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ABSTRACT

A Stochastic Control Model for
Electricity Producers

by

Charles Beer

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Richard Stockbridge

Modern electricity pricing models include a strong reversion to a long run mean and a

number of non-local operators to encapsulate the discontinuous price behavior observed in

such markets. However, incorporating non-local processes into a stochastic control problem

presents significant analytical challenges. The motivation for this work is to solve the problem

of optimal control of the burn rate for a coal-powered electricity plant. We first construct a

pricng model that is a good general representative of the class of models currently used for

electricity pricing as well as a model for the supply of fuel to the plant. Under this model,

we state the control problem of maximizing the expected discounted revenue until the first

time at which the plant runs out of fuel. Deriving the HJB equation for this control problem

results in a partial integro-differential equation, which does not fit the classical theory of

viscosity solutions. Building off of work by Barles and Imbert on viscosity solutions for non-

local processes, we extend their theory to apply to non-local processes which also include a

mean-reversion component. We first show that the value function for the control problem

is a solution to this HJB equation. In our main result, we prove a comparison principle for

viscosity solutions which uses a slightly more regular structure of the non-local operators to

relax some of the assumptions of Barles and Imbert. Using this comparison principle, we

are able to show that the value function is in fact the unique solution to the HJB equation.

Thus, we have the desired result that solving the HJB equation is equivalent to solving the

control problem, giving us a direct method for finding the optimal control policy for the

electricity producer.
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Chapter 1

Introduction and Problem
Formulation

1 Background

Beginning with some northern European markets in the early 1990’s, nations around the

world have liberalized the markets for electricity, and later those for other related products

like energy futures and options [4]. In the United States and Canada, this process began in

1996 with the creation of Independent System Operators (ISOs) with the responsibilities of

operating electricity grids and administering wholesale electricity markets for large, multi-

state regions of the United States and Canada. These ISOs allow large energy producers to

act as sellers in a partially regulated commodities market.

The ISO actually operates two separate markets, a day-ahead market and a real-time

market. The day-ahead market allows producers to plan their production in a relatively

deterministic manner since they are guaranteed a certain price. Producers are also obligated

to provide a certain amount of electricity, based on their production capacity, to the day-

ahead market in order to participate in the ISO market. However, since this market is largely

deterministically controlled by the ISO, it is of little interest in this thesis. Of much greater

interest is the real-time market operated alongside the day-ahead. In particular, we consider

the nodes of the Midcontinent ISO (MISO) real-time market which provides service to the

Midwestern US and Manitoba, Canada [11]. We pay particular attention to those nodes

near Milwaukee, WI.

Modeling spot prices for electricity in these markets presents a challenge. While most

commodities markets have been modeled with great accuracy using standard financial math-
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ematical models driven by Brownian motion or exponential Brownian motion, these are

continuous-path processes and thus fail to capture the large, instantaneous spikes seen in

electricity prices.
Daily Average Price on MISO Grid 2012-2013

Figure 1: Crude oil spot price 2008-2016 [8] (left) and electricity spot price on one node of

MISO grid [10] (right)

More sophisticated spot price models based on general Ornstein-Uhlenbeck processes were

developed in the late 2000s (e.g. [3]) and compiled into a textbook on the subject by Fred

Espen Benth in 2008 [4]. While these models contributed greatly to the pricing of ener-

gies derivatives like electricty futures and options, there has been little to no application of

them to stochastic control problems, for example optimal action of an energy supplier in

such a market. This thesis seeks to begin the examination of such applications through the

particular case of a coal-powered electricty plant acting in an open electrictiy market.

2 Description of the Problem

The problem considered in this paper is to optimally control the rate at which a coal plant

burns fuel in order to maximize its revenue from selling to a single node on the MISO grid.

Because the costs of shutting down and restarting such a plant are extremely high, we wish

to consider this as a first-exit problem with the terminal time being the first time the plant’s

coal supply reaches a specified minimum level.
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3 The Model

3.1 The Coal Supply Process

Many coal plants have contracts with coal suppliers that specify an amount of coal to be

delivered to the plant via freight train each day. However, several environmental factors

including blockages of railways and failures of unloading equipment at the delivery point

make it necessary to model this supply as a stochastic process rather than a deterministic

one. Also, some minor delays may result in two trains (e.g. a train delayed from the previous

day and the train intended to arrive on the current day) arriving in a single day. Further,

since many of these delays stretch over multiple days, the arrival of coal each day cannot be

considered completely independent of earlier days.

However, a Markovian supply process is needed for most analyses. So, the arrival of coal

is modeled as a two coordinate Markov chain. Each element of the Markov chain has one

coordinate indicating the number of coal trains arriving that day and a second coordinate

that tracks the number of coal trains that arrived the previous day. In this way, some

dependence on earlier information can be included while still creating a Markov process for

the coal arrivals. Based on empirical data, we consider 9 such states s1=(0,0), s2=(0,1),

s3=(0,2), s4=(1,0), s5=(1,1), s6=(1,2), s7=(2,0), s8=(2,1), and s9=(2,2) (i.e. being in state

s6 means that one train arrived on the present day and two trains arrived on the previous

day). Note that many transitions, e.g (0,0)→(1,1), are impossible since the second coordinate

of the present state must match the first coordinate of the previous state. So, the transition

probability matrix can be greatly simplified by making all such transition probabilities zero.

We can then write the transition probability matrix, P , of the Markov chain as

P :=



p1,1 0 0 p1,4 0 0 p1,7 0 0
p2,1 0 0 p2,4 0 0 p2,7 0 0
p3,1 0 0 p3,4 0 0 p3,7 0 0
0 p4,2 0 0 p4,5 0 0 p4,8 0
0 p5,2 0 0 p5,5 0 0 p5,8 0
0 p6,2 0 0 p6,5 0 0 p6,8 0
0 0 p7,3 0 0 p7,6 0 0 p7,9

0 0 p8,3 0 0 p8,6 0 0 p8,9

0 0 p9,3 0 0 p9,6 0 0 p9,9


where these transition probabilities pi,j can be obtained empirically from records of coal

shipment arrivals.
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Since the problem we are considering is stated in a continuous-time framework, we instead

think of this coal arrival process as a continuous-time Markov chain with state transition

probabilities pi,j as above and intensity α such that there is a mean rate of one transition per

day; that is a continuous-time Markov chain with transition rate matrix Q := αP . Under

the assumption that this transition matrix is irreducible (which, from empirical data, may

require elimination of the last row and column since it is possible that the state (2, 2) is

never reached) and noting that it is by construction positive recurrent, this continuous-time

Markov chain will have unique stationary distribution (p̃1, p̃2, p̃3, p̃4, p̃5, p̃6, p̃7, p̃8, p̃9). We in

fact only need the number of trains arriving currently at any given time t, that is the value of

the first coordinate of the Markov chain’s state. So, we define probabilities p0 := p̃1 + p̃2 + p̃3,

p1 := p̃4+p̃5+p̃6, and p2 := p̃7+p̃8+p̃9, these being the probabilities that the current number

of arrivals “today” is 0, 1, or 2, respectively. Further, the arrival of each coal shipment adds

a constant amount ζ̃ to the total available coal supply. Since coal can be unloaded and

added to the supply faster than the maximum burn rate, we consider this addition to the

supply to occur instantaneously upon arrival of a train. However, the coal supply is limited

by the storage capacity of the plant to be below zmax. So, we define for z ∈ [zmin, zmax],

ζ := ζ̃ ∧ (zmax − z) and 2ζ := 2ζ̃ ∧ (zmax − z). Then, for any bounded function f , the

generator, Q, of this continuous-time Markov chain is given by

Qf(z) = lim
h→0

E [f(Z(h))− f(Z(0)) | Z(0) = z]

h
=α (p0[f(z)− f(z + 0)] + p1[f(z + ζ)− f(z)] + p2[f(z + 2ζ)− f(z)])

=α (p1[f(z + ζ)− f(z)] + p2[f(z + 2ζ)− f(z)]) . (1.1)

Additionally, our control for this problem is the rate at which coal is being burned,

u(t). This rate is limited by the physical capacity of the plant such that u(t) ∈ [umin, umax]

for all t ≥ 0. We further assume that u is a non-anticipating control. Since this control

represents the rate at which coal is being used, it imposes a drift of −u(t) on the process

Z(t). The coal supply is limited by the physical storage capacity of the plant such that

Z(t) ∈ [zmin, zmax] ⊂ R+ for all t ≥ 0. The ith transition of the continuous-time Markov

chain results in an addition of ξi to the coal supply where the ξi are i.i.d. random variables

where

P[ξi = x] =


p0 , for x = 0

p1 , for x = ζ

p2 , for x = 2ζ

(1.2)

4



for all i. Letting ψi be the arrival time of the ith shipment, we can express Z(t) explicitly in

the form

Z(t) = min

{
Z(0)−

∫ t

0

u(t) dt+
∞∑
i=1

ξiI{ψi≤t} , zmax

}
(1.3)

An inherent assumption of this problem is that the plant must be shut down the moment

the coal supply reaches the level zmin. Therefore, the Z process terminates at the stopping

time τ := min {t ≥ 0 |Z(t) = zmin}. Note that since the singular behavior of this process is

only in coal arrivals, any downward change in the coal supply will occur continuously due to

the continuous drift rate u(t). So, this minimum will exist, and therefore the terminal time

τ is well-defined.

3.2 The Spot Price Process

The form of the spot price model is the same as that used by Gonzalez, Moriarty, and

Palczewski [7], which is a specific form of the general model developed by Benth [4]. This

multifactor model includes three components. The first is a Gaussian Ornstein-Uhlenbeck

process which is the solution to the SDE

dY0(t) =
1

λ
(µ− Y0(t))dt+ σdW (t) , Y0(0) = y0 (1.4)

with W (t) being a one-dimensional standard Brownian motion, Y0(0) = y0 being the spot

price at the initial time, and µ being the long-term mean price in the market. This results

in the explicit form

Y0(t) = µ+ (y0 − µ)e−
1
λ
t +

∫ t

0

e−
1
λ

(t−s)σdW (s). (1.5)

This process is a mean-reverting Brownian motion which reverts exponentially towards the

mean price µ at exponential rate 1
λ
.

The second two components are jump processes which are each driven by an independent

compound Poisson process and revert to 0 at the same rate 1
λ
. (Note: The assumption that

all three components have the same constant reversion rate is made in order to obtain a

tractable HJB equation later in the problem, but was not made in the paper by Gonzalez

et al [7].) One process models the relatively frequent large upward spikes in the spot price

while the other models the much less frequent and smaller downward spikes. We define the

5



driving compound Poisson processes to be

Li(t) =
∞∑
j=1

ξ
(j)
i I{τ (j)i ≤t}

(1.6)

for i = 1, 2 where the τ
(j)
i s are the arrival times of independent Poisson processes with rate

ηi > 0 (one for each jump process) and the ξ
(j)
i s are exponentially distributed jump sizes

with parameter βi > 0. The compensated compound Poisson processes,

L̃i(t) = Li(t)− E[ξi]ηit, (1.7)

are therefore martingales, and we denote by dL̃i the compensated Poisson measure associated

with each process. We then define Y1(t) and Y2(t) to be the unique strong solutions to

dYi(t) = −1

λ
Yi(t)dt+ dLi(t) , Yi(0−) = 0 (1.8)

for i = 1, 2.

The sum of these random components is then multiplied by a deterministic exponential

function representing the seasonal shifts in the mean price of electricity denoted by ef(t).

Thus, we get the form of the spot price process, S(t) to be

S(t) = ef(t) [Y0(t) + Y1(t)− Y2(t)] . (1.9)

For simplicity of analysis, we take f(t) ≡ 0 and thus ef(t) ≡ 1 for the majority of this paper.

That is, we examine the process

X(t) = Y0(t) + Y1(t) + Y2(t). (1.10)

So, X satisfies the SDE

dX(t) =
1

λ
(µ−X(t))dt+ σdW (t) + dL1(t) + dL2(t). (1.11)

From an application standpoint, this assumption simply requires using the de-seasonalized

spot price, which Gonzalez et al [7] provide a simple and effective method for producing from

raw data, rather than the true spot price. This additive structure reproduces in an analyti-

cally tractable way the main characteristics of the energy spot price: its large, discontinuous

jumps both upwards and downwards and its strong reversion towards a mean price. These

characteristics can be seen in the plot below, which shows a sample path of each component

process, Y0, Y1, and Y2, as well as their sum, X.
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Figure 2: Sample path of spot price process model and its components

Referring to the paper by Gerber and Shiu [6] for the form of the compound Poisson terms,

we can then write the generator of the spot price process for any bounded function f : R→ R
as

Ãf(x) =
1

λ
(µ− x)f ′(x) +

σ2

2
f ′′(x) + η1

∫ ∞
0

(f(x+ y)− f(x)) β1e
−β1ydy

+ η2

∫ 0

−∞
(f(x+ y)− f(x)) β2e

β2ydy. (1.12)

3.3 The Paired Spot Price/Coal Process

We assume throughout that the spot price process and the coal process are independent of

one another. This allows us to define the generator of the paired process (X,Z) for any

bounded function f : R× [zmin, zmax]→ R to be

Af(x, z) :=
1

λ
(µ− x)fx(x, z) +

σ2

2
fxx(x, z) + η1

∫ ∞
0

(f(x+ y, z)− f(x, z)) β1e
−β1y dy

7



+ η2

∫ 0

−∞
(f(x+ y, z)− f(x, z)) β2e

β2y dy − ufz(x, z)

+ α
[
p1 (f(x, z + ζ)− f(x, z)) + p2 (f(x, z + 2ζ)− f(x, z))

]
. (1.13)

3.4 Electricity Production/Revenue

The plant is paid the spot price at any given time for each unit of electricity production.

We consider a continuous revenue function R(x, z, u), which encapsulates the relationship

between the burn rate, u, and the production rate of electricity as well as the structure of

the payment received by the producer for that electricity. We can also consider a continuous

cost function C(x, z, u). The payoff function can then be written as

G(x, z, u) := R(x, z, u)− C(x, z, u). (1.14)

4 Control Problem

The problem considered in this thesis is to maximize the revenue received by a producer

selling electricity to a single node on the MISO grid in the real-time market. That is, a

producer selling at a spot price determined by the market. The only control the producer

has is the rate at which coal is being burned at the plant, which determines the rate at which

electricity is produced as any electricity produced must be sold immediately. Since the coal

supply is received based on a long-term contract with a supplier at a fixed price, the cost of

burning coal is considered to be fixed regardless of the burn rate. So, we can consider the

problem as simply maximizing revenue without including these fixed cost terms. However,

if the coal supply ever reaches a certain minimum level, zmin the plant must be shut down

in order to avoid damage. This shutdown and restart of the plant is extremely costly, so

we wish to avoid it. Thus, we define the first hitting time of the minimum coal level to

be τ := min{t ≥ 0
∣∣Zt = zmin}, and we consider the problem of maximizing the expected

revenue for the plant until the first time the coal supply reaches this minimum level. That

is, for discount rate δ > 0, we wish to maximize

E
[∫ τ

0

e−δtG(X(t), Z(t), u(t)) dt

]
(1.15)

where u(t) : R+ → [umin, umax] is the non-anticipating control representing burn rate for the

plant at time t and τ is the first time at which the process Z reaches zmin (at which time

the paired process terminates).

