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ABSTRACT

DYNAMIC PRICING WITH VARIABLE ORDER SIZES

FOR A MODEL WITH CONSTANT DEMAND ELASTICITY

by

Nyles Breecher

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Richard H. Stockbridge

We investigate a dynamic pricing model under constant demand elasticity which accounts

for customers ordering multiple items at once. A closed form expression for the optimal

expected revenue and pricing strategy is found. Models with the same demand are shown

to have asymptotically similar expected revenue and pricing strategies, even if the order

size distributions of the customers are different. Surprisingly, the relative difference between

comparable models is shown to be independent of time and the magnitude of demand.

Variations of the model are considered, including different low inventory behavior as well as

the effect of advertising. Some numerical simulations are presented to provide better insight

on the model.
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1.

Introduction

1.1 Overview

Dynamic pricing concerns sellers who attempt to maximize their profits by adjusting prices

over time. The company develops a rule, or pricing strategy, which takes into account

market conditions. Take as example the airline industry, where ticket prices are frequently

updated based on factors like how much time is left until a flight and how many seats have

already been sold. There are many other factors that could influence pricing, although this

dissertation focuses on limited time to sell and limited inventory, as these two factors are

enough to create interesting models. Some other industries which care deeply about these

factors include event ticket sales, fashion, and hotels.

By setting prices, sellers influence the demand for their goods, and more importantly,

the amount of revenue they earn. In order to maximize this revenue, a model is needed

for sales. Customer arrivals are stochastic and independent of one another, so a Poisson

based process is the natural choice for this model. The arrivals are also dependent on the

price p and time t. Thus we let λ(p, t) be the intensity of the Poisson based process to

reflect these dependencies. We will focus on the case of constant demand elasticity, which

necessitates λ(p, t) = a(t)p−ε, where ε is the demand elasticity and a(t) is an arrival rate
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scale factor. Demand elasticity is a measure of how much the relative change in quantity

demanded changes with respect to a relative change in price. It is an important measure in

economics to understand how prices affect sales and helps indicate if items are necessities or

luxuries.

Optimal prices are found numerically in many contexts by solving the Hamilton-Jacobi-

Bellman (HJB) equations; however, this equation can be difficult to solve in general. The

setting of constant demand elasticity offers a tractable example with analytic results, which

then lead to deeper insights on the problem itself. This setting has been explored by (McAfee

and te Velde 2008) and expanded upon by (Helmes and Schlosser 2013). Compared to these

previous works, the key difference for our work is that customers can order multiple items at

a time. In terms of the model, that means a compound Poisson process is used instead of a

regular Poisson process. To distinguish between these ideas, the compound Poisson setting

will be referred to as “variable order sizes,” while the regular Poisson setting will be referred

to as “unit order sizes.”

We now outline the structure of this dissertation. Section 1.2 provides a literature review,

and highlights papers related to various aspects of our model. Section 1.3 explains the

dynamic programming formulation which is used to determine optimal prices. Here, the

formulation is presented in a general context and is not tied to constant demand elasticity.

In Chapter 2 we focus on the basic model of constant demand elasticity and variable order

sizes, and this section contains the heart of our results. We find closed form expressions for

the optimal expected revenue and pricing strategy. A key insight is that this term involved

the average order size µ, which is not observed under the unit order case where µ = 1.

In Section 2.2, we turn to comparing constant elasticity models which have the same

demand (average rate of sales over time), yet different order size distributions, calling such

models comparable. Under constant demand elasticity, we show that as the size of the

inventory tends to ∞, comparable models have asymptotically equivalent optimal expected

revenue and optimal pricing strategies. This means, that to some degree, unit order models
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may be used to approximate variable order models. For low inventory, these differences

can be quite large from a revenue management standpoint. Section 2.3 provides numerical

results to greater analyze aspects like the convergence rate. We also show the surprising

result that the relative difference between comparable models is independent of both time

and magnitude of demand; the relative difference is completely determined by the inventory

level and the two order size distributions between the comparable models.

Chapter 3 discusses important extensions to the basic problem, which improve the flexi-

bility of the model. Section 3.1 discusses the idea of overselling, like an airline overbooking

their seats. Determining how to handle low inventory is a problem which must be addressed

for variable order sizes, and this section presents a general method for handling these cases.

Section 3.2 confirms the result of the unit order case that the monopolist pricing scheme

is socially efficient. Section 3.3 introduces advertising and other factors, such as subsidies,

into the model. This translates to more involved formulas, but does not fundamentally alter

any methods used for the basic model. Lastly, Section 3.4 examines how variable order sizes

affect the optimal pricing problem for exponential and linear customer arrival rates.

Lastly, an Appendix includes the Mathematica code which was used in the numerical

parts of the dissertation. In particular, functions are provided which can numerically com-

pute optimal expected pricing strategies and revenue for any type of customer arrival rate

function. These algorithms may be helpful to anyone wishing to do any further work on the

subject of variable order sizes.

1.2 Literature Review

Our work is most closely related to that of (McAfee and te Velde 2008) and (Helmes and

Schlosser 2013), who both explore the problem of optimal pricing in continuous time with con-

stant demand elasticity. (McAfee and te Velde 2008) explored the basic model and (Helmes

and Schlosser 2013) expanded on their work by including advertising and other factors like
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discounts and subsidies. In both papers, analytic formulas for the optimal pricing strategy

are found. These papers also discuss monopolist pricing strategies. With no advertising, a

monopolist’s pricing is shown to be efficient, and with advertising a parameter adjustment

(like a subsidy) can also ensure this. These papers also show that, in general, waiting as a

customer is not a beneficial strategy.

A key feature of these papers and our study is that the specific arrival rate λ(p, t) =

a(t)p−ε allows for analytic solutions to be found. Indeed, finding analytic solutions for

general λ is difficult primarily because λ may be complicated in general, and even if λ is

known, there is not a general analytic solution technique which can be applied in all cases.

At the very least, for λ(p, t) = e−p, an analytic solution for the optimal pricing strategy

is shown. This was shown in the seminal paper (Gallego and van Ryzin 1994), which is a

widely cited article that created general theory and foundations for dynamic pricing with

Poisson models. A wider overview of dynamic pricing models is provided by (Talluri and van

Ryzin 2004). This book also contains useful applications of dynamic pricing in the context

of specific industries.

The paper by (Monahan, Petruzzi, and Zhao 2004) also considers a dynamic pricing model

with constant demand elasticity; however, their model evolves in discrete time. Under the

discrete setup, what matters is how many items are sold per time period. This shifts the focus

away from customer arrivals, making it significantly different relative to the considerations

in our study. (Chung and Flynn 2011) expands upon the discrete time model by introducing

holding costs.

At this point we make a note about terminology in the literature. “Demand” is often

used interchangeably to refer to the customer arrival rate λ and the rate of sales λµ, where

µ is the average order size. This is not a problem for unit order sizes, where µ = 1 and so

demand and the arrival rate are equal; however, it is important to retain this distinction

when working with variable order sizes. We have elected to refer to our model as a “variable

order size” model to keep the focus on the behavior of customers. Similar generalizations
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have been made in other contexts and are sometimes referred to as “batch demand,” “random

order rates,” or “compound Poisson demand.” See (Lin, Lu, and Yao 2008), (Elmaghraby

and Keskinocak 2008), and (Xu, Yao, and Zheng 2011) for some examples. It is worth noting

that in these scenarios when variable order sizes are applied, generally only numerical results

are obtained.

Variable order size models also have connections with multiproduct dynamic pricing

models. (Gallego and van Ryzin 1997) provides a good reference for this model, and the

later paper (Maglaras and Meissner 2006) expands upon their model. Both models consider

multiple products which require the same resource. An interesting observation from these

papers, although treated briefly, is that a variable order size model can be made equivalent

to a multiproduct model by considering each order size level as a different type of product.

This similarity is not completely surprising when comparing the optimization equations used:

both have a similar form due to a summation term required to handle different types of sales.

For the classical models in operations research, the probability distribution of customer

order sizes is unaffected by the price. This is a reasonable assumption for industries like

airlines or hotels, where a group’s size is essentially fixed before they make a purchase.

Therefore, changes in price do not affect the distribution of the number of items purchased.

In other scenarios, this assumption may not hold. For example, a particularly good deal

on food is likely to induce people to buy more items at a time than they normally would.

Discounts for bulk purchasing is also a very common pricing strategy. This practice is called

nonlinear pricing, see (Wilson 1993).

The next section shows that low inventory behavior must be addressed to work with a

variable order size problem. One approach to handling low inventory is to allow overselling

or overbooking. For example, an airline can sell more seats than are actually available on a

flight. This is a common practice in the airline industries, as overbooking is a great way for

companies to earn extra revenue in spite of cancellations or no sales. Empty spaces on flights

essentially represent lost revenue. Of course, overbooking needs to be balanced with the risk
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of having too many people for a flight, in which case the airline can offer compensation in the

form of upgraded seats or flight discounts. There are many papers which explore the topic

of overbooking, see (Kunnumkal and Topaloglu 2009) and (Bertsimas and Popescu 2003) for

a couple.

1.3 Dynamic Programming Formulation

We formulate the basic version of the problem. Later, in Chapter 3 we examine extensions.

A seller has n items to sell over the time period [0, T ], with maximum time 0 < T < ∞.

Items have no value after the sales period. The customer arrival rate λ(p, t) is assumed to

be known and depends on price p ≥ 0 and time 0 ≤ t ≤ T . In practice, λ is obtained either

from vast amounts of historical data, or more recent data that sellers have gathered. The

seller wants to determine the optimal price to use for every time and inventory level which

maximizes their total expected revenue. This is known as a pricing strategy.

For now, the specific form of λ(p, t) is unspecified, as the general model formulation does

not depend on the specific λ. Customer arrivals are modeled by a random time change of

a compound Poisson process with intensity λ(p, t). Random time change refers to the fact

that price p is stochastic in time, as p is set by the seller and will be adjusted based on

the specific realization of the process. When a customer arrives, the number of items they

order is governed by a probability distribution q = (q1, . . . , qM), where qi, 1 ≤ i ≤ M , is

the probability that the customer orders i items and M is the maximum order size (which

can be arbitrarily large, if desired). q is assumed to not depend on price, meaning we are

focused on models for industries like airlines and hotels where groups tend to stay together.

Let vn(t;q, λ) be the optimal expected revenue with n items to sell, at current time

0 ≤ t ≤ T , under customer order size distribution q and customer arrival function λ. The

terms q and λ are after a semicolon to indicate that these features are part of the model

setup. Such notation will be useful for comparing models in the future.
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The optimal expected revenue has natural boundary conditions: vn(T ;q, λ) = 0 (time

for selling is done) and v0(t;q, λ) = 0 (no inventory left to sell). One can write a formula for

vn(t;q, λ) by using dynamic programming, also known as the Principle of Optimality. The

principle states that a problem can be divided into several subproblems: at any moment

make an optimal choice, and then proceed optimally from that point on.

Formally, let δt > 0 be a small time interval. Since the sales process is Poisson based,

0 < i ≤ M items are sold with probability qiλ(p, t)δt over the period δt, with a profit of ip

earned. 0 items are sold with probability 1 − λ(p, t)δt. In either case, to find an optimal

policy, we then proceed optimally with the new inventory and at the new time. Thus the

Principle of Optimality states

vn(t;q, λ) = sup
p



(1− λ(p, t)δt)vn(t+ δt;q, λ)
︸ ︷︷ ︸

From selling no items

+
M∑

i=1

qiλ(p, t)δt(ip+ vn−i(t+ δt;q, λ))
︸ ︷︷ ︸

From selling i items for p each



 . (1.3.1)

Next, we heuristically derive the Hamilton-Jacobi-Bellman equations. More details to val-

idate the heuristic derivation of (1.3.2) are provided for more general counting processes

in (Bremaud 1981). We rearrange (1.3.1) so that the left hand side is (vn(t + δt;q, λ) −

vn(t;q, λ))/δt and then take the limit of the equation as δt → 0 to get:

v′n(t;q, λ) =− sup
p

λ(p, t)

[

−vn(t;q, λ) +
M∑

i=1

qi(ip+ vn−i(t;q, λ))

]

.

= − sup
p

λ(p, t)

[

µ(q)p−

(

vn(t;q, λ)−
M∑

i=1

qivn−i(t;q, λ)

)]

, (1.3.2)

where µ(q) :=
∑M

i=1 qii is the average order size of the order size distribution q. The Principle

of Optimality states that a pricing policy pn(t) which satisfies the supremum in (1.3.2) for

all valid inventory n > 0 and time 0 ≤ t < T is an optimal pricing policy.
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The recursive elements in (1.3.1) and (1.3.2) show that M base case terms of vn are

needed for these equations to be well defined. The simplest choice is to define vn(t;q, λ) = 0

for n < 0. Under this assumption, (1.3.1) models overselling with no penalty costs, since

items can be sold to go into negative inventory. The practice of overselling actually common

in the airline industry, where some passengers are expected to miss their flights. Of course,

there is a risk to do so, as a plane might be overfull and compensation needs to be given out.

Without penalty costs, the current behavior of the model may feel a bit limited. We

note that the results in Chapter 2 are primarily recursive in nature, so the behavior at low

inventory often plays an unimportant role, as the eventually recursion drives the results.

This will formally be explored in Section 3.1. So for now we will assume vn(q;q, λ) = 0 when

n < 0 for ease of exposition.
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2.

Main Results

In this chapter, constant demand elasticity ε is now assumed. As will be shown, this property

requires that λ(p, t) = a(t)p−ε. This chapter has three parts. Section 2.1 proves a closed

form solution for the optimal expected revenue. Its asymptotic behavior is then analyzed,

the results of which are used in Section 2.2, which focuses on comparable models. These are

models with the same demand, but different order size distributions. Comparable models

are found to have the same asymptotic behavior in the inventory size. A surprising result

is that the relative difference between comparable models does not depend on time or the

magnitude of demand. Finally, Section 2.3 shows some numerical calculations in order to

obtain a better understanding of the model as a whole.

2.1 Analytic Results for the Basic Model

Demand Q is the rate of item sales, which is calculated by multiplying the rate of customer

arrivals λ(p, t) by a customer’s average order size µ, that is Q(p, t) := λ(p, t)µ(q). Demand

elasticity ε measures how sensitive that demand is to price fluctuations. ε is a measure of the

relative change in demand compared the relative change in price, taken in absolute value,

thus

ε :=

∣
∣
∣
∣

dQ/Q

dp/p

∣
∣
∣
∣
= −

p (dQ/dp)

Q
= −

p (dλ/dp)

λ
. (2.1.1)
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Note that the evaluation of the absolute value is justified because for all practical purposes,

quantity demanded and price are inversely proportional, making (dQ/Q)/(dp/p) ≤ 0. Since

constant ε is assumed, (2.1.1) can be solved for λ through separation of variables. This yields

λ(p, t) = a(t)p−ε for some time-dependent function a(t) > 0, which is an arrival rate scaling

factor. An interesting feature of this arrival rate λ form is that it can be made arbitrarily

large by taking p → 0, thus ensuring all inventory can always be sold.

For this chapter, λ is always of the form a(t)p−ε, so write vn(t;q) = vn(t;q, λ) for clarity.

Substituting λ(p, t) = a(t)p−ε into (1.3.2) yields

v′n(t;q) = − sup
p

a(t)p−ε

[

−vn(t;q) +
M∑

i=1

qi(ip+ vn−i(t;q))

]

= − sup
p

a(t)p−ε

[

µ(q)p−

(

vn(t;q)−
M∑

i=1

qivn−i(t;q)

)]

. (2.1.2)

Using standard calculus, the price p∗ which attains the supremum in (2.1.2) is found to be

p∗n(t;q) =
ε

ε− 1
µ(q)−1

(

vn(t;q)−
M∑

i=1

qivn−i(t;q)

)

. (2.1.3)

An immediate consequence of this formula is that ε > 1, since the solutions for ε ≤ 1 would

make no practical sense. From an economic standpoint this also makes sense, since goods

with ε ≤ 1 are not considered elastic goods. That means that price has little influence on

their demand, meaning that dynamic pricing is of little use. With pricing strategy (2.1.3),

v′n(t;q) = −a(t)µ(q)ε
(ε− 1)ε−1

εε

(

vn(t;q)−
M∑

i=1

qivn−i(t;q)

)1−ε

. (2.1.4)

Before proceeding, some notation is needed. Their meaning and usefulness will become

more apparent through the proofs. Let A(t) :=
∫ T

t
a(s)ds, which can be thought of as the

expected number of future customer arrivals at a price of 1. Also let (βn(q))n be the sequence
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given by βn(q) = 0 for n ≤ 0 and such that for n > 0, βn(q) is the non-negative solution to

ε− 1

ε
= βn(q)

1
ε−1

(

βn(q)−
M∑

i=1

qiβn−i(q)

)

. (2.1.5)

Equation (2.1.5) will be helpful because it mirrors some structure in (2.1.4). Note that

analytically finding βn(q) would be cumbersome if not impossible, but can be computed

numerically rather simply. The existence and uniqueness of a solution to (2.1.5) is given by

the following lemma:

Lemma 2.1.1. Let fb,c(x) := x
1

ε−1 (bx− c) = bx
ε

ε−1 − cx
1

ε−1 for any constants b > 0 and c.

