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ABSTRACT

Statistical Contributions to Operational Risk Modeling

by

Daoping Yu

University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Vytaras Brazauskas

In this dissertation, we focus on statistical aspects of operational risk modeling.
Specifically, we are interested in understanding the effects of model uncertainty on
capital reserves due to data truncation and in developing better model selection
tools for truncated and shifted parametric distributions. We first investigate the
model uncertainty question which has been unanswered for many years because re-
searchers, practitioners, and regulators could not agree on how to treat the data col-
lection threshold in operational risk modeling. There are several approaches under
consideration—the empirical approach, the “naive” approach, the shifted approach,
and the truncated approach—for fitting the loss severity distribution. Since each
approach is based on a different set of assumptions, different probability models
emerge. Thus, model uncertainty arises. When possible we investigate such model
uncertainty analytically using asymptotic theorems of mathematical statistics and
several parametric distributions commonly used for operational risk modeling, oth-
erwise we rely on Monte Carlo simulations. The effect of model uncertainty on
risk measurements is quantified by evaluating the probability of each approach pro-
ducing conservative capital allocations based on the value-at-risk measure. These
explorations are further illustrated using a real data set for legal losses in a business
unit. After clarifying some prevailing misconceptions around the model uncertainty
issue in operational risk modeling, we then employ standard (Akaike Information
Criterion, AIC, and Bayesian Information Criterion, BIC) and introduce new model
selection tools for truncated and shifted parametric models. We find that the new
criteria, which are based on information complexity and asymptotic mean curvature
of the model likelihood, are more effective at distinguishing between the competing
models than AIC and BIC.
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Chapter 1

Introduction

1.1 Operational Risk
The topology of financial risks recognizes three top risk categories: market risk,
credit risk, and operational risk. In recent years, operational risk has become one of
the major risk factors a financial services organization faces, and a serious threat to
the financial stability of the global economy. Distinguished from the other two cat-
egories, operational risk is, in large part, a firm-specific and non-systemic risk. To
understand what this risk entails, one can think of the following examples: embez-
zlement of insiders, fraud from outsiders, system failure of hardware and software,
cyber attacks, power outages and communication interruptions, earthquakes, floods,
fires, terrorist attacks and so on. In short, events of this kind will result in so-called
operational losses for banks and insurance companies. It is worthwhile noting here
that this risk is not exclusive to the financial service sector; other public and pri-
vate organizations, businesses, and enterprises are also exposed to operational risk
events. This discussion, however, will focus on insurance companies and banks be-
cause they represent two very influential sectors of national and global economies,
and their regulatory frameworks are well developed.

According to the Basel II Capital Accord, the formal definition given by the
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Basel Committee on Banking Supervision says that operational risk is “the risk of
losses resulting from inadequate or failed internal processes, people and systems or
from external events” (Bank for International Settlements, 2011). This definition
includes legal risk, but excludes strategic risk and reputational risk. Operational
risk can be divided into seven types of events: (1) internal fraud; (2) external fraud;
(3) employment practices and workplace safety; (4) clients, products, and business
practices; (5) damage to physical assets; (6) business disruption and system failures;
(7) execution, delivery, and process management. Operational risk is further mapped
across eight business lines: (i) corporate finance; (ii) trading and sales; (iii) retail
banking; (iv) commercial banking; (v) payment and settlement; (vi) agency services;
(vii) asset management; (viii) retail brokerage. For a detailed description of these
event types and business lines, the reader may be referred to Chernobai, Rachev,
Fabozzi (2007).

In compliance with the regulatory requirements, financial corporations and in-
surance companies need to have a reasonable risk management framework of oper-
ational risk. Basel II provides a regulatory framework for risk capital allocation for
banks, so does Solvency II for insurers. Both regulatory frameworks—Basel II and
Solvency II—follow a three-pillar structure:

• Pillar I: minimum capital requirements,

• Pillar II: supervisory review of the capital adequacy,

• Pillar III: market discipline and public disclosure.

In order to figure out Pillar I regulatory minimum capital requirements for opera-
tional risk, banks and insurance companies may employ three distinct approaches:

• Basic Indicator Approach (BIA),

• Standardized Approach (SA),

• Advanced Measurement Approaches (AMA).

2



1.2 Operational Risk Modeling
For a bank or an insurance company to determine the risk capital reserve, either for
the purpose of an optimal allocation of assets in investment or to meet compliance
requirements of regulatory authorities, they need to measure how much to set aside
against potential risks and/or losses the company would face. Operational loss
data are collected for each combination of event type and business line and then
aggregated gradually to an upper level, first over all event types within a particular
business line, followed by aggregation of all business lines.

As discussed in Section 1.1, there are three approaches to calculate minimum
capital requirements: BIA, SA, and AMA. Using the BIA method, risk capital is
reserved for various types of losses subject to a certain ratio of the average annual
gross income over the past three years:

RCBIA = α×GI,

where RCBIA denotes risk capital charge under BIA, and GI denotes average annual
gross income over the previous three years, with α = 15%.

If the SA technique is used, then there is a specified general indicator that reflects
the size of the companie’s activities in that area. The capital charge for each business
line is calculated by multiplying gross income by a factor assigned to a particular
business line, and then aggregated by simple summation. Mathematically speaking,
we have the following formula:

RCSA =
8∑
i=1

βi ×GIi,

where RCSA denotes risk capital charge under SA, and GIi the past 3-year averaging
annual gross income within each business line, with βi ∈ [12%, 18%], i = 1, 2, . . . , 8.
In particular, for corporate finance, trading & sales, and payment & settlement, βi’s
are equal to 18%; for commercial banking, and agency services, βi’s are 15%; and for
retail banking, asset management, and retail brokerage, βi’s are 12%. Note that this
technique assumes a perfect positive correlation among the risks, and may result in

3



overestimation of the aggregate risk capital reserve. Moreover, such an approach
may not be sensitive to the risk environment that is dynamically changing.

Within the AMA framework, the Loss Distribution Approach (LDA) is the most
sophisticated tool for estimating the operational risk capital. According to LDA, the
risk-based capital is an extreme quantile of the annual aggregate loss distribution
(e.g., 0.999 quantile), which is called value-at-risk or VaR. That is, if the aggregate
loss variable is given as

S =
8∑
i=1

7∑
k=1

NT+1
i,k∑

`=NT
i,k

X`
i,k,

where X`
i,k denotes the `-th operational loss for business line i, loss type k in the

period [T, T + 1], and NT denotes the accrued loss frequency up to time T , then the
risk-based capital over the period [T, T + 1] is the 99.9% quantile of the distribution
function of S. In this work, we will concentrate on the LDA methodology.

Recent discussions between the industry and the regulatory community in the
United States reveal that the LDA implementation still has a number of “thorny”
issues (AMA Group, 2013). One such issue is the treatment of data collection
threshold, which is also the focus of this dissertation. Here is what is stated on page
3 of the same document: “Although the industry generally accepts the existence of
operational losses below the data collection threshold, the appropriate treatment of
such losses in the context of capital estimation is still widely debated.” Indeed, in
practically all situations, banks and insurance companies are able to absorb small
and medium-sized losses using regular cashflow accounts. Substantial capital re-
serves are necessary for large losses that are relatively rare and appear above a high
threshold. Consequently, there is shortage of data, and in response to that banks
and insurance companies created commercial data consortia, where only observa-
tions above a collection threshold are reported. (For example, the most popular
consortium of operational risk data is ORX. Some of the largest banks and insur-
ance companies are among its participants. The data reporting threshold is 20,000
Euros.) Using data from such consortia, the LDA type models are constructed. In
this context, the main disagreement that still remains among practitioners, regula-
tors, and academic researchers is about the modeling assumptions. Several types
of assumptions have been documented in the academic journals and professional
monographs, which we discuss next.