8



5 Notation

For the sake of notational clarity and brevity, the following notational conventions will be

used throughout the remainder of the paper.

1A(·) denotes the indicator of the set A. (1.16)

U := [umin, umax] denotes the range of possible burn rates for the plant. (1.17)

U(x,z) denotes the space of admissible control functions (1.18)

for the paired process with initial position(x, z).

D := R× [zmin, zmax] denotes the range of the paired process (X,Z). (1.19)

We will also occasionally make use of the probabilists’ notational convention for stochastic

processes, X, of taking the notations X(t) and Xt to be equivalent as some expressions are

more clear with one notation or the other.

9



Chapter 2

Derivation of the HJB Equation

1 Overview of Continuous Time Stochastic Control

We will use a version of the dynamic programming principle presented in Pham [13], which

differs slightly from the standard version in its conclusion of the equivalence of using supre-

mum or infimum over the set of stopping times.

Theorem 2.1. (Dynamic Programming Principle) Let X(t) be a controlled Markov process,

A(t, x) be the family of admissible controls for the initial point (t, x), and Tt,T be the family

of all stopping times between t and T . Then then following hold:

(a) (Finite Time Horizon) Let (t, x) ∈ [0, T ]× Rn. Then we have

v(t, x) = sup
α∈A(t,x)

sup
θ∈Tt,T

E
[∫ θ

t

f
(
s,X t,x

s , αs
)
ds+ v

(
θ,X t,x

θ

)]
(2.1)

= sup
α∈A(t,x)

inf
θ∈Tt,T

E
[∫ θ

t

f
(
s,X t,x

s , αs
)
ds+ v

(
θ,X t,x

θ

)]
. (2.2)

(b) (Infinite Time Horizon) Let x ∈ Rn. Then we have

v(x) = sup
α∈A(x)

sup
θ∈T

E
[∫ θ

0

e−βsf (Xx
s , αs) ds+ v (Xx

θ )

]
(2.3)

= sup
α∈A(x)

inf
θ∈T

E
[∫ θ

0

e−βsf (Xx
s , αs) ds+ v (Xx

θ )

]
. (2.4)

Proof. For the sake of completeness, we quote the proof of this version of the dynamic pro-

gramming principle in the finite time horizon case with terminal time T as seen in Theorem

3.3.1 in Pham [13].

10



Given an admissible control α ∈ A(t, x), we have pathwise uniqueness of the flow of the

SDE for X, the Markovian structure

X t,x
s = X

θ,Xt,x
θ

s , s ≥ 0

for any stopping time θ ∈ [t, T ]. By the law of iterated conditional expectation, we then get

J(t, x, α) = E
[∫ θ

t

f(s,X t,x
s , αs) ds+ J(θ,X t,x

θ , α)

]
,

and since J(·, ·, α) ≤ v and θ is arbitrary in Tt,T

J(t, x, α) ≤ inf
θ∈Tt,T

E
[∫ θ

t

f(s,X t,x
s , αs) ds+ v(θ,X t,x

θ )

]
≤ sup

α∈A(t,x)

inf
θ∈Tt,T

E
[∫ θ

t

f(s,X t,x
s , αs) ds+ v(θ,X t,x

θ )

]
.

By taking the supremum over α in the left-hand side term, we obtain the inequality:

v(t, x) ≤ sup
α∈A(t,x)

inf
θ∈Tt,T

E
[∫ θ

t

f(s,X t,x
s , αs) ds+ v(θ,X t,x

θ )

]
. (2.5)

Fix some arbitrary control α ∈ A(t, x) and θ ∈ Tt,T . By definition of the value functions,

for any ε > 0 and ω ∈ Ω, there exists αε,ω ∈ A(θ(ω), X t,x
θ(ω)(ω)), which is an ε-optimal control

for v(θ(ω), X t,x
θ(ω)(ω)), i.e.

v(θ(ω), X t,x
θ(ω)(ω))− ε ≤ J(θ(ω), X t,x

θ(ω)(θ(ω)), αε,ω).

Let us now define the process

α̂s(ω) =

{
αs(ω) , s ∈ [0, θ(ω)]

αε,ωs (ω) , s ∈ [θ(ω), T ]
.

It can be shown by the measurable selection theorem (see, e.g. Chapter 7 in [5]) that the

process α̂ is progressively measurable, and so lies in A(t, x). By using again the law of

iterated conditional expectation, we obtain

v(t, x) ≥ J(t, x, α̂) = E
[∫ θ

t

f(s,X t,x
s , αs) ds+ J(θ,X t,x

θ , αε)

]
≥ E

[∫ θ

t

f(s,X t,x
s , αs) ds+ J(θ,X t,x

θ , αε)

]
− ε.
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From the arbitrariness of α ∈ A(t, x), θ ∈ Tt,T and ε > 0, and we obtain the inequality

sup
α∈A(t,x)

sup
θ∈Tt,T

E
[∫ θ

t

f
(
s,X t,x

s , αs
)
ds+ v

(
θ,X t,x

θ

)]
≤ v(t, x). (2.6)

By combining the two relations (2.5) and (2.6), we get the required result.

Pham remarks that the following extension to existence of ε-optimal controls also holds.

Remark 2.2. (Existence of ε-Optimal Control)

(a) In the finite time horizon case, for all α ∈ A(t, x) and θ ∈ Tt,T :

v(t, x) ≥ E
[∫ θ

t

f(s,X t,x
t , αs)ds+ v(θ,X t,x

θ )

]
.

In the infinite time horizon case, for all α ∈ A(x) and θ ∈ T :

v(x) ≥ E
[∫ θ

t

e−βsf(s,Xx
t , αs)ds+ v(θ,Xx

θ )

]
.

(b) In the finite time horizon case, for all ε > 0, there exists α ∈ A(t, x) such that for all

θ ∈ Tt,T :

v(t, x)− ε ≤ E
[∫ θ

t

f(s,X t,x
t , αs)ds+ v(θ,X t,x

θ )

]
.

In the infinite time horizon case, for all ε > 0, there exists α ∈ A(x) such that for all

θ ∈ T :

v(x)− ε ≤ E
[∫ θ

t

e−βsf(s,Xx
t , αs)ds+ v(θ,Xx

θ )

]
.

2 Derivation of the HJB Equation

Recall that the generator of the paired spot price and coal process (X,Z) is given by

Af(x, z, u) :=
1

λ
(µ− x)fx(x, z) +

σ2

2
fxx(x, z) + η1

∫ ∞
0

(f(x+ y, z)− f(x, z)) β1e
−β1y dy

+ η2

∫ 0

−∞
(f(x− y, z)− f(x, z)) β2e

−β2y dy − ufz(x, z)

+ α
[
p1 (f(x, z + ζ)− f(x, z)) + p2 (f(x, z + 2ζ)− f(x, z))

]
12



which, using standard dynamic programming techniques (see, e.g., Chapter 3 of Pham [13]),

leads to the HJB equation

δf(x, z)− sup
u∈U
{Af(x, z) +G(x, z, u)} = 0 (2.7)

for all (x, z) ∈ R× [zmin, zmax] where δ is the constant discount rate. The boundary condition

with respect to Z imposed by the stopping time τ indicating the first hitting time of the

minimum coal supply is V (x, zmin) = 0 for all x ∈ R. So, noting that the control, u, appears

only in the fz term of the generator and in the payoff function, we have the explicit form

0 = δf(x, z)− 1

λ
(µ− x)fx(x, z)−

σ2

2
fxx(x, z)− sup

u∈U
{−ufz(x, z) +G(x, z, u)}

− η1

∫ ∞
0

(f(x+ y, z)− f(x, z)) β1e
−β1y dy

− η2

∫ 0

−∞
(f(x− y, z)− f(x, z)) β2e

β2y dy

− α
[
p1 (f(x, z + ζ)− f(x, z)) + p2 (f(x, z + 2ζ)− f(x, z))

]
. (2.8)
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Chapter 3

Value Function is a Viscosity Solution
to the HJB Equation

We limit our consideration to a market in which the producer may sell energy only to a

single node on the grid at the spot price for that node.

Recall that the generator of the paired spot price and coal process (X,Z) is given by

Af(x, z, u) :=
1

λ
(µ− x)fx(x, z) +

σ2

2
fxx(x, z) + η1

∫ ∞
0

(f(x+ y, z)− f(x, z)) β1e
−β1y dy

+ η2

∫ 0

−∞
(f(x+ y, z)− f(x, z)) β2e

−β2y dy − ufz(x, z)

+ α
[
p1 (f(x, z + ζ)− f(x, z)) + p2 (f(x, z + 2ζ)− f(x, z))

]
which leads to the HJB equation

δV (x, z)− sup
u∈[umin,umax]

{AV (x, z) +G(x, z, u)} = 0 (3.1)

for all (x, z) ∈ R × [zmin, zmax] where δ is the constant discounting rate. The boundary

condition with respect to Z imposed by the stopping time τ indicating the first hitting time

of the minimum coal supply is V (x, zmin) = 0 for all x ∈ R.

The nonlocal behavior due to the jumps in the spot price and the instantaneous nature

of the coal arrivals requires an extension of the classical theory of viscosity solutions. This

chapter follows closely the structure of the classical proofs seen in Chapter 4 of Pham’s text

[13], but some careful adjustments must be made to ensure that the nonlocal terms remain

locally bounded.
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1 Definition of Viscosity Solution

Let O be an open domain in Rd.

Definition 3.1. Let w : O → R be locally bounded. Then we define

(a) the upper-semicontinuous envelope w∗ by w∗(x) = lim sup
x′→x

w(x′)

(b) the lower-semicontinuous envelope w∗ by w∗(x) = lim inf
x′→x

w(x′)

We will consider a second-order PIDE (partial integral-differential equation) of the form

F (x, w(x), Dw(x), D2w(x), I[x, w]) = 0 (3.2)

where I[x, w] is an operator which contains all non-local terms of the PIDE.

Definition 3.2. Let w : O → R be locally bounded.

(a) w is a (possibly discontinuous) viscosity subsolution of (3.2) on O if

F (x̄, w∗(x), Dφ(x̄), D2φ(x̄), I[x̄, φ]) ≤ 0

for all x̄ ∈ O and for all φ ∈ C2(O) such that x̄ is a maximum point of w∗ − φ.

(b) w is a (possibly discontinuous) viscosity supersolution of (3.2) on O if

F (x̄, w∗(x), Dφ(x̄), D2φ(x̄), I[x̄, φ]) ≥ 0

for all x̄ ∈ O and for all φ ∈ C2(O) such that x̄ is a minimum point of w∗ − φ.

(c) w is a (possibly discontinuous) viscosity solution of (3.2) on O if it is both a viscosity

subsolution and a viscosity supersolution of (3.2).

2 Verification That the Value Function is a Viscosity

Solution of the HJB Equation

Proposition 3.1. Suppose the value function

V (x, z) = sup
u∈U

sup
θ∈T

E
[∫ θ∧τ

0

e−δrG(X(r), Z(r), u(r)) dr

]
is locally bounded. Then, V is a viscosity supersolution to (3.1).
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Proof. Let (x̄, z̄) ∈ R × [zmin, zmax]. Let φ ∈ C2(R × [zmin, zmax]) be a test function such

that (recalling V∗ represents the lower semicontinuous envelope of V )

0 = (V∗ − φ)(x̄, z̄) = min
(x,z)∈R×[zmin,zmax]

(V∗ − φ)(x, z) (3.3)

Since V∗ is defined to be V∗(x, z) = lim inf
(x′,z′)→(x,z)

V (x′, z′) for each (x, z), there exists a sequence

(xn, zn) ⊂ R × [zmin, zmax] such that (xn, zn) → (x̄, z̄) and V (xn, zn) → V∗(x̄, z̄) as n → ∞.

Also, since φ is continuous, φ(xn, zn)→ φ(x̄, z̄). Thus,

γn := V (xn, zn)− φ(xn, zn)→ 0 as n→∞

Let u ∈ [umin, umax] and set u(t) ≡ u. Then, u ∈ U . Denote the controlled process under

this u starting at initial point (xn, zn) by (X
(n)
r , Z

(n)
r ). Fix some ρ > 0, and let πn :=

inf {r ≥ 0
∣∣ |Y (n)

0 (r)− x̄| ≥ ρ}. Let (hn) ⊂ R+ be a sequence of positive numbers such that

hn → 0 and γn
hn
→ 0 as n→∞.

Further, let ξ1 = min{t > 0
∣∣ L1(t)−L1(t−) 6= 0} and ξ2 = min{t > 0

∣∣ L2(t)−L2(t−) 6=
0 }, i.e. the first time a jump occurs in each of the Poisson processes driving the price

process. Note that the jump processes L1 and L2 which drive the jumps in the price process

X are independent of the starting price, that is these stopping times are the same for each

n since they are independent of xn. Let ξ3 = min{t > 0
∣∣ Z(n)(t) − Z(n)(t−) 6= 0}, and

set ξ = ξ1 ∧ ξ2 ∧ ξ3. Further, take two sequences of values in [zmin, zmax], z̃n → zmin and

z̃n → zmax, and let τn := inf {t > 0
∣∣ Z(n)(t)��∈ (z̃n, z̃

n)}. Without loss of generality, we can

assume that zn ∈ (z̃n, z̃
n) for all n. Finally, let θn := πn ∧ hn ∧ ξ ∧ τn ∧ τ . Then (recalling

the notational convention that Xt = X(t) and Zt = Z(t)), since V (x, z) is defined as the

supremum over all admissible controls and the supremum over all stopping times θ, applying

the dynamic programming principle of Theorem 2.1, we have in particular that

V (xn, zn) ≥ E
[∫ θn

0

e−δrG(X
(n)
r∧τ , Zr∧τ , u) dr + e−δθnV (X

(n)
θn
, Z

(n)
θn

)

]
.