Then there exists a unique positive solution to fb,c(x) =
ε−1
ε

.

Proof. Let b > 0 and c be constants. Then fb,c(x) < 0 for 0 < x < c/b, fb,c(x) = 0 at

x = c/b, and fb,c(x) > 0 and increasing for x > c/b. Therefore fb,c(x) =
ε−1
ε

has a unique

positive solution.

The lemma applies to (2.1.5) because when computing βn+1(q), all previous βi(q) for

i < n+ 1 are known. Therefore we can think of (2.1.5) as the equation ε−1
ε

= fb,c(βn+1(q)),

where b = 1 and c =
∑M

i=1 qiβn−i(q). The lemma is simple, but will be a useful reference

in Section 3.1, where new types of sequences like βn(q) are examined. Now we present the

optimal pricing policy.

Theorem 2.1.2. With arrival rate λ(p, t) = a(t)p−ε and customer order sizes q, the optimal

expected revenue is

vn(t; q) = µ(q)βn(q)A(t)
1/ε. (2.1.6)

Furthermore, the optimal pricing strategy is

p∗n(t; q) = βn(q)
−1/(ε−1)A(t)1/ε.

These two equations hold for all integer inventory levels n, and for all times 0 ≤ t < T .
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Proof. Proceed by induction to show (2.1.6) holds. For n ≤ 0, by definition, βn(q) = 0 and

vn(t;q) = 0, showing that (2.1.6) holds. Recall Equation (2.1.4),

v′n+1(t;q) = −a(t)µ(q)ε
(ε− 1)ε−1

εε

(

vn+1(t;q)−
M∑

i=1

qivn+1−i(t;q))

)1−ε

. (2.1.7)

This is an ordinary differential equation, so verifying that the induction hypothesis holds

for this equation will complete the induction. Note that throughout this proof t and q

dependencies are often suppressed for readability. Assume Equation (2.1.6) holds up to n.

Then (2.1.7) becomes

v′n+1 = −aµε (ε− 1)ε−1

εε

(

vn+1 −
M∑

i=1

qiµβn+1−iA
1/ε

)1−ε

. (2.1.8)

To prove that the induction assumption holds for n + 1, we substitute the induction as-

sumption for n + 1 into (2.1.8) and show that the equality remains true. Substituting the

induction assumption for n+ 1 into the left-hand side of (2.1.8) yields

v′n+1 = µβn+1
1

ε
A(1/ε)−1dA

dt

= −
aµ

ε
A(1−ε)/εβn+1.

Substituting the induction assumption (2.1.6) into the right-hand side of (2.1.8) gives

− aµε (ε− 1)ε−1

εε

(

µβn+1A
1/ε −

M∑

i=1

qiµβn+1−iA
1/ε

)1−ε

= −aµ
(ε− 1)ε−1

εε
A(1−ε)/ε

(

βn+1 −
M∑

i=1

qiβn+1−i

)1−ε

= −aµA(1−ε)/ε1

ε

(
ε− 1

ε

)ε−1
(

βn+1 −
M∑

i=1

qiβn+1−i

)1−ε

= −
aµ

ε
A(1−ε)/εβn+1,

12



where the last equality is justified by the definition of βn(q), equation (2.1.5). This shows

that the left- and right-hand sides of (2.1.8) are equal for the induction assumption at n+1,

thus verifying the equation

vn(t;q) = µ(q)βn(q)A(t)
1/ε

holds for all n. Furthermore, by substituting that equation into (2.1.3) gives

p∗n(t;q) =
ε

ε− 1
µ(q)−1

(

µ(q)βn(q)A(t)
1/ε −

M∑

i=1

qiµ(q)βn−i(q)A(t)
1/ε

)

= A(t)1/ε
ε

ε− 1

(

βn(q)−
M∑

i=1

qiβn−i(q)

)

= A(t)1/ε





(
ε− 1

ε

)ε−1
(

βn(q)−
M∑

i=1

qiβn−i(q)

)1−ε




−1/(ε−1)

= A(t)1/εβn(q)
−1/(ε−1),

finishing the proof.

Equation (2.1.6) reveals the term µ(q), which was not observed for the unit order case

shown in (McAfee and te Velde 2008), where µ = 1. The equation appears to match our

intuition that as the average order size µ(q) increases, so does our optimal expected revenue;

however, it is important to note that as q changes, so does βn(q). Therefore, more analysis

of βn(q) is necessary to truly understand (2.1.6).

Lemma 2.1.3. βn(q) is a non-decreasing sequence in n.

Proof. For n ≤ 0, βn(q) = 0. Proceed by induction and assume βk−1(q) ≤ βk(q) for all

k < n− 1. Recall (2.1.5), the recursion equation for βn(q):

ε− 1

ε
= βn(q)

1
ε−1

(

βn(q)−
M∑

i=1

qiβn−i(q)

)

,

13



or multiplied out as

ε− 1

ε
= βn(q)

ε
ε−1 −

M∑

i=1

qiβn−i(q)βn(q)
1

ε−1 . (2.1.9)

Solving for βn(q) happens recursively. So in solving (2.1.5) for βn(q), it is assumed for any

i < n that βi(q) would be known. Thus we treat the right hand side of (2.1.9) as a function

of the variable βn(q). That is, we can think of the function

f(x) = x
ε

ε−1 −
M∑

i=1

qiβn−i(q)x
1

ε−1 ,

where finding x > 0 such that ε−1
ε

= f(x) is equivalent to solving for βn(q). Similarly,

writing

g(x) = x
ε

ε−1 −

M∑

i=1

qiβ(n−1)−i(q)x
1

ε−1

and solving for x > 0 such that ε−1
ε

= g(x) would give the value of βn−1(q). Lemma 2.1.1

shows that the positive solutions for ε−1
ε

= f(x) and ε−1
ε

= g(x) exist and are unique.

Next we show the solution to ε−1
ε

= f(x) is greater than or equal to the solution of

ε−1
ε

= g(x). Compare the coefficients of f(x) and g(x). The induction hypothesis shows

that the coefficients of f(x) are less than or equal to those in g(x). Therefore, for positive

x, f(x) ≤ g(x). Thus the positive solution to f(x) = ε−1
ε

must be greater than or equal to

the positive solution to g(x) = ε−1
ε

, or equivalently, βn(q) ≥ βn−1(q). This completes the

induction proof, proving that βn(q) is a non-decreasing sequence in n.

This lemma confirms the intuition that the optimal expected revenue vn(t;q) should

increase as the inventory n increases. For an example why βn(q) is not always strictly

increasing, consider the order size distribution q = (0, 1). That is, customers buy 1 item

with probability 0 and 2 items with probability 1. In this case, the recursion equation (2.1.5)

is the same for n = 1 and n = 2, β1(q) = β2(q). The lack of a strictly increasing property

for βn(q) is one of the reasons that analysis of βn(q) is more difficult for variable orders

compared to the unit order case.
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The next step is to look at βn(q) as n → ∞. As it turns out, βn(q) is asymptotically

equivalent to n
ε−1
ε , up to a scale factor based on µ(q). So we define γn(q) =

βn(q)

n
ε−1
ε

to help

simplify notation. For the unit order case, γn(q) has monotonicity and a simple upper bound

which makes finding its limit relatively straightforward. Unfortunately, when generalizing to

variable order sizes, these properties are not true for all q and so the proof of the limiting

behavior of γn(q) is more difficult. Before finding lim
n→∞

γn(q), several lemmas are needed to

help identify the asymptotic behavior of γn(q).

The first lemma contains a function whose recursive structure is similar to that of βn(q).

The asymptotic properties of this function are therefore useful in examining the asymptotic

properties of βn(q).

Lemma 2.1.4. The function

f(n; q) := n

(

1−
M∑

i=1

qi

(
n− i

n

) ε−1
ε

)

is decreasing for n > M , n ∈ R. Moreover,

lim
n→∞

f(n; q) = µ(q)

(
ε− 1

ε

)

.
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Proof. Let n > M , n ∈ R. First we show that f has a limiting value:

lim
n→∞

f(n;q) = lim
n→∞

1−
∑M

i=1 qi
(
n−i
n

) ε−1
ε

1/n

H
= lim

n→∞

−
∑M

i=1 qi
(
ε−1
ε

) (
n−i
n

)−1/ε ( i
n2

)

−1/n2

= lim
n→∞

M∑

i=1

iqi

(
ε− 1

ε

)(
n− i

n

)−1/ε

=
M∑

i=1

iqi

(
ε− 1

ε

)

=µ(q)

(
ε− 1

ε

)

Note that f is continuous for n > M , so if f is concave up (f ′′ > 0), then f must decrease

to the limit value just shown. In other words, to show that f is decreasing for n > M , we

will show that it is concave up. Start with f ′, which is

f ′(n;q) =n

(

−
M∑

i=1

qi

(
ε− 1

ε

)(
n− i

n

)−1/ε(
i

n2

))

+

(

1−
M∑

i=1

qi

(
n− i

n

) ε−1
ε

)

=1−
M∑

i=1

qi

((
ε− 1

ε

)(
n− i

n

)−1/ε(
i

n

)

+

(
n− i

n

) ε−1
ε

)

=1−
M∑

i=1

qi

(
n− i

n

)−1/ε(
iε− i

nε
+

n− i

n

)

=1−
M∑

i=1

qi

(
n

n− i

)1/ε(

1−
i

nε

)

.
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Then

f ′′(n;q) =−
M∑

i=1

qi

[(
n

n− i

)1/ε(
i

n2ε

)

+

(
1

ε

)(
n

n− i

) 1
ε
−1(

−i

(n− i)2

)(
nε− i

nε

)]

=−
M∑

i=1

iqi
ε

(
n

n− i

)1/ε
[

1

n2
−

(
n

n− i

)−1(
1

(n− i)2

)(
nε− i

nε

)]

=−

M∑

i=1

iqi
εn2

(
n

n− i

)1/ε [

1−
nε− i

nε− iε

]

>0.

Note that the inequality is justified since ε > 1 implies that
[
1− nε−i

nε−iε

]
< 0. Thus f is

concave up, completing the proof of Lemma 2.1.4.

The next lemma gives conditional bounds for γn(q), based on properties γn(q) might

satisfy. These properties involve checking whether γn(q) is the minimum or maximum of

itself and the previous M terms in the γn sequence. It seems that, numerically, γn(q)

satisfies the given properties for large enough inventory n. That said, there are challenges

with proving this analytically for any q. Fortunately, the proof of lim
n→∞

γn(q) in Theorem

2.1.7 will sidestep this issue by considering all cases for γn(q), whether the term meets has

the given properties or not.

Lemma 2.1.5. (a) lim inf
n→∞

γn(q) > 0.

(b) If there exists a strictly increasing sequence (Nk)k ⊂ N such that

γNk
(q) = min

0≤i≤M
γNk−i(q) for all k, then lim inf

n→∞
γn(q) ≥ µ(q)

1−ε
ε .

(c) If there exists an N ≥ M such that γN(q) = max
0≤i≤M

γN−i(q), then

lim sup
n→∞

γn(q) ≤ µ(q)
1−ε
ε .

Proof. Proof of part (a): Recall γn(q) = βn(q)/n
ε−1
ε . By definition, βn(q) ≥ 0, and

therefore γn(q) ≥ 0 and lim inf
n→∞

γn(q) ≥ 0. Assume to the contrary that lim inf
n→∞

γn(q) = 0.

Then we can construct the decreasing subsequence (γNk
(q))k of γn(q) such that N1 > M
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and the subsequence contains all γNk
(q) such that γNk

(q) = min
1≤i≤Nk

γi(q). In other words,

the subsequence contains all terms γn which are the smallest value seen up to that term.

This also gives that lim
k→∞

γNk
(q) = 0.

Let δ > 0. Then there exists a k > 0 such that γNk
(q) ≤ δ. Substitute γNk

(q)N
ε−1
ε

k =

βNk
(q) into (2.1.5), noting that the inequality is justified by the construction of γNk

(q),

ε− 1

ε
= γNk

(q)
1

ε−1Nk

(

γNk
(q)−

M∑

i=1

qiγNk−i(q)

(
Nk − i

Nk

) ε−1
ε

)

≤ γNk
(q)

1
ε−1Nk

(

γNk
(q)−

M∑

i=1

qiγNk
(q)

(
Nk − i

Nk

) ε−1
ε

)

(2.1.10)

= γNk
(q)

ε
ε−1Nk

(

1−
M∑

i=1

qi

(
Nk − i

Nk

) ε−1
ε

)

=: γNk
(q)

ε
ε−1f(Nk;q) (2.1.11)

By Lemma 2.1.4, f(n;q) is decreasing for n > M and therefore f(Nk;q) ≤ f(M ;q). Thus

from (2.1.11) we get

ε− 1

ε
≤ γNk

(q)
ε

ε−1f(M ;q) ≤ δ
ε

ε−1f(M ;q),

but this is a contradiction since f(M ;q) is a constant while δ is arbitrary. Therefore

lim inf
n→∞

γn(q) 6= 0, completing the proof of part (a).

Proof of part (b): Suppose there exists an increasing sequence (Nk)k such that N1 > M

and γNk
(q) = min

0≤i≤M
γNk−i(q) for all k. Assume that (Nk)k contains every integer n > M

such that γn(q) = min
0≤i≤M

γn−i(q). First we get a bound for lim inf
k→∞

γNk
(q), then we show

lim inf
k→∞

γNk
(q) = lim inf

n→∞
γn(q).

Note that γNk
(q) = min

0≤i≤M
γNk−i(q) implies that the inequality (2.1.10) holds for all k, and

18



thus (2.1.11) holds for all k as well:

ε− 1

ε
≤ γNk

(q)
ε

ε−1f(Nk;q),

or written another way,

γNk
(q) ≥

(
ε− 1

εf(Nk;q)

) ε−1
ε

.

Let δ > 0. By Lemma 2.1.4, there exists a K ≥ M such that for all k ≥ K, f(Nk;q) ≤

µ(q)
(
ε−1
ε

)
(1 + δ) and thus

γNk
(q) ≥

(
1

µ(q)(1 + δ)

) ε−1
ε

.

Therefore

lim inf
k→∞

γNk
(q) ≥ lim inf

k→∞

(
1

µ(q)(1 + δ)

) ε−1
ε

=

(
1

µ(q)(1 + δ)

) ε−1
ε

,

but δ was arbitrary and so

lim inf
k→∞

γNk
(q) ≥

(
1

µ(q)

) ε−1
ε

= µ(q)
1−ε
ε .

With a bound established, we now show that lim inf
k→∞

γNk
(q) = lim inf

n→∞
γn(q).

For each j ≥ N1, define aj such that Naj ≤ j < Naj+1. We claim that

γj(q) ≥ γNaj
(q). (2.1.12)

To prove the claim, consider if j = Naj . Then γj(q) = γNaj
(q) and the claim is true. If

j > Naj , suppose towards contradiction that γj(q) ≤ γNaj
(q). Without loss of generality

assume that j is the smallest value greater than Naj such that γj(q) ≤ γNaj
(q) holds. If not,

we could just find some value between Naj and j which is. Then γj(q) = min
Naj

−M≤i≤j
γi(q) =
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min
0≤i≤M

γj−i(q), and so j ∈ (Nj)j. But also (Nj)j is an increasing sequence and j > Naj , so

j ≥ Naj+1. This contradicts the fact that Naj ≤ j < Naj+1. Hence γj(q) ≥ γNaj
(q), proving

claim (2.1.12). This equation then shows

lim inf
j→∞

γj(q) ≥ lim inf
j→∞

γNaj
(q).

Also (Nj)j is a subsequence of (Naj)j, and thus lim inf
j→∞

γNaj
(q) ≥ lim inf

j→∞
γNj

(q). Combining

everything together yields

lim inf
j→∞

γj(q) ≥ lim inf
j→∞

γNaj
(q) ≥ lim inf

j→∞
γNj

(q) ≥ µ(q)
1−ε
ε ,

completing the proof of part (b).

Proof of part (c) Assume there exists an N1 such that N1 > M and γN1(q) =

max
0≤i≤M

γN1−i(q). We follow the same development in part (a) for equation (2.1.11), except

our assumption now reverses inequality (2.1.10), thus

ε− 1

ε
≥ γN1(q)

ε
ε−1f(N1;q).

Use the fact from Lemma 2.1.4 that f is decreasing and lim
n→∞

f(n;q) = µ(q)
(
ε−1
ε

)
to get

ε− 1

ε
≥ γN1(q)

ε
ε−1µ(q)

(
ε− 1

ε

)

,

or

µ(q)
1−ε
ε ≥ γN1(q).

Now suppose N2 is the smallest value greater than N1 such that γN2(q) > µ(q)
1−ε
ε . Then

γN2(q) = max
N1−M≤i≤N2

γi(q) = max
0≤i≤M

γN2−i(q). But by the same argument for N1, µ(q)
1−ε
ε ≥

γN1(q), a contradiction. Hence no such N2 exists and γn(q) ≤ µ(q)
1−ε
ε for all n > N1,

completing the proof.
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The next lemma relates lim sup γn(q) and lim inf γn(q). These relations are helpful with

the conditional bounds from Lemma 2.1.5, as we will be able to obtain equalities instead of

inequalities. This proof is the most involved proof of the dissertation, and illustrates how

variable order sizes can complicate the basic problem. In this case, the complication comes

from not being able to prove that γn(q) actually has specific properties for all n.