4



1.3 Literature Review
As mentioned above, the risk-based capital is an extreme quantile of the annual ag-
gregate loss variable, which is a combination of loss frequency and loss severity. The
latter part of the aggregate model is where the data collection threshold manifests
itself. Typical approaches considered for estimation of VaR include: the empirical
approach, the “naive” approach, the shifted approach, and the truncated approach
(see Chernobai, Rachev, Fabozzi, 2007). Under the empirical approach, if sufficient
amount of data is available, then one simply computes the required level sample
quantile for loss severity, inserts it in a compound Poisson model and declares that
the problem is solved. Clearly, this approach ignores the presence of data collection
threshold. The other three approaches are parametric and address the truncation
threshold as follows: the naive approach ignores it (i.e., parameters and VaR are
estimated assuming there was no threshold); the shifted approach subtracts the
threshold value from each observation, estimates model parameters and then com-
putes the corresponding VaR; the truncated approach assumes that the losses are
observed conditionally above the threshold. (A more precise description of these
approaches is provided in Section 3.2.1.)

Further, Moscadelli, Chernobai, Rachev (2005) considered truncation of both
model components—severity and frequency—and found that the ignorance of trun-
cation in frequency has minimal effect on parameter estimates (consequently, VaR),
while ignoring severity truncation introduces significant parameter biases. Simi-
lar observations have been made by practitioners (Opdyke, 2014): in practice the
severity distribution is a primary driver of the capital estimates. In view of this,
most sensitivity studies in the literature have focused on stress-testing modeling
assumptions involving the loss severity variable. For example, Cavallo, Rosenthal,
Wang, Yan (2012), used the lognormal distribution for severity and compared the
shifted and truncated approaches. They found that when the true model is a trun-
cated lognormal model, then a (misspecified) shifted lognormal model leads to much
smaller standard errors of parameter estimates and produces competitive percentile
estimates for certain chosen values of scale parameter, even though the correctly
specified model produces more precise percentile estimates in general. On the other
hand, when the true model is a shifted lognormal model, the correctly specified
model produces substantially more precise extreme percentile estimates than the
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misspecified truncated model. Moreover, using Vuong’s test (it is a likelihood-ratio-
type test based on the Kullback-Leibler divergence, which provides valid inference for
non-nested models; introduced by Vuong, 1989), they found that these two mod-
els are statistically indistinguishable. They concluded that the shifted lognormal
model and the truncated lognormal model could be equally valid or invalid choices
for modeling operational risk severity.

In addition, a number of research papers and monographs have examined certain
aspects of this topic from other perspectives. For instance, for a semi-parametric
modeling perspective, Bolance, Guillen, Gustafsson, Nielsen (2012) offer a book-
length treatment of the problem. For Bayesian techniques in operational risk, the
reader may be referred to Luo, Shevchenko, Donnelly (2007) or a monograph by
Shevchenko (2011). In this dissertation, we will concentrate on the empirical and
three parametric approaches mentioned above. Our analysis, however, will not
be limited to studying the bias of parameter estimators via simulations. It will go
further and establish asymptotic normality of model parameter and VaR estimators,
and use those results to evaluate the probability of over-estimating VaR measure
by a certain percentage. It is anticipated that such estimates will clearly connect
modeling assumptions to capital reserves, clarify existing misconceptions, and be
fairly easy to explain to practitioners, regulators, and academic researchers.

1.4 Plan of the Dissertation
The remainder of the dissertation is organized as follows. In Chapter 2, we introduce
some preliminary tools that are essential for further analysis in later chapters. In
particular, we first formulate several asymptotic theorems of mathematical statistics.
Then, we present key probabilistic properties of the generalized Pareto distribution,
the lognormal distribution, and the Champernowne distribution. (These distribu-
tions are commonly used as parametric models for operational risk.)

In Chapter 3, we demonstrate how different assumptions about the data collec-
tion threshold in operational risk models lead to substantially different probability
models, which in turn leads to model uncertainty. The primary objective of this
chapter is to thoroughly investigate and understand what effects, if any, model
uncertainty has on risk measurements (i.e., VaR estimates). This is done by em-
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ploying a variety of statistical tools: asymptotic analysis, Monte Carlo simulations,
and real-data examples. The numerical examples are based on a data set for legal
losses in a business unit (Cruz, 2002). The conclusions of this chapter are somewhat
surprising because we find that although standard model validation techniques help
reduce the pool of candidate models, in the end they fail to distinguish between two
fundamentally different models.

In view of the findings in Chapter 3, in the next chapter we turn to model
selection techniques for truncated distributions. We start Chapter 4 with a short
review of the well-established model selection tools, such as Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC), and then introduce a
less-known but quite effective approach based on information complexity (Bozdogan,
1988). In addition, we propose a new model selection method which is based on the
asymptotic mean curvature of the model likelihood. The case study of Chapter 3 is
revisited to check the effectiveness of these model selection techniques. We find that
the new criteria are more effective at distinguishing between the competing models
than AIC and BIC.

In Chapter 5, main findings of the dissertation are summarized and future re-
search avenues are discussed. We envision several directions for future studies:
theoretical properties of the new information criterion, robust techniques for fitting
truncated parametric distributions, and extension of the severity results to various
aggregate loss models, including compound Poisson model and others.

7



Chapter 2

Preliminaries

In this chapter, we provide some theoretical results that are key to further statistical
analysis in operational risk modeling. Specifically, in Section 2.1, the asymptotic
normality theorems for sample quantiles (equivalently, VaR) and the maximum like-
lihood estimators of model parameters are presented. The well-known delta method
is also provided in this section. In Section 2.2, the generalized Pareto distribution is
introduced and a few of its special and limiting cases are discussed. The lognormal
distribution and the Champernowne distribution are also introduced in this section.

2.1 Asymptotic Theorems of Mathematical Statis-

tics
Suppose X1, . . . , Xn represent a sample of independent and identically distributed
(i.i.d.) continuous random variables with the cumulative distribution function (cdf)
G, probability density function (pdf) g, and quantile function (qf) G−1, and let
X(1) ≤ · · · ≤ X(n) denote the ordered sample values. We will assume that g satis-
fies all the regularity conditions that usually accompany theorems such as the ones

8



formulated below. (For more details on this topic, see, e.g., Serfling, 1980, Sections
2.3.3 and 4.2.2.) Note that a review of modeling practices in the U.S. financial
service industry (see AMA Group, 2013) suggests that practically all the sever-
ity distributions in current use would satisfy the regularity assumptions mentioned
above. In view of this, we will formulate “user friendly” versions of the most general
theorems, making them easier to work with in later sections. Also, throughout the
dissertation the notation AN will be used to denote “asymptotically normal.”

Definition 2.1.1. Let 0 < β < 1. Value-at-risk or VaR is defined as

V aR(β) = G−1(β) , (2.1)

where we use the notation G−1(β) for a quantile at level β of the distribution G and
G−1 for the generalized inverse of G.