Note that (3.3) implies that V (x, z) ≥ V∗(x, z) ≥ φ(x, z) for all (x, z) ∈ R× [zmin, zmax]. So,

together with the previous inequality, we have

φ(xn, zn) + γn = φ(xn, zn) + V (xn, zn)− φ(xn, zn) = V (xn, zn)

≥ E
[∫ θn

0

e−δrG(X
(n)
r∧τ , Z

(n)
r∧τ , u) dr + e−δθnV (X

(n)
θn
, Z

(n)
θn

)

]
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≥ E
[∫ θn

0

e−δrG(X
(n)
r∧τ , Z

(n)
r∧τ , u) dr + e−δθnφ(X

(n)
θn
, Z

(n)
θn

)

]
.

Now, applying Itô’s formula to e−δθnφ(X
(n)
θn
, Z

(n)
θn

) and recalling the compensated jump pro-

cesses L̃1, L̃2, and Z̃, which are local martingales, we get

φ(xn, zn) + γn ≥ E
[ ∫ θn

0

e−δrG(X(n)
r , Z(n)

r , u) dr + φ(X
(n)
0 , Z

(n)
0 )

+

∫ θn

0

e−δr
(
Aφ(X(n)

r , Z(n)
r )− δφ(X(n)

r , Z(n)
r )
)
dr

+

∫ θn

0

e−δrφx(X
(n)
r , Z(n)

r ) dWr +

∫ θn

0

e−δrφx(X
(n)
r , Z(n)

r ) L̃1(dr)

+

∫ θn

0

e−δrφx(X
(n)
r , Z(n)

r ) L̃2(dr) +

∫ θn

0

e−δrφx(X
(n)
r , Z(n)

r ) dZ̃(n)
r

]
.

Since X
(n)
0 = xn and Z

(n)
0 = zn, we can replace φ(X

(n)
0 , Z

(n)
0 ) by φ(xn, zn) which is a constant.

Further, note that since φ is in C2(R× [zmin, zmax]) and the choice of stopping time θn means

that X
(n)
r and Z

(n)
r are both bounded, we have that both φ(X

(n)
r , Z

(n)
r ) and φx(X

(n)
r , Z

(n)
r )

are continuous and bounded, so the stochastic integrals all have mean 0. These observations

yield

φ(xn, zn) + γn ≥ E

[∫ θn

0

e−δrG(X(n)
r , Z(n)

r , u) dr

+

∫ θn

0

e−δr
(
Aφ(X(n)

r , Z(n)
r )− δφ(X(n)

r , Z(n)
r )
)
dr

]
+ φ(xn, zn)

which implies that

γn − E
[∫ θn

0

e−δrG(X(n)
r , Z(n)

r , u) dr +

∫ θn

0

e−δr
(
Aφ(X(n)

r , Z(n)
r − δφ(X(n)

r , Z(n)
r )
)
dr

]
≥ 0

(3.4)

Dividing by hn on both sides, we get

γn
hn

+ E
[

1

hn

∫ θn

0

e−δr
(
δφ(X(n)

r , Z(n)
r )− Aφ(X(n)

r , Z(n)
r )−G(X(n)

r , Z(n)
r , u)

)
dr

]
≥ 0 (3.5)

Now, we consider

0 ≤ lim inf
n→∞

(
γn
hn

+
1

hn
E
[∫ θn

0

e−δr
(
δφ(X(n)

r , Z(n)
r )− Aφ(X(n)

r , Z(n)
r )−G(X(n)

r , Z(n)
r , u)

)
dr

])
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= lim inf
n→∞

E
[

1

hn

∫ θn

0

e−δr
(
δφ(X(n)

r , Z(n)
r )− Aφ(X(n)

r , Z(n)
r )−G(X(n)

r , Z(n)
r , u)

)
dr

]
By definition of θn, we have that |X(n)

r − xn| < ρ for all r ∈ [0, θn). Further, since

xn → x̄, for any δ1 > 0 there exists some N such that |xn − x̄| ≤ δ1 for all n ≥ N .

Thus, there exist x∗ and x∗ such that xn ∈ [x∗ − δ1, x
∗ + δ1] for all n. That is, for all n,

X
(n)
r ∈ [x∗−δ1−ρ, x∗+δ1+ρ] for all r ∈ [0, θn). Also, by definition, for all n, Z

(n)
r ∈ [zmin, zmax]

for all r. Moreover, by definition of ξ, for all n the paired process (X
(n)
· , Z

(n)
· ) is continuous

for r in the time interval [0, θn). So, we have that the integrand above, e−δr(δφ(x
(n)
r , Z

(n)
r )−

Aφ(X
(n)
r , Z

(n)
r )−G(X

(n)
r , Z

(n)
r , u(r))), is continuous on [0, θn) and that there exists a compact

set C := [x∗ − δ1 − ρ, x∗ + δ1 + ρ]× [zmin, zmax] independent of n such that (X
(n)
· , Z

(n)
· ) ∈ C

for all n. That is, there exists a uniform bound M < ∞ such that |e−δr(δφ(x
(n)
r , Z

(n)
r ) −

Aφ(X
(n)
r , Z

(n)
r )−G(X

(n)
r , Z

(n)
r , u(r)))| ≤M for all n. So, we have for all n that∣∣∣∣ 1

hn

∫ θn

0

e−δr(δφ(X(n)
r , Z(n)

r )− Aφ(X(n)
r , Z(n)

r )−G(X(n)
r , Z(n)

r , u(r))) dr

∣∣∣∣
≤ 1

hn

∫ θn

0

2M dr =
θn
hn

(2M) ≤ 2M

(3.6)

since θn ≤ hn for all n.

We continue the analysis of this inequality with the following lemma.

Lemma 3.2.

lim
n→∞

1

hn

∫ θn

0

e−δr(δφ(X(n)
r , Z(n)

r )− Aφ(X(n)
r , Z(n)

r )−G(X(n)
r , Z(n)

r , u)) dr

= δφ(xn, zn)− Aφ(x̄, z̄)−G(x̄, z̄, u)

almost surely.

Proof. First, define a sequence of subsets of the sample space Ω of the paired process (X,Z)

as follows

En := {ω ∈ Ω | θn = hn} .

Then, Ω = En ∪ Ec
n for each n, and therefore,

1

hn

∫ θn

0

e−δr(−Aφ(X(n)
r , Z(n)

r )−G(X(n)
r , Z(n)

r , u)) dr

=
1

hn

∫ θn

0

1Ene
−δr(−Aφ(X(n)

r , Z(n)
r )−G(X(n)

r , Z(n)
r , u(r))) dr
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+
1

hn

∫ θn

0

1Ecne
−δr(−Aφ(X(n)

r , Z(n)
r )−G(X(n)

r , Z(n)
r , u)) dr

Note that by Lemma 5.2 and Lemma 5.3 in the appendix, we have that 1En → 1 a.s. and

1Ecn → 0 a.s as n→∞. So, using this result and the fact that (xn, zn)→ (x̄, z̄), we conclude

from the mean value theorem that

lim
n→∞

1

hn

∫ θn

0

e−δr
(
δφ(X(n)

r , Z(n)
r )− Aφ(X(n)

r , Z(n)
r )−G(X(n)

r , Z(n)
r , u)

)
dr

= lim
n→∞

1

hn

∫ θn

0

e−δr
(
δφ(X(n)

r , Z(n)
r )− Aφ(X(n)

r , Z(n)
r )−G(X(n)

r , Z(n)
r , u)

)
dr1En

+ lim
n→∞

1

hn

∫ θn

0

e−δr
(
δφ(X(n)

r , Z(n)
r )− Aφ(X(n)

r , Z(n)
r )−G(X(n)

r , Z(n)
r , u)

)
dr1Ecn

= δφ(x̄, z̄)− Aφ(s̄, z̄)−G(x̄, z̄, u)

almost surely.

Returning to the proof of Proposition (3.1) , we have from the dominated convergence

theorem that

0 ≤ lim inf
n→∞

E
[

1

hn

∫ θn

0

e−δr
(
δφ(X(n)

r , Z(n)
r )− Aφ(X(n)

r , Z(n)
r )−G(X(n)

r , Z(n)
r , u)

)
dr

]
= E

[
lim
n→∞

1

hn

∫ θn

0

e−δr
(
δφ(X(n)

r , Z(n)
r )− Aφ(X(n)

r , Z(n)
r )−G(X(n)

r , Z(n)
r , u)

)
dr

]
= δφ(x̄, z̄)− Aφ(x̄, z̄)−G(x̄, z̄, u) ≥ 0. (3.7)

So, since u was arbitrary in [umin, umax], we have that the value function V (x, z) is a

viscosity supersolution of (3.1).

Proposition 3.3. Suppose the value function

V (x, z) = sup
u∈U

sup
θ∈T

E
[∫ θ∧τ

0

e−δrG(X(r), Z(r), u(r)) dr

]
is locally bounded. Then, V is a viscosity subsolution to (3.1).

Proof. Let (x̄, z̄) ∈ R× [zmin, zmax]. Let φ ∈ C2(R× [zmin, zmax]) be a test function such that

0 = (V∗ − φ)(x̄, z̄) = max
(x,z)∈R×[zmin,zmax]

(V∗ − φ)(x, z) (3.8)
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We wish to show that δφ(x̄, z̄) − Aφ(x̄, z̄) − G(x̄, z̄, u) ≤ 0. In order to proceed by contra-

diction, we assume that

δφ(x̄, z̄)− Aφ(x̄, z̄)−G(x̄, z̄, u) > 0. (3.9)

Then, since φ is in C2(R× [zmin, zmax]), there exist constants η > 0 and ε > 0 such that

δφ(x′, z′)− Aφ(x′, z′)−G(x′, z′, u) ≥ ε.

for all (x′, z′) ∈ B((x̄, z̄), η) = {(x′, z′) ∈ R× [zmin, zmax] :
√

(x̄− x′)2 + (z̄ − z′)2 < η}.
Since V ∗ is defined to be V ∗(x, z) = lim sup

(x′,z′)→(x,z)

V (x′, z′), there exists a sequence (xn, zn) ⊂

R× [zmin, zmax] such that (xn, zn)→ (x̄, z̄) and V (xn, zn)→ V ∗(x̄, z̄) as n→∞. Also, since

φ is continuous, φ(xn, zn)→ φ(x̄, z̄). Thus,

γn := V (xn, zn)− φ(xn, zn)→ 0 as n→∞.

Let (hn) ⊂ R+ be a sequence of positive numbers such that hn → 0 and γn
hn
→ 0 as

n→∞. Define a sequence of stopping times θn := πn ∧hn ∧ ξ ∧ τn ∧ τ with ξ and τn defined

as in the proof of Proposition 3.1 above and πn := inf {r ≥ 0 : |Y (n)
0 (r)− x̄| ≥ η′} for some

0 < η′ < η with η′ chosen such that B((xn, zn), η′) ⊂ B((x̄, z̄), η) and for 0 ≤ r ≤ θn,

(X
(n)
r , Z

(n)
r ) ∈ B((x̄, z̄), η). Then, according to Theorem 2.2, for each n there exists an

εhn
2

-optimal control û(n) ∈ U such that

V (xn, zn)− εhn
2

= φ(xn, zn) + γn −
εhn
2

≤ E
[∫ θn

0

e−δrG(X(n)
r , Z(n)

r , û(n)(r))k dr + φ(X
(n)
θn
, Z

(n)
θn

)

]
.

Note that if we choose η′ < ζ
2

(where ζ is the amount of coal delivered in a single shipment),

φz(x, z) will be continuous. So, choosing η′ in this way and applying Itô’s formula, we have

φ(xn, zn) + γn −
εhn
2

≤ E
[
φ(xn, zn) +

∫ θn

0

e−δr
(
Aφ(X(n)

r , Z(n)
r )− δφ(X(n)

r , Z(n)
r ) +G(X(n)

r , Z(n)
r , û(n))

)
dr
]

+E
[∫ θn

0

e−δrφx(X
(n)
r , Z(n)

r ) dX̃(n)
r +

∫ θn

0

e−δrφz(X
(n)
r , Z(n)

r ) dZ̃(n)
r

]
.

(3.10)
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By the choice of stopping time θn, the integrand in the stochastic integrals above is continuous

and bounded on [0, θn), so the expectations of the stochastic integrals are zero. Moreover,

by choice of η, for 0 ≤ s < θm

δφ(X(n)
r , Z(n)

r )− Aφ(X(n)
r , Z(n)

r )−G(X(n)
r , Z(n)

r , û(r)) ≥ ε,

and thus dividing by hn everywhere in (3.10) shows that

γn
hn
− ε
(

1

2
− 1

hn
E[θn]

)
≤ 0. (3.11)

We now consider

P [πn ∧ ξ ∧ τn ∧ τ ≤ hn] ≤ P[πn ≤ hn] + P[ξ ≤ hn] + P[τn ≤ hn] + P[τ ≤ hn]. (3.12)

Using Lemma 5.1, Lemma 5.2, and Lemma 5.3 in the appendix which show that the first

three terms of this sum approach 0 as n→∞ and noting that P [τn ≤ hn]→ 0 implies that

P [τ ≤ hn]→ 0 (since z̃n > zmin implies that τn ≤ τ for all n), we have from (3.12) that

lim
n→∞

P [πn ∧ ξ ∧ τn ∧ τ ≤ hn] ≤ lim
n→∞

P[πn ≤ hn] + lim
n→∞

P[ξ ≤ hn] + lim
n→∞

P[τn ≤ hn] = 0.

(3.13)

Further, we have that

P [πn ∧ ξ ∧ τn ∧ τ > hn] = E[1{πn∧ξ∧τn∧τ>hn}] =
1

hn
E[hn1{πn∧ξ∧τn∧τ>hn}].

By definition, θn := πn ∧ hn ∧ ξ ∧ τn ∧ τ . So, on the event {πn ∧ ξ ∧ τn ∧ τ > hn}, we have

θn = hn. Thus, hn1{πn∧ξ∧τn∧τ>hn} ≡ θn1{πn∧ξ∧τn∧τ>hn}, and we have

P [πn ∧ ξ ∧ τn ∧ τ > hn] =
1

hn
E[θn1{πn∧ξ∧τn∧τ>hn}] ≤

1

hn
E[θn]

Also note that, by definition, θn ≤ hn for every ω ∈ Ω for each n, so E[θn] ≤ hn which gives

us

P [πn ∧ ξ ∧ τn ∧ τ > hn] ≤ 1

hn
E[θn] ≤ 1

So, letting n → ∞, we have that 1
hn
E[θn] → 1. Finally, letting n → ∞, that is hn → 0, in

(3.11) gives the desired contradiction.

So, combining the results of Proposition 3.1 and Proposition 3.3, we have that the value

function, V , is a viscosity solution to the HJB equation (3.1).