Lemma 2.1.6. (a)

1

lim sup
n→∞

γn(q)
1

ε−1

≤ µ(q) lim inf
n→∞

γn(q).

(b)

1

lim inf
n→∞

γn(q)
1

ε−1

≥ µ(q) lim sup
n→∞

γn(q).

Proof. Proof of part (a) The idea of this proof is to start with the recursive equation

for βn(q) in (2.1.5). From there we significantly alter the look of the equation in order to

write it using the successive difference terms ∆βn(q) := βn(q) − βn−1(q). These successive

differences will prove to be useful due to the fact that they have a convenient bound which

we now show. Since the qi form a probability distribution,
∑M

i=1 qi = 1 and thus

∆βn(q) = βn(q)− βn−1(q) = βn(q)−
M∑

i=1

qiβn−1(q).

Lemma 2.1.3 states that βn(q) is non-decreasing in n, thus from the previous equation we

get

∆βn(q) ≤ βn(q)−
M∑

i=1

qiβn−i(q).

Notice that the right hand side of this equation is one of the terms in the recursion equation
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for βn(q), equation (2.1.5). Thus we can substitute to get

∆βn(q) ≤

(
ε− 1

ε

)(
1

βn(q)1/(ε−1)

)

, (2.1.13)

giving a bound for ∆βn(q). Differences between non-successive βn(q) can be written as a

telescoping sum of successive differences, that is βn(q)−βn−k(q) =
∑k−1

j=0 ∆βn−j(q). This fact

is also useful for finding bounds. We now reformulate (2.1.5) by using successive differences.

Recall also that the average order size is given by µ(q) =
∑M

i=1 iqi. Equation (2.1.5) is now

reformulated:

(
ε− 1

ε

)
1

βn(q)
1

ε−1

= βn(q)−
M∑

i=1

qiβn−i(q)

=
M∑

i=1

qi(βn(q)− βn−i(q))

=
M∑

i=1

i−1∑

j=0

qi∆βn−j(q)

=
M∑

i=1

qi

[

∆βn(q) +
i−1∑

j=1

∆βn−j(q)

]

=
M∑

i=1

qi∆βn(q) +
M∑

i=1

i−1∑

j=1

qi∆βn−j(q)

=
M∑

i=1

iqi∆βn(q)−
M∑

i=1

(i− 1)qi∆βn(q) +
M∑

i=1

i−1∑

j=1

qi∆βn−j(q)

= µ(q)∆βn(q)−
M∑

i=1

i−1∑

j=1

qi∆βn(q) +
M∑

i=1

i−1∑

j=1

qi∆βn−j(q)

= µ(q)∆βn(q)−
M∑

i=1

i−1∑

j=1

qi [∆βn(q)−∆βn−j(q)]

Substitute βn(q) = n
ε−1
ε γn(q) into the left hand side of the previous equation to get

(
ε− 1

ε

)
1

n
1
εγn(q)

1
ε−1

= µ(q)∆βn(q)−
M∑

i=1

i−1∑

j=1

qi [∆βn(q)−∆βn−j(q)] . (2.1.14)
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It may look odd to have both γn(q) and β terms in the equation. Eventually (2.1.13) will

be used to eliminate any β terms from the equation, while keeping only the one γn(q) term.

Let δ > 0. Then choose Nδ large enough such that for all n ≥ Nδ.

1

γn(q)
1

ε−1

≥
1

lim sup
k→∞

γk(q)
1

ε−1

− δ (2.1.15)

We now explain why such an Nδ exists. First note that Lemma 2.1.5(a) states that

lim inf
n→∞

γn(q) > 0, and so the right hand side of (2.1.15) is not ∞. Then Nδ can be chosen

large enough to ensure that whenever γn(q) > lim sup
k→∞

γk(q), that γn(q) is close enough

lim sup
k→∞

γk(q) in order to satisfy (2.1.15). Whenever γn(q) ≤ lim sup
k→∞

γk(q), (2.1.15) is already

satisfied.

Let N > Nδ. Eventually we will take the limit as N → ∞, but for now we sum equation

(2.1.14) from n = Nδ to N to obtain

N∑

n=Nδ

(
ε− 1

ε

)
1

n
1
εγn(q)

1
ε−1

=
N∑

n=Nδ

µ(q)∆βn(q)−
N∑

n=Nδ

M∑

i=1

i−1∑

j=1

qi [∆βn(q)−∆βn−j(q)] .

Note the telescoping sum
N∑

n=Nδ

∆βn(q) = βN(q)− βNδ−1(q), making the previous equation

N∑

n=Nδ

(
ε− 1

ε

)
1

n
1
εγn(q)

1
ε−1

= µ(q)(βN(q)− βNδ−1(q))− S, (2.1.16)

where the telescoping sum also is used for writing

S =
M∑

i=1

i−1∑

j=1

qi [(βN(q)− βNδ−1(q))− (βN−j(q)− βNδ−j−1(q))] .

Why is this new form useful? Note that ∆βN(q) = βN(q)− βN−1(q) depends on the N for

two terms. However, the telescoped sum
N∑

n=Nδ

∆βn(q) = βN(q)− βNδ−1(q) only depends on

N for one term. So as N → ∞, βNδ−1(q) remains fixed while βN(q) increases.
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Next we eliminate the summation on the left-hand side of (2.1.16). Observe the the

following sum can be thought of as a Riemann sum estimate of an integral, that is,

N∑

n=Nδ

1

n
1
ε

≥

∫ N+1

Nδ

x−1/εdx ≥

∫ N

Nδ

x−1/εdx =

(
ε

ε− 1

)(

N
ε−1
ε −N

ε−1
ε

δ

)

.

Applying the previous inequality along with (2.1.15) to equation (2.1.16) yields

(

N
ε−1
ε −N

ε−1
ε

δ

)






1

lim sup
n→∞

γn(q)
1

ε−1

− δ




 ≤ µ(q)(βN(q)− βNδ−1(q))− S,

and dividing by N
ε−1
ε ,

(

1−

(
Nδ

N

) ε−1
ε

)





1

lim sup
n→∞

γn(q)
1

ε−1

− δ




 ≤ µ(q)

(

γN(q)−
βNδ−1(q)

N
ε−1
ε

)

−
S

N
ε−1
ε

.

Now take the liminf as N → ∞ to get

1

lim sup
n→∞

γn(q)
1

ε−1

− δ ≤ lim inf
N→∞

(

µ(q)γN(q)−
S

N
ε−1
ε

)

. (2.1.17)

In order to simplify the liminf further, we now show that lim
N→∞

S

N
ε−1
ε

= 0. Begin by writing

S =
M∑

i=1

i−1∑

j=1

qi [[βN(q)− βNδ−1(q)]− [βN−j(q)− βNδ−j−1(q)]]

=
M∑

i=1

i−1∑

j=1

qi [[βN(q)− βN−j(q)]− [βNδ−1(q)− βNδ−j−1(q)]]

=
M∑

i=1

i−1∑

j=1

qi

[
j−1
∑

k=0

∆βN−k(q)− [βNδ−1(q)− βNδ−j−1(q)]

]

. (2.1.18)

Then
∣
∣
∣
∣

S

N
ε−1
ε

∣
∣
∣
∣
≤

M∑

i=1

i−1∑

j=1

qi

[
j−1
∑

k=0

∣
∣
∣
∣

∆βN−k(q)

N
ε−1
ε

∣
∣
∣
∣
+

∣
∣
∣
∣

βNδ−1(q)− βNδ−j−1(q)

N
ε−1
ε

∣
∣
∣
∣

]
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Using this inequality along with with the bound (2.1.13) yields

∣
∣
∣
∣

S

N
ε−1
ε

∣
∣
∣
∣
≤

M∑

i=1

i−1∑

j=1

qi

[
j−1
∑

k=0

(
ε− 1

ε

)
∣
∣
∣
∣
∣

1

βN−k(q)1/(ε−1)N
ε−1
ε

∣
∣
∣
∣
∣
+

∣
∣
∣
∣

βNδ−1(q)− βNδ−j−1(q)

N
ε−1
ε

∣
∣
∣
∣

]

Then since Nδ is fixed, the right hand side of this inequality goes to 0 as N → ∞ (recall

that Lemma 2.1.3 stated that βn(q) was non-decreasing in n). Therefore

0 = lim
N→∞

S

N
ε−1
ε

.

Thus (2.1.17) becomes

1

lim sup
n→∞

γn(q)
1

ε−1

− δ ≤ µ(q) lim inf
N→∞

γN(q). (2.1.19)

Since this equation is true for all δ > 0, we get

1

lim sup
n→∞

γn(q)
1

ε−1

≤ µ(q) lim inf
n→∞

γn(q), (2.1.20)

completing the proof of part (a).

Proof of part (b) The proof of part (b) is done in a nearly identical way to part (a).

The adjustments are mostly in notation: limsup is exchanged with liminf, the inequalities

are reversed, and a +δ is needed instead of −δ. For instance, the analog of (2.1.15) is

1

γn(q)
1

ε−1

≤
1

lim inf
n→∞

γn(q)
1

ε−1

+ δ. (2.1.21)

To summarize these lemmas, Lemma 2.1.5 gives conditional bounds for γn(q) and Lemma

2.1.6 gives useful relations relating lim inf γn(q) to lim sup γn(q). We now use these results

together to prove the following theorem:
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Theorem 2.1.7. For any choice of ε > 1 and order size distribution q,

lim
n→∞

γn(q) = lim
n→∞

βn(q)

n
ε−1
ε

= µ(q)
1−ε
ε .

Proof. Suppose the following claim is true (it will be proved later in the proof):

lim sup
n→∞

γn(q) = lim inf
n→∞

γn(q) = lim
n→∞

γn(q). (2.1.22)

Then substituting this equation into Lemma 2.1.6(a) and Lemma 2.1.6(b) gives

1

lim
n→∞

γn(q)
1

ε−1

≤ µ(q) lim
n→∞

γn(q)

1

lim
n→∞

γn(q)
1

ε−1

≥ µ(q) lim
n→∞

γn(q),

meaning equality holds,

1

lim
n→∞

γn(q)
1

ε−1

= µ(q) lim
n→∞

γn(q).

Solving for the limit gives

lim
n→∞

γn(q) = µ(q)
1−ε
ε ,

which proves the theorem.

Now we prove the claim. This is accomplished by considering three cases, based on

whether the following properties hold or not:

Property 1: There exists an infinite, increasing sequence (Nk)k ⊂ N such that γNk
(q) =

min
0≤i≤M

γNk−i(q) for all k.

Property 2: There exists an N ≥ M such that γN(q) = max
0≤i≤M

γN−i(q).

Note that these properties are related to the conditions present in Lemma 2.1.5.
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Proof of claim, case 1: Suppose Property 1 holds.

Then the conditions of Lemma 2.1.5(b) are met and thus

lim inf
n→∞

γn(q) ≥ µ(q)
1−ε
ε .

Combining this with inequality from Lemma 2.1.6(b) gives

1

(µ(q)
1−ε
ε )

1
ε−1

≥
1

lim inf
n→∞

γn(q)
1

ε−1

≥ µ(q) lim sup
n→∞

γn(q),

and simplifying µ(q) terms yields

µ(q)
1−ε
ε ≥ lim sup

n→∞

γn(q).

Therefore

µ(q)
1−ε
ε ≥ lim sup

n→∞

γn(q) ≥ lim inf
n→∞

γn(q) ≥ µ(q)
1−ε
ε ,

and equality holds throughout, proving claim (2.1.22) for case 1.

Proof of claim, case 2: Suppose Property 2 holds.

Then by Lemma 2.1.5(c),

lim sup
n→∞

γn(q) ≤ µ(q)
1−ε
ε .

Combining this with Lemma 2.1.6(a) we get

1

(µ(q)
1−ε
ε )

1
ε−1

≤
1

lim sup
n→∞

γn(q)
1

ε−1

≤ µ(q) lim inf
n→∞

γn(q),

and simplifying the µ(q) terms yields

µ(q)
1−ε
ε ≤ lim inf

n→∞
γn(q).
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Therefore

µ(q)
1−ε
ε ≤ lim inf

n→∞
γn(q) ≤ lim sup

n→∞

γn(q) ≤ µ(q)
1−ε
ε ,

and equality holds throughout, proving the claim for case 2.

Proof of claim, case 3: Suppose neither Properties 1 nor 2 hold. The idea of this case

is to find a sequence of upper and lower bounds for γn(q), then to show that the difference

between these upper and lower bound sequences goes to 0.

Since Property 1 is false, there exists an N1 > M such that for all n ≥ N1, γn(q) 6=

min
0≤i≤M

γn−i(q). Let (Nk)k ⊂ N be a strictly increasing sequence starting with N1 such that

for all k the condition

γNk−M(q) = min
0≤i≤M

γNk−i(q) (2.1.23)

holds. That is, γNk−M(q) is the minimum of itself and the next M terms in the γ sequence.

Why does such a sequence exist? Suppose instead (Nk)k ⊂ N is any strictly increasing

sequence starting with N1. We can use this sequence to construct one which also satisfies

(2.1.23). Let 0 < lk ≤ M be such that γNk−lk(q) = min
0≤i≤M

γNk−i(q). In other words, lk

is the value of i which achieves the minimum min
0≤i≤M

γNk−i(q). If lk = M , then condition

(2.1.23) holds for Nk. Note that lk 6= 0 since for all n > N1, γn(q) 6= min
0≤i≤M

γn−i(q). By

the same reasoning, γNk+1(q) 6= min
0≤i≤M

γNk+1−i(q), and thus γNk−lk(q) = min
0≤i≤M

γNk+1−i(q).

Repeat this argument to see γNk−lk(q) = min
0≤i≤M

γNk+(M−lk)−i(q), or written another way,

γ(Nk+M−lk)−M(q) = min
0≤i≤M

γ(Nk+M−lk)−i(q). This shows condition (2.1.23) holds for Nk +

M − lk. Therefore the sequence (Nk +M − lk)k satisfies condition (2.1.23) for all k. Lastly,

(Nk+M−lk)k may not be strictly increasing, but since Nk is strictly increasing and M−lk ≥

0, a strictly increasing subsequence of (Nk+M− lk)k exists, thereby showing the appropriate

sequence exists.

We now aim to find lower and upper bounds for γn(q). For all k ≥ 1, let ak = Nk −M .

Then γak(q) = min
0≤i≤M

γNk−i(q) by the properties of (Nk)k. Suppose some n is the first n > ak

such that γn(q) < γak(q). Then γn(q) = min
Nk−M≤i≤n

γi(q) = min
0≤i≤M

γn−i(q). But this is a
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contradiction since all γn(q) for n > N1 lack this property. Therefore there is no n > ak

such that γn(q) < γak(q), giving for all k the lower bound

γak(q) ≤ lim inf
n→∞

γn(q). (2.1.24)

For all k ≥ 1, let bk be such that Nk − M < bk ≤ Nk and γbk(q) = max
0≤i≤M

γNk−i(q)

(note that bk 6= Nk − M = ak, because γak(q) = min
0≤i≤M

γNk−i(q)). Suppose n is the first

n > bk such that γn(q) > γbk(q). Then γn(q) = max
Nk−M≤i≤n

γi(q) = max
0≤i≤M

γn−i(q). But

this is a contradiction since Property 2 is false. Therefore there is no n > bk such that

γn(q) > γbk(q), giving the upper bound for all k

lim sup
n→∞

γn(q) ≤ γbk(q). (2.1.25)

Equations (2.1.24) and (2.1.25) together imply that

lim sup
n→∞

γn(q)− lim inf
n→∞

γn(q) ≤ γbk(q)− γak(q). (2.1.26)

Thus a bound for γbk(q)− γak(q) is also a bound for lim sup
n→∞

γn(q)− lim inf
n→∞

γn(q).

To help towards finding a bound, recall equation (2.1.13) of Lemma 2.1.6:

βn(q)− βn−1(q) ≤

(
ε− 1

ε

)(
1

βn(q)1/(ε−1)

)

. (2.1.27)

Thus the following is true (notes have been added to the left-hand side in the calculation to

provide specific justification for some steps):

γbk(q)− γak(q) =
βbk(q)

b
ε−1
ε

k

−
βak(q)

a
ε−1
ε

k

(ak < bk by construction) ≤
βbk(q)

b
ε−1
ε

k

−
βak(q)

b
ε−1
ε

k
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=
1

b
ε−1
ε

k

(βbk(q)− βak(q))

=
1

b
ε−1
ε

k

bk∑

i=ak+1

βi(q)− βi−1(q)

(Equation (2.1.27)) ≤
1

b
ε−1
ε

k

bk∑

i=ak+1

(
ε− 1

ε

)(
1

βi(q)1/(ε−1)

)

(Lemma 2.1.3 states βn(q) is non-decreasing) ≤
1

b
ε−1
ε

k

bk∑

i=ak+1

(
ε− 1

ε

)(
1

βak+1(q)1/(ε−1)

)

(bk − ak ≤ M by construction,
ε− 1

ε
< 1) ≤

1

b
ε−1
ε

k

(
M

βak+1(q)1/(ε−1)

)

. (2.1.28)

Now combining (2.1.26) and (2.1.28) we get, for each k,

lim sup
n→∞

γn(q)− lim inf
n→∞

γn(q) ≤ γbk(q)− γak(q) ≤
1

b
ε−1
ε

k

(
M

βak+1(q)1/(ε−1)

)

. (2.1.29)

Note that bk is a sequence of increasing integers, since Nk −M < bk ≤ Nk and Nk was an

increasing sequence of integers. Also, βk(q) is at worst non-decreasing in k. So taking the

limit of (2.1.29) as k → ∞ shows that

0 ≤ lim sup
n→∞

γn(q)− lim inf
n→∞

γn(q) ≤ 0,

or in other words,

lim sup
n→∞

γn(q) = lim inf
n→∞

γn(q) = lim
n→∞

γn(q),

proving the claim for case 3.