Since VaR measure is defined as a population quantile, say G−1(β) as in (2.1), its
empirical estimator is the corresponding sample quantile X(dnβe), where d·e denotes
the “rounding up” operation. We start with the asymptotic normality result for
sample quantiles. Proofs and complete technical details are available in Section
2.3.3 of Serfling (1980).

Theorem 2.1.2. [Asymptotic Normality of Sample Quantiles] Let 0 <

β1 < · · · < βk < 1, with k > 1, and suppose that pdf g is continuous, as discussed
above. Then the k-variate vector of sample quantiles

(
X(dnβ1e), . . . , X(dnβke)

)
is AN

with the mean vector
(
G−1(β1), . . . , G−1(βk)

)
and the covariance-variance matrix[

σ2
ij

]k
i,j=1

with the entries

σ2
ij = 1

n

βi(1− βj)
g(G−1(βi))g(G−1(βj))

.

9



In the univariate case (k = 1), the sample quantile

X(dnβe) is AN
(
G−1(β), 1

n

β(1− β)
g2(G−1(β))

)
.

Clearly, in many practical situations the univariate result will suffice, but Theo-
rem 2.1.2 is more general and may be used, for example, to analyze business decisions
that combine a set of VaR estimates.

The main drawback of statistical inference based on the empirical model is that
it is restricted to the range of observed data. For the problems encountered in op-
erational risk modeling, this is a major limitation. Therefore, a more appropriate
alternative is to estimate VaR parametrically, which first requires estimates of the
distribution parameters and then those values are applied to formula of G−1(β) to
find an estimate of VaR. The most common technique for parameter estimation is
that based on maximization of likelihoods (MLE). The following theorem summa-
rizes its asymptotic distribution. (Description of the method, proofs and complete
technical details are available in Section 4.2 of Serfling, 1980.)

Theorem 2.1.3. [Asymptotic Normality of MLEs] Suppose pdf g is indexed
by k unknown parameters, (θ1, . . . , θk), and let

(
θ̂1, . . . , θ̂k

)
denote the MLE of those

parameters. Then, under the regularity conditions mentioned above,

(
θ̂1, . . . , θ̂k

)
is AN

((
θ1, . . . , θk

)
,

1
n

I−1
)
,

where I =
[
Iij
]k
i,j=1

is the Fisher information matrix, with the entries given by

Iij = E
[
∂ log g(X)

∂θi
· ∂ log g(X)

∂θj

]
.
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In the univariate case (k = 1),

θ̂ is AN

θ, 1
n

1

E
[ (

∂ log g(X)
∂θ

)2 ]
 .

Having parameter MLEs,
(
θ̂1, . . . , θ̂k

)
, and knowing their asymptotic distri-

bution is useful. Our ultimate goal, however, is to estimate VaR—a function of(
θ̂1, . . . , θ̂k

)
—and to evaluate its properties. For this we need a theorem that would

specify asymptotic distribution of functions of asymptotically normal vectors. The
delta method is a technical tool for establishing asymptotic normality of smoothly
transformed asymptotically normal random variables. Here we will present it as a
direct application to Theorem 2.1.3. For the general theorem and complete technical
details, see Serfling (1980, Section 3.3).

Theorem 2.1.4. [The Delta Method] Suppose that
(
θ̂1, . . . , θ̂k

)
is AN with the

parameters specified in Theorem 2.1.3. Let the real-valued functions h1 (θ1, . . . , θk),
. . ., hm (θ1, . . . , θk) represent m different risk measures, tail probabilities or other
functions of model parameters. Then, under some smoothness conditions on func-
tions h1, . . . , hm, the vector of MLE-based estimators

(
h1
(
θ̂1, . . . , θ̂k

)
, . . . , hm

(
θ̂1, . . . , θ̂k

))
is

AN
((
h1 (θ1, . . . , θk) , . . . , hm (θ1, . . . , θk)

)
,

1
n

DI−1D′
)
,

where D = [dij]m×k is the Jacobian of the transformations h1, . . . , hm evaluated at
(θ1, . . . , θk), that is, dij = ∂hi/∂θ̂j

∣∣∣∣
(θ1,...,θk)

. In the univariate case (m = 1), the
parametric estimator

h
(
θ̂1, . . . , θ̂k

)
is AN

(
h (θ1, . . . , θk) ,

1
n

dI−1d′
)
,
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where d =
(
∂h/∂θ̂1, . . . , ∂h/∂θ̂k

) ∣∣∣∣
(θ1,...,θk)

.

2.2 Parametric Distributions for Operational Risk

2.2.1 Generalized Pareto Distribution

The cdf of the three-parameter generalized Pareto distribution GPD is given by

FGPD(µ, σ, γ)(x) =


1− (1 + γ(x− µ)/σ)−1/γ , γ 6= 0,

1− exp (−(x− µ)/σ) , γ = 0,

(2.2)

and the pdf by

fGPD(µ, σ, γ)(x) =


σ−1 (1 + γ(x− µ)/σ)−1/γ−1 , γ 6= 0,

σ−1 exp (−(x− µ)/σ) , γ = 0,

(2.3)

where the pdf is positive for x ≥ µ, when γ ≥ 0, or for µ ≤ x ≤ µ − σ/γ, when
γ < 0. The parameters −∞ < µ < ∞, σ > 0, and −∞ < γ < ∞ control the
location, scale, and shape of the distribution, respectively. Note that when γ = 0
and γ = −1, the GPD reduces to the shifted exponential distribution (with location
µ and scale σ) and the uniform distribution on [µ;µ + σ ], respectively. If γ > 0,
then the Pareto-type distributions are obtained. In particular:

• Choosing 1/γ = α and σ/γ = µ = θ leads to what actuaries call a single-
parameter Pareto distribution, with the scale parameter θ > 0 (usually treated
as known deductible) and shape α > 0.
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• Choosing 1/γ = α, σ/γ = θ, and µ = 0 yields the Lomax distribution with
the scale parameter θ > 0 and shape α > 0. (This is also known as a Pareto
II distribution.)

For a comprehensive treatment of Pareto distributions, the reader may be referred to
Arnold (2015), and for their applications to loss modeling in insurance, see Klugman,
Panjer, Willmot (2012).

A useful property for modeling operational risk with the GPD is that the trun-
cated cdf of excess values remains a GPD (with the same shape parameter γ), and
it is given by

P
{
X ≤ x

∣∣∣X > t
}

= P{t < X ≤ x}
P{X > t}

= F (x)− F (t)
1− F (t)

=

(
1 + γ

t− µ
σ

)−1/γ
−
(

1 + γ
x− µ
σ

)−1/γ

(
1 + γ

t− µ
σ

)−1/γ

= 1−
(

1 + γ
x− t

σ + γ(t− µ)

)−1/γ

, x > t. (2.4)

In addition, besides functional simplicity of its cdf and pdf, another attractive
feature of the GPD is that its qf has an explicit formula. This is especially useful
for model diagnostics (e.g., quantile-quantile plots) and for risk evaluations based
on VaR measures. Specifically, for 0 < β < 1, the qf is found by inverting (2.2) and
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given by

F−1
GPD(µ, σ, γ)(β) =


µ+ (σ/γ)

(
(1− β)−γ − 1

)
, γ 6= 0,

µ− σ log(1− β), γ = 0.

