com-

putational issues. Recent development makes use of parallel computing.

Thereby one needs to split the necessary computations in parts and let it be

computed by di�erent processors which in consequence speeds up the compu-

tations. Last, there are more parts of Gaussian Process Regression which can

be speeded up with the help of approximation methods, for example singular

value decomposition, matrix multiplications etc. [8].
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A Mathematical Background

De�nition 5

The Frobenius norm of a n×m matrix A is given by:

‖A‖F =

√√√√ n∑
i=1

m∑
j=1

|ai,j|2 (60)

Lemma 8

Let x and y be vectors with multivariate normal distribution and Matrix

A,B,C of appropriate dimension:

[
x

y

]
∼ N

(
~0,

[
A C

CT B

])

Then the conditional distribution of x given y is:

x|y ∼ N(CB−1y, A− CB−1CT ) (61)
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Power series of logarithm gives:

ln(1 + x) =
∞∑
k=1

(−1)k+1x
k

k
= x− x2

2
+
x3

3
− x4

4
+ ... ≤

x<0
x− x2

2
(62)

Furthermore for the logarithm it holds that

ln(x) ≤ x− 1 (63)

B R Code

#read in the data from l o c a l PC

data=read . table ( "C: / . . . /Sarcos_inv . csv " , header=FALSE, sep=" , " )

t e s t_data=read . table ( "C: / . . . /Sarcos_inv_t e s t . csv " ,

header=FALSE, sep=" , " )

#number o f o b s e r va t i on s to incorpora t e

n=1000

#number o f o b s e r va t i on s f o r covar iance matrix random pro j e c t i on

m=400
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#ex t r a c t n random samples

randData=sample (1 : 44484 , n , replace=FALSE)

X_n=as .matrix (data [ randData , 1 : 2 1 ] )

Y_n=data [ randData , 2 2 ]

#ex t r a c t 100 ob s e r va t i on s from the t e s t data

X_p=as .matrix ( t e s t_data [ 1 : 1 0 0 , 1 : 2 1 ] )

Y_p=t e s t_data [ 1 : 1 0 0 , 2 2 ]

I=diag (1 , n , n )

#covar iance func t i on wi thout no i se var iance sigma

covfunc1=function ( hyper , x1 , x2 ){

K=matrix (0 ,dim( x1 ) [ 1 ] ,dim( x2 ) [ 1 ] )

for ( i in 1 :dim( x1 ) [ 1 ] ) {

for ( j in 1 :dim( x2 ) [ 1 ] ) {

K[ i , j ]=( hyper [ 2 ] ^ ( 1 ) ) *exp(−sum( ( x1 [ i , ]−x2 [ j , ] ) ^ 2 ) *

( hyper [3 ]^( −1)) )

}

}
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return (K)

}

#covar iance func t i on wi th no i se var iance sigma

covfunc2=function ( hyper , x1 ){

K=matrix (0 ,dim( x1 ) [ 1 ] ,dim( x1 ) [ 1 ] )

for ( i in 1 :dim( x1 ) [ 1 ] ) {

for ( j in 1 :dim( x1 ) [ 1 ] ) {

K[ i , j ]=( hyper [ 2 ] ^ ( 1 ) ) *exp(−sum( ( x1 [ i , ]−x1 [ j , ] ) ^ 2 ) *

( hyper [3 ]^(−1)))+( hyper [ 1 ] ^ 2 )* ( i==j )

}

}

return (K)

}

#Marginal L i k e l i h ood o f Y us ing Woodbury I d e n t i t y

marginal_l i k e l i h o o d=function ( hyper ){

random_vector=sample ( 1 : n ,m, replace=FALSE)
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permutation_matrix=I [ random_vector , ]

#Those ob s e r va t i on s are b u i l d i n g the knots

X_m=permutation_matrix %*% X_n

#re s t o f the o b s e r va t i on s

X_n_minus_m=I [−random_vector , ] %*% X_n

Y_n_minus_m=I [−random_vector , ] %*% Y_n

K_s t a r_mxm=covfunc2 ( hyper ,X_m)

K_s t a r_mxm_inv=solve (K_s t a r_mxm)