It is quite surprising that βn(q) has such a simple comparison in the limit, given that

(2.1.5), the recursion equation for βn(q), looks quite complex. Theorem 2.1.7 shows again

the importance of the average order size term µ(q), which is not observed in the unit order

case where µ(q) = 1. The term µ(q) was also seen in Theorem 2.1.2, which said that the

optimal expected revenue was given by vn(t;q) = µ(q)βn(q)A(t)
1/ε.
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The limit in Theorem 2.1.2 along with the formula for vn(t;q) imply the intuitive result

that, since ε−1
ε

< 1, having more inventory has diminishing returns. Also consider from

Theorem 2.1.2 the formula for the optimal price, p∗n(t;q) = βn(q)
−1/(ε−1)A(t)1/ε. The limit

of Theorem 2.1.2 shows that p∗ changes less and less as n → ∞. This is in line with the

idea that dynamic pricing becomes less relevant with large inventory, and will have the best

benefits for small to moderate inventory.

From a practical or numerical standpoint, the simpler term (n/µ(q))
ε−1
ε can be used

to approximate βn(q), and therefore vn(t;q) = µ(q)βn(q)A(t)
1/ε ≈ n

ε−1
ε (µ(q)A(t))

1
ε . This

approximation can be important to save computation time if n is very large or there are a

lot of order sizes. However, as the next section will show, there is very useful application of

the approximation when looking at comparable models.

2.2 Comparable Models

We now turn to the analysis of comparable models, that is, models which have the same

demand yet have different order size distributions. Let Mq,λ denote a model with order size

distribution q and arrival rate λ(p, t). Define two models Mq,λ and Mq̄,λ̄ to be comparable

if their demands are equal for all p > 0 and 0 < t < T , i.e.

λ(p, t)µ(q) = λ̄(p, t)µ(q̄).

For constant demand elasticity, arrival rates are of the form λ(p, t) = a(t)p−ε and λ̄(p, t) =

ā(t)p−ε. Thus we see an equivalent condition to (2.2) is

a(t)µ(q) = ā(t)µ(q̄). (2.2.1)

An important observation from (2.2.1) is that the arrival rate scaling factor ā(t) is just a

scalar multiple of a(t). Observe that if Mq,λ and Mq̄,λ̄ are comparable, then so are Mq,cλ
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and Mq̄,cλ̄ for any constant c > 0. Thus, to help distinguish between these types of cases,

it is helpful to think about the term a(t)µ(q) as a demand rate scaling factor (or demand

magnitude), similar to how a(t) is the arrival rate scaling factor. The second theorem in this

chapter will examine sets of comparable models which have the same order size distributions,

but different demand magnitudes.

Since we are now considering how multiple models compare, λ can no longer be suppressed

in notation for terms like vn. For example, vn(t;q, λ) is the optimal expected revenue and

p∗n(t;q, λ) is the optimal pricing strategy for a model with order size distribution q and

customer arrival rate λ. The next result shows some interesting asymptotic behavior of the

optimal expected revenue and price for comparable models.

Theorem 2.2.1. Let Mq,λ and Mq̄,λ̄ be comparable models which both have constant demand

elasticity ε. Then,

lim
n→∞

vn(t; q, λ)

vn(t; q̄, λ̄)
= 1 and lim

n→∞

p∗n(t; q, λ)

p∗n(t; q̄, λ̄)
= 1.

In other words, Mq,λ and Mq̄,λ̄ have asymptotically equivalent optimal expected revenue and

pricing strategies.

Proof. Let Mq,λ and Mq̄,λ̄ be comparable models with λ(p, t) = a(t)p−ε and λ̄(p, t) = ā(t)p−ε.

Recall Theorem 2.1.2 which stated that vn(t;q) = µ(q)βn(q)A(t)
1/ε. This was for a model

with λ(p, t) = a(t)p−ε but now λ dependencies mater, so the notation of the formula must

be updated. Define A(t; a) =
∫ T

t
a(s)ds and A(t; ā) =

∫ T

t
ā(s)ds. Then Theorem 2.1.2 says

vn(t;q, λ) = µ(q)βn(q)A(t; a)
1/ε. (2.2.2)

Also recall Theorem 2.1.7, which stated lim
n→∞

βn(q)

n
ε−1
ε

= µ(q)
1−ε
ε . Let δ > 0. By combining

(2.2.2) with Theorem 2.1.7 we see that there exists Na > 0 such that for all n > Na,

∣
∣
∣
∣
∣
vn(t;q, λ)− µ(q)

(
n

µ(q)

) ε−1
ε

A(t; a)
1
ε

∣
∣
∣
∣
∣
< δ.
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Similarly, there exists Nā > 0 such that for all n > Nā,

∣
∣
∣
∣
∣
vn(t; q̄, λ̄)− µ(q̄)

(
n

µ(q̄)

) ε−1
ε

A(t; ā)
1
ε

∣
∣
∣
∣
∣
< δ.

Note that for a constant c, A(t; ca) =
∫ T

t
ca(t)dt = c

∫ T

t
a(t)dt = cA(t; a). We also have from

the condition for comparable models (2.2.1) that a(t) = ā(t)µ(q̄)
µ(q)

. Thus

µ(q)

(
n

µ(q)

) ε−1
ε

A(t; a)
1
ε = µ(q)

(
n

µ(q)

) ε−1
ε

A

(

t;
āµ(q̄)

µ(q)

) 1
ε

= µ(q)

(
n

µ(q)

) ε−1
ε
(
µ(q̄)

µ(q)

) 1
ε

A (t; ā)
1
ε

= µ(q̄)

(
n

µ(q̄)

) ε−1
ε

A(t; ā)
1
ε .

Then for n > max(Na, Nā),

∣
∣vn(t;q, λ)− vn(t; q̄, λ̄)

∣
∣ ≤

∣
∣
∣
∣
∣
vn(t;q, λ)− µ(q)

(
n

µ(q)

) ε−1
ε

A(t; a)
1
ε

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
µ(q̄)

(
n

µ(q̄)

) ε−1
ε

A(t; ā)
1
ε − vn(t; q̄, λ̄)

∣
∣
∣
∣
∣

< 2δ.

Since δ was arbitrary, this proves that two comparable models have asymptotically equiv-

alent optimal expected revenues as n → ∞.

Theorem 2.1.2 also gives the optimal expected revenue as p∗n(t;q) = βn(q)
−1/(ε−1)A(t)1/ε.

We follow a similar argument as was used for vn. Let δ > 0. Then by Theorems 2.1.2 and
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2.1.7 there exists an N such that for all n > N ,

∣
∣
∣
∣
∣
∣

p∗n(t;q, λ)−

((
n

µ(q)

) ε−1
ε

)− 1
ε−1

A(t; a)
1
ε

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
p∗n(t;q, λ)−

(
n

µ(q)

)− 1
ε

A(t; a)
1
ε

∣
∣
∣
∣
∣
< δ

∣
∣
∣
∣
∣
∣

p∗n(t; q̄, λ̄)−

((
n

µ(q̄)

) ε−1
ε

)− 1
ε−1

A(t; ā)
1
ε

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
p∗n(t; q̄, λ̄)−

(
n

µ(q̄)

)− 1
ε

A(t; ā)
1
ε

∣
∣
∣
∣
∣
< δ.

Also,

(
n

µ(q)

)− 1
ε

A(t; a)
1
ε =

(
n

µ(q)

)− 1
ε
(
µ(q̄)

µ(q)

) 1
ε

A (t; ā)
1
ε =

(
n

µ(q̄)

)− 1
ε

A(t; ā)
1
ε

Therefore

∣
∣p∗n(t;q, λ)− p∗n(t; q̄, λ̄)

∣
∣ ≤

∣
∣
∣
∣
∣
p∗n(t;q, λ)−

(
n

µ(q)

)−1
ε

A(t; a)
1
ε

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

(
n

µ(q̄)

)−1
ε

A(t; ā)
1
ε − p∗n(t; q̄, λ̄)

∣
∣
∣
∣
∣

<2δ

Hence the optimal pricing strategies for the comparable models are asymptotically equivalent

as n → ∞.

Observe that given a particular model Mq,λ, we can always find a comparable model

Mq̄,λ̄ of any order size distribution q̄. Comparable models have equal demands, that is

λ(p, t)µ(q) = λ̄(p, t)µ(q̄). So set λ̄(p, t) = µ(q)/µ(q̄)λ(p, t) in order to make Mq,λ and Mq̄,λ̄

comparable. In particular, by choosing q̄ = (1), a variable order size model always has a

comparable unit order size model.

Theorem 2.2.1 proves the intuitive idea that models where inventory is being sold at

similar rates will have similar behavior. The next natural question to ask is how similar

are comparable models? One measure of the difference between two comparable models is
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their relative difference. Define the relative difference of optimal expected revenue between

comparable models Mq,λ and Mq̄,λ̄ by

gn,t(Mq,λ,Mq̄,λ̄) :=
vn(t;q, λ)− vn(t; q̄, λ̄)

vn(t; q̄, λ̄)
,

for 0 ≤ t < T and n > 0.

Theorem 2.2.2. Let Mq,λ and Mq̄,λ̄ be comparable models which both have constant demand

elasticity ε. For any 0 ≤ t < T and n > 0,

gn,t(Mq,λ,Mq̄λ̄) =

(
µ(q)
µ(q̄)

)(ε−1)/ε

βn(q)− βn(q̄)

βn(q̄)
.

Notably, the relative difference g does not depend on time nor the demand magnitude of the

models.

Proof. Let Mq,λ and Mq̄,λ̄ be comparable models with λ(p, t) = a(t)p−ε and λ̄(p, t) = ā(t)p−ε.

Since the models are comparable, (2.2.1) holds and so a(t) = ā(t)µ(q̄)
µ(q)

. Recall the optimal

expected revenue from Theorem 2.1.2, modified to include all relevant dependencies,

vn(t;q, λ) = µ(q)βn(q)A(t; a)
1/ε.

Recall also that for a constant c, A(t; ca) = cA(t; a). Then
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gn,t(Mq,λ,Mq̄,λ̄) =
vn

(

t;q, λ̄µ(q̄)
µ(q)

)

− vn(t; q̄, λ̄)

vn(t; q̄, λ̄)

=
µ(q)βn(q)

(

A
(

t; āµ(q̄)
µ(q)

))1/ε

− µ(q̄)βn(q̄)A(t; ā)
1/ε

µ(q̄)βn(q̄)A(t; ā)1/ε

=
µ(q)βn(q)

(
µ(q̄)
µ(q)

)1/ε

A(t; ā)1/ε − µ(q̄)βn(q̄)A(t; ā)
1/ε

µ(q̄)βn(q̄)A(t; ā)1/ε

=

(
µ(q)
µ(q̄)

)(ε−1)/ε

βn(q)− βn(q̄)

βn(q̄)
.

Consider two comparable models and then consider those models with their demand mag-

nitude a(t)µ(q) doubled. For the demand magnitute expression, µ(q) does not change in this

scenario, doubling demand magnitude is equivalent to doubling a(t). Theorem 2.2.2 states

that their relative difference will not change. This is surprising, since it might intuitively

feel like increased demand should lead to increased differences between the models. The key

feature which enables the proof of Theorem 2.2.2 is that the formula for the optimal expected

revenue is separable. This property allows the time terms a(t) and ā(t) to drop out. Since

demand magnitude is given by a(t)µ(q), but in this scenario µ(q) is fixed, changing the

demand magnitude equates to changing a(t). Thus changing the demand magnitude does

not change the relative difference.

One of the main goals of this dissertation is to identify the changes generated by gen-

eralizing unit order models to variable order models. In the previous section, we saw how

analytic results changed and the new techniques needed to handle these changes. This sec-

tion provided a structure that can be used to compare models and presented results related

to these ideas. Of particular note is that variable order models have a comparable model

which only has unit orders. In the next section we will use numerical observations to get a
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more concrete idea of what variable order size models look like, especially relative to their

unit order counterparts.

2.3 Numerical Observations

This section will provide graphs from numerical calculations to help visualize the results

proven thus far in the dissertation. Note that many of the graphs will show continuous plots

even though the graphs are technically discrete plots. This makes the graphs easier to parse.

Additionally, all of the the code used in this section is presented in the appendix.

We begin with Theorem 2.1.7, which stated that

lim
n→∞

γn(q) = lim
n→∞

βn(q)

n
ε−1
ε

= µ(q)
1−ε
ε .

One of the crucial observations from this result is that
(

n
µ(q)

) ε−1
ε

is an approximation for

βn(q), a fact seen in Theorem 2.2.1. In a practical context, such an approximation would

be useful in the case where βn(q) may be slow to compute. Such might be the case if

dynamic prices are needed frequently. Thus having an idea of how quickly βn(q) converges

to
(

n
µ(q)

) ε−1
ε

is useful.

An algorithm in Mathematica was created to numerically calculate βn(q). Figure 2.1 uses

the algorithm to compute βn(q) and then compare convergence of βn(q) and (n/µ(q))
ε−1
ε

for four different order size distributions. Note that for these distributions, full weight was

not put on qM because then the graph shows multiple lines per distribution and is hard to

interpret. This is due to βn(q) only changing every M terms if qM = 1.

Models with larger µ(q) appear to have slower convergence rates. We observe from

the graph that order size distributions with larger µ(q) converge more slowly. That said,

convergence is within 1% by n = 250, even for the distribution with the highest µ. This

appears like relatively quick convergence considering large aircraft can easily carry over 500

passengers and concert venues often have thousands of seats.
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Figure 2.1: Relative difference between βn(q) and (n/µ(q))
ε−1
ε and for several order size

distributions q.
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Figure 2.2 shows similarly quick convergence for the optimal expected revenue for a

variable order model to its comparable unit order model. This is an important comparison

to consider because it indicates the numerical differences between variable order and unit

order models. Again, larger average order sizes lead to slower convergence. In this graph

we observe that there appears to be more noise for low inventory. This is due to overselling,

which allows variable order models to have higher potential revenue at low inventory. Once

the inventory size gets large enough, this benefit is largely mitigated. This is one of the

reasons why we have waited to address alternative low inventory behavior until Section 3.1.
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Figure 2.2: Relative difference of vn between a variable order model and its comparable unit
order model.
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Now we consider more general comparable models. The main result for comparable

models is Theorem 2.2.1, which states that the expected total revenue of comparable models

have the same asymptotic behavior in the inventory n. Figure 2.2 gave one application of

this idea by comparing the optimal expected revenue of variable order and unit order models.

But there is more to consider than just the expected value. Since the model is a compound

Poisson type process, any realization of the model will involve randomness.

To examine this randomness, a Mathematica program was created to simulate the Poisson

based process defined in section 1.3. One property of Poisson processes with intensity λ is

that over a small interval of time δt there is a λδt chance of a customer arriving. By choosing

a specific value for δt the problem is discretized, which allows the digital implementation of

the model. That said, based on testing different δt, the discretization does not need to be

super fine to obtain precise results. We choose δt to be around 0.2% of the total time scale

for our results.

In each time step, the program randomly determines if a customer arrives, based on the

arrival rate λ(p, t). Any pricing policy can be used to then update λ(p, t) for the next time
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step. At the end of the simulation, the amount of money earned from sales is recorded.

Figure 2.3 shows probability distributions of this simulated revenue. To generate each

distribution, 20,000 trials were run. Each density curve corresponds to a model which uses

a different order size distribution q; however, all models used are comparable with demand

magnitude 3. The figure confirms the intuition that as the average order size increases, so

does the variance of the revenue.

Quantifying the exact amount of variance for each density curve is tricky though. For one,

the expected revenue can never go below 0, giving a 1 sided lower limit. But also, multiple

order size distributions can have the same average order size. This idea is explored in Figure

2.4, which shows several comparable models which have the same µ(q), but different order

size distributions. Note that these models presented in that plot are all comparable to the

models used in Figure 2.3 too. Figure 2.4 reveals that the maximum order size also plays a

role in how spread the simulated revenue is.