(2.5)

2.2.2 Lognormal Distribution

The lognormal distribution with parameters µ and σ is defined as the distribution
of a random variable X whose logarithm is normally distributed with mean µ and
variance σ2. The two-parameter lognormal distribution has pdf

fLN(µ,σ)(x) =


1√

2πσx
e
−

(log x− µ)2

2σ2 , if x > 0,

0, if x ≤ 0,

(2.6)

where −∞ < µ <∞ is the location parameter and σ > 0 is the scale parameter.
The two-parameter lognormal distribution has cdf

FLN(µ,σ)(x) = Φ
(

log x− µ
σ

)
, x > 0, (2.7)

by inverting which, the quantile function

F−1
LN(µ,σ)(β) = eµ+ σΦ−1(β), 0 < β < 1 (2.8)

is obtained. Here Φ and Φ−1 denote the cdf and qf of the standard normal distri-
bution, respectively.
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2.2.3 Champernowne Distribution

The Champernowne distribution is a generalization of the logistic distribution that
was introduced by an econometrician D. G. Champernowne (1936, 1952), who de-
veloped the distribution to describe the logarithm of income. The Champernowne
distribution has pdf

fCHAMP(α,M)(x) = αMαxα−1

(xα +Mα)2 , x > 0, (2.9)

and cdf
FCHAMP(α,M)(x) = xα

xα +Mα
, x > 0, (2.10)

where parameters α > 0 and M > 0 represent the shape and median of the distri-
bution, respectively. The Champernowne distribution looks more like a lognormal
distribution near 0 when α > 1, while converging to a Pareto distribution in the tail
(Bolance, Guillen, Gustafsson, Nielsen, 2012). In addition, by inverting (2.10) the
quantile function is obtained as

F−1
CHAMP(α,M)(β) = M

(
β

1− β

)1/α

, 0 < β < 1. (2.11)
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Chapter 3

Model Uncertainty due to Data

Truncation

This chapter is structured as follows. In Section 3.1, we provide motivation for
the problem discussed in this chapter. Then, in Section 3.2, we review several
typical models used for estimating VaR, describe how model uncertainty due to data
truncation emerges, and study effects of that uncertainty on VaR estimates. This is
done with parametric examples, where we evaluate the probability of overestimating
true VaR for exponential, Lomax, and lognormal distributions, using the theoretical
results of Section 2.1 and via Monte Carlo simulations. Then, in Section 3.3, these
explorations are further illustrated using a real data set for legal losses in a business
unit. The performance of all modeling approaches is illustrated on that real data,
including performance of model fitting, model validation, VaR estimates, and model
predictive power. Finally, concluding remarks are offered in Section 3.4.
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3.1 Introduction
In order to fully understand the problem of model uncertainty in operational risk
modeling, in this chapter we will walk the reader through the entire modeling process
and investigate how our assumptions affect the end product, which is the estimate of
risk-based capital or severity VaR. Since the problem involves collected data, initial
assumptions, and statistical inference (in this case, point estimation and assessment
of estimates’ variability), it will be tackled with statistical tools, including theoretical
tools (asymptotics), Monte Carlo simulations, and real-data case studies. Let us
briefly discuss data, assumptions, and inference. As noted in Section 1.3, it is
generally agreed that operational losses exist above and below the data collection
threshold. Therefore, this implies that choosing a modeling approach is equivalent to
deciding on how much probability mass there is below the threshold. In Figure 3.1,
we provide graphs of truncated, naive, and shifted probability density functions of
two distributions (studied formally in Sections 3.2.2 and 3.2.3): Exponential which
is a light-tailed model, and Lomax , with the tail parameter α = 3.5, which is a
moderately-tailed model (it has three finite moments). We clearly see that those
models are quite different below the threshold t = 195, 000, but in practice that
would be unobserved. On the other hand, in the observable range, i.e., above t =
195, 000, the plotted density functions are similar (note that the vertical axes are in
very small units, 10−6) and converge to each other as losses get larger (note how little
differentiation there is among the curves when losses exceed 1, 000, 000). Moreover,
it is even hard to spot a difference between the corresponding exponential and Lomax
models, though the two distributions possess distinct theoretical properties (e.g., for
one all moments are finite, whereas for the other only three). Also, since probability
mass below the threshold is one of “known unknowns,” it will have to be estimated
from the observed data (above t). As will be shown in the case study of Section 3.5,
this task may look straightforward, but its outcomes vary and are heavily influenced
by the initial assumptions.

17



0 0.195 0.39 0.585 0.78 0.975 1.17 1.365 1.56

0

1

2

3

4

Exponential Distributions

operational losses ( × 10
6
 )

p
ro

b
a
b
il
it
y
 d

e
n
s
it
y
 (

 ×
 1

0
−

6
 )

 

 

Truncated

Naive

Shifted

0 0.195 0.39 0.585 0.78 0.975 1.17 1.365 1.56

0

1

2

3

4

Lomax Distributions

operational losses ( × 10
6
 )

p
ro

b
a
b
il
it
y
 d

e
n
s
it
y
 (

 ×
 1

0
−

6
 )

 

 

Truncated

Naive

Shifted

Figure 3.1: Truncated, naive, shifted Exponential (σ) and Lomax (α = 3.5, θ1)
probability density functions. Data collection threshold t = 195, 000, with 50% of
data unobserved. Parameters σ and θ1 are chosen to match those in Tables 3.2 and
3.3 (see Sections 3.2.2 and 3.2.3).

3.2 Capital Reserving

3.2.1 Operational Risk Modeling Approaches

Suppose that Y1, . . . , YN represent positive and i.i.d. loss severities resulting from
operational risk, and let us denote their pdf, cdf, and qf as f , F , and F−1, respec-
tively. Then, the problem of estimating VaR-based capital is equivalent to finding
an estimate of qf at some probability level, say F−1(β). The difficulty here is that
we observe only those Yi’s that exceed some data collection threshold t � 0 way
above zero. That is, the actually observed variables are Xi’s with

X1
d= Yi1

∣∣∣Yi1 > t, . . . , Xn
d= Yin

∣∣∣Yin > t, (3.1)
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where d= denotes “equal in probability” and n = ∑N
j=1 1

{
Yj > t

}
. Their cdf F∗, pdf

f∗, qf F−1
∗ are related to F , f , F−1 and given by

F∗(x) = P
{
X ≤ x

∣∣∣X > t
}

= P{t < X ≤ x}
P{x > t}

= F (x)− F (t)
1− F (t) , (3.2)

f∗(x) = F ′∗(x) = f(x)
1− F (t) , (3.3)

F−1
∗ (u) = F−1

(
u+ (1− u)F (t)

)
(3.4)

for x ≥ t and 0 < u < 1, and for x < t, f∗(x) = F∗(x) = 0.
Further, let us investigate the behavior of F−1

∗ (u) from a mathematical point
of view. Since the qf of continuous random variables, which is the case for loss
severities, is a strictly increasing function and (1− u)F (t) ≥ 0, it follows that

F−1
∗ (u) = F−1

(
u+ (1− u)F (t)

)
≥ F−1(u), 0 < u < 1,

with the inequality being strict unless F (t) = 0. This implies that any quantile of the
observable variable X is never below the corresponding quantile of the unobservable
variable Y , which is true VaR. This fact is certainly not new (see, e.g., an extensive
analysis by Opdyke, 2014, about the effect of Jensen’s inequality in VaR estimation).
However, if we now change our perspective from mathematical to statistical and
take into account the method of how VaR is estimated, we could augment the above
discussion with new insights and improve our understanding. Let us start with an
empirical example.