21



Chapter 4

Uniqueness of Viscosity Solution of
the HJB Equation

As previously mentioned, the nonlocal behavior present in both the spot price (due to the

discontinuous jumps caused by the compound Poisson terms in the spot price model) and

the coal supply (due to the instantaneous nature of coal arrivals) implies that the HJB

equation associated with this problem is in fact the second order partial integro-differential

equation (PIDE) (3.1) rather than a second order PDE as is usually associated with a

stochastic control problem. Thus, the traditional theory of viscosity solutions is not sufficient

to determine the uniqueness of a solution to this HJB equation. We turn instead to the work

of Barles and Imbert [2], who provide a set of sufficient conditions for the uniqueness of the

viscosity solution to a second order PIDE. However, the mean-reversion term of our HJB

equation (4.32) fails to satisfy assumption (A3-1) of Barles and Imbert. While mean-reverting

processes are generally considered very well-behaved, the assumptions of Barles and Imbert

place particularly strong restrictions on the interaction of the position of the process with

the drift. Since mean reversion here imposes a drift with exponentially increasing magnitude

as the process moves away from the mean pric, µ, there is a very strong interaction between

position and drift over much of the domain.

An extension of the theory of Barles and Imbert which provides conditions which are

satisfied by this spot price process is developed in this chapter. We first define a continuous

function F (x, g, p,X, `) where x ∈ Rd, g ∈ R, p ∈ Rd, X ∈ Sd, and ` ∈ R. The general form

of a second order PIDE with nonlocal behavior is then

F
(
x, f,∇f,D2f, I[x, f ]

)
= 0 (4.1)
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where x ∈ Rd, f is a function on Rd, ∇f is the gradient, D2f is the Hessian, and I[x, f ] is

an operator which collects all of the terms appearing due to nonlocal behavior.

In order to handle this nonlocal behavior, it is necessary to restrict the class of functions

on which we will work. Given an upper-semicontinuous function R : Rd → R, define C to be

the space of functions f such that there exists a constant c̄ > 0 such that for all x ∈ Rd,

|f(x)| ≤ c̄(1 +R(x)).

Note the following important properties of the space C:

• Any function f ∈ C is locally bounded.

• For any functions f1, f2 ∈ C, max {f1, f2} ∈ C and min {f1, f2} ∈ C.

• For any compact set K ⊂ Rd and function φ ∈ C2(K), there exists a function ψ ∈ C
such that ψ = φ on the interior of K.

1 Comparison Principle

1.1 Some Results from Barles and Imbert [2]

We quote here, without proof, a few of the results from the paper by Barles and Imbert [2]

which will be used in the following section.

We begin by defining a modified version of the inf-convolution and sup-convolution that

are commonly used in viscosity solution theory. For any upper-semicontinuous function

U : Rm → R and r ∈ Rm, we define

Ra[U ](y, r) := sup
|Y−y|≤1

{
U(Y )− r · (Y − y)− |Y − y|

2

2a

}
. (4.2)

Similarly, for any lower-semicontinuous function V : Rm → R, we define

Ra[V ](y, r) := inf
|Y−y|≤1

{
V (Y )− r · (Y − y) +

|Y − y|2

2a

}
. (4.3)

Note that, similarly to the traditional inf/sup-convolutions, Ra[V ] = −Ra[−V ]. The next

proposition gives some other useful properties of these functions.
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Definition 4.1 (Superjet and Subjet). Let U : Rd → R be an upper-semicontinuous func-

tion. A couple (p, Y ) ∈ Rd × Sd is a superjet of U at y ∈ Rd if

U(y + z) ≤ U(y) + p · z +
1

2
Y z · z + o(|z|2).

Let V : Rd → R be a lower-semicontinuous function. A couple (p, Y ) ∈ Rd × Sd is a subjet

of V at y ∈ Rd if

V (y + z) ≥ V (y) + p · z +
1

2
Y z · z + o(|z|2).

We denote by J+U(y) and J−U(y), respectively, the set of superjets and subjets of U

and V at y and.

Proposition 4.2 (Proposition 3 of Barles and Imbert [2]). For any upper-semicontinuous

function U : Rm → R and any lower-semicontinuous function V : Rm → R, the functions

Ra[U ] and Ra[V ] satisfy the following properties:

1. For any y, r ∈ Rm, Ra[U ](y, r) ≥ U(y) and Ra[V ](y, r) ≤ V (y).

2. For any y ∈ Rm and k > 0, there exists ā = ā(y, k̄) such that, for 0 < a ≤ ā, Ra[U ](·, r)
is semi-convex in B(y, k̄) (respectively, Ra[V ](·, r) is semi-concave in B(y, k̄)).

3. Assume that U ∈ C2(Rm) (respectively V ∈ C2(Rm)). For any y ∈ Rm and k̄ > 0,

there exists ā = ā(y, k̄) such that, for 0 < a ≤ ā, Ra[U ] (respectively Ra[V ]) is C2 in

B(0, k̄). Moreover, Ra[U ] (respectively Ra[V ]) converges towards U (respectively V ) in

C2(B(0, k̄) as a→ 0.

4. If Ra[U ](y, r) = U(ȳ)− r · (ȳ − y)− |ȳ−y|
2

2a
and if |ȳ − y| < 1, then

(s, A) ∈ J+Ra[U ](y, r)⇒ (s, A) ∈ J+U(ȳ) and s = r − ȳ − y
a

, (4.4)

(r, A) ∈ D2,+
Ra[U ](y, r)⇒ (s, A) ∈ D2,+

U(y). (4.5)

Lemma 4.3 (Nonlocal Jensen-Ishii’s Lemma, Lemma 1 of Barles and Imbert [2]). Let u

and v be respectively an upper-semicontinuous and a lower-semicontinuous function defined

on Rd, and let φ be a C2 function defined on R2d. If (x̄, ȳ) ∈ R2d is a zero global maximum

point of u(x)− v(y)− φ(x, y) and if p := Dxφ(x̄, ȳ), q := Dyφ(x̄, ȳ), then the following hold:

u(x)− v(y) ≤ Ra[u](x, p)−Ra[v](y,−q) ≤ Ra[φ]((x, y), (p, q)),

24



u(x̄) = Ra[u](x̄, p),

v(ȳ) = Ra[v](ȳ,−q),

and Ra[φ]((x̄, ȳ), (p, q)) = φ(x̄, ȳ).

Moreover, for any k̄ > 0, there exists ā(k̄) > 0 such that, for any 0 ≤ a ≤ ā(k̄), we have

that there exist sequences xk → x, yk → y, pk → p, and qk → q, matrices Xk and Yk, and a

sequence of functions φk ∈ C2(B((x̄, ȳ), k̄)) converging uniformly to φa := Ra[φ]((x, y), (p, q))

such that

(xk, yk) is a global maximum point of u− v − φk
u(xk)→ u(x̄) and v(yk)→ v(ȳ)

(pk, Xk) ∈ J+u(xk)

(−qk, Yk) ∈ J−v(yk)

−1

a
I ≤

[
Xk 0
0 −Yk

]
≤ D2φk(xk, yk).

Moreover, pk = Dxφk(xk, yk), qk = Dyφk(xk, yk), φa(x̄, ȳ) = φ(x̄, ȳ), and Dφa(x̄, ȳ) =

Dφ(x, y).

Finally, the main result needed for the comparison principle discussed in the next section

is Corollary 1 from [2]. Here we assume that we can decompose the operator I into

I[x, f ] = I1,δ[x, f ] + I2,δ[x,∇f, f ].

(This decomposition will be discussed in greater detail in the following section.)

Corollary 4.4 (Corollary 1 of Barles and Imbert [2]). Let U be an upper-semicontinuous

viscosity solution of (3.2), let V be a lower-semicontinuous viscosity solution of (3.2), and

let φ ∈ C2(Rd). If (x̄, ȳ) ∈ R2d is a global maximum point of U(x) − V (y) − φ(x, y), then,

for any δ > 0, there exists ā such that, for 0 < a < ā, we have

F (x̄, U(x̄), p,X, I1,δ[x̄, φa(·, ȳ)] + I2,δ[x̄, p, U ]) ≤ 0 (4.6)

F (ȳ, V (ȳ), q, Y, I1,δ[ȳ,−φa(x̄, ·)] + I2,δ[ȳ, q, V ]) ≥ 0 (4.7)

where p = ∇xφa(x̄, ȳ), q = −∇yφ(x̄, ȳ) = ∇yφa(x̄, ȳ), and

−1

a
I ≤

[
X 0
0 −Y

]
≤ D2φa(x̄, ȳ) = D2φ(x̄, ȳ) + oa(1). (4.8)
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Remark 4.5. Barles and Imbert note in Section 5.2 of [2] that the conditions of their

comparison principle require a certain interaction between the first derivative term in the

generator and the location of the process. Because exponential mean reversion has a very

strong interaction between these two components, the conditions in their paper are not met

by the spot price process under consideration.

1.2 Specialized Comparison Principle

The result shown in this section is a specialization of that found in Barles and Imbert [2]

which allows for a relaxation of one of the assumptions of the main result of that paper

due to the greater regularity of the nonlocal operator used in our problem compared with

that in the original paper. This relaxation allows the uniqueness result to be applied to

mean-reverting processes, as well.

1.2.1 Assumptions

First, we have the following general ellipticity assumption on the function F ,

• (E) For any x ∈ Rd; g ∈ R; p ∈ Rd; M,N ∈ Sd; and l1, l2 ∈ Rd,

F (x, g, p,M, l1) ≤ F (x, g, p,N, l2) if M ≥ N and l1 ≥ l2. (4.9)

We also make a series of assumptions about a decomposition of the nonlocal term I[x, f ],

all of which are combined under assumption (NLT) below.

• (NLT) For any δ > 0, there exist operators I1,δ[x, φ] and I2,δ[x,∇φ(x), φ] which are

well-defined for any x ∈ Rd and φ ∈ C ∩ C2(Rd) and which satisfy the following:

� For any x ∈ Rd and φ ∈ C ∩ C2(Rd), I[x, φ] = I1,δ[x, φ] + I2,δ[x,∇φ(x), φ].

Moreover, for any a ∈ R, I1,δ[x, φ + a] = I1,δ[x, φ] and I2,δ[x,∇φ(x), φ + a] =

I2,δ[x,∇φ(x), φ].

� There exists Rδ > 0 with Rδ → 0 as δ → 0 such that, if φ1 = φ2 on B(x,Rδ),

then I1,δ[x, φ1] = I1,δ[x, φ2] (and respectively if φ1 = φ2 on Rd \ B(x,Rδ),

I2,δ[x,∇φ1(x), φ1] = I2,δ[x,∇φ2(x), φ2]).

� For any φ ∈ C2(Rd) and g ∈ C such that g − φ attains a maximum at x on

B(x,Rδ), there exists a sequence φk ∈ C ∩ C2(Rd) such that g − φk attains a
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global maximum at x,

I1,δ[x, φk]→ I1,δ[x, φ] as k →∞,

and

I2,δ[x,∇φk, φk]→ I2,δ[x,∇φ, φ] as k →∞.

� The operator I1,δ[x, φ] is well-defined for any x ∈ Rd and φ ∈ C2(B(x, r))∩ C for

any r < Rδ. Moreover, I1,δ[x, φ]→ 0 as δ → 0 and I1,δ[xk, φk]→ I1,δ[x, φ] when

xk → x and φk → φ in C2(B(x, r)) ∩ C(B(x, r)).

� The operator I2,δ[x, p, φ] is defined for any x ∈ Rd and φ ∈ C. Moreover, if

xk → x, pk → p, and (φk)k is a sequence of uniformly locally bounded functions

such that |φk| ≤ ψ with ψ ∈ C,

lim sup
k→∞

I2,δ[xk, pk, φk] ≤ I2,δ[x, p, φ] where φ := lim sup ∗φk

and

lim inf
k→∞

I2,δ[xk, pk, φk] ≥ I2,δ[x, p, φ] where φ := lim inf ∗φk.

These two assumptions mirror precisely those in [2].

The remaining assumptions are nearly the same as those made by Barles and Imbert

except for (A3*) where a relaxation is required for this problem and (A1*) where it is

notationally convenient (though not actually necessary for the comparison result) to use a

slightly stronger assumption since the process being considered in this paper is more regular

than a general Lévy-Itô process. We assume here that the nonlocal operator I can be written

in terms of a jump size function j : Rd × Rd → Rd and a jump measure µ in the following

way:

I[(x, z), g] =

∫
(g((x, z) + j((x, z), (y, w)))− g(x, z))µ(dy, dw). (4.10)

We then make the following assumptions on µ, j, and F :

• (A1*) The measure µ(dy, dw) and the function j(x, z) satisfy∫
Rd
µ(dy, dw) <∞ and sup

(x,z)∈D

∫
Rd
|j((x, z), (y, w))|2 µ(dy, dw) <∞, (4.11)

and there exists a constant c̄ > 0 such that∫
Rd
|j((x, z), (y, w))− j((x̃, z̃), (y, w))|2 µ(dy, dw) ≤ c̄|(x, z)− (x̃, z̃)|2 and
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∫
Rd
|j((x, z), (y, w))− j((x̃, z̃), (y, w))| µ(dy, dw) ≤ c̄|(x, z)− (x̃, z̃)|. (4.12)

(Note that the last two points of this version of the assumption are a simple consequence

of the Cauchy-Schwartz Inequality given the modification to the first two points used

here.)

• (A2) There exists γ > 0 such that for any (x, z) ∈ D, g, h ∈ R, p ∈ Rd, X ∈ S2, and

l ∈ R,

F (x, g, p,X, l)− F (x, h, p,X, l) ≥ γ(g − h) when g ≥ h. (4.13)

• (A3*) Given a fixed constant ρ > 0, for any β > 0, there exist moduli of continuity ω

and ωβ such that, for any |(x, z)|, |(x̃, z̃)| ≤ ρ
β
, |h| ≤ ρ

β
, l ∈ R, and for any X, Y ∈ S2

satisfying [
X 0
0 −Y

]
≤ 1

ε

[
I −I
−I I

]
+ r(β)

[
I 0
0 I

]
(4.14)

for some ε > 0 and r(β)→ 0 as β → 0, then, if ρ
β
s(β)→ 0 as β → 0, we have

F ((x̃, z̃), h,
1

ε
((x, z)− (x̃, z̃)), Y, l)− F ((x, z), h,

1

ε
((x, z)− (x̃, z̃)) + s(β), X, l)

≤ ω(β) + ωβ(|(x, z)− (x̃, z̃)|+ 1

ε
|(x, z)− (x̃, z̃)|2).

(4.15)

• (A4) F ((x, z), g, p,X, l) is Lipschitz continuous in l, uniformly with respect to all the

other variables.