Figure 2.3: Probability distributions of simulated revenue for comparable models while using
policy p∗n(t;q). Per distribution: trials = 20,000, n = 100, T = 30, ε = 1.5, demand
magnitude = 3.
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Figure 2.4: Probability distributions of simulated revenue for comparable models with the
same average order size while using policy p∗n(t;q). Per distribution: trials = 100,000, max
inventory = 100, T = 30, ε = 1.5, demand rate = 3.
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The observations in this section highlight interesting aspects of our problem, and the fig-

ures provide a more concrete context through which the model can be understood. Analytic

results can inform the numerical results, and vice versa. So understanding both gives better

understanding of the model. In fact, the numerical algorithms were the original indicator for

the comparison results in Section 2.3. We hope that the programs used in this section and

presented in the appendix are useful to anyone who wishes to do any future work regarding

the variable order size model.

41



3.

Extensions

The previous sections have examined a model for dynamic pricing with variable order sizes

for the specific demand function λ(p) = a(t)p−ε. The variable order size model was presented

in the most basic setting in order to illustrate the main proof methods and demonstrate the

new results variable order sizes creates. In the following sections, we provide adaptations to

the basic model.

Section 3.1 discusses how to incorporate different low inventory behavior into the model.

One adaptation allows the model to account for penalties for overselling to better model real

world situations. Another adaptation lets the seller control the minimum inventory level

which they are willing to put their inventory at. This inventory level can be negative, which

even allows the seller to control how much overselling they are willing to do. Since most

of our results rely on the asymptotic nature of the problem, we are also able to show that

different low inventory behavior retains these results.

Section 3.2 explores the idea of social efficiency. This is the idea of maximizing the value

to the consumer, rather than the revenue earned. While a straightforward adaptation of our

results, social efficiency has important economic implications: a monopolist’s pricing under

constant demand elasticity is socially efficient. These ideas translate the important economic

insights presented in the papers (McAfee and te Velde 2008) to the case of variable order

sizes.
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Section 3.3 shows how to incorporate additional effects into the model. Some effects are

small, like subsidies or tax, but some are large, like advertising. This section expands upon

the work in (Helmes and Schlosser 2013). We are able to extend their results in order to

find an optimal pricing strategy for constant demand elasticity with advertising and variable

order sizes.

Section 3.4 does not assume constant demand elasticity and explores new arrival functions

λ with variable order sizes. This follows the general dynamic programming development

presented in Section 1.3. We are unable to find analytic results like we did in Section 2.1,

but we provide a Mathematica program which is able to numerically compute optimal pricing

strategies for any λ. We use it to examine two specific types of arrival rate functions: one

which is exponential and another which is linear. The numerical calculations reveal that

comparable models with these new arrival rate functions have similar asymptotic behavior,

but their relative differences are not independent of the demand magnitude.

3.1 Low Inventory Behavior

So far our model has only accounted for one specific type of behavior at low inventory:

overselling 0 to M−1 items based on how many items the last buyer purchases. This behavior

is not very realistic from a practical standpoint; however, this simpler model allowed us to

present the results in a more understandable fashion compared to a more complicated model.

By establishing the results for a simpler case, it will also be easier to see how modifications

to the basic model propagate through the results.

Any change in the model to low inventory behavior changes how much revenue is earned

from a sale. Therefore we must go back to the original optimal revenue equation, which was

developed through dynamic programming in Section 1.3. Recall (1.3.1):

vn(t;q) = sup
p

[

(1− λ(p, t)δt)vn(t+ δt;q) +
M∑

i=1

qiλ(p, t)δt(ip+ vn−i(t+ δt;q))

]

. (3.1.1)
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Observe that this equation demonstrates why overselling was an issue in the first place: it

is recursive with M base case terms required. The initial solution was to define vn(t;q) = 0

for n ≤ 0 . Although this choice works mathematically, it is not practical for a couple

reasons. First, the optimal expected revenue equation does not account for any expected

costs associated with overselling. We would expect there to be some risk for this practice,

for example a flight which has too many passengers show up for it requiring compensation to

be given out. Second is that there is no control over the number of items which are oversold.

The number could be anywhere from 0 to M − 1 items, based on the order size of the last

customer. These two issues are what we seek to overcome in this section.

We first discuss how to model some risk associated with overselling. Note that any costs

used are expected costs, because it is uncertain if the cost will be incurred or not. These

probabilities could be determined from sales data. The type of costs may take a couple

forms: those depending on the price of the oversold item, and those not. Price dependent

costs could include things like full or partial refunds of the ticket price. Price independent

costs could include renting a hotel for a customer who was unable to take a flight.

It is also important to observe that the potential risk is likely to increase for each extra

oversold item. Thinking about a flight, the more total tickets that are sold, the more likely

too many passengers show up to take the flight. With this in mind, let c(n, i, p) be the

expected costs of selling 0 < i ≤ M items for a price of p while at inventory level n (n can

be negative, allowing us to keep overselling items). Since price dependent expected costs

are likely to be some percentage of the sale price, we assume c depends linearly on p. Then

c(n, i, p) =
n∑

j=n−i+1

(αjp + rj), where αj and rj are such that αjp + rj denotes the expected

cost with selling one item at price p while at inventory level j (j can be negative, indicating

overselling risks).

In the dynamic programming equation, ip is the revenue earned from a sale, so we

subtract the cost from this value to account for the risks of overselling. Let vCn (t;q) denote

the optimal expected revenue while accounting for overselling costs. Then adapting (3.1.1)
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gives

vCn (t;q) = sup
p

[

(1− λ(p, t)δt)vCn (t+ δt;q)

+
M∑

i=1

qiλ(p, t)δt

(

ip−
n∑

j=n−i+1

(αjp+ rj) + vCn−i(t+ δt;q)

)]

(3.1.2)

for n ≥ 0. We still define the same boundary conditions as before: vCn (t;q) = 0 for n ≤ 0 and

vCn (0;q) = 0. We now assume αj = 1 and rj = 0 for j ≤ 0. Observe that this negates any

profit from oversold items. This equates to customer buying only available inventory, even

if they want more. This choice finally gives control over the minimum inventory level–no

items are sold which would take the inventory below 0. In fact, this threshold need not be 0.

Let m be the minimum inventory level. This means that items are never sold if it it would

bring the inventory below m.

By making m negative, one controls the maximum amount of oversold items to be |m|.

With a minimum inventory level, equation (3.1.2) does not actually change. Rather, the

indices of when the equation is valid change. Equation (3.1.2) is now valid for all n > m,

with vCn (t;q) = 0 for n ≤ m, which we also now assume going forward.

This method for controlling the minimum inventory assumes that customers will buy as

much as they are able to. However, for something like ticket sales, this does not always model

costumer behavior. For example, a family would not want to buy plane tickets for only part

of their family. This provides another method through which the minimum inventory can be

controlled. In terms of the dynamic programming equation, this shifts any probability from

cases where selling past the minimum inventory level would occur and places this probability

with no sales instead. The most items which can be sold is the minimum of M and n−m,

the difference between our current inventory level n and the minimum inventory level m.

Let vGn (t;q) be the optimal expected revenue with overselling costs and where groups stay

together. By adapting (3.1.2) for vGn (t;q), it becomes
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vGn (t;q) = sup
p

[(

1− λ(p, t)δt+
M∑

i=n−m+1

qiλ(p, t)δt

)

vGn (t+ δt;q)

+

M∧(n−m)
∑

i=1

qiλ(p, t)δt

(

ip−
n∑

j=n−i+1

(αjp+ rj) + vGn−i(t+ δt;q)

)

 (3.1.3)

n ≥ m. We still define the same boundary conditions as before: vGn (t;q) = 0 for n ≤ m

and vGn (0;q) = 0. Now use the dynamic programming equations (3.1.2) and (3.1.3) to

heuristically derive their HJB equations, as we did for (1.3.2). Move all terms not multiplied

by λ to the left-hand side, divide by δt, and then take the limit as δt → 0 to get

v̇Cn (t;q) =− sup
p

λ(p, t)

[

−vCn (t;q) +
M∑

i=1

qi

(

ip−
n∑

j=n−i+1

(αjp+ rj) + vCn−i(t;q)

)]

=− sup
p

λ(p, t)

[
M∑

i=1

(

qii−
n∑

j=n−i+1

qiαj

)

p

−

(

vCn (t;q)−
M∑

i=1

qi

(

vCn−i(t;q)−
n∑

j=n−i+1

rj

))]

(3.1.4)

and

v̇Gn (t;q) =− sup
p

λ(p, t)

[(

−1 +
M∑

i=n−m+1

qi

)

vGn (t;q)

+

M∧(n−m)
∑

i=1

qi

(

ip−
n∑

j=n−i+1

(αjp+ rj) + vGn−i(t;q)

)

 .

=− sup
p

λ(p, t)





M∧(n−m)
∑

i=1

(

qii−
n∑

j=n−i+1

qiαj

)

p

−





M∧(n−m)
∑

i=1

qiv
G
n (t;q)−

M∧(n−m)
∑

i=1

qi

(

vGn−i(t;q)−
n∑

j=n−i+1

rj

)





 . (3.1.5)
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Note that the second equality is justified because

−1 +
M∑

i=n−m+1

qi = −
M∑

i=1

qi +
M∑

i=n−m+1

qi = −

M∧(n−m)
∑

i=1

qi.

For constant demand elasticity, λ(p, t) = a(t)p−ε. To find the values p∗ which attain the

supremum in (3.1.4) and (3.1.5), notice the general form of these equations: − sup
p

a(t)p−ε (K1p−K2),

where K1 and K2 are independent of price. This supremum expression is maximized when

p∗ =
ε

ε− 1
K−1

1 K2 (3.1.6)

and evaluates to −a(t)Kε
1
(ε−1)ε−1

εε
K1−ε

2 . Thus the HJB equations for n > m become

v̇Cn (t;q) =− a(t)

(
M∑

i=1

(

qii−
n∑

j=n−i+1

qiαj

))ε

(ε− 1)ε−1

εε

×

(

vCn (t;q)−
M∑

i=1

qi

(

vCn−i(t;q)−
n∑

j=n−i+1

rj

))1−ε

(3.1.7)

and

v̇Gn (t;q) =− a(t)





M∧(n−m)
∑

i=1

(

qii−
n∑

j=n−i+1

qiαj

)



ε

(ε− 1)ε−1

εε

×





M∧(n−m)
∑

i=1

qiv
G
n (t;q)−

M∧(n−m)
∑

i=1

qi

(

vGn−i(t;q)−
n∑

j=n−i+1

rj

)



1−ε

(3.1.8)

We place a few restrictions on the expected costs. First, assume that there exists an N

such that αn = 0 and rn = 0 for all n > N . This way, there are eventually no costs (or more

appropriately, risks) with inventory sales, and the previous equations are in harmony with

with the original dynamic programming equation (1.3.1) for large enough n. Also, we will

assume the simpler model with rj = 0 for all j. For this model we will show the optimal

pricing strategy.
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To find the closed form expression for vCn (t;q) and vGn (t;q), we need to define some

analogs of terms used with the basic model. Define modified average order size µ terms

µC
n (q) :=

M∑

i=1

(

qii−
n∑

j=n−i+1

qiαj

)

µG
n (q) :=

M∧(n−m)
∑

i=1

(

qii−
n∑

j=n−i+1

qiαj

)

.

Note that for n ≥ N , µ(q) = µC
n (q) = µG

n (q).

We also define some β-like sequences. By this, we mean sequences which have the same

recursion structure as βn(q) for large enough n. Define the sequence (βC
n (q))n by βC

n (q) = 0

for n ≤ m and such that for n > m, βC
n (q) is the non-negative solution to

ε− 1

ε
= βC

n (q)
1

ε−1

(

βC
n (q)−

M∑

i=1

qi

(
µC
n−i(q)

µC
n (q)

)

βC
n−i(q)

)

.

Similarly define (βG
n (q))n by βG

n (q) = 0 for n ≤ m, and such that for n > m, βG
n (q) is the

non-negative solution to

ε− 1

ε
= βG

n (q)
1

ε−1





M∧(n−m)
∑

i=1

qiβ
G
n (q)−

M∧(n−m)
∑

i=1

qi

(
µG
n−i(q)

µG
n (q)

)

βC
n−i(q)



 . (3.1.9)

Existence and uniqueness of the two previous β sequences follows from (2.1.1).

Corollary 3.1.1. (Of Theorem 2.1.2) Assume constant demand elasticity ε and a model

with order size distribution q. For all t ≥ 0 and n, the optimal expected revenue for two

different low inventory behaviors is given by

vCn (t; q) = µC
n (q)β

C
n (q)A(t)

1/ε, vGn (t; q) = µG
n (q)β

G
n (q)A(t)

1/ε,
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with optimal pricing strategies

pC∗
n (t; q) = βC

n (q)
−1/(ε−1)A(t)1/ε, pG∗

n (t; q) = βG
n (q)

−1/(ε−1)A(t)1/ε.

Proof. The proof follows the same technique as that of Theorem 2.1.2. The main aspect we

wish to highlight is how the new coefficients in the equations for βC
n (t;q) and βG

n (t;q) come

into play. The proof will be completed for the more complex term vGn (q;q), but note that

the proof is essentially the same for vCn (t;q).

Proceed by induction to show vGn (t;q) = µG
nnβ

G
n (q)A(t)

1/ε. For n ≤ m, vGn (t;q) = 0 and

βG
n (q) = 0, showing the base cases hold. Assume that the induction assumption holds up to

n− 1. Equation (3.1.8), is an ordinary differential equation, so verifying the induction holds

for this equation will prove the induction. We will suppress dependencies for readability.

Take the derivative of the induction assumption to get the left-hand side of (3.1.8) (also

recall A(t) =
∫ T

t
a(s)ds):

v̇Gn = µG
nβ

G
n

(
1

ε

)

A(1−ε)/ε(−a)

= −aµG
nA

(1−ε)/ε

(
1

ε

)

βG
n .

Substituting the induction assumption into the right-hand side of (3.1.8) gives

− a
(
µG
n

)ε (ε− 1)ε−1

εε





M∧(n−m)
∑

i=1

qiµ
G
nβ

G
n A

1/ε −

M∧(n−m)
∑

i=1

qiµ
G
n−iβ

G
n−iA

1/ε





1−ε

= −aµG
nA

(1−ε)/ε

(
1

ε

)(
ε− 1

ε

)ε−1




M∧(n−m)
∑

i=1

qiβ
G
n −

M∧(n−m)
∑

i=1

qi

(
µG
n−i

µG
n

)

βG
n−i





1−ε

= −aµG
nA

(1−ε)/ε

(
1

ε

)

βG
n ,

where the last equality is justified by the definition of βG
n (q), equation (3.1.9). Observe that
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the first equality, where A1/ε was factored, indicates why there would be problems if rj 6= 0

for all j. The cost terms rj have no time dependency, so A1/ε could not be factored out. This

cannot be compensated in the equation for βG
n (t;q), as this term needs to be independent

of time in order to proceed with our prior analysis.

Thus we have shown that the left-hand and right-hand sides of (3.1.8) are equal for the

induction assumption at n, verifying that the induction assumption

vGn (t;q) = µG
n (q)β

G
n (q)A(t)

1/ε

holds for all n. Furthermore, by substituting this equation into (3.1.6) gives

p∗n(t;q) =
ε

ε− 1

(
µG
n

)−1





M∧(n−m)
∑

i=1

qiv
G
n (t;q)−

M∧(n−m)
∑

i=1

qiv
G
n−i(t;q)





=
ε

ε− 1

(
µG
n

)−1





M∧(n−m)
∑

i=1

qiµ
G
n (q)β

G
n (q)A(t)

1/ε −

M∧(n−m)
∑

i=1

qiµ
G
n−i(q)β

G
n (q)A(t)

1/ε





= A(t)1/ε
ε

ε− 1





M∧(n−m)
∑

i=1

qiβ
G
n (q)−

M∧(n−m)
∑

i=1

qi

(
µG
n−i(q)

µG
n (q)

)

βG
n (q)





= A(t)1/εβG
n (t;q)

1/(ε−1),

finishing the proof.

The previous corollaries in this section have established that the closed form expression

for optimal expected revenue remains structurally consistent across different low inventory

properties. It is worth observing that for n ≥ M , both µC
n (q) = µG

n (q) = µ(q) and the

structure of the recursion equations for βC
n (q), β

G
n (q), and βn(q) is the same. This feature

will play an important role in showing asymptotic results for the new low inventory terms.

We now wish to show that the result from Theorem 2.1.7,

lim
n→∞

βn(q)

n
ε−1
ε

= µ(q)
1−ε
ε , (3.1.10)
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holds for βC
n (q) and βG

n (q) as well. Examining the proof of Theorem 2.1.7 reveals two

properties of βn(q) that were necessary: the recursive structure of βn(q) and that βn(q) was

non-decreasing. βC
n (q) and βG

n (q) both have the proper recursive structure for large enough

n, but numerical calculations show that the non-decreasing property does not always hold

for them. However, we can find upper and lower bounds for βC
n (q) and βG

n (q) using other

β-like sequences which are non-decreasing and have the limiting behavior of (3.1.10).

The particular β-type sequence we want has base cases of any value (not just 0), and

also these base cases may be for any M successive inventory levels (not just for n = −M +1

to n = 0). Let N be an integer and let B = (bn)
N
n=N−M+1 be a finite sequence of M terms.