Example 3.2.1. Empirical Approach

As mentioned earlier, the empirical model is restricted to the range of observed
data. So it uses data from (3.1), but since the empirical estimator F̂ (t) = 0, formulas
(3.2)–(3.4) simplify to F̂∗(x) = F̂ (x), f̂∗(x) = f̂(x), for x ≥ t, and F̂−1

∗ (u) = F̂−1(u).
Thus, the model cannot take full advantage of (3.2)–(3.4). In this case, the VaR(β)
estimator is simply F̂−1(β) = X(dnβe), and as follows from Theorem 2.1.2 (see Section
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2.1),

X(dnβe) is AN
(
F−1
∗ (β), 1

n

β(1− β)
f 2
∗ (F−1

∗ (β))

)
.

We now can evaluate the probability of overestimating true VaR by certain
percentage, i.e., we want to study function H(c) := P

{
X(dnβe) > cF−1(β)

}
for

c ≥ 1. Using Z to denote the standard normal random variable and Φ for its cdf,
and taking into account (3.2)–(3.4), we proceed as follows:

H(c) = P
{
X(dnβe) > cF−1(β)

}

= P


X(dnβe) − E

(
X(dnβe)

)
√

V
(
X(dnβe)

) >
cF−1(β)− E

(
X(dnβe)

)
√

V
(
X(dnβe)

)


≈ P

Z >
[
c F−1(β)− F−1

∗ (β)
]
×
(

1
n

β(1− β)
f 2
∗ (F−1

∗ (β))

)−1/2


= 1− Φ
(√

n

β(1− β)

[
c F−1(β)− F−1

∗ (β)
]
× f (F−1

∗ (β))
1− F (t)

)
,

where
F−1
∗ (β) = F−1(β + (1− β)F (t)).

From this formula we clearly see that 0.50 ≤ H(1) < 1 with the lower bound being
achieved when F (t) = 0. Also, at the other extreme, when c → ∞, we observe
H(c)→ 0. Additional numerical illustrations are provided in Table 3.1.
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Table 3.1: Function H(c) evaluated for various combinations of c, confidence level β,
proportion of unobserved data F (t), and severity distributions with varying degrees
of tail heaviness ranging from light- and moderate-tailed to heavy-tailed. (The
sample size is n = 100.)

F (t) = 0 F (t) = 0.5 F (t) = 0.9
c β Light Moderate Heavy Light Moderate Heavy Light Moderate Heavy

1 0.95 0.500 0.500 0.500 0.944 0.925 0.874 1.000 1.000 0.981
0.99 0.500 0.500 0.500 0.757 0.736 0.692 0.990 0.955 0.817

1.2 0.95 0.085 0.178 0.331 0.585 0.753 0.824 1.000 1.000 0.978
0.99 0.177 0.303 0.421 0.409 0.583 0.657 0.918 0.924 0.812

1.5 0.95 0.000 0.010 0.138 0.032 0.326 0.726 0.968 0.996 0.975
0.99 0.010 0.099 0.309 0.053 0.336 0.600 0.500 0.848 0.804

2 0.95 0.000 0.000 0.015 0.000 0.009 0.523 0.056 0.930 0.968
0.99 0.000 0.005 0.160 0.000 0.070 0.502 0.010 0.642 0.790

Note: Threshold t is 0 for F (t) = 0 and 195, 000 for F (t) = 0.5, 0.9. Distributions: Light = exponential(σ),
Moderate = Lomax(α = 3.5, θ1), Heavy = Lomax(α = 1, θ2). For F (t) = 0: σ = θ1 = θ2 = 1. For F (t) = 0.5:
σ = 281, 326, θ1 = 890, 355, θ2 = 195, 000. For F (t) = 0.9: σ = 84, 687, θ1 = 209, 520, θ2 = 21, 667.

Several conclusions emerge from the table. First, the case F (t) = 0 is a bench-
mark case that illustrates the behavior of the empirical estimator when data is
completely observed (and in that case X(dnβe) would be a consistent method for esti-
mating VaR(β)). We see that H(1) = 0.5 and then it quickly decreases to 0 as c in-
creases. The decrease is quickest for the light-tailed distribution, exponential(σ = 1),
and slowest for the heavy-tailed Lomax(α = 1, θ2 = 1) which has no finite moments.
Second, as less data is observed, i.e., as F (t) increases to 0.5 and 0.9, the probabil-
ity of overestimating true VaR increases for all types of distributions. For example,
while the probability of overestimating VaR(0.99) by 20% (c = 1.2) for the light-
tailed distribution is only 0.177 for F (t) = 0, it increases to 0.409 and 0.918 for
F (t) = 0.5 and 0.9, respectively. If severity follows the heavy-tailed distribution,
then H(1.2) is 0.421, 0.657, 0.812 for F (t) = 0, 0.5, 0.9, respectively. Finally, in
practice, typical scenarios would be near F (t) = 0.9 with moderate- or heavy-tailed
severity distributions, which corresponds to quite unfavorable patterns in the table.
Indeed, function H(c) declines very slowly and the probability of overestimating
VaR(0.99) by 100% seems like a norm (0.642 and 0.790). 2

A review of existing methods (see Section 1.3) shows that, besides estimation of
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VaR using (3.1)–(3.4) under the truncated framework, there are parametric methods
that employ other strategies, such as the naive and shifted approaches. In particular,
those two approaches use the data X1, . . . , Xn and either ignore t or recognize it in
some other way than (3.2)–(3.4). Thus, model uncertainty emerges.

Example 3.2.2. Truncated Approach

The truncated approach uses the observed data X1, . . . , Xn and fully recognizes
its distributional properties. That is, it takes into account (3.2)–(3.4) and derives
MLE values by maximizing the following log-likelihood function:

logLT
(
θ1, . . . , θk

∣∣∣X1, . . . , Xn

)
=

n∑
i=1

log f∗(Xi) =
n∑
i=1

log
(

f(Xi)
1− F (t)

)
, (3.5)

where θ1, . . . , θk are the parameters of pdf f . Once parameter MLEs are available,
VaR(β) estimate is found by plugging those MLE values into F−1(β). 2

Example 3.2.3. Naive Approach

The naive approach uses the observed data X1, . . . , Xn, but ignores the pres-
ence of threshold t. That is, it bypasses (3.2)–(3.4) and derives MLE values by
maximizing the following log-likelihood function:

logLN
(
θ1, . . . , θk

∣∣∣X1, . . . , Xn

)
=

n∑
i=1

log f(Xi). (3.6)

Notice that, since f(Xi) ≤ f(Xi)/[1 − F (t)] = f∗(Xi) with the inequality being
strict for F (t) > 0, the log-likelihood of the naive approach will always be less
than that of the truncated approach. This in turn implies that parameter MLEs of
pdf f derived using the naive approach will always be suboptimal, unless F (t) = 0.
Finally, VaR(β) estimate is computed by inserting parameter MLEs (the ones found
using the naive approach) into F−1(β). 2
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Example 3.2.4. Shifted Approach