Remark 4.6. Note that assumption (A3*) is a subtle but significant relaxation of assump-

tion (A3-1) in [2] where the same is required for all s(β) → 0 rather than just those s(β)

with ρ
β
s(β) → 0. We also replace an arbitrary constant, R, used in the original by ρ

β
. But

since this is the only form used in the version of the original proof using (A3-1) in [2], which

is the version we have modified here, this change does not amount to any further restriction

than is actually put to use there.

1.2.2 The Specialized Comparison Principle

Theorem 4.7. (Specialization of the Comparison Principle) Suppose that the PIDE (4.1)

satisfies assumptions (A1*), (A2), (A3*), and (A4) as well as assumptions (E) and (NLT)

above. If g is a bounded upper semi-continuous viscosity subsolution of (4.1) and h is a

bounded lower semi-continuous viscosity supersolution of (4.1), then g ≤ h on D.
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Proof. For the sake of clarity in the longer expressions in this proof, we will use boldface

letters to represent points in D or R2, as appropriate. For instance, where we have previously

referred to points (x, z) ∈ D, we will instead use x ∈ D, and we will notate a value (y, w) ∈ R2

representing a jump size by y ∈ R2.

Define M := sup
D

(g − h). Assume by way of contradiction that M > 0.

We now use a dedoubling of variables technique similar to that in the classical viscosity

solution theory to approximate M . First, we define R := (||g||∞ + ||h||∞). Let ψ : R→ R+

be a smooth function such that ψ(x) = 0 for |x| ≤ 1, ψ(x) = R+ 1 for |x| ≥ 2, and ψ, ∇ψ,

and D2ψ are all bounded. Then, for β > 0, define ψβ : R2 → R by ψβ(x) = ψ(β3x). We

note the following important properties of such functions ψβ. By the chain rule, 1
β
∇ψβ → 0

and D2ψβ → 0 as β → 0 uniformly on R2. Also, it can be shown that I[ψβ,x]→ 0 as β → 0

uniformly on R2.

We now approximate M by

Mε,β := sup
x1,x2∈D

{
g(x1)− h(x2)− |x1 − x2|2

2ε
− ψβ(x1)

}
(4.16)

where ε and β are small parameters which will tend to 0. Since ψβ(x1) > R when |x1| ≥ 2
β3 ,

the supremum above is achieved and is thus actually a maximum.

Consider any maximum point (x̄1, x̄2) of the function

g(x1)− h(x2)− |x1 − x2|2

2ε
− ψβ(x1).

For ε and β sufficiently small,

0 <
M

2
≤Mε,β ≤ g(x̄1)− h(x̄2) and

|x̄1 − x̄2|
ε

≤ C√
ε

and ψβ(x̄1) ≤ R+ 1.

Further, for any d,d′ ∈ R2, we have

g(x̄1 + d)− h(x̄2 + d′)−|x̄1 + d− x̄2 − d′|2

2ε
− ψβ(x̄1 + d)

≤ g(x̄1)− h(x̄2)− |x̄1 − x̄2|2

2ε
− ψβ(x̄1).

In particular, let y ∈ R2 be arbitrary, and set d = j(x̄1,y) and d′ = j(x̄2,y). Then,

rearranging terms in the above inequality, we have

g(x̄1 + j(x̄1,y))− g(x̄1) ≤ h(x̄2 + j(x̄2,y))− h(x̄2) +
|x̄1 + j(x̄1,y)− x̄2 − j(x̄2,y)|2

2ε
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− |x̄1 − x̄2|2

2ε
+ ψβ(x̄1 + j(x̄1,y))− ψβ(x̄1)

≤ h(x̄2 + j(x̄2,y))− h(x̄2) +
|j(x̄1,y)− j(x̄2,y)|2

2ε

+
[x̄1 − x̄2] · [(j(x̄1,y)− j(x̄2,y)]

ε
+ ψβ(x̄1 + j(x̄1,y))− ψβ(x̄1). (4.17)

Define φ(x1,x2) := |x1−x2|2
2ε

+ ψβ(x1). Further, define φ1(x1) := φ(x1, x̄2) and φ2(x2) :=

φ(x̄1,x2). Then, returning for a moment to the notation x̄1 = (x̄1, z̄1), x̄2 = (x̄2, z̄2), and

y = (y, w), we have

I1,δ[x̄1, φ1] = η1

∫ δ

0

[
|(x̄1 + y, z̄1)− (x̄2, z̄2)|2

2ε
+ ψβ((x̄1 + y, z̄1))

− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε
− ψβ((x̄1, z̄1))

]
β1e
−β1ydy

+ η2

∫ 0

−δ

[
|(x̄1 + y, z̄1)− (x̄2, z̄2)|2

2ε
+ ψβ((x̄1 + y, z̄1))

− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε
− ψβ((x̄1, z̄1))

]
β2e

β2ydy

= η1

∫ δ

0

[
|(x̄1 + y, z̄1)− (x̄2, z̄2)|2

2ε
− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε

]
β1e
−β1ydy

+ η1

∫ δ

0

[
ψβ((x̄1 + y, z̄1))− ψβ((x̄1, z̄1))

]
β1e
−β1ydy

+ η2

∫ 0

−δ

[
|(x̄1 + y, z̄1)− (x̄2, z̄2)|2

2ε
− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε

]
β2e

β2ydy

+ η2

∫ 0

−δ

[
ψβ((x̄1 + y, z̄1))− ψβ((x̄1, z̄1))

]
β2e

β2ydy

= η1

∫ δ

0

[
|(x̄1 + y, z̄1)− (x̄2, z̄2)|2

2ε
− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε

]
β1e
−β1ydy

+ η2

∫ 0

−δ

[
|(x̄1 + y, z̄1)− (x̄2, z̄2)|2

2ε
− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε

]
β2e

β2ydy

+ I1,δ[(x̄1, z̄1), ψβ].

Applying the triangle inequality to the above, we can further estimate

I1,δ[x̄1, φ1] = η1

∫ δ

0

[
|(x̄1 + y, z̄1)− (x̄2, z̄2)|2

2ε
− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε

]
β1e
−β1ydy

+ η2

∫ 0

−δ

[
|(x̄1 + y, z̄1)− (x̄2, z̄2)|2

2ε
− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε

]
β2e

β2ydy
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+ I1,δ[(x̄1, z̄1), ψβ]

= η1

∫ δ

0

[
|(x̄1, z̄1) + (y, 0)− (x̄2, z̄2)|2

2ε
− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε

]
β1e
−β1ydy

+ η2

∫ 0

−δ

[
|(x̄1, z̄1) + (y, 0)− (x̄2, z̄2)|2

2ε
− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε

]
β2e

β2ydy

+ I1,δ[(x̄1, z̄1), ψβ]

≤ η1

∫ δ

0

[
|(x̄1, z̄1)− (x̄2, z̄2)|2

2ε
+
|(y, 0)|2

2ε
− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε

]
β1e
−β1ydy

+ η2

∫ 0

−δ

[
|(x̄1, z̄1)− (x̄2, z̄2)|2

2ε
+
|(y, 0)|2

2ε
− |(x̄1, z̄1)− (x̄2, z̄2)|2

2ε

]
β2e

β2ydy

+ I1,δ[(x̄1, z̄1), ψβ]

= η1

∫ δ

0

[
y2

2ε

]
β1e
−β1ydy + η2

∫ 0

−δ

[
y2

2ε

]
β2e

β2ydy + I1,δ[(x̄1, z̄1), ψβ]

=
1

ε

(
η1

2

∫ δ

0

y2β1e
−β1ydy +

η2

2

∫ 0

−δ
y2β2e

β2ydy

)
+ I1,δ[(x̄1, z̄1), ψβ].

Finally, since
∫ δ

0
y2β1e

−β1ydy → 0 and
∫ 0

−δ y
2β2e

β2ydy → 0 as δ → 0, we have that

I1,δ[x̄1, φ1] ≤ 1

ε
oδ(1) + I1,δ[(x̄1, z̄1), ψβ]. (4.18)

A similar computation shows that

I1,δ[x̄2,−φ2] +
1

ε

∫ δ

0

y2β1e
−β1ydy ≥ 1

2ε

∫ δ

0

y2β1e
−β1ydy ≥ 0.

Combining these inequalities with assumption (A1*), we have

I1,δ[x̄1, φ1] ≤ I1,δ[x̄2,−φ2] +
1

ε

∫ δ

0

y2β1e
−β1ydy +

1

2ε

∫ δ

0

y2β1e
−β1ydy + I1,δ[(x̄, z̄), ψβ]

≤ I1,δ[x̄2,−φ2] +
1

ε
oδ(1) + oβ(1). (4.19)

We now develop a similar estimate on I2,δ[x̄1, g]. We again return to the two-coordinate

notation for a moment (e.g. x = (x, z)). First, recall that j((x, z), (y, w)) = (y, w∧(zmax−z))

for any (x, z) ∈ D and (y, w) ∈ R2 and thus

j(x̄1,y)− j(x̄2,y) =
(
y − y, (w ∧ (zmax − z̄1))− (w ∧ (zmax − z̄2))

)
=
(
0, (w ∧ (zmax − z̄1))− (w ∧ (zmax − z̄2))

)
.
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By direct calculation of each of the four possible cases, it can be shown that

[x̄1 − x̄2] · [(j(x̄1,y)− j(x̄2,y)] = (x̄1 − x̄2, z̄1 − z̄2)

·
(
0, (w ∧ (zmax − z̄1))− (w ∧ (zmax − z̄2))

)
= 0 + (z̄1 − z̄2)[(w ∧ (zmax − z̄1))− (w ∧ (zmax − z̄2))]

≤ (z̄1 − z̄2)2.

Therefore,

1

ε

∫
R2\B(x̄1,Rδ)

[x̄1 − x̄2] · [(j(x̄1,y)− j(x̄2,y)]µ(dy, dw) ≤ 1

ε

∫
R2\B(x̄1,Rδ)

(z̄1 − z̄2)2µ(dy, dw)

=
1

ε
(z̄1 − z̄2)2

∫
R2\B(x̄1,Rδ)

µ(dy, dw)

=
1

ε
(z̄1 − z̄2)2

≤ O

(
|x̄1 − x̄2|2

ε

)
. (4.20)

By a similar calculation,

1

2ε

∫
R2\B(x̄1,Rδ)

|j(x̄1,y)− j(x̄2,y)|2µ(dy, dw) ≤ 1

2ε

∫
R2\B(x̄1,Rδ)

(z̄1 − z̄2)2µ(dy, dw),

and thus

1

2ε

∫
R2\B(x̄1,Rδ)

|j(x̄1,y)− j(x̄2,y)|2µ(dy, dw) ≤ O

(
|x̄1 − x̄2|2

ε

)
. (4.21)

Now, integrating on both sides of inequality (4.17) on R2 \B(x̄1, δ) and applying inequalities

(4.20) and (4.21), we get

I2,δ[x̄1, g] ≤ I2,δ[x̄2, h] +
1

2ε

∫
R2\B(x̄1,δ)

[x̄1 − x̄2] · [(j(x̄1,y)− j(x̄2,y)]µ(dy, dw)

+
1

2ε

∫
R2\B(x̄1,δ)

|j(x̄1,y)− j(x̄2,y)|2µ(dy, dw) + I2,δ[x̄1, ψβ]

≤ I2,δ[x̄2, h] +O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1). (4.22)

Combining (4.19) and (4.22), we get an estimate for the nonlocal integral terms we wish to

consider:
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` := I1,δ[x̄1, φ1] + I2,δ[x̄1, g]

≤ I1,δ[x̄2,−φ2] + I2,δ[x̄2, h] +O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1) +

1

ε
oδ(1). (4.23)

Let (p,−q) = ∇φ(x̄, ȳ) and define φa := Ra[φ]((x, y), (p, q)) as in (4.3). Then, by Corollary

4.4, for any a > 0, there exist matrices X, Y ∈ S2 such that (4.8) holds and

F (x̄1, g(x̄1), p,X, I1,δ[x̄1, φa(·, x̄2)] + I2,δ[x̄1, g])) ≤ 0 (4.24)

F (x̄2, h(x̄2), q, Y, I1,δ[x̄2,−φa(x̄1, ·)] + I2,δ[x̄2, h])) ≥ 0 (4.25)

Now, applying Proposition 4.2, we get

F (x̄1, g(x̄1), p,X, `) ≤ oa(1)

F (x̄2, h(x̄2), q, Y, I1,δ[x̄2,−φ2] + I[x̄2, h]) ≥ oa(1)

By assumption (A2), we have that there exists some γ > 0 such that

γ
M

2
≤ F (x̄1, g(x̄1), p,X, `)− F (x̄2, h(x̄2), p,X, `) (4.26)

First, note that by definition, p = q+∇ψβ(x̄1). So, the above inequality can be rewritten as

γ
M

2
≤ F (x̄1, g(x̄1), p,X, `)− F (x̄2, h(x̄2), q +∇ψβ(x̄1), X, `) (4.27)

Now, applying inequalities (4.24) and (4.25) and adding and subtracting F (x̄2, h(x̄2), q, Y, `),

we get

γ
M

2
≤ F (x̄1, g(x̄1), p,X, `)− F (x̄2, h(x̄2), q +∇ψβ(x̄1), X, `)

≤ F (x̄1, g(x̄1), p,X, `)− F (x̄2, h(x̄2), q +∇ψβ(x̄1), X, `)

+ F (x̄2, h(x̄2), q, Y, I1,δ[x̄2,−φa(x̄1, ·)] + I2,δ[x̄2, h]))

− F (x̄1, g(x̄1), p,X, I1,δ[x̄1, φa(·, x̄2)] + I2,δ[x̄1, g]))

+ F (x̄2, h(x̄2), q, Y, `)− F (x̄2, h(x̄2), q, Y, `) (4.28)

Rearranging the terms above, we will consider the inequality

γ
M

2
≤ F (x̄1, g(x̄1), p,X, `)− F (x̄2, h(x̄2), q +∇ψβ(x̄1), X, `)

≤ F (x̄2, h(x̄2), q, Y, `)− F (x̄2, h(x̄2), q +∇ψβ(x̄1), X, `)

+ F (x̄2, h(x̄2), q, Y, I1,δ[x̄2,−φa(x̄1, ·)] + I2,δ[x̄2, h]))− F (x̄2, h(x̄2), q, Y, `)
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+ F (x̄1, g(x̄1), p,X, `)− F (x̄1, g(x̄1), p,X, I1,δ[x̄1, φa(·, x̄2)] + I2,δ[x̄1, g]))
(4.29)

We now examine each of the last two pairs of terms. By assumption (A4), we have that

there exists a Lipschitz constant KLip such that

|F (x̄1, g(x̄1), p,X, `)− F (x̄1, g(x̄1), p,X, I1,δ[x̄1, φa(·, x̄2)] + I2,δ[x̄1, g]))|

≤ KLip |`− (I1,δ[x̄1,−φa(·, x̄2)] + I2,δ[x̄1, g])|

= KLip|I1,δ[x̄1, φx]− I1,δ[x̄2,−φa(x̄1, ·)]|.