Then define the sequence (βn(q, B))∞n=N−M+1 by βn(q;B) = bn for N −M + 1 ≤ n ≤ N (in

other words, B is the base case sequence for βn(q;B)) and such that for n > N , βn(q;B) is

the non-negative solution to

ε− 1

ε
= βn(q;B)

1
ε−1

(

βn(q;B)−
M∑

i=1

qiβn−i(q;B)

)

. (3.1.11)

Existence and uniqueness of this solution follows from Lemma 2.1.1.

Theorem 3.1.2. For any probability distribution q and finite base case sequence B =

(bn)
N
n=N−M+1, where N is an integer,

lim
n→∞

βn(q;B)

n
ε−1
ε

= µ(q)
1−ε
ε .

Proof. First we show the result if the base case sequence B is non-decreasing. Then to

prove for a general B, we find upper and lower bounds using sequences whose base cases are

non-decreasing.
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Suppose B is non-decreasing. Recall Theorem 2.1.7, which stated that

lim
n→∞

βn(q)

n
ε−1
ε

= µ(q)
1−ε
ε . (3.1.12)

The proof of that theorem relied on two properties of βn(q): the recursion equation for βn(q)

(equation (2.1.5)) and the non-decreasing nature of βn(q) (Theorem 2.1.3). So if it is shown

that βn(q;B) has these two properties, (3.1.12) will also hold with βn(q;B) in place of βn(q).

It is readily seen that the recursion equation for βn(q;B), equation (3.1.11), matches

the structure of the recursion relation for βn(q), equation (2.1.5). To show βn(q;B) is non-

decreasing, recall Theorem 2.1.3, which stated that βn(q) was non-decreasing. The proof

of that theorem used induction and relied on the recursive equation for βn(q) along with

the fact that the base cases of βn(q) also satisfied the induction. Since B, the base case

sequence for βn(q;B), is non-decreasing, the proof of Theorem 2.1.3 also shows βn(q;B) is

non-decreasing. Therefore the limit (3.1.12) holds for βn(q;B):

lim
n→∞

βn(q, B)

n
ε−1
ε

= µ(q)
1−ε
ε . (3.1.13)

Now consider any finite base case sequence B = (bn)
N
n=N−M+1. Define the constant base

case sequences Bmax = (max(B))Nn=N−M+1 and Bmin = (min(B))Nn=N−M+1. These constant

sequences are useful because they are non-decreasing, so by what was shown earlier in the

proof, lim
n→∞

βn(q;Bmin)

n
ε−1
ε

= µ(q)
1−ε
ε = lim

n→∞

βn(q;Bmax)

n
ε−1
ε

.

We now follow an argument similar to the one for Theorem 2.1.3. Proceed by induction

to show that βn(q;Bmin) ≤ βn(q;B) ≤ βn(q;Bmax) for all n ≥ N−M+1. By definition, the

induction assumption holds for N−M+1 ≤ n ≤ N . Now suppose the induction assumption

holds up to n − 1. The βn(q;B) terms are calculated recursively, so to compute βn(q;B),

the terms βk(q;B) for any k < n are known and treated as constants when solving the

recursion equation (3.1.11) for βn(q;B). Thus computing βn(q;B) is equivalent to solving
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the equation g(x) = ε−1
ε

for x where

g(x) := x
ε

ε−1 −
M∑

i=1

qiβn−i(q, B)x
1

ε−1 .

Similarly, consider the functions f corresponding to βn(q;Bmax) and h corresponding to

βn(q;Bmin),

f(x) := x
ε

ε−1 −
M∑

i=1

qiβn−i(q, Bmax)x
1

ε−1 ,

h(x) := x
ε

ε−1 −
M∑

i=1

qiβn−i(q, Bmin)x
1

ε−1 .

The inequality

f(x) ≤ g(x) ≤ h(x) (3.1.14)

holds by comparing the coefficients of f , g, and h and applying the induction assumption.

That means the solution to f(x) = ε−1
ε

is greater than or equal to the solution for g(x) = ε−1
ε

,

which is greater than or equal to the solution for h(x) = ε−1
ε

. In other words,

βn(q;Bmin) ≤ βn(q;B) ≤ βn(q;Bmax), (3.1.15)

which completes the induction.

Note that the solutions exist and are unique for x ≥ 0 by Lemma 2.1.1. Take inequality

(3.1.15), divide by n
ε−1
ε and take the limit as n → ∞ to get

lim
n→∞

βn(q;Bmin)

n
ε−1
ε

≤ lim
n→∞

βn(q;B)

n
ε−1
ε

≤ lim
n→∞

βn(q;Bmax)

n
ε−1
ε

.

Then applying the limit (3.1.13) shows

µ(q)
1−ε
ε ≤ lim

n→∞

βn(q;B)

n
ε−1
ε

≤ µ(q)
1−ε
ε ,
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and equality holds throughout, completing the proof.

Corollary 3.1.3.

lim
n→∞

βG
n (q)

n
ε−1
ε

= µ(q)
1−ε
ε .

lim
n→∞

βC
n (q)

n
ε−1
ε

= µ(q)
1−ε
ε ,

Proof. Observe that βG
n (q) differs from a typical β-like sequence because for m < n < M its

recursion equation (3.1.9), differs from the typical β-like recursion; however, for n ≥ M the

recursion structure is the same. The idea is to treat the values of βG
n (q) for m < n < m+M

from (3.1.9) as the base cases of a new β-like sequence. Then this new β-like sequence and

βG
n (q) would actually be one and the same, but the β-like sequence would allow Theorem 3.1.2

to be applied to it.

To show this formally, let B = (βG
n (q))

m+M−1
n=m . Then βG

n (q) = βn(q, B) for all n ≥ m and

lim
n→∞

βC
n (q)

n
ε−1
ε

= lim
n→∞

βn(q, B)

n
ε−1
ε

= µ(q)
1−ε
ε ,

completing the proof. A similar argument shows the result for βC
n (q) as well.

We have shown two ways to control the minimum inventory level when a customer’s

demand would place the inventory below that level. Either the customer buys as many

items as they can, down to the minimum inventory level, or the customer buys no items. A

particularly useful application of defining the minimum inventory level is trying to determine

the optimal amount of overselling to do, which is an interesting optimization problem with

its own challenges. We also showed how to implement a penalty cost dependent linearly on

the price for selling an item while at a particular inventory level. This allows us to implement

costs which might be incurred while engaging in overselling.

With these adaptations to the model for low inventory, we were able to keep the structure

of our original results by creating analogs of µ(q) and βn(q). The key feature that made
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this work was that these terms matched with the original terms for a large enough inventory

level. These results agree with the intuition that the behavior when the inventory is low

should have little influence on the behavior when inventory is high. It also confirms that

dynamic pricing will be most powerful the smaller the inventory.

3.2 Social Efficiency

For a unit order model with constant demand elasticity, the surprising result that a monop-

olist sets socially efficient prices was shown in (McAfee and te Velde 2008). We find this also

holds for variable order sizes. The mathematical techniques presented are minor adaptations

from the main results, but they are important to show some of the economic connections

with constant demand elasticity.

When thinking about our arrival rate function λ(p, t), it is the compound rate of cus-

tomers who arrive and also are willing to order some number of items at the current

price. Suppose λ(p, t) can be written to highlight both of those factors, that is λ(p, t) =

α(t)(1−F (p)), where α(t) is the arrival rate of customers at time t and 1−F (p) is the prob-

ability that a customer is willing to pay at least p for each item they order. It is reasonable

that α(t) is independent of p, since with no advertising, customers will not know the price

before they arrive.

Let V be the social value of an item to a customer, where V can be thought of as the

maximum price a customer would pay for an item. So when a customer buys an item at

price p, the social value of the item to them is at least p. Then how much is the expected

value of V , given that V ≥ p? Letting f(v) be the probability density function of V , we get

E[V |V ≥ p] =

∫ ∞

p

vf(v)

1− F (p)
dv =

∫ ∞

p

α(t)vf(v)

α(t)(1− F (p))
dv =

∫ ∞

p

−v dλ
dp
(v, t)

λ(p, t)
dv,
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and under constant demand elasticity where λ(p, t) = a(t)p−ε,

E[V |V ≥ p] =

∫ ∞

p

εv−ε

p−ε
dv =

ε

ε− 1
p.

Let Sn(t;q) be the optimal expected total social value of a product when there are n

items for sale at current time 0 ≤ t ≤ T , given constant demand elasticity ε and customer

order distribution q. Then there is a dynamic programming equation similar to (1.3.1),

except when a sale of i items occurs, instead of earning ip revenue, iE[V |V ≥ p] = i
(

ε
ε−1

)
p

social value is earned. That is,

Sn(t;q) = sup
p



(1− λ(p, t)δt)Sn(t+ δt;q)
︸ ︷︷ ︸

From selling no items

+
M∑

i=1

qiλ(p, t)δt

(
iε

ε− 1
p+ Sn−i(t+ δt;q)

)

︸ ︷︷ ︸

From selling i items for p each







.

As we have seen several times now, this yields an HJB equation similar to (1.3.2),

S ′
n(t;q) =− sup

p
a(t)p−ε

[

−Sn(t;q) +
M∑

i=1

qi

(
iε

ε− 1
p+ Sn−i(t;q)

)]

=− sup
p

a(t)p−ε

[

µ(q)ε

ε− 1
p−

(

Sn(t;q)−
M∑

i=1

qiSn−i(t;q)

)]

The price pE∗ which attains the supremum is

pE∗
n (t;q) = µ(q)−1

(

Sn(t;q)−
M∑

i=1

qiSn−i(t;q)

)

,
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and so the supremum evaluates to

S ′
n(t;q) =− a(t)µ(q)ε

(
1

ε− 1

)(

Sn(t;q)−
M∑

i=1

qiSn−i(t;q)

)1−ε

.

=− a(t)

(
µ(q)ε

ε− 1

)ε
(ε− 1)ε−1

εε

(

Sn(t;q)−
M∑

i=1

qiSn−i(t;q)

)1−ε

.

We see this equation is now the same as (2.1.4), except with µ(q) replaced by
(

µ(q)ε
ε−1

)ε

.

Therefore Theorem 2.1.2 holds with the same substitution. Hence the optimal revenue

equation (2.1.6) now becomes

Sn(t;q) =

(
µ(q)ε

ε− 1

)ε

βn(q)A(t)
1/ε

and the optimal expected price remains unchanged,

pE∗
n = βn(q)

−1/(ε−1)A(t)1/ε.

This proves the following result.

Corollary 3.2.1. With constant demand elasticity and variable order sizes, the monopolist

optimal pricing strategy is also the strategy which maximizes social efficiency.

We can draw some parallels between the social efficiency and the low inventory behavior

in the previous section. In both cases, one of the modifications to the dynamic program-

ming equation was what was earned when a sale occurred. The structure of the dynamic

programming equation is such that terms which modify earnings based on price do not influ-

ence the optimal pricing strategy. Rather, just the total expected revenue (or social value)

is influenced. See Corollary 3.1.1).
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3.3 Advertising and Infinite Time Horizon

This section discusses how to introduce other features into the variable order size dynamic

pricing model. The main adaptations are sale earning modifiers, discounting, and advertising.

Sale earning modifiers include the effect of taxes, subsides, and costs, which influence the

profit earned from one sale. Discounting allows the model to support an infinite time horizon.

Advertising changes the basic problem, since there are now two features which a seller can

control, and so the seller is trying to find a pair of pricing and advertising policies which

optimizes revenue. The work in this section adapts the work of (Helmes and Schlosser 2013)

to include variable order sizes.

Recall the dynamic programming equation (1.3.1),

vn(t;q) = sup
p



(1− λ(p, t)δt)vn(t+ δt;q)
︸ ︷︷ ︸

From selling no items

+
M∑

i=1

qiλ(p, t)δt(ip+ vn−i(t+ δt;q))
︸ ︷︷ ︸

From selling i items for p each



 .

As we proceed, we will discuss how new model features influence this equation. First,

consider effects which modify the amount of revenue earned on a sale. Suppose there are

taxes or subsidies, based on the sale price of an item. This introduces a multiplicative factor

f(t) such that a sale at price p earns f(t)p instead of p. Thus the dynamic programming

equation becomes

vn(t;q) = sup
p

[

(1− λ(p, t)δt)vn(t+ δt;q)

+
M∑

i=1

qiλ(p, t)δt(if(t)p+ vn−i(t+ δt;q))

]

.

Now consider advertising. Since the dynamic programming equation considers a small

interval of time δt, it makes the most sense to think about a fixed advertising rate w > 0

(later we let w depend on time). Suppose advertising has a tax or subsidy factor k(t). Then

to acheive an effective advertising rate w, a rate of k(t)w needs to be spent. Over the time
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span δt, the total spent on advertising is (δt)k(t)w. This new cost is subtracted from all

terms in the dynamic programming equation, since it is incurred regardless if a sale occurs

or not.

Moreover, advertising makes other fundamental changes. The supremum is now taken

over both price and advertising, since both terms can be controlled. Advertising also affects

the arrival rate of customers; more advertising implies a larger arrival rate. Thus, the arrival

rate λ(p, t) must now be λ(p, w, t) to account for this dependency. With advertising, the

new dynamic programming equation is

vn(t;q) = sup
p>0,w≥0

[

(1− λ(p, w, t)δt)vn(t+ δt;q)

+
M∑

i=1

qiλ(p, w, t)δt(if(t)p+ vn−i(t+ δt;q))− (δt)k(t)w

]

.

Finally consider discounting. If r(t) > 0 is the instantaneous time-dependent discount

rate, then over a time period δt there is an accumulated discount rate R(δt) =
∫ δt

0
r(s)ds.

Any future expenditures or earnings are adjusted to their present time value, and it is widely

known in the literature that the appropriate multiplicative factor is e−R(δt). In other words,

every term on the right hand side of the previous equation is multiplied by e−R(δt). Note

that R(t) +R(δt) = R(t+ δt), and so

e−R(t)vn(t;q) = e−R(t+δt) sup
p>0,w≥0

[

(1− λ(p, w, t)δt)vn(t+ δt;q)

+
M∑

i=1

qiλ(p, w, t)δt(if(t)p+ vn−i(t+ δt;q))− (δt)k(t)w

]

.

As seen previously, we work towards developing the HJB equations by rearranging the pre-
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vious equation as

e−R(t+δt)vn(t;q)− e−R(t)vn(t;q)

δt
=− e−R(t+δt) sup

p>0,w≥0

[

−λ(p, w, t)vn(t+ δt;q)

+
M∑

i=1

qiλ(p, w, t)(if(t)p+ vn−i(t+ δt;q))− k(t)w

]

.

Take the limit as δt → 0. Observe that the left-hand side of the previous equation is the

limit definition of a derivative, making the left-hand side d
dt

[
e−R(t)vn(t;q)

]
and yields

− r(t)e−R(t)vn(t;q) + e−R(t)v̇n(t;q)

= −e−R(t) sup
p>0,w≥0

[

−λ(p, w, t)vn(t;q) +
M∑

i=1

qiλ(p, w, t)(if(t)p+ vn−i(t;q))− k(t)w

]

.

So far we have kept the same notation as Section 2.1 while demonstrating how new features

are added to the model. While working through this section, many terms will be analogs

to terms from the model without advertising. Therefore we will use superscripts “A” to

help distinguish these types of terms in their new context. So in the previous equation we

will write vAn instead of vn. Additionally, dependencies on t and q are generally suppressed,

unless the dependencies improve understanding. With these details in mind, the previous

equation can be rearranged to get the HJB equations while including advertising (recalling

that
∑M

i=1 iqi = µ):

v̇An =rvAn − sup
p>0,w≥0

[

−λ(p, w)vAn +
M∑

i=1

qiλ(p, w)(ifp+ vAn−i)− kw

]

=rvAn − sup
p>0,w≥0

[

λ(p, w)

(

µfp−

(

vAn −
M∑

i=1

qiv
A
n−i

))

− kw

]

=rvAn − sup
p>0,w≥0

λ(p, w)µfp

[

1−
1

µfp

(

vAn −

M∑

i=1

qiv
A
n−i

)

−
kw

λ(p, w)µfp

]

(3.3.1)

Equation (3.3.1) has been developed in generality. Now we assume constant demand
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elasticity and constant advertising elasticity. Under this scenario, λ(p, w, t) = a(t)wδp−ε,

where 0 ≤ δ < 1 is the advertising elasticity. Note how λ depends on wδ is similar to how λ

depends on p−ε. This type of dependency is due to the constant elasticity assumptions for

advertising and price. For more details on how advertising is defined, see (MacDonald and

Rasmussen 2009).

This new arrival rate λ can be thought of as a composite arrival rate. First, a(t)wδ models

the rate of customer arrivals. More advertising expenditure w equates to more arrivals, but

since 0 ≤ δ < 1, there are diminishing returns. Once a customer arrives, p−ε models the

effect price has on turning them into a buyer.

Let w∗
n(t;q) and pA∗

n (t;q) denote the optimal advertising rate and pricing policy, respec-

tively, at time 0 ≤ t < T and inventory n. To determine w∗
n and pA∗

n which achieve the

supremum in (3.3.1), one could employ normal maximization techniques by setting the par-

tial derivatives to 0. However, the problem of determining the optimal relationship between

pricing and advertising policies has been known for many years as the Dorfman-Steiner

Identity (from (Dorfman and Steiner 1954)).