K_plus_n_minus_mxm=covfunc1 ( hyper ,X_n_minus_m,X_m)

cov=K_plus_n_minus_mxm %*% K_s t a r_mxm_inv %*%

t (K_plus_n_minus_mxm)+diag ( hyper [ 1 ] ^2 , n−m, n−m)

#Woodbury Matrix I d e n t i t y

cov_inv=hyper [1]^(−2)* (diag ( 1 , ( n−m) , ( n−m))−

(K_plus_n_minus_mxm %*% solve ( ( hyper [ 1 ] ^ 2 )*
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K_s t a r_mxm+(t (K_plus_n_minus_mxm) %*%

K_plus_n_minus_mxm)) %*% t (K_plus_n_minus_mxm) ) )

# return l o g marginal l i k e l i h o o d

return ((−0.5*t (Y_n_minus_m) %*% cov_inv %*% (Y_n_minus_m))

−0.5*determinant (cov , l ogar i thm=TRUE) [ [ 1 ] ] [ [ 1 ] ]

−((n−m)/2)* log (2*pi ) )

}

# t h i s f unc t i on g i v e s back k e s t ima to r s o f the

# hyperparameters and uses the marginal_l i k e l i h o o d func t i on

hyperparameter_e s t imat i on=function ( k ){

output=matrix (1 , k , 3 )

for ( l in 1 : k ){ #in every loop one es t imator i s made

for (b in 1 :100){ #100 es t ima to r s are made and compared

i=runif (1 ,4000 ,14000) #random g r i t

j=runif (1 ,1 , 5000)
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o=runif (1 , 1 , 10 )

try ({ temp=optim(c ( o , i , j ) , marginal_l i k e l i h o od ,

control=l i s t ( f n s c a l e =−1),method="CG" ) [ [ 1 ] ] } )

i f ( marginal_l i k e l i h o o d ( temp)>

marginal_l i k e l i h o o d ( output [ l , ] ) ) {

output [ l , ]= temp

}

else {}

}

}

return ( output )

}

hyperparameter=hyperparameter_e s t imat i on (1000)

66



#sav ing the s imu la ted va l u e s

write . table ( hyperparameter , "C: / . . . /hyperparameter . csv " ,

sep=" , " , append=TRUE, row .names = FALSE, col .names = FALSE)

# pr ed i c t i n g :

random_vector=sample ( 1 : n ,m, replace=FALSE)

permutation_matrix=I [ random_vector , ]

#Those ob s e r va t i on s are b u i l d i n g the knots

X_m=permutation_matrix %*% X_n

K_plus_pxn=covfunc1 ( hyperparameter ,X_p ,X_n)

K_plus_pxm=covfunc1 ( hyperparameter ,X_p ,X_m)

K_plus_nxm=covfunc1 ( hyperparameter ,X_n ,X_m)

K_s t a r_mxm=covfunc2 ( hyperparameter ,X_m)

K_s t a r_mxm_inv=solve (K_s t a r_mxm)

K_t i l d e=K_plus_pxm %*% K_s t a r_mxm_inv %*% t (K_plus_pxm)

cov=K_t i l d e+diag (1 ,dim(X_p ) [ 1 ] ,dim(X_p ) [ 1 ] ) %*%

( covfunc2 ( hyperparameter ,X_p)−K_t i l d e )

#Woodbury I d e n t i t y :
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cov_inv=(hyperparameter [1 ]^(−2))* (diag (1 , n , n)−K_plus_nxm %*%

solve ( ( hyperparameter [ 1 ] ^ 2 )*K_s t a r_mxm+t (K_plus_nxm) %*%

K_plus_nxm) %*% t (K_plus_nxm) )

p r e d i c t i o n s=K_plus_pxn %*% cov_inv %*% Y_n

#Plot

plot (X_p [ , 1 ] ,Y_p)

points (X_p [ , 1 ] , p r ed i c t i on s , col="red" , pch=4)

# eva l ua t i n g

SMSE=function (x , y , var ){

return (sum( ( ( x−y )^2)/var )/length ( x ) )

}

SMSE( p r ed i c t i on s ,Y_p , diag (cov ) )
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