Since Proposition 4.2 implies that I1,δ[x̄2,−φa(x̄1, ·)]→ I1,δ[x̄1, φx] as a→ 0, we have that

F (x̄1, g(x̄1), p,X, `)− F (x̄1, g(x̄1), p,X, I1,δ[x̄1, φa(·, x̄2)] + I2,δ[x̄1, g])) ≤ oa(1). (4.30)

Turning to the other pair of terms from (4.29), we first note that, by (4.23) and the ellipticity

assumption (E),

F (x̄2, h(x̄2), q, Y, `) ≥ F (x̄2, h(x̄2), q, Y, I1,δ[x̄2, φ2] + I2,δ[x̄2, h]

+O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1) +

1

ε
oδ(1)).

Therefore,

F (x̄2, h(x̄2), q, Y,I1,δ[x̄2,−φa(x̄1, ·)] + I2,δ[x̄2, h]))− F (x̄2, h(x̄2), q, Y, `)

≤ F (x̄2, h(x̄2), q, Y, I1,δ[x̄2,−φa(x̄1, ·)] + I2,δ[x̄2, h]))

− F (x̄2, h(x̄2), q, Y, I1,δ[x̄2, φ2] + I2,δ[x̄2, h] +O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1) +

1

ε
oδ(1))

Furthermore, again using assumption (A4),∣∣∣F (x̄2, h(x̄2), q, Y, I1,δ[x̄2,−φa(x̄1, ·)] + I2,δ[x̄2, h]
)

−F
(
x̄2, h(x̄2), q, Y, I1,δ[x̄2, φ2] + I2,δ[x̄2, h]

+O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1) +

1

ε
oδ(1)

)∣∣∣ ≤ KLip

∣∣∣I1,δ[x̄2,−φa(x̄1, ·)] + I2,δ[x̄2, h]

− I1,δ[x̄2, φ2] + I2,δ[x̄2, h]

+O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1)
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+
1

ε
oδ(1))

∣∣∣
≤ KLip

∣∣∣I1,δ[x̄2,−φa(x̄1, ·)] + I2,δ[x̄2, h]

− I1,δ[x̄2, φ2] + I2,δ[x̄2, h]
∣∣∣

+O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1)

+
1

ε
oδ(1)).

So, again applying Proposition 4.2 as we did to the previous pair of terms, we have

F (x̄2, h(x̄2), q, Y, I1,δ[x̄2,−φa(x̄1, ·)] + I2,δ[x̄2, h]))− F (x̄2, h(x̄2), q, Y, `)

≤ oa(1) +O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1) +

1

ε
oδ(1).

So, finally we have

γ
M

2
≤ F (x̄2, h(x̄2), q, Y, `)− F (x̄1, h(x̄2), q +∇ψβ(x̄1), X, `) +O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1) + oa(1) +

1

ε
oδ(1). (4.31)

In particular, (4.8) and the properties of ψβ above imply that

1

a

[
I 0
0 I

]
≤
[
X 0
0 −Y

]
≤ 1

ε

[
I −I
−I I

]
+

[
D2ψβ(x̄1) 0

0 0

]
+ oa(1)

[
I 0
0 I

]
≤ 1

ε

[
I −I
−I I

]
+ (oa(1) + oβ(1))

[
I 0
0 I

]
with oa(1) and oβ(1) being uniform in ε.

We now apply assumption (A3*) taking ρ = 2 to get

γ
M

2
≤ F (x̄2, h(x̄2), q, Y, `)− F (x̄1, h(x̄2), q +∇ψβ(x̄1), X, `) +O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1) + oa(1) +

1

ε
oδ(1)

≤ ω

(
|x̄1 − x̄2|2

ε
+ |x̄1 − x̄2|+ oβ(1)

)
+ ωRβ

(
|x̄1 − x̄2|2

ε
+ |x̄1 − x̄2|

)
+O

(
|x̄1 − x̄2|2

ε

)
+ oβ(1) + oa(1) +

1

ε
oδ(1).

Finally, letting in order δ, a, ε, and then β go to 0, we get that M ≤ 0 giving us the desired

contradiction.
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1.3 Verification of the Assumptions

Define R(x) := min{e(β1−ε)x, e(β2−ε)x} for some ε > 0 such that both (β1− ε) and (β2− ε) are

positive. Then, the class of functions C is defined to be all functions u : D → R such that

u(·, z) is continuous on [zmin, zmax] and there exists a constant c̄ > 0 such that

u(x, z) ≤ c̄(1 +R(x)).

We will restrict our choices of proposed value function to these functions of sub-exponential

growth in order to ensure that all terms in the HJB equation for this problem are integrable.

Note that, in particular, the class C certainly contains all functions u which satisfy the

polynomial growth condition for any degree p ≥ 0.

1.3.1 The Nonlocal Term

Recall that in the HJB equation for this problem,

0 = F ((x, z), f,Df,D2f, I[(x, z), f ]) (4.32)

= δf(x, z)− 1

λ
(µ− x)fx(x, z)−

σ2

2
fxx(x, z)− sup

u∈U
{−ufz(x, z) +G(x, z, u)}

− η1

∫ ∞
0

(f(x+ y, z)− f(x, z)) β1e
−β1y dy

− η2

∫ ∞
0

(f(x− y, z)− f(x, z)) β2e
−β2y dy

− α
[
p1 (f(x, z + ζ)− f(x, z)) + p2 (f(x, z + 2ζ)− f(x, z))

]
, (4.33)

the last three terms are due to the nonlocal behavior of the X and Z processes. That is, we

can write the nonlocal operator for this PIDE as

I[(x, z), f ] =− η1

∫ ∞
0

(f(x+ y, z)− f(x, z)) β1e
−β1y dy

− η2

∫ 0

−∞
(f(x+ y, z)− f(x, z)) β2e

β2y dy

− α
[
p1 (f(x, z + ζ)− f(x, z)) + p2 (f(x, z + 2ζ)− f(x, z))

]
. (4.34)

Following the form of Barles and Imbert, we separate this operator into

I1,δ[(x, z), f ] =− η1

∫ Rδ

0

(f(x+ y, z)− f(x, z)) β1e
−β1y dy
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− η2

∫ 0

−Rδ
(f(x+ y, z)− f(x, z)) β2e

β2y dy (4.35)

I2,δ[(x, z), f ] =− η1

∫ ∞
Rδ

(f(x+ y, z)− f(x, z)) β1e
−β1y dy

− η2

∫ −Rδ
−∞

(f(x+ y, z)− f(x, z)) β2e
β2y dy

− α
[
p1 (f(x, z + ζ)− f(x, z)) + p2 (f(x, z + 2ζ)− f(x, z))

]
. (4.36)

for any δ > 0 where Rδ = min{δ, ζ}.
By construction of I1,δ and I2,δ, it is clear that for any (x, z) ∈ D and φ ∈ C ∩ C2(D),

I[(x, z), φ] = I1,δ[(x, z), φ] + I2,δ[(x, z), φ],

and further for any a ∈ R,

I2,δ[(x, z), φ+ a] =− η1

∫ ∞
Rδ

([φ(x+ y, z) + a]− [φ(x, z) + a]) β1e
−β1y dy

− η2

∫ −Rδ
−∞

([φ(x+ y, z) + a]− [φ(x, z) + a]) β2e
β2y dy

− α
[
p1 ([φ(x, z + ζ) + a]− [φ(x, z) + a])

+ p2 ([φ(x, z + 2ζ) + a]− [φ(x, z) + a])
]

=− η1

∫ ∞
Rδ

(φ(x+ y, z)− φ(x, z)) β1e
−β1y dy

− η2

∫ −Rδ
−∞

(φ(x+ y, z)− φ(x, z)) β2e
β2y dy

− α
[
p1 (φ(x, z + ζ)− φ(x, z)) + p2 (φ(x, z + 2ζ)− φ(x, z))

]
= I2,δ[(x, z), φ]

and similarly I1,δ[(x, z), φ + a] = I1,δ[(x, z), φ]. Moreover, setting Rδ = min{δ, ζ}, we have

that Rδ → 0 as δ → 0 and, for φ1, φ2 ∈ C ∩ C2(D),

φ1 = φ2 ∀(x, z) ∈ B((x, z), Rδ) ⇒ I1,δ[(x, z), φ1] = I1,δ[(x, z), φ2] and

φ1 = φ2 ∀(x, z) ∈ (D \B((x, z), Rδ)) ∪ {(x, z)} ⇒ I2,δ[(x, z), φ1] = I2,δ[(x, z), φ2].

Now, let φ ∈ C2(D) and f ∈ C be an upper semi-continuous function such that f − φ
attains a maximum on B((x̂, ẑ), Rδ) at (x̂, ẑ) and φ(x̂, ẑ) = f(x̂, ẑ). Denote the ball of
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radius d > 0 centered at (x̂, ẑ) by B̂(d) := B((x̂, ẑ), d), and denote the annulus with inner

radius d > 0 and outer radius D > 0 centered at (x̂, ẑ) by Â(d,D) := {(x, z) ∈ D :

d < |(x, z) − (x̂, ẑ)| < D}. We proceed with the following construction of a sequence of

approximating functions which follows a very similar construction by Arisawa [1]. First, we

note that in the case of viscosity solutions, it is sufficient to consider f ∈ C ∩ C(D), since

if f is not continuous, it can be approximated by the sequence of sup-convolutions, each of

which is continuous. It is a classical result of viscosity solution theory that f is a viscosity

subsolution of (4.1), if and only if each of the sequence of sup-convolutions approximating

f is a viscosity subsolution of (4.1) (see, for example, Section 5.2 of the book by Pallaschke

and Rolewicz [12]).

Consider B̂(s) for some s > Rδ. Since, as noted earlier, the class C contains the polyno-

mial functions, there certainly exists a sequence of functions ψn ∈ C2(D)× C such that

lim
n→∞

ψn((x, z)) = f((x, z)) uniformly in B̂(s).

Define ψn((x, z)) := ψn((x, z)) + ‖f − ψn((x, z))‖L∞(B̂(s)). Then,

ψn((x, z)) ≥ f((x, z)) ∀ (x, z) ∈ B̂(s) and

lim
n→∞

ψn((x, z)) = f((x, z)) uniformly in B̂(s).

Without loss of generality, we may assume that f−φ takes a strict maximum at (x̂, ẑ) (since

if it does not, we can add a small positive quadratic function to φ), and therefore for any r

such that Rδ < r < s, there exists some σ(r) > 0 such that

min
(x,z)∈Â(r,s)

(φ− f)(x, z) =: σ(r) > 0.

Let χr(x, z) ∈ C2(B̂(s)) be a function such that 0 ≤ χr(x, z) ≤ 1 for all (x, z) ∈ B̂(s) and

χr(x, z) :=

{
1 if |(x, z)− (x̂, ẑ)| ≤ Rδ

0 if r ≤ |(x, z)− (x̂, ẑ)| ≤ s
.

Then, define

φn(x, z) := χr(x, z)φ(x, z) + (1− χr(x, z))ψn(x, z)

for all (x, z) ∈ B̂(s). That is, the function φn takes on the same values as φ inside the

ball B̂(Rδ) and the same values as f on the annulus (x, z) ∈ Â(r, s), making the transition
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between the two in a C2 manner across the annulus (x, z) ∈ Â(Rδ, r). By construction of

ψn, and the fact that φ(x, z) ≥ f(x, z) for all (x, z) ∈ B̂(s) by assumption, it is clear that

φn(x, z) ≥ f(x, z) for all (x, z) ∈ B̂(s) and all n = 1, 2, .... Further, since φ, ψn, and χr are

all in C2(B̂(s)), we also have that φn ∈ C2(B̂(s)). Also, by the definitions of χr and φn, it is

clear that φn(x, z) = φ(x, z) for all (x, z) such that |(x, z) − (x̂, ẑ)| ≤ Rδ. Moreover, noting

first that there exists some n1 ∈ N such that

φ(x, z)− ψn(x, z) = φ(x, z)− f(x, z) + f(x, z)− ψn(x, z)

≥ σ(Rδ) + f(x, z)− ψn(x, z) > 0

for any n ≥ n1 and (x, z) ∈ Â(Rδ, s), it is clear that

φ(x, z)− φn = (1− χr(x, z))(φ(x, z)− ψn(x, z)) ≥ 0

for n ≥ n1 and (x, z) such that Rδ ≤ |(x, z) − (x̂, ẑ)| ≤ s. That is, for n ≥ n1, φm(x, z) ≤
φ(x, z) for (x, z) ∈ Â(Rδ, s). Since the fact that ψn → f uniformly gives us that φn → f

uniformly on (x, z) ∈ Â(r, s), there exist r > Rδ sufficiently small and n2 ∈ N such that for

n ≥ n2 and for all (x, z) ∈ Â(Rδ, s),

|φn(x, z)− f(x, z)| ≤ 1

s
.

Take n′ := max {n1, n2}. Also note that since φn(x, z) = φ(x, z) for (x, z) ∈ B̂(Rδ) and, as

argued earlier, φn(x, z) ≤ φ(x, z) for (x, z) ∈ Â(Rδ, s) for n ≥ n′, we have

f(x, z) ≤ φn(x, z) ≤ φ(x, z) for all (x, z) ∈ B̂(s).

Then we can extend this φn′ to φ1 ∈ C2(D) such that

φ1(x, z) = φn′(x, z) for (x, z) ∈ B̂(s),

f(x) ≤ φ1(x, z) ≤ φ(x, z) for all x ∈ D,

and f − φ1 takes a strict maximum at (x̂, ẑ).

Now, repeat the above construction with φ replaced by φ1 and s replaced by 2s. This

will yield a function φ2 ∈ C2(D) such that

f(x) ≤ φ2(x, z) ≤ φ1(x, z) ≤ φ(x, z) for all x ∈ D,
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|φ2(x, z)− f(x, z)| ≤ 1

2s
for (x, z) ∈ {(x, z) ∈ D : Rδ ≤ |(x, z)− (x̂, ẑ)| ≤ 2s}

and f − φ2 takes a strict maximum at (x̂, ẑ). Continuing iteratively in this manner, we can

construct a sequence of functions φk ∈ C ∩ C2(D) such that

f(x) ≤ φk(x, z) ≤ φ(k−1)(x, z) ≤ ... ≤ φ1(x, z) ≤ φ(x, z) for all x ∈ D,

|φk(x, z)− f(x, z)| ≤ 1

ks
for (x, z) ∈ {(x, z) ∈ D : Rδ ≤ |(x, z)− (x̂, ẑ)| ≤ ks}

and f − φk takes a strict maximum at (x̂, ẑ).