The Dorfman-Steiner Identity states that at any moment the relative cost of optimal

advertising w∗
n(t;q) compared to optimal revenue pA∗

n (t;q)λ(p, w, t)µ(q) is equal to the ratio

of advertising elasticity δ and price elasticity ε. In our case, we actually use the effective

advertising k(t)w∗
n(t;q) and the effective revenue f(t)pA∗

n (t;q)λ(p, w, t)µ(q), since the terms

k(t) and f(t) indicate a tax or subsidy to their original terms. Therefore we obtain a

Dorfman-Steiner Identity of

k(t)w∗
n(t;q)

f(t)pA∗
n (t;q)λ(p, w, t)µ(q)

=
δ

ε
. (3.3.2)

If we substitute λ(p, w, t) = a(t) (w∗
n)

δ (pA∗
n

)−ε
into this equation, then we can write the
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optimal advertising in terms of optimal price as

w∗
n(t;q) =

((
a(t)f(t)µ(q)

k(t)

)(
δ

ε

)(
1

pA∗
n (t;q)

)ε−1
) 1

1−δ

. (3.3.3)

This shows that not only are advertising and pricing related to each other, but they are

inversely related since ε > 1. Equation (3.3.3) can now be substituted into the supremum

of (3.3.1), which allows the maximal p to be calculated. To find pA∗
n , the derivative with

respect to p of the term in the supremum is taken and set to 0. (This is assumed to be a

maximum since the expected optimal value is finite.)

Now begin optimizing from the supremum of (3.3.1):

0 =
d

dp

[

λ(p, w)µfp

[

1−
1

µfp

(

vAn −

M∑

i=1

qiv
A
n−i

)

−
kw

λ(p, w)µfp

]]

=
d

dp

[

awδp−εµfp

[

1−
1

µfp

(

vAn −
M∑

i=1

qiv
A
n−i

)

−
δ

ε

]]

=
d

dp





((
afµ

k

)(
δ

ε

)(
1

p

)ε−1
) δ

1−δ

p1−ε

[(
ε− δ

ε

)

−
1

µfp

(

vAn −
M∑

i=1

qiv
A
n−i

)]



=
d

dp

[

p
1−ε
1−δ

(
ε− δ

ε

)

− p−
ε−δ
1−δ

(
1

µf

)(

vAn −
M∑

i=1

qiv
A
n−i

)]

=

(
1− ε

1− δ

)

p
1−ε
1−δ

−1

(
ε− δ

ε

)

+

(
ε− δ

1− δ

)

p−
ε−δ
1−δ

−1

(
1

µf

)(

vAn −
M∑

i=1

qiv
A
n−i

)

=

(
1− ε

ε

)

p+

(
1

µf

)(

vAn −
M∑

i=1

qiv
A
n−i

)

,

and from this computation we find the price which obtains the supremum in (3.3.3) is

pA∗
n (t;q) =

(
ε

ε− 1

)(
1

f(t)µ(q)

)(

vAn (t;q)−
M∑

i=1

qiv
A
n−i(t;q)

)

. (3.3.4)

At first glance it seems that this price does not depend on advertising w or advertising

elasticity δ; however, vAn (t;q) has dependency on δ, so price does in fact depend on the
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advertising.

Before proceeding a few terms will be defined in order to greatly simplify future calcula-

tions:

γ :=
ε− δ

1− δ

η :=

(
δ

ε

) δ
1−δ
(
ε− δ

ε

)γ

,

g(t) :=

(
a(t)f(t)ε

k(t)δ

) 1
1−δ

,

ζ(t) := g(t)

(
η

γ

)(
γ − 1

γ

)γ−1

. (3.3.5)

One useful relation of the first term is 1 − γ = 1−ε
1−δ

. Note that γ is chosen to match the

notation of (Helmes and Schlosser 2013), but is unrelated to the γn used in Section 2.1. γ

can be thought of as a joint elasticity that relates the elasticities δ and ε. The other three

terms do not have particular interpretations, but will come up in future computations.

Begin with v̇An from (3.3.1), with the optimal pricing and advertising strategies to elimi-

nate the supremum,

v̇An =rvAn − λ(pA∗
n , w∗

n)µfp
A∗
n

[

1−
1

µfpA∗
n

(

vAn −
M∑

i=1

qiv
A
n−i

)

−
kw∗

n

λ(pA∗
n , w∗

n)µfp
A∗
n

]

.

Simplify the bracketed term using (3.3.4) and (3.3.2) to get

v̇An =rvAn − λ(pA∗
n , w∗

n)µfp
A∗
n

[

1−
ε− 1

ε
−

δ

ε

]

=rvAn − a

((
afµ

k

)(
δ

ε

)(
1

pA∗
n

)ε−1
) δ

1−δ
(
pA∗
n

)−ε
µfpA∗

n

(
1− δ

ε

)

=rvAn − (aµf)
1

1−δ

(
δ

kε

) δ
1−δ (

pA∗
n

) 1−ε
1−δ

(
1− δ

ε

)

=rvAn − (aµf)
1

1−δ

(
δ

kε

) δ
1−δ

((
ε

ε− 1

)(
1

fµ

)(

vAn −
M∑

i=1

qiv
A
n−i

)) 1−ε
1−δ (

1− δ

ε

)
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=rvAn − µ
ε

1−δ

[

a
1

1−δ f
ε

1−δ

(
δ

kε

) δ
1−δ
(
1− δ

ε

)(
ε

ε− 1

)1−γ
](

vAn −
M∑

i=1

qiv
A
n−i

)1−γ

=rvAn − µ
ε

1−δ · ζ ·

(

vAn −

M∑

i=1

qiv
A
n−i

)1−γ

. (3.3.6)

The last equality is justified by the following work starting with the definition for ζ, equation

(3.3.5):

ζ =

(
af ε

kδ

) 1
1−δ

(
δ
ε

) δ
1−δ
(
ε−δ
ε

)γ

γ

(
γ − 1

γ

)γ−1

=

(
af ε

kδ

) 1
1−δ
(
δ

ε

) δ
1−δ
(
ε− δ

ε

)γ (
ε− δ

1− δ

)−1(
ε− 1

ε− δ

)γ−1

=

(
af ε

kδ

) 1
1−δ
(
δ

ε

) δ
1−δ
(
1

ε

)γ

(1− δ) (ε− 1)γ−1

= a
1

1−δ f
ε

1−δ

(
δ

kε

) δ
1−δ
(
1− δ

ε

)(
ε− 1

ε

)γ−1

.

The next theorem will give the optimal expected revenue and pricing strategy while

considering advertising and variable order sizes. It was obtained by synthesizing the result

from Theorem 2.1.2 and the work in (Helmes and Schlosser 2013). The proofs themselves are

largely about multiplying the terms out and verifying that they achieve the desired results.

The more important observation is that the idea to find a solution is the same as the solution

for variable order sizes without advertising: separate the solution by a term dependent on

n, a term dependent on t, and a term dependent on the average order size.

A few analogs to definitions from Section 2.1 are needed. First define

AAd(t) := eγR(t)

∫ T

t

e−γR(s)g(s)ds.

Next define the sequence (βA
n (q))n by βA

n (q) = 0 for n ≤ 0, and for n > 0, βA
n (q) satisfies

(
γ − 1

γ

)γ−1

= βA
n

(

βA
n −

M∑

i=1

qiβ
A
n−i

)γ−1

. (3.3.7)
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The uniqueness and existence follows from Lemma 2.1.1.

Theorem 3.3.1. Assume a model with constant demand elasticity ε, advertising elasticity

δ, and variable order sizes. For all 0 ≤ t ≤ T and n, the following holds:

vAn (t; q) = µ(q)
ε

ε−δβA
n (q)

(
ηAAd(t)

) 1
γ . (3.3.8)

pA∗
n (t; q) =

(
δµ(q)

ε

) δ
ε−δ
(

1

f(t)

)
(
βA
n

) −1
γ−1
(
AAd(t)

) 1
γ (3.3.9)

w∗
n(t; q) =

(
δµ(q)

ε

) ε
ε−δ
(
g(t)

k(t)

)

βA
n

(
AAd(t)

) 1−γ
γ (3.3.10)

Proof. Proceed by induction to prove (3.3.8). For n ≤ 0, vAn (t;q) = 0 and βA
n (t;q) = 0,

which verifies the base cases. Suppose (3.3.8) holds through n − 1. We verify that the

induction holds in the differential equation (3.3.6) in order to prove the induction. Recall

R(t) =
∫ t

0
r(s)ds. Also let θ = µ

ε
ε−δ to make computations more understandable.

Then the left-hand side (LHS) of (3.3.6) is

LHS = v̇An

=
θβA

n η
1
γ

γ

(
AAd(t)

) 1
γ
−1

ȦA(t)

=
θη

1
γ βA

n

γ

(
AAd(t)

) 1−γ
γ

(

eγR(t)γr(t)

∫ T

t

e−γR(s)g(s)ds+ eγR(t)(−e−γR(t)g(t))

)

=
θη

1
γ βA

n

γ

(
AAd(t)

) 1−γ
γ
(
γr(t)AAd(t)− g(t)

)
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The right-hand side (RHS) of (3.3.6) is

RHS = rvAn − µ
ε

1−δ · ζ ·

(

vAn −
M∑

i=1

qiv
A
n−i

)1−γ

= rθ
(
ηAAd

) 1
γ βA

n − µ
ε

1−δ g

(
η

γ

)(
γ − 1

γ

)γ−1
(

θ
(
ηAAd

) 1
γ βA

n −
M∑

i=1

qiθ
(
ηAAd

) 1
γ βA

n−i

)1−γ

= rθ
(
ηAAd

) 1
γ βA

n − µ
ε

1−δ g

(
η

γ

)

η
1−γ
γ θ1−γ

(
AAd

) 1−γ
γ

(
γ − 1

γ

)γ−1
(

βA
n −

M∑

i=1

qiβ
A
n−i

)1−γ

= rθ
(
ηAAd

) 1
γ βA

n − µ
ε

1−δ g

(
1

γ

)

η
1
γ θ1−γ

(
AAd

) 1−γ
γ βA

n

=
θη

1
γ βA

n

γ

(
AAd

) 1−γ
γ

(

γrAAd − µ
ε

1−δ θ−γg
)

=
θη

1
γ βA

n

γ

(
AAd

) 1−γ
γ
(
γrAAd − g

)
.

Where the last equality is justified by

µ
ε

1−δ θ−γ = µ
ε

1−δ

(

µ
ε

ε−δ

)− ε−δ
1−δ

= µ
ε

1−δµ
−ε
1−δ = 1.

Therefore the LHS and RHS are equal, proving the induction. Now find the optimal pricing

policy by substituting (3.3.8) into (3.3.4):

pA∗
n (t;q) =

(
ε

ε− 1

)(
1

f(t)µ(q)

)(

vAn (t;q)−
M∑

i=1

qiv
A
n−i(t;q)

)

=

(
ε

ε− 1

)(
1

f(t)µ(q)

)(

µ
ε

ε−δβA
n (q)

(
ηAAd(t)

) 1
γ −

M∑

i=1

qiµ
ε

ε−δβA
n−i(q)

(
ηAAd(t)

) 1
γ

)

=

(
ε

ε− 1

)(

µ(q)
δ

ε−δ

f(t)

)

(
ηAAd(t)

) 1
γ

(

βA
n (q)−

M∑

i=1

qiβ
A
n−i(q)

)

=

(
ε

ε− 1

)(

µ(q)
δ

ε−δ

f(t)

)

(
ηAAd(t)

) 1
γ

(
γ − 1

γ

)
(
βA
n

) −1
γ−1

=

(
δµ(q)

ε

) δ
ε−δ
(

1

f(t)

)
(
AAd(t)

) 1
γ
(
βA
n

) −1
γ−1 .
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To get the optimal advertising, substitute the previous result into (3.3.3):

w∗
n(t;q) =

((
a(t)f(t)µ(q)

k(t)

)(
δ

ε

)(
1

pA∗
n (t;q)

)ε−1
) 1

1−δ

.

=





(
a(t)f(t)µ(q)

k(t)

)(
δ

ε

)((
δµ(q)

ε

) δ
ε−δ
(

1

f(t)

)
(
AAd(t)

) 1
γ
(
βA
n

) −1
γ−1

)1−ε




1
1−δ

=

((
a(t)f(t)ε

k(t)

)(
δµ(q)

ε

) ε(1−δ)
ε−δ (

AAd(t)
) 1−ε

γ
(
βA
n

) ε−1
γ−1

) 1
1−δ

=

(
δµ(q)

ε

) ε
ε−δ
(
g(t)

k(t)

)
(
AAd(t)

) 1−γ
γ βA

n

Verifying the last equality is a matter of multiplying out the exponents.

Note that this Theorem is consistent with Theorem 2.1.2 when the various factors are

defined to align with the no advertising model: δ = 0, f(t) = 0, and k(t) = 0. We also

observe that βA
n (q) has the same structure as βn(q) (compare (3.3.7) and (2.1.5)), except ε

is replaced with γ. Since γ > 1 also, this means that Theorem 2.1.7 holds for βA
n (q), with γ

in place of ε. In other words,

lim
n→∞

βA
n (q)

n
γ−1
γ

= µ(q)
1−γ
γ . (3.3.11)

Surprisingly, the average order size plays a role in the optimal pricing and optimal ad-

vertising strategies; whereas, it was not seen in the formulas without advertising. That said,

the next corollary shows that comparable models still have the same asymptotic behavior as

n → ∞.

Corollary 3.3.2. (of Theorem 2.2.1) Let M A
q,λ and M A

q̄,λ̄
be comparable models under con-

stant demand elasticity ε and advertising elasticity δ. Then,

lim
n→∞

vAn (t; q, λ)

vAn (t; q̄, λ̄)
= 1, lim

n→∞

pA∗
n (t; q, λ)

pA∗
n (t; q̄, λ̄)

= 1, lim
n→∞

w∗
n(t; q, λ)

w∗
n(t; q̄, λ̄)

= 1.
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In other words, M A
q,λ and M A

q̄,λ̄
have asymptotically equivalent optimal expected revenues,

optimal pricing strategies, and optimal advertising strategies. and pricing strategies.

Proof. The proof will follow the original proof of Theorem 2.2.1, just with notation adjusted

for the advertising models being worked with. Let M A
q,λ and M A

q̄,λ̄
be comparable models

with λ(p, t) = a(t)wδp−ε and λ̄(p, t) = ā(t)w−δp−ε. Let

AAd(t; a) := eγR(t)

∫ T

t

e−γR(s)

(
a(s)f(s)ε

k(s)δ

) 1
1−δ

ds.

Then Theorem 3.3.1 says

vAn (t;q, λ) = µ(q)
ε

ε−δβA
n (q)

(
ηAAd(t; a)

) 1
γ . (3.3.12)

Also recall (3.3.11): lim
n→∞

βn(q)

n
ε−1
ε

= µ(q)
1−ε
ε .

Let δ > 0. By combining (3.3.12) with (3.3.11) we see that there exists an N > 0 such

that for all n > N ,

∣
∣
∣
∣
∣
vAn (t;q, λ)− µ(q)

ε
ε−δ

(
n

µ(q)

) γ−1
γ (

ηAAd(t; a)
) 1

γ

∣
∣
∣
∣
∣
< δ,

∣
∣
∣
∣
∣
vAn (t; q̄, λ̄)− µ(q̄)

ε
ε−δ

(
n

µ(q̄)

) γ−1
γ (

ηAAd(t; ā)
) 1

γ

∣
∣
∣
∣
∣
< δ.

Note that for a constant c, AAd(t; ca) = eγR(t)
∫ T

t
e−γR(s)

(
ca(s)f(s)ε

k(s)δ

) 1
1−δ

ds = c
1

1−δAAd(t; a).

The fact that the constant c is raised to the 1
1−δ

power is the main difference between this

proof with advertising and the original proof. However, the next computation will show that

this does not create any problems. First recall the condition for comparable models (2.2.1),
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which gives a(t) = ā(t)µ(q̄)
µ(q)

. Thus

µ(q)
ε

ε−δ

(
n

µ(q)

) γ−1
γ (

ηAAd(t; a)
) 1

γ = µ(q)
ε

ε−δ

(
n

µ(q)

) γ−1
γ
(

ηA

(

t;
āµ(q̄)

µ(q)

)) 1−δ
ε−δ

= µ(q)
ε

ε−δ

(
n

µ(q)

) ε−1
ε−δ
(
µ(q̄)

µ(q)

) 1
ε−δ

(ηA (t; ā))
1−δ
ε−δ

= µ(q̄)
ε

ε−δ

(
n

µ(q̄)

) γ−1
γ (

ηAAd(t; ā)
) 1

γ .

Then for n > N ,

∣
∣vAn (t;q, λ)− vAn (t; q̄, λ̄)

∣
∣ ≤

∣
∣
∣
∣
∣
vAn (t;q, λ)− µ(q)

ε
ε−δ

(
n

µ(q)

) γ−1
γ (

ηAAd(t; a)
) 1

γ

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
µ(q̄)

ε
ε−δ

(
n

µ(q̄)

) γ−1
γ (

ηAAd(t; ā)
) 1

γ − vAn (t; q̄, λ̄)

∣
∣
∣
∣
∣

< 2δ.