The shifted approach uses the observed data X1, . . . , Xn and recognizes thresh-
old t by first shifting the observations by t. Then, it derives parameter MLEs by
maximizing the following log-likelihood function:

logLS
(
θ1, . . . , θk

∣∣∣X1, . . . , Xn

)
=

n∑
i=1

log f(Xi − t). (3.7)

By comparing (3.6) and (3.7), we can easily see that the naive approach is a special
case of the shifted approach (with t = 0). Moreover, although this may only be of
interest to theoreticians, one could introduce a class of shifted models by considering
f(Xi − s), with 0 ≤ s ≤ t, and create infinitely many versions of the shifted model.
Finally, VaR(β) is estimated by applying parameter MLEs (the ones found using
the shifted approach) to F−1(β) + t. 2

3.2.2 Exponential Models

Suppose Y1, . . . , YN are i.i.d. and follow an exponential distribution, with pdf, cdf,
and qf given by (2.3), (2.2), and (2.5), respectively, with γ = 0 and µ = 0. However,
we observe only variable X whose relation to Y is governed by (3.1)–(3.4). Now,
by plugging exponential density and/or distribution functions with scale parameter
σ into the log-likelihoods (3.5), (3.6), and (3.7), we obtain the corresponding log-
likelihoods for exponential models as follows:

logLT
(
σ
∣∣∣X1, . . . , Xn

)
=

n∑
i=1

log
(

f(Xi)
1− F (t)

)

=
n∑
i=1

log
(

(1/σ)e−Xi/σ
e−t/σ

)

=
n∑
i=1

−(Xi − t)
σ

− n log σ, (3.8)
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logLN
(
σ
∣∣∣X1, . . . , Xn

)
=

n∑
i=1

log f(Xi)

=
n∑
i=1

log
( 1
σ
e−Xi/σ

)

=
n∑
i=1

−Xi

σ
− n log σ, (3.9)

logLS
(
σ
∣∣∣X1, . . . , Xn

)
=

n∑
i=1

log f(Xi − t)

=
n∑
i=1

log
( 1
σ
e−(Xi−t)/σ

)

=
n∑
i=1

−(Xi − t)
σ

− n log σ. (3.10)

Then, by maximizing the log-likelihoods (3.8), (3.9), and (3.10), we get the following
MLE formulas for scale parameter σ:

σ̂T = X − t, σ̂N = X, σ̂S = X − t,

where X = n−1∑n
i=1 Xi and subscripts T, N, S denote “truncated”, “naive”,

“shifted”, respectively.
Next, by inserting σ̂T , σ̂N , and σ̂S into the corresponding qf’s as described in

Examples 3.2.2 – 3.2.4, we get the following VaR(β) estimators:

V̂aRT (β) = −σ̂T log(1− β),
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V̂aRN(β) = −σ̂N log(1− β),

V̂aRS(β) = −σ̂S log(1− β) + t.

Further, a direct application of Theorem 2.1.3 for σ̂T (with obvious adjustment
for σ̂N), yields that

σ̂T is AN
(
σ,
σ2

n

)
,

σ̂N is AN
(
σ + t,

σ2

n

)
,

σ̂S is AN
(
σ,
σ2

n

)
,

where asymptotic distributions for parameter MLEs of truncated, naive, and shifted
models are all derived under the assumption that the true distribution of the ob-
served data is the truncated distribution.

Furthermore, having established AN for parameter MLEs, we can apply The-
orem 2.1.4 and specify asymptotic distributions for VaR estimators. They are as
follows:

V̂aRT (β) is AN
(
−σ log(1− β), σ

2 log2(1− β)
n

)
,

V̂aRN(β) is AN
(
−(σ + t) log(1− β), σ

2 log2(1− β)
n

)
,

V̂aRS(β) is AN
(
−σ log(1− β) + t,

σ2 log2(1− β)
n

)
.

Note that while all three estimators are equivalent in terms of the asymptotic vari-
ance, they are centered around different targets. The mean of the truncated esti-
mator is the true quantile of the underlying exponential model (estimating which
is the objective of this exercise) and the mean of the other two methods is shifted
upwards; in both cases, the shift is a function of threshold t.

Finally, as it was done for the empirical VaR estimator in Example 3.2.1, we
now define function H(c) = P

{
V̂aR(β) > cF−1(β)

}
for c ≥ 1, the probability of
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overestimating the target by (c − 1)100%, for each parametric VaR estimator and
study its behavior:

HT (c) = P
{

V̂aRT (β) > cF−1(β)
}

= P


V̂aRT (β)− E

(
V̂aRT (β)

)
√

V
(
V̂aRT (β)

) >
cF−1(β)− E

(
V̂aRT (β)

)
√

V
(
V̂aRT (β)

)


≈ P
{
Z >

−cσ log(1− β) + σ log(1− β)
−σ log(1− β)/

√
n

}

= P
{
Z > (c− 1)

√
n
}

= 1− Φ
(
(c− 1)

√
n
)
,

HN(c) = P
{

V̂aRN(β) > cF−1(β)
}

= P


V̂aRN(β)− E

(
V̂aRN(β)

)
√

V
(
V̂aRN(β)

) >
cF−1(β)− E

(
V̂aRN(β)

)
√

V
(
V̂aRN(β)

)


≈ P
{
Z >

−cσ log(1− β) + (σ + t) log(1− β)
−σ log(1− β)/

√
n

}

= P
{
Z > (c− 1)

√
n−
√
n(t/σ)

}

= 1− Φ
(
(c− 1)

√
n−
√
n(t/σ)

)
,
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HS(c) = P
{

V̂aRS(β) > cF−1(β)
}

= P


V̂aRS(β)− E

(
V̂aRS(β)

)
√

V
(
V̂aRS(β)

) >
cF−1(β)− E

(
V̂aRS(β)

)
√

V
(
V̂aRS(β)

)


≈ P
{
Z >

−cσ log(1− β) + σ log(1− β)− t
−σ log(1− β)/

√
n

}

= P
{
Z > (c− 1)

√
n+
√
n(t/σ) log−1(1− β)

}

= 1− Φ
(
(c− 1)

√
n+
√
n(t/σ) log−1(1− β)

)
.

Table 3.2 provides numerical illustrations of functions HT (c), HN(c), HS(c). We
select the same parameter values as in the light-tailed cases of Table 3.1. From
Table 3.2, we see that the case F (t) = 0 is special in the sense that all three methods
become identical and perform well. For example, the probability of overestimating
true VaR by 20% is only 0.023 for all three methods and it is essentially 0 as c ≥ 1.5.
Parametric estimators in this case outperform the empirical estimator (see Table 3.1)
because they are designed for the correct underlying model. However, as proportion
of unobserved data increases, i.e., as F (t) increases to 0.5 and 0.9, only the truncated
approach maintains its excellent performance. And while the shifted estimator is
better than the naive, both methods perform poorly and even rarely improve the
empirical estimator. For example, in the extreme case of F (t) = 0.9, the naive
and shifted methods overestimate true VaR(0.95) by 50% with probability 1.000
and 0.996, respectively, whereas the corresponding probability for the empirical
estimator is 0.968.
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Table 3.2: Exponential models: Functions HT (c), HN(c), HS(c) evaluated for various
combinations of c, confidence level β, and proportion of unobserved data F (t). (The
sample size is n = 100.)