Since φk((x, z)) = φ((x, z)) for all (x, z) ∈ B̂(Rδ) for every k = 1, 2, ..., clearly

I1,δ[(x̂, ẑ), φk]→ I1,δ[(x̂, ẑ), φ] as k →∞.

Further, since each function φk is in the class C,∣∣∣∣η1

∫ ∞
Rδ

(φk(x̂+ y, ẑ)− φk(x̂, ẑ)) β1e
−β1y dy

∣∣∣∣
+

∣∣∣∣η2

∫ −Rδ
−∞

(φk(x̂+ y, ẑ)− φk(x̂, ẑ)) β2e
β2y dy

∣∣∣∣ <∞,
and φk is a monotone decreasing sequence converging to f outside B̂(Rδ), the Monotone

Convergence Theorem implies that

I2,δ[(x̂, ẑ), φk]→ I2,δ[(x̂, ẑ), f ].

Clearly, I1,δ[(x, z), φ] is well-defined for (x, z) ∈ D and φ ∈ C2(B((x, x), r)) ∩ C for any

r ∈ (0, Rδ). Further, when δ → 0, Rδ = min {δ, ζ} → 0 and thus I1,δ[(x, z), φ] → 0. Now,

suppose (xk, zk)→ (x, z) and {φk} ⊂ C2(B((x, z), r))∩C(B((x, z), Rδ)) with φk → φ. Then,

since the integrands are continuous and thus bounded for y ∈ [0, Rδ), we have

lim
k→∞
I1,δ[(xk, zk), φk] =− η1 lim

k→∞

∫ Rδ

0

(φk(xk + y, zk)− φk(xk, zk)) β1e
−β1y dy

− η2 lim
k→∞

∫ 0

−Rδ
(φk(xk + y, zk)− φk(xk, zk)) β2e

β2y dy

=− η1

∫ Rδ

0

lim
k→∞

(φk(xk + y, zk)− φk(xk, zk)) β1e
−β1y dy

− η2

∫ 0

−Rδ
lim
k→∞

(φk(xk − y, zk)− φk(xk, zk)) β2e
−β2y dy
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=− η1

∫ Rδ

0

(φ(x+ y, z)− φ(x, z)) β1e
−β1y dy

− η2

∫ 0

−Rδ
(φ(x+ y, z)− φ(x, z)) β2e

β2y dy

= I1,δ[(x, z), φ]

Since all functions φ ∈ C are locally bounded, I2,δ[(x, z), φ] is well-defined for any (x, z) ∈
D and any φ ∈ C. Let (φk) be a sequence of uniformly locally bounded functions such that

|φk| ≤ ψ for some function ψ ∈ C. Recalling the definition φ := lim sup∗ φk, we then have by

a standard extension of Fatou’s lemma that

lim sup
k→∞

I2,δ[(xk, zk), φk] =− η1 lim sup
k→∞

∫ ∞
Rδ

(φ(xk + y, zk)− φ(xk, zk)) β1e
−β1y dy

− η2 lim sup
k→∞

∫ −Rδ
−∞

(φk(xk + y, zk)− φk(xk, zk)) β2e
β2y dy

− α lim sup
k→∞

[
p1 (φk(xk, zk + ζ)− φk(xk, zk))

+ p2 (φk(xk, zk + 2ζ)− φk(xk, zk))
]

≤− η1

∫ ∞
Rδ

lim sup
k→∞

(φ(xk + y, zk)− φ(xk, zk)) β1e
−β1y dy

− η2

∫ −Rδ
−∞

lim sup
k→∞

(φk(xk + y, zk)− f(xk, zk)) β2e
β2y dy

− α
[
p1

(
lim sup
k→∞

φk(xk, zk + ζ)− lim sup
k→∞

φk(xk, zk)

)
+ p2

(
lim sup
k→∞

φk(xk, zk + 2ζ)− lim sup
k→∞

φk(xk, zk)

)]
=I2,δ[(x, z), φ].

By a symmetric argument and the definition φ := lim inf∗ φk, we also have that

lim inf
k→∞

I[(xk, zk), φk] ≥ I[(x, z), φ].

Thus, the nonlocal operator I satisfies the conditions of assumption (NLT).

1.3.2 Assumptions of the Comparison Principle

Again mirroring the form of Barles and Imbert, we define the following function j representing

the sizes of the jumps and Lévy measure µ representing the action of the nonlocal components

of the paired process (X,Z):

j((x, z), (y, w)) := (y, w ∧ (zmax − z)) (4.37)
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µ(y, w) := − η11(0,∞)(y)β1e
−β1ydyδ{0}(dw)− η21(−∞,0)(y)β2e

β2ydyδ{0}(dw)

− α
[
p1δ{ζ}(dw) + p2δ{2ζ}(dw)

]
δ{0}(dy) (4.38)

where 1A(·) is the indicator of the set A ∈ R and δ{a}(·) is the point mass at a ∈ R. Note

that in the measure µ, the point masses guarantee that µ will only have non-zero mass if at

most one of the processes X or Z jumps at any given time. We can make this simplifying as-

sumption since these two processes are independent and each have exponentially distributed

times between jumps, implying that

P (|X(t)−X(t−)| 6= 0 , |Z(t)− Z(t−)| 6= 0) = 0 ∀ t ≥ 0.

Recall that we defined above the following function j representing the sizes of the jumps

and Lévy measure µ representing the action of the nonlocal components of the paired process

(X,Z):

j((x, z), (y, w)) := (y, w ∧ (zmax − z)) (4.39)

µ(y, w) := η11(0,∞,)(y)β1e
−β1ydyδ{0}(w) + η21(−∞,0)(y)β2e

β2ydyδ{0}(w)

+ α
[
p1δ{ζ}(w) + p2δ{2ζ}(w)

]
δ{0}(y) (4.40)

where 1A(·) is the indicator of the set A ∈ R and δ{a}(·) is the point mass at a ∈ R.

Lemma 4.8. The HJB equation (4.32) with the paired process (X,Z) as defined above satisi-

fies assumption (A1*) of the comparison principle.

Proof. First, we note that∫
R2

µ(dy, dw) =

∫
R

∫
R
η11(0,∞,)(y)β1e

−β1ydyδ{0}(dw)

+

∫
R

∫
R
η21(−∞,0)(y)β2e

β2ydyδ{0}(dw)

+

∫
R

∫
R
α
[
p1δ{ζ}(dw) + p2δ{2ζ}(dw)

]
δ{0}(dy)

=

∫ ∞
0

η1β1e
−β1ydy +

∫ 0

−∞
η2β2e

β2ydy + p1ζ + 2p2ζ

= η1 + η2 + α[p1(ζ ∧ (zmax − z)) + p2(2ζ ∧ (zmax − z))].

So clearly
∫
R2\B µ(dy, dw) ≤ η1 + η2 + p1ζ + 2p2ζ < ∞ for any open ball B ⊂ D. Further,

since |j((x, z), (y, w))|2 = y2 + (w ∧ (zmax − z))2 ≤ y2 + w2 = |(y, w)|2 for all (x, z) in D,

sup
(x,z)∈D

∫
R
|j((x, z), (y, w))|2µ(dy, dw) ≤

∫
R2

|(y, w)|2µ(dy, dw)
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=

∫
R2

(y2 + w2)µ(dy, dw)

=

∫ ∞
0

y2η1β1e
−β1ydy +

∫ 0

−∞
y2η2β2e

β2ydy

+ α[(ζ)2p1(ζ) + (2ζ)2p2(2ζ)]

= η1
2

β1
2 + η2

2

β2
2 + α[p1ζ

3 + 4p2ζ
3]

and thus sup
(x,z)∈D

∫
R2

|j((x, z), (y, w))|2µ(dy, dw) <∞. Now, note that

|j((x, z), (y, w))− j((x̃, z̃), (y, w))| = |(y − y, (w ∧ (zmax − z))− (w ∧ (zmax − z̃)))|

= |(w ∧ (zmax − z))− (w ∧ (zmax − z̃))|

≤ |z − z̃|

for any (x, z) and (x̃, z̃) in D. So, noting that µ(dy, dw) does not depend on z and

|j((x, z), (y, w))− j((x̃, z̃), (y, w))|2 = |(y, w ∧ (z − zmax))− (y, w ∧ (z̃ − zmax)|2

= (y − y)2 + (z − z̃)2 = (z − z̃)2,

we have∫
R2

|j((x, z), (y, w))− j((x̃, z̃), (y, w))|2µ(dy, dw)

=

∫
R2

|((w ∧ (z − zmax))− (w ∧ (z̃ − zmax))|2 µ(dy, dw)

≤
∫
R2

(z − z̃)2 µ(dy, dw)

= (z − z̃)2

∫
R2

µ(dy, dw)

≤ c̄(z − z̃)2

≤ c̄|(x, z)− (x̃, z̃)|2

for any c̄ ≥ η1 + η2 + α[p1(ζ ∧ (zmax − z)) + p2(2ζ ∧ (zmax − z))] and any (x, z) and (x̃, z̃) in

D. Similarly,∫
R2

|j((x, z), (y, w))− j((x̃, z̃), (y, w))|µ(dy, dw) ≤ c̄|z − z̃| ≤ c̄|(x, z)− (x̃, z̃)|

for any constant c̄ ≥ η1 + η2 + α[p1(ζ ∧ (zmax − z)) + p2(2ζ ∧ (zmax − z))] and any (x, z) and

(x̃, z̃) in D. Thus we have that assumption (A1) is satisfied.
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In order to show the remaining assumptions, we need to consider the PIDE (4.32) in terms

of constant arguments rather than functions. That is, for (x, z) ∈ D, a ∈ R, b = (b1, b2) ∈ R2,

X ∈ S2, and l ∈ R,

F ((x, z), a, b,X, l) = δa− 1

λ
(µ− x)b1 −

σ2

2
X1,1 − sup

u∈U
{−ub2 +G(x, z, u)}+ l (4.41)

Then clearly

F ((x, z), a, b,X, l)− F ((x, z), ã, b,X, l) = δ(a− ã),

and thus assumption (A2) is satisfied. Also, F is clearly Lipschitz continuous in l, and thus

assumption (A4) is satisfied.

It remains only to show that assumption (A3-1*) is satisfied.

Lemma 4.9. The HJB equation (4.32) with the paired process (X,Z) as defined above satisi-

fies assumption (A3*) of the comparison principle.

Proof. First, we note that the assertion that the matrices X, Y ∈ S2 satisfy[
X 0
0 −Y

]
≤ 1

ε

[
I −I
−I I

]
+ r(β)

[
I 0
0 I

]
(4.42)

for some ε > 0 and some r(β) with r(β)→ 0 as β → 0 really means that the matrix

M :=
1

ε

[
I −I
−I I

]
+ r(β)

[
I 0
0 I

]
−
[
X 0
0 −Y

]

=


1
ε

+ r(β)−X1,1 X1,2 −1
ε

0
−X1,2

1
ε

+ r(β)−X2,2 0 1
ε

−1
ε

0 1
ε

+ r(β) + Y1,1 Y1,2

0 −1
ε

Y1,2
1
ε

+ r(β) + Y2,2


is positive semi-definite. That is, for any non-zero column vector v ∈ R4, vTMv ≥ 0. So, in

particular,

(1, 0, 1, 0)M


1
0
1
0

 =


1
ε

+ r(β)−X1,1 − 1
ε

X1,2

−1
ε

+ 1
ε

+ r(β) + Y1,1

Y1,2

 ·


1
0
1
0


=

1

ε
+ r(β)−X1,1 −

1

ε
− 1

ε
+

1

ε
+ r(β) + Y1,1 = 2r(β)−X1,1 + Y1,1 ≥ 0,
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implying that Y1,1 − X1,1 ≥ −2r(β). So, for s(β) = (s1(β), s2(β)) where s(β) → (0, 0) as

β → 0 and |x, z)|, |(x̃, z̃)| ≤ ρ
β

=: R,

F ((x̃,z̃), a,
1

ε
((x, z)− (x̃, z̃)), Y, l)− F ((x, z), a,

1

ε
((x, z)− (x̃, z̃)) + s(β), X, l)

=

[
δa− 1

λ
(µ− x̃)

(
1

ε
(x− x̃)

)
− σ2

2
Y1,1 − sup

u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x̃, z̃, u)

}
+ l

]
−
[
δa− 1

λ
(µ− x)

(
1

ε
(x− x̃) + s1(β)

)
− σ2

2
X1,1

− sup
u∈U

{
−u
(

1

ε
(z − z̃) + s2(β)

)
+G(x, z, u)

}
+ l

]
=

1

λ
(µ− x)

(
1

ε
(x− x̃) + s1(β)

)
− 1

λ
(µ− x̃)

(
1

ε
(x− x̃)

)
− σ2

2
(Y1,1 −X1,1)

− sup
u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x̃, z̃, u)

}
+ sup

u∈U

{
−u
(

1

ε
(z − z̃) + s2(β)

)
+G(x, z, u)

}
=

1

λε
(x− x̃)(x̃− x) +

1

λ
(µ− x)s1(β)− σ2

2
(Y1,1 −X1,1)

− sup
u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x̃, z̃, u)

}
+ sup

u∈U

{
−u
(

1

ε
(z − z̃) + s2(β)

)
+G(x, z, u)

}
= − 1

λε
(x− x̃)2 +

1

λ
(µ− x)s1(β)− σ2

2
(Y1,1 −X1,1)

− sup
u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x̃, z̃, u)

}
+ sup

u∈U

{
−u
(

1

ε
(z − z̃) + s2(β)

)
+G(z, x, u)

}
≤ 1

λ
(µ− x)s1(β) +

σ2

2
(2r(β))− sup

u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x̃, z̃, u)

}
+ sup

u∈U

{
−u
(

1

ε
(z − z̃) + s2(β)

)
+G(x, z, u)

}
≤ 1

λ
µs1(β) +

ρ

λβ
|s1(β)|+ σ2r(β)− sup

u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x̃, z̃, u)

}
+ sup

u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x, z, u)

}
+ sup

u∈U
{u|s2(β)|}

=
1

λ
µs1(β) +

ρ

λβ
|s1(β)|+ σ2r(β) + umax|s2(β)| − sup

u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x̃, z̃, u)

}
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+ sup
u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x, z, u) +G(x̃, z̃, u)−G(x̃, z̃, u)

}
≤ 1

λ
µs1(β) +

ρ

λβ
|s1(β)|+ σ2r(β) + umax|s2(β)| − sup

u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x̃, z̃, u)