Since δ was arbitrary, this proves that two comparable models have asymptotically equiv-

alent optimal expected revenues as n → ∞. By similar arguments, the optimal pricing strate-

gies and optimal advertising strategies are also asymptotically equivalent as n → ∞.

We have shown how variable order sizes change the advertising and discounting model.

The structure of the formulas are the same, but with variable order sizes the average order

size µ(q) now plays a role. There are many more topics in (Helmes and Schlosser 2013),

including economic insights and infinite horizon results. These results are largely unaffected

by variable order sizes, so we do not include a discussion of them. With this, we conclude

the section.
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3.4 Other Arrival Rate Functions

Using constant demand elasticity has allowed us to get analytic solutions for our model. This,

in turn, has allowed us to get a good understand of how variable order sizes changes the

structure of an optimal pricing problem and what considerations must be taken. Constant

demand elasticity is a useful economic model for a specific type of arrival rate λ, but it would

also be useful to understand how models with different arrival rate structures are affected

with variable order sizes.

This section aims to explore some similarities and differences between problems with

different arrival rates λ. In particular, we examine how the comparison results of Section

2.2 change in the context of different λ. Two special cases of λ will be considered: when λ

is exponential and when it is linear. A couple notes on the graphs. First, the graphs are

technically discrete plots, but are presented with connected lines for readability. Second, the

legends indicate the order size distributions q used for that line.

We begin with the general HJB equations (1.3.2), which were developed independently

of λ(p, t):

v′n(t;q, λ) = − sup
p

λ(p, t)

[

−vn(t;q) +
M∑

i=1

qi(ip+ vn−i(t;q))

]

.

For “nice” λ(p, t), one can find the p∗ which attains the supremum using normal maximization

techniques; however, that p∗ will be defined using vn terms. This means some other technique

to determine the optimal expected revenue is needed. For constant demand elasticity, the

key property was that the optimal expected revenue solution was separable in n and t. This

may not be the case in general.

For a general customer arrival rate function λ(p, t), let vn(t;λ) denote the optimal ex-

pected revenue and p∗n(t;λ) denote the optimal pricing strategy. Exponential arrival rates

are given of the form λ(p, t) = a(t)e−αp, where a(t) > 0 is the same type of arrival rate

scaling factor as seen before, and α > 0 is another scaling factor. When α = 1, (Gallego and
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van Ryzin 1994) found analytic solutions to the optimal revenue and pricing strategies:

vn(t; ae
−p) = log

(
n∑

i=0

(a(t)t/e)i

i!

)

(3.4.1)

p∗n(t; ae
−p) = vn(t; ae

−p)− vn−1(t; ae
−p) + 1. (3.4.2)

Notably, the optimal expected revenue is not separable in n and t. As such, generalizing this

result to include variable order sizes has been challenging.

While using a max order size of M = 2, we obtained analytic solutions for the optimal

expected revenue for n = 1, 2, 3. For n > 3 the problem became unwieldy as a hypergeometric

function appears as a term in v3, which then becomes difficult to use for n = 4 since solutions

are solved via recursion. but there are challenges.

Compared to constant demand elasticity, there are some fundamental differences when

using exponential arrivals. By looking at (3.4.2) we see that for exponential arrivals, there

is actually a minimum price of 1 (since vn ≥ vn−1); whereas for constant demand elasticity,

there is no minimum price. This is likely related to the related λ functions. For constant

demand elasticity λ(p, t) = p−ε, which is unbounded as p → 0. When λ(p, t) = e−p, λ → 1 as

p → 0. Thus it makes sense that for exponential arrivals the price has a minimum threshold.

Despite a lack of analytic results, we have created a Mathematica program to compute

the numerically optimal expected revenue and pricing strategies. see the appendix for the

code. The program implements the dynamic programming equation (1.3.1), and allows for

a user defined λ(p, t) to be used. Of course, we have a continuous problem and the program

must be implemented on a discrete time scale by picking a value for δt. The presented graphs

use δt = 0.1, which is about 2% of the total time scale. Little accuracy seemed to be gained

by using a finer time scale.

Figure 3.1 shows the optimal expected revenue for exponential arrivals given different

comparable models. They all converge as n increases, but not quite how we may have

expected. Not only do the terms converge to each other, they converge to a specific value.
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This makes sense considering that e−p is bounded. Without a larger time scale there is an

upper limit to the amount of inventory which can be sold on average.

Note also that some of the graphs look like step functions. This is due to the overselling

assumption that we have made when the dynamic programming equation was initially de-

fined. If all the orders are of only one size, say 4, then the expected revenue won’t change

between inventory sizes 1 through 4. In each case, just 4 items are sold. This idea extends

for larger inventory too (if there are 5 through 8 items, 8 items are still sold in 2 batches of

4).

Figure 3.1: Expected revenue with λ(p, t) = 2e−2p, T = 5
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Figure 3.2: Relative difference between a variable order model compared to unit order model.
Solid: λ(p, t) = 2e−2p, T = 5; Dashed: λ(p, t) = 5e−2p.
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Next, Figure 3.2 shows the relative difference between the unit order model and a com-

parable variable order size model for q = (0, 1) at different demand magnitudes. Recall

Theorem 2.2.2 which stated that for constant demand elasticity, this relative difference of

comparable models was independent of the demand magnitude. However, this is not the

case for exponential arrivals. Why might this be? Looking back to Theorem 2.2.2, the proof

of this theorem relied on the fact that vn was separable in n and t. For exponential arrivals,

(3.4.1) indicates that the solution for vn is not separable in n and t.

Figure 3.3: Expected value with λ(p, t) = 2(2− p)
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Another specific λ explored in the literature is linear arrival rates. That is, λ(p, t) =

a(t)(α − p), where a(t) is an arrival rate scaling factor and a(t)α is the maximum arrivals

when p = 0. Again we see that arrivals are bounded, so we expect optimal expected revenue

to be bounded as well. Using the numerical computations again we plot the numerical

optimal expected revenue in Figure 3.3. Indeed the graph matches our intuition that there

is an upper bound on vn. Similar to exponential arrivals, Figure 3.4 shows that the relative

difference between comparable models is not independent of the demand magnitude.
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Figure 3.4: Relative difference between a variable order model compared to unit order model.
Solid: λ(p, t) = 2(2− p), T = 5; Dashed: λ(p, t) = 5(2− p) , T = 5.
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The numerical computations in this section reveal some important insights. First is

that the comparable models, regardless of the λ chosen, appear to have the same asymptotic

behavior in the inventory size. It is pleasing that the numerical calculations support this idea,

as it is one which makes intuitive sense. We conjecture that the result holds for general λ.

We have also seen that the relative difference between comparable models is not independent

of the demand magnitude for general λ, showing that constant demand elasticity is a special

case. We have also presented useful code which can be utilized to explore more questions

about how variable order sizes influences dynamic pricing.
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4.

Conclusion

We have explored the problem of how variable order sizes influence the optimal pricing

strategies for a model with constant demand elasticity. We obtained analytic results for the

optimal revenue and pricing strategies and found that the average order size was important,

a term not seen in the unit order case. Comparisons between models with the same demand

were also examined, and we showed that comparable models have the same asymptotic

pricing behavior in the inventory size.

In a practical sense, the comparison results give the insight that a variable order size

model may be approximated with a unit order size model. Numerical results indicated that

comparable models converge relatively quickly. This amounts to extra modeling flexibility,

since unit order models are easier to work with. Moreover, the relative difference between the

optimal expected revenue and pricing strategy for two comparable models is not dependent

on the scale of demand.

Variable order size models require the problem of low inventory to be addressed, due to the

structure of the dynamic programming equation which is developed. Of particular interest

was defining different behavior at low inventory. We showed two ways of approaching the

problem of what to do when there is not enough inventory let to meet a customers demand:

turn them away or sell them all remaining inventory.

This was further extended to allow the minimum inventory to be any value, where nega-
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tive inventory indicated overselling inventory (such as overbooking tickets on a flight). Costs

based on the price of an item were also introduced in order to account for risks associated

with overselling. Even with the low inventory features, our asymptotic and comparison

results still held.

From an economic standpoint, constant demand elasticity is interesting because the mo-

nopolist pricing strategy is also socially efficient. We also discussed how to introduce ad-

vertising and discounting into the variable order size model. These were two very different

features that greatly improved the generality of the model.

There is still more to be explored related to variable order size models. While variable

order sizes are not new to the literature, they are often treated in terms of numerical calcula-

tions. This is fine from a practical application of the theory, but as shown in this dissertation

there are also useful analytic insights. Given the importance of comparable models, and the

comparison results, we also think examining in more detail the converge rate of comparable

models would also be an interesting topic. Other arrival rate functions were briefly explored,

and more work could be done to analyze these models as well.
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5.

Appendix

Figure 5.1: Mathematica code which implements basic definitions from the paper.

(*beta[n_,ep_,qvec_] creates the beta function as defined in the paper. Make sure to run before using any beta terms!

returns: nothing;

n := the index of beta;

ep := the demand elasticity;

qvec := the order size distribution, given as list {q1,...,qM};*)

defineBetas[n_, ep_, qvec_] :=

ModuleRHS =
ep - 1.

ep

ep-1.

, i, lengthq, current = 0., prev, q = qvec, j,
If[Total[q] ≠ 1.0, q = Input["q sum error"]];

If[ValueQ[beta[n, ep, qvec]], Return["Already Done!"]];

lengthq = Length[q];

prev = ConstantArray[0., lengthq];

Fori = 1, i ≤ n, i++,

current = NSolvex (x - Sum[q[[j]] prev[[j]], {j, 1, lengthq}])ep-1. ⩵ RHS && x ≥ 0, x[[1, 1, 2]];

beta[i, ep, q] = current;

For[j = lengthq, j > 1, j--,

prev[[j]] = prev[[j - 1]];

];

prev[[1]] = current;;;
(*Helpful functions*)

(*mu[...] is the Average order size of a probability distribution*)

mu[qlist_] := Sum[i* qlist[[i]], {i, 1, Length[qlist]}];

(*A[...] as defined in the paper*)

A[t_, T_, a_] := Integrate[a, {s, t, T}];

(*V[...] is the optimal expected revenue for a constant elasticity model, with inputs matching those from the paper*)

V[n_, t_, T_, a_, ep_, q_] := mu[q] beta[n, ep, q] A[t, T, a]^(1/ ep);

(*PStarCE[...] is the optimal pricing policy for a constant elasticity model, with inputs matching those from the paper*)

PStarCE[n_, t_, T_, a_, ep_, q_] := beta[n, ep, q]^(-1/(ep - 1)) A[t, T, a]^(1/ ep);
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Figure 5.2: Mathematica code which implements a Poisson model to simulate the revenue
earned while using the optimal pricing strategy.

(*randomOrderSize[q_]

returns: a random order size using probability distribution q;

q := a probability distribution given as a list {q1,...,qM}*)

randomOrderSize[q_] := Module[{pick = RandomReal[], count = q[[1]], i},

For[i = 1, i ≤ Length[q], i++,

If[pick <= count, Return[i], count += q[[i + 1]]]]];

(*runPricingSimulation[parameters_] simulates the Poisson random arrival of customers under constant demand elasticity. The

optimal pricing policy PStarCE[...] is used to control the arrival rate of customers Make sure beta is defined before running;

returns: the revenue earned during the simulation;

parameters := a list of parameters for the simulation, see the module variables for each term;*)

runPricingSimulation[parameters_] := Module[{inventory = parameters[[1]],

T = parameters[[2]],

a = parameters[[3]],

ep = parameters[[4]],

dt = parameters[[5]],

q = parameters[[6]],

revenue = 0,

prices = {},

jumpTimes = {},

precision = 7,

t, successRate, jumpSize = 0},

For[t = 0, t < T, t += dt,

If[inventory > 0,

AppendTo[prices, {t, PStarCE[inventory, t, T, a, ep, q]}];

successRate = LambdaCE[prices[[-1, -1]], a, ep]* dt;

If[RandomReal[WorkingPrecision → precision] < successRate,

AppendTo[jumpTimes, t];

jumpSize = randomOrderSize[q];

inventory -= jumpSize;

revenue += jumpSize* prices[[-1, -1]]],

(*Else, if all sold*)

AppendTo[prices, {t, 0}];]

];

revenue

];

(*runManyPricingSimulations[parameterSets_] sequentially runs Poisson pricing simulations,

allowing results for several different parameter sets to be run, as well as several trials per parameter set;

returns: a list containing elements of the form {{parameter list}, {list of revenue earned}};

parameterSets := a list where each element is a list of parameters. See runPricingSimulation for how to format parameters;

trials := how many trials to run for each parameter set;*)

runManyPricingSimulations[parameterSets_, trials_] := Module[{

masterResults = {},

i = 0,

j = 0,

trialResults},

Print["Trial progress:"];

Print[ProgressIndicator[Dynamic[i/ trials]]];

Print["Parameter progress:"];

Print[ProgressIndicator[Dynamic[j/ Length[parameterSets]]]];

For[j = 1, j ≤ Length[parameterSets], j++,

trialResults = {};

For[i = 1, i ≤ trials, i++,

AppendTo[trialResults, runPricingSimulation[parameterSets[[j]]]];

];

AppendTo[masterResults, {parameterSets[[j]], trialResults}];

];

masterResults

];
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Figure 5.3: Mathematica code which implements an algorithm to numerically calculate the
optimal expected revenue and pricing strategy for any arrival rate function.

(*The following functions define different types of customer arrival functions. Used for optimalRevenueNumeric[...];

params := a list which corresponds to different scaling factors of that particular function*)

LambdaExp[p_, params_] := params[[1]]* Exp[-params[[2]]* p];

LambdaCE[p_, params_] := params[[1]] p^(-params[[2]]);

LambdaLinear[p_, params_] := params[[1]] (params[[2]] - p);

(*optimalRevenueNumeric[n_,T_,q_,Lambda_,lambdaParams_,dt_] is an algorithm which uses the HJB equations to numerically

calculate and define the optimal expected revenue JStarN[...] and pricing strategy PStarN[...] functions for all inventory levels n,

and discrete time values 0≤t≤T with steps dt. IMPORTANT! The functions which are generated are evaluated at integer time steps,

not at specific times. To calculate the time step you must use IntegerPart[t/dt] (This avoids floating point number issues.);

returns: nothing;

n := the maximum inventory;

T := the maximum time;

q := order size distribution given as a list {q1,...,qM};

lambda := the name of the function which defines the arrival rate;

lambdaParams := the parameters for the chosen lambda function;

dt := the size of timesteps for the numeric calculations*)

optimalRevenueNumeric[n_, T_, q_, Lambda_, lambdaParams_, dt_] := Module[{inv = 0, time, timeSteps = 1, result, M = Length[q]},

(*Display Computation progress*)

Print["Inventory progress"];

Print[ProgressIndicator[Dynamic[inv/ n]]];

Print["Time progress"];

Print[ProgressIndicator[Dynamic[time / T]]];

(*Declare initial values*)

JStarN[0, anyt_, anyq_, anyLambda_, anylambdaParams_, anydt_] := 0; (*No inventory*)

JStarN[anyn_, 0, anyq_, anyLambda_, anylambdaParams_, anydt_] := 0; (*No Time*)

(*Use dynamic programming to calculate values*)

For[inv = 1, inv ≤ n, inv++,

timeSteps = 0;

For[time = dt, time ≤ T, time += dt,

timeSteps += 1; (*Integer timesteps are used to avoid numerical imprecision of defining PStarN and JStarN at discrete decimal t values*)

result =

NMaximize[{Lambda[p, lambdaParams]* dt* Sum[q[[k]] (k* p + JStarN[Max[0, inv - k], timeSteps - 1, q, Lambda, lambdaParams, dt]), {k, 1, M}] +

(1 - Lambda[p, lambdaParams]* dt) JStarN[inv, timeSteps - 1, q, Lambda, lambdaParams, dt],

p ≥ 0, 0 <= Lambda[p, lambdaParams]* dt ≤ 1}, (*Constraints*)

p, MaxIterations → 250];

PStarN[inv, timeSteps, q, Lambda, lambdaParams, dt] = result[[2, 1, 2]];

JStarN[inv, timeSteps, q, Lambda, lambdaParams, dt] = result[[1]];

]

]

]

(*constDemand[dem_,q_];

returns: the arrival rate scaling factor a which makes a*mu[q]=dem;

dem := the target demand value;

q := desired order size distribution;*)

constDemand[dem_, q_] := If[Total[q] ⩵ 1., dem/ mu[q], Print["Faulty q"]];

(*runManyOptimalRevenueNumeric[...] will run sequential computations to find the optimal revenue and optimal pricing strategy

for several comparable models, only the order size distributions must be provided;

returns: nothing;

n := max inventory;

T := max time;

qList := a list of order size distributions, {{dist 1}, {dist 2},...{last dist}};

Lambda := the arrival rate function;

demMag := the demand magnitude all the models should have;

alpha := *)

findRevenueForComparableModels[n_, T_, qList_, Lambda_, demMag_, alpha_, dt_] := Module[{i},

For[i = 1, i ≤ Length[qList], i++,

optimalRevenueNumeric[n, T, qList[[i]], Lambda, {constDemand[demMag, qList[[i]]], alpha}, dt];

]

]
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