F (t) = 0 F (t) = 0.5 F (t) = 0.9
c β T N S T N S T N S

1 0.95 0.500 0.500 0.500 0.500 1.000 0.990 0.500 1.000 1.000
0.99 0.500 0.500 0.500 0.500 1.000 0.934 0.500 1.000 1.000

1.2 0.95 0.023 0.023 0.023 0.023 1.000 0.623 0.023 1.000 1.000
0.99 0.023 0.023 0.023 0.023 1.000 0.310 0.023 1.000 0.999

1.5 0.95 0.000 0.000 0.000 0.000 0.973 0.004 0.000 1.000 0.996
0.99 0.000 0.000 0.000 0.000 0.973 0.000 0.000 1.000 0.500

2 0.95 0.000 0.000 0.000 0.000 0.001 0.000 0.000 1.000 0.010
0.99 0.000 0.000 0.000 0.000 0.001 0.000 0.000 1.000 0.000

Note: Threshold t is 0 for F (t) = 0 and 195, 000 for F (t) = 0.5, 0.9. Exponential(σ),
with σ = 1 (for F (t) = 0), σ = 281, 326 (for F (t) = 0.5), σ = 84, 687 (for F (t) = 0.9).

3.2.3 Lomax Models

Suppose Y1, . . . , YN are i.i.d. and follow a Lomax distribution, with pdf, cdf, and
qf given by (2.3), (2.2), and (2.5), respectively, with α = 1/γ, θ = σ/γ, and µ = 0.
However, we observe only variable X whose relation to Y is governed by (3.1)–(3.4).
Now, unlike the exponential case, maximization of the log-likelihoods, obtained by
plugging Lomax pdf and cdf into (3.5), (3.6), and (3.7),

logLT = n logα + nα log(θ + t)− (α + 1)
n∑
i=1

log(θ +Xi), (3.11)

logLN = n logα + nα log θ − (α + 1)
n∑
i=1

log(θ +Xi), (3.12)

logLS = n logα + nα log θ − (α + 1)
n∑
i=1

log (θ +Xi − t) (3.13)

does not yield explicit formulas for MLEs of a Lomax model. So, in order to evaluate
functions HT (c), HN(c), HS(c), we use Monte Carlo simulations to implement the
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following procedure:

(i) generate Lomax-distributed data set according to pre-specified parameters,

(ii) numerically evaluate parameters α and θ for each approach,

(iii) compute the corresponding estimates of VaR,

(iv) check whether the inequality in function H(c) is true for each approach
and record the outcomes, and

(v) repeat steps (i)–(iv) a large number of times and report the proportion of
“true” outcomes in step (iv).

To facilitate comparisons with the moderate-tailed scenarios in Table 3.1, we select
simulation parameters as follows:

• Severity distribution Lomax(α = 3.5, θ1): θ1 = 1 (for F (t) = 0),
θ1 = 890, 355 (for F (t) = 0.5), θ1 = 209, 520 (for F (t) = 0.9).

• Threshold: t = 0 (for F (t) = 0) and t = 195, 000 (for F (t) = 0.5, 0.9).

• Complete sample size: N = 100 (for F (t) = 0); N = 200 (for F (t) = 0.5);
N = 1000 (for F (t) = 0.9). The average observed sample size is n = 100.

• Number of simulation runs: 10, 000.

Simulation results are summarized in Table 3.3, where we again observe similar
patterns to those of Tables 3.1 and 3.2. This time, however, the entries are more
volatile, which is mostly due to the randomness of simulation experiment (e.g., all
entries for the T and c = 1 cases theoretically should be equal to 0.5, because those
cases correspond to the probability of a normal random variable exceeding its mean,
but they are slightly off). The F (t) = 0 case is where all parametric models perform
well, as they should. However, once they leave that comfort zone (F (t) = 0.5 and
0.9), only the truncated approach works well, with the naive and shifted estimators
performing similarly to the empirical estimator. Since Lomax distributions have
heavier tails than exponential, function H(c) under the truncated approach is also
affected by that and converges to 0 (as c→∞) slower. In other words, for a given
choice of model parameters, the coefficient of variation of VaR is larger for the Lomax

29



model than that for the exponential model, thus resulting in larger overestimating
probabilities than those in Table 3.2. The difference between the T entries in Tables
3.2 and 3.3 is also influenced by the fact that the numerically found MLE does
not often produce very stable or say trustworthy parameter estimates for truncated
approach, which is a common technical issue.

Table 3.3: Lomax models: Functions HT (c), HN(c), HS(c) evaluated for various
combinations of c, confidence level β, and proportion of unobserved data F (t). (The
average sample size is n = 100.)

F (t) = 0 F (t) = 0.5 F (t) = 0.9
c β T N S T N S T N S

1 0.95 0.453 0.453 0.453 0.459 0.951 0.982 0.547 0.908 1.000
0.99 0.436 0.436 0.436 0.425 0.926 0.797 0.503 0.888 0.999

1.2 0.95 0.131 0.131 0.131 0.095 0.945 0.791 0.356 0.904 0.999
0.99 0.219 0.219 0.219 0.154 0.496 0.566 0.228 0.884 0.998

1.5 0.95 0.009 0.009 0.009 0.002 0.626 0.270 0.112 0.879 0.998
0.99 0.071 0.071 0.071 0.020 0.097 0.265 0.029 0.877 0.957

2 0.95 0.000 0.000 0.000 0.000 0.032 0.010 0.002 0.865 0.984
0.99 0.011 0.011 0.011 0.001 0.005 0.052 0.000 0.863 0.646

Note: Threshold t is 0 for F (t) = 0 and 195, 000 for F (t) = 0.5, 0.9. Lomax(α = 3.5, θ1),
with θ1 = 1 (for F (t) = 0), θ1 = 890, 355 (for F (t) = 0.5), θ1 = 209, 520 (for F (t) = 0.9).

Remark 3.2.5. Asymptotic Justifications

In this Remark, we use asymptotic theorems to double-check some results of the
simulation study (Table 3.3). In particular, we can verify the truncated and shifted
cases. Let us start with the fact that

(
α̂T , θ̂T

)
is AN

(
(α, θ), ΣLomax

T

n

)

and (
α̂S, θ̂S

)
is AN

(
(α, θ + t), ΣLomax

S

n

)
,

where ΣLomax
S equals ΣLomax

T as shown in (A.1) (see Appendix A), since the corre-
sponding parameter estimators have the same variance–covariance structure.
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Furthermore, applying Theorem 2.1.4, we have

V̂aRT (β) is AN
(
F−1(β), V

(
V̂aRT (β)

))

and
V̂aRS(β) is AN

(
θ + t

θ
F−1(β) + t, V

(
V̂aRS(β)

))
,

where F−1(β) = θ
(
(1− β)−1/α − 1)

)
.