}
+ sup

u∈U

{
−u
(

1

ε
(z − z̃)

)
+G(x̃, z̃, u)

}
+ sup

u∈U
{G(x, z, u)−G(x̃, z̃, u)}

=
1

λ
µs1(β) +

ρ

λβ
|s1(β)|+ σ2r(β) + umax|s2(β)|+ sup

u∈U
{G(x, z, u)−G(x̃, z̃, u)}

≤ 1

λ
µs1(β) +

ρ

λβ
|s1(β)|+ σ2r(β) + umax|s2(β)|+KR|(x, z)− (x̃, z̃)|

for some KR > 0 (where the last inequality holds due to the continuity of G and the fact that

(x, z) and (x̃, z̃) both lie in a compact subset of D). So, taking ω(β) = 1
λ
µs1(β) + ρ

β
s1(β) +

σ2r(β) + umax|s2(β)| and ωR(|(x, z)− (x̃, z̃)|) = KR|(x, z)− (x̃, z̃)|, we have that assumption

(A3*) is satisfied since we assume that 1
β
s(β) → 0 as β → 0 and therefore s1(β) → 0 as

β → 0, as well.
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Chapter 5

Conclusions and Future Work

1 Conclusions

We first developed a model which accurately captures both components of the environment

in which the plant operates: the arrival of coal shipments and the spot price of electricity

in the open market. We then formulated a control problem with the goal of maximizing the

expected revenue of the plant until the first time the coal supply reached the shutdown level

zmin and formally dervied the HJB equation associated with this problem

0 = δf(x, z)− 1

λ
(µ− x)fx(x, z)−

σ2

2
fxx(x, z)− sup

u∈U
{−ufz(x, z) +G(x, z, u)}

− η1

∫ ∞
0

(f(x+ y, z)− f(x, z)) β1e
−β1y dy

− η2

∫ 0

−∞
(f(x− y, z)− f(x, z)) β2e

−β2y dy

− α
[
p1 (f(x, z + ζ)− f(x, z)) + p2 (f(x, z + 2ζ)− f(x, z))

]
where ζ = ζ̃ ∧ zmax and 2ζ = 2ζ̃ ∧ zmax represent the amounts of coal actually added by a

single and double train arrival, respectively. In Chapter 3, we proved that the value function

(the maximum expected revenue we sought) is a viscosity solution to the HJB equation.

Finally, we proved in Chapter 4 that the viscosity solution to this HJB equation is unique

on any bounded domain in D.

So, combining all of these results, we have shown that by finding the solution to the

HJB equation above, we can solve the optimal control problem for the plant as it was posed

in Chapter 1. As a consequence, we know that any burn rate policy u which achieves this

optimal value is an optimal policy for the plant operator (though the policy is not necessarily
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unique).

2 Future Work

2.1 Numerical Solution Using Real Market Data

A particularly useful area of continued research is the application of these principles to real

production plants and markets. Finding an approximate numerical solution for the value

function and optimal burn policy using real spot price and production data would provide

a tangible connection to the theoretical work presented here. Finding such a numerical

approximation involves two stages. First, real data must be used to fit the parameters of

the spot price model. Then, those parameters can be used to implement the Markov chain

approximation methods of Kushner and Dupuis [9] to find the desired approximation to the

solution of the HJB equation. We oultine in the following subsections a standard approach

to this problem.

2.1.1 Parameter Fitting of the Spot Price Model

Gonzalez, Moriarty, and Palczewski [7] provide a method for parameter fitting in the spot

price model used here. They provide results showing that the model provides a good ap-

proximation in two European energy markets for daily average prices. Oliver Meister showed

in his MS thesis [10] that these methods can be applied to an American market, the MISO

market, with equally good results. However, both of these works use only aggregated daily

average prices, while a power plant operator needs to work on a shorter time scale, usually

in the range of 15-30 minutes. Further examination of possible parameter fitting schemes

on this shorter time scale would show whether the pricing model used here continues to be

valid.

2.1.2 Production Function for a Coal Plant

In particular, electricity production at a coal plant is generally modeled by a linear relation-

ship with some constant k kilowatts produced per ton of coal burned. With the spot price

x being paid per kilowatt, this gives us a revenue function

R(x, z, u) = xku.
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Such plants generally have long-term contracts with a coal supplier in which a constant

amount is paid per month or year for a certain number of deliveries. That is, the cost rate

for such a plant is constant, and we have cost function

C(x, z, u) = C.

So, we have a payoff function

G(x, z, u) = xku− C.

2.1.3 Finite Difference Scheme

Having parameters for the spot price process and a particular form for the payoff function,

a numerical approximation to the value function and optimal control policy for our control

problem could be sought using the method of Markov chain approximation as developed in

the text by Kushner and Dupuis [9]. The particular HJB equation for this problem is

0 = δv(x, z)− 1

λ
(µ− x)vx(x, z)−

σ2

2
vxx(x, z)− sup

u∈U
{−uvz(x, z) + xku− C}

− η1

∫ ∞
0

(v(x+ y, z)− v(x, z)) β1e
−β1y dy

− η2

∫ 0

−∞
(v(x+ y, z)− v(x, z)) β2e

−β2y dy

− α
[
p1 (v(x, z + ζ)− v(x, z)) + p2 (v(x, z + 2ζ)− v(x, z))

]
(5.1)

on the domain D = R× [zmin, zmax].

Discretizing the domain, we use a regular mesh in each direction. That is, we take

the bounded domain D̃ = [xmin, xmax] × [zmin, zmax] with xmin and xmax chosen so that all

observed spot prices in the dataset fall within D̃. We then choose Nx, Nz ∈ Z+ and set

hx := (xmax−xmin)
Nx

and hz := (zmax−zmin)
Nz

. We partition D̃ into a regular grid with mesh

size hx in the x-direction and mesh size hz in the z-direction. So, we have the discretized

domain D̃Nx,Nz := {(xi, zj) | i = 0, ..., Nx ; j = 0, ..., Nz} where xi = xmin + ihx for each i and

zj = zmin + jhz for each j.

For clarity of notation, define vi,j := v(xi, zj), and define ζ̃ to be the closest integer to ζ
hz

.

Further, we take a discretization of the probabilities of the exponential jump sizes to allow

us to rewrite the two integrals in this HJB equation as sums by defining for ` ∈ Z+

p
(1)
` :=

∫ `hx

(`−1)hx

β1e
−β1ydy and p(2)

m :=

∫ mhx

(m−1)hx

β2e
−β2ydy,
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and then defining, for some small ε > 0, N (1) to be the smallest integer such that p
(1)

N(1) < ε

and N (2) to be the smallest integer such that p
(2)

N(2) < ε. Finally, take as a discretized form

of the distributions of jump sizes in the spot price

π
(1)
` =


p

(1)
` , for 1 ≤ ` < N (1)

1−
N(1)−1∑
`=0

p
(1)
` , for ` = N (1)

and π(2)
m =


p

(2)
m , for 1 ≤ m < N (2)

1−
N(2)−1∑
m=0

p(2)
m , for m = N (2).

Using the forward difference approximation for the first derivatives and the central approx-

imation for the second derivative, we then write the finite-difference approximation to the

HJB (5.1) at each (xi, zj) ∈ D̃Nx,Nz as

0 = δvi,j −
1

λ
(µ− xi)

vi+1,j − vi,j
hx

− σ2

2

vi+1,j − 2vi,j + vi−1,j

hx
2

− sup
u∈U

{
−uvi,j+1 − vi,j

hz
+ xiku− C

}
− η1

N(1)∑
`=1

(vi+`,j − vi,j) π(1)
` − η2

N(2)∑
m=1

(vi−m,j − vi,j)π(2)
m

− α
[
p1(vi,(j+ζ̃)∧Nz − vi,j) + p2(vi,(j+2ζ̃)∧Nz − vi,j)

]
. (5.2)

In all boundary cases, we use a sticky boundary. That is, we take for i < 0, vi,j = v0,j; for

j < 0, vi,j = vi,0; for i > Nx, vi,j = vNx,j; and for j > Nz, vi,j = vi,Nz . Further, the boundary

condition due to the termination of the process at the first time the coal supply reaches zero

gives us v(xi, z0) = 0 for all i.

This finite-difference approximation is then used to find the value function at each iter-

ation of the policy iteration method of Kushner and DuPuis. The optimal policy at each

iteration is found by the simple maximization

ui,j = arg max
{umin,umax}

{
−uvi,j+1 − vi,j

hz
+ xiku

}
where ui,j := u(xi, zj) is the discretized version of the policy as with the value function above.

That is,

ui,j =

{
umin if

vi,j+1−vi,j
hz

≥ xik

umax if
vi,j+1−vi,j

hz
< xik

.

Unfortunately, preliminary tests showed that this standard numerical method results in

highly numerically unstable behavior. An upwind/downwind scheme in which the approxi-

mation of vx is made using a forward difference when the coefficient on vx, − 1
λ
(µ − xi), is
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positive and a backwards difference when it is negative produces a more stable solution, but

it is still not satisfactory. Further investigation into the cause of this instability and more

appropriate numerical schemes is necessary.

2.2 Alternative Supply Process and Payoff Function

Another productive area of research would be replacing the particular forms of the supply

process and/or payoff function used here. The action of a coal plant with the simple payoff

function described in the previous section was the model driving the research in this paper.

However, the methods used could be extended in several directions. Directly using these

methods, but with different production and cost functions leading to a different form of

the payoff function, but one that is still continuous, could lead to better numerical results

than those found thus far. Working with a different supply process, whether continuous or

discontinuous, could also prove worthwhile. More ambitiously, one could examine whether

the restriction to continuous payoff functions could be relaxed, as we have not proven that

this condition is necessary, merely sufficient.

2.3 Multiple Nodes

The problem examined in this paper was, for analytical tractability, limited to a single spot

price at a single node on the national electricity grid. However, in reality, plants are able to

sell to dozens of different nodes, each with its own spot price process. This extension would

require a significantly different payoff structure as well as an examination of the correlation

of the spot price at different nodes (as a cursory examination shows that these prices are

far from independent). Even an extension to two nodes would require another component of

the control representing the distribution of the power being produced between the available

nodes. So, while this area of research would be of great interest for practical applications of

the model presented here, it presents a great deal of increased complexity to be dealt with.
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Appendix

We collect here the proofs to three lemmas concerning the ordering of the stopping times

used in Chapter 3.

Lemma 5.1. Let πn, hn be defined as in Proposition 3.1. Then, P[πn ≤ hn]→ 0 as n→∞.

Proof. For each n, Y
(n)

0 (t) is defined by the SDE

dY
(n)

0 (t) = −1

λ
(Y

(n)
0 (t)− µ) + dW (t) , Y

(n)
0 (0) = xn. (5.3)

Let Ȳ0(t) be defined by the same SDE with Ȳ0(0) = x̄. Since xn → x̄, for any ε > 0, there ex-

ists some N such that xn ∈ (x̄−ε, x̄+ε) for all n ≥ N . Let π−n := inf {r ≥ 0
∣∣Y (n)

0 (r) < x̄− ρ}
and π+

n := inf {r ≥ 0
∣∣Y (n)

0 (r) > x̄+ ρ}. Note that for every n, the random behavior of

Y
(n)

0 is determined by the same Brownian motion process W (t). Define Y +
0 (t) as in (5.3)

with Y +
0 (0) = x̄ + ε. So, for every n ≥ N , Y +

0 (t) ≥ Y
(n)

0 (t) for all t for each ω ∈ Ω,

and thus π+
n ≥ π+ := inf {r ≥ 0

∣∣Y +
0 (r) ≥ x̄+ ρ}. Since the process Y +

0 is just a mean-

reverting diffusion process and hn → 0, lim
n→∞

P[π+ ≤ hn] = 0 and therefore, since π+
n ≥ π+,

lim
n→∞

P[π+
n ≤ hn] = 0. By defining Y −0 (t) as in (5.3) with Y −0 (0) = x̄− ε and making a similar

argument, it can be shown that for n ≥ N , π−n ≥ π− and P[π− ≤ hn] = 0, and therefore

lim
n→∞

P[π−n ≤ hn] = 0. Concluding from the fact that πn = π−n ∧ π+
n , we have the desired

result.

Lemma 5.2. Let ξ, hn be defined as in Proposition 3.1. Then, P[ξ ≤ hn]→ 0 as n→∞.

Proof. Recall that ξ = ξ1∧ξ2∧ξ3 where ξ1 = min{t > 0
∣∣ L1(t)−L1(t−) 6= 0}, ξ2 = min{t >

0
∣∣ L2(t)− L2(t−) 6= 0 }, and ξ3 = min{t > 0

∣∣ Z(n)(t)− Z(n)(t−) 6= 0}. So,

P[ξ ≤ hn] = P[ξ1 ∧ ξ2 ∧ ξ3 ≤ hn] ≤ P [ξ1 ≤ hn] + P [ξ2 ≤ hn] + P [ξ3 ≤ hn] . (5.4)
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We first consider P [ξ1 ≤ hn]. By the definition of L1 as a Poisson process with intensity

λ1, the first arrival time, ξ1 is an exponential random variable with rate λ. So,

P[ξ1 ≤ hn] = 1− e−λ1hn ,

and since hn → 0 as n→∞, we have that P[ξ1 ≤ hn]→ 0 as n→∞.

Since ξ2 and ξ3 are also exponentially distributed first arrival times with a constant

intensity, a similar argument shows that P[ξ2 ≤ hn]→ 0 and P[ξ3 ≤ hn]→ 0 as n→∞. So,

we have from (5.4) that

lim
n→∞

P[ξ ≤ hn] = 0.

Lemma 5.3. Let τn, hn be defined as in Proposition 3.1. Then, P[τn ≤ hn]→ 0 as n→∞.

Proof. Recall that τn := min{t > 0
∣∣ Z(n)

��∈ (z̃n, z̃
n)}. We consider two possible cases. First,

let τn := min{t > 0 |Z(n)(t) ≥ z̃n}. Since we assume that zn < z̃n, Z(n)(t) can only be

greater than or equal to z̃n if at least one coal shipment has arrived by time t, that is if

ξ3 ≤ t. As shown in Lemma 5.2, P[ξ3 ≤ hn] → 0 as n → ∞. Therefore, P[τn ≤ hn] → 0 as

n→∞.

Next, we consider τn := min{t > 0 |Z(n)(t) ≤ z̃n}. Since, by construction, zn > z̃n and

the control u is constant, τn ≥ zn−z̃n
u

> 0. So, P[τn ≤ hn]→ 0. We therefore have that

lim
n→∞

P[τn ≤ hn] = lim
n→∞

P[ τn ∧ τn ≤ hn] = 0.
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