We now can evaluate the probability of overestimating true VaR by certain
percentage, i.e., we want to study functions

HT (c) = P
{

V̂aRT (β) > cF−1(β)
}

= P


V̂aRT (β)− E

(
V̂aRT (β)

)
√

V
(
V̂aRT (β)

) >
cF−1(β)− E

(
V̂aRT (β)

)
√

V
(
V̂aRT (β)

)


≈ P
{
Z >

[
c F−1(β)− F−1(β)

]
×
[
V
(
V̂aRT (β)

) ]−1/2
}

= 1− Φ
([

(c− 1)F−1(β)
]
×
[
V
(
V̂aRT (β)

) ]−1/2
)
,
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HS(c) = P
{

V̂aRS(β) > cF−1(β)
}

= P


V̂aRS(β)− E

(
V̂aRS(β)

)
√

V
(
V̂aRS(β)

) >
cF−1(β)− E

(
V̂aRS(β)

)
√

V
(
V̂aRS(β)

)


≈ P
{
Z >

[
c F−1(β)− θ + t

θ
F−1(β)− t

]
×
[
V
(
V̂aRS(β)

) ]−1/2
}

= 1− Φ
([(

c− θ + t

θ

)
F−1(β)− t

]
×
[
V
(
V̂aRS(β)

) ]−1/2
)
,

where explicit expressions for V
(
V̂aRT (β)

)
and V

(
V̂aRS(β)

)
are provided in (A.1)

of Appendix A. The values of functions HT (c) and HS(c) in Table 3.4 match closely
the corresponding entries in Table 3.3. That justifies the simulation results for the
truncated and shifted approaches.

Table 3.4: Lomax models: Theoretical evaluations of functions HT (c) and HS(c) for
various combinations of c, confidence level β, and proportion of unobserved data
F (t). (The sample size is n = 100.)

F (t) = 0 F (t) = 0.5 F (t) = 0.9
c β T S T S T S

1 0.95 0.500 0.500 0.500 0.964 0.500 1.000
0.99 0.500 0.500 0.500 0.803 0.500 0.989

1.2 0.95 0.124 0.124 0.095 0.804 0.332 1.000
0.99 0.244 0.244 0.166 0.611 0.284 0.973

1.5 0.95 0.002 0.002 0.001 0.286 0.139 1.000
0.99 0.041 0.041 0.008 0.284 0.077 0.918

2 0.95 0.000 0.000 0.000 0.002 0.015 0.968
0.99 0.000 0.000 0.000 0.023 0.002 0.688

Note: Threshold t is 0 for F (t) = 0 and 195, 000 for F (t) = 0.5, 0.9. Lomax(α = 3.5, θ1),
with θ1 = 1 (for F (t) = 0), θ1 = 890, 355 (for F (t) = 0.5), θ1 = 209, 520 (for F (t) = 0.9).

2
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3.2.4 Lognormal Models

Suppose Y1, . . . , YN are i.i.d. and follow a lognormal distribution, with pdf, cdf, and
qf given by (2.6), (2.7), and (2.8), respectively. However, we observe only variable
X whose relation to Y is governed by (3.1)–(3.4). Numerical maximization of the
log-likelihood (3.5) is performed for the truncated lognormal model. We plug in
(2.6) and (2.7) into (3.5) to obtain the log-likelihood function for the truncated
lognormal model:

logLT = C1 − n log σ − 1
2σ2

n∑
i=1

(logXi − µ)2 − n log
(

1− Φ
(

log t− µ
σ

))
, (3.14)

where C1 = −n log
√

2π −
n∑
i=1

logXi. Differentiating (3.14) with respect to µ and σ

and setting the partial derivatives equal to zero, we can numerically solve for the
MLE parameter estimators µ̂T and σ̂T . Explicit formulas for MLEs of the naive and
shifted lognormal models are obtained via maximization of the log-likelihoods (3.15)
and (3.16), respectively:

logLN = C1 − n log σ − 1
2σ2

n∑
i=1

(logXi − µ)2 , (3.15)

logLS = C2 − n log σ − 1
2σ2

n∑
i=1

(log(Xi − t)− µ)2 , (3.16)

where C2 = −n log
√

2π−
n∑
i=1

log(Xi− t). The parameter estimators are as follows:

µ̂N = 1
n

n∑
i=1

log (Xi) ,

σ̂2
N = 1

n

n∑
i=1

[log (Xi)− µ̂N ]2 ,

33



µ̂S = 1
n

n∑
i=1

log (Xi − t) ,

σ̂2
S = 1

n

n∑
i=1

[log (Xi − t)− µ̂S]2 .

In order to evaluate functions HT (c), HN(c), HS(c), we use Monte Carlo sim-
ulations and implement the 5-step procedure of Section 3.2.3. Note that now the
procedure is modified to generate lognormally distributed data. Simulation param-
eters are selected as follows:

• Severity distribution Lognormal(µ, σ = 1.6): µ = 10 (for F (t) = 0), µ = 12.18
(for F (t) = 0.5), µ = 10.13 (for F (t) = 0.9).

• Threshold: t = 0 (for F (t) = 0) and t = 195, 000 (for F (t) = 0.5, 0.9).

• Complete sample size: N = 100 (for F (t) = 0); N = 200 (for F (t) = 0.5);
N = 1000 (for F (t) = 0.9). The average observed sample size is n = 100.

• Number of simulation runs: 10, 000.

Simulation results are summarized in Table 3.5, where we observe similar patterns
to those of the Lomax model (Table 3.3). Specifically, we see that: The truncated
lognormal model produces VaR estimates that are centered around the target; the
naive approach does not necessarily overestimate VaR; the shifted approach almost
consistently yields VaR overestimation.
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Table 3.5: Lognormal models: Functions HT (c), HN(c), HS(c) evaluated for various
combinations of c, confidence level β, and proportion of unobserved data F (t). (The
average sample size is n = 100.)

F (t) = 0 F (t) = 0.5 F (t) = 0.9
c β T N S T N S T N S

1 0.95 0.448 0.473 0.473 0.455 0.850 1.000 0.555 1.000 1.000
0.99 0.462 0.484 0.484 0.374 0.200 0.982 0.567 0.999 1.000

1.2 0.95 0.181 0.197 0.197 0.203 0.572 0.980 0.499 1.000 1.000
0.99 0.263 0.278 0.278 0.170 0.065 0.962 0.465 0.981 1.000

1.5 0.95 0.047 0.048 0.048 0.039 0.188 0.866 0.424 1.000 1.000
0.99 0.083 0.091 0.091 0.035 0.007 0.785 0.302 0.812 1.000

2 0.95 0.000 0.001 0.001 0.000 0.009 0.430 0.285 1.000 1.000
0.99 0.012 0.014 0.014 0.003 0.001 0.452 0.074 0.338 0.997

Note: Threshold t is 0 for F (t) = 0 and 195, 000 for F (t) = 0.5, 0.9. Lognormal(µ, σ = 1.6),
with µ = 10 (for F (t) = 0), µ = 12.18 (for F (t) = 0.5), µ = 10.13 (for F (t) = 0.9).

3.3 Case Study: Legal Risk
In this section, we illustrate how all the modeling approaches considered so far
(empirical and three parametric) perform on real data. We go step-by-step through
the entire modeling process, starting with model fitting and validation, continuing
with VaR estimation, and completing the case study with model-based predictions
for quantities below the data collection threshold.

3.3.1 Data

We will use the data set from Cruz (2002, p.57), which has 75 observations and
represents the cost of legal events for a business unit (for convenience, the data set
is provided in Appendix B). The cost is measured in the U.S. dollars. To illustrate
the impact of data collection threshold on the selected models, we split the data set
into two parts: losses that are at least $195,000, which will be treated as observed
and used for model building and VaR estimation, and losses that are below $195,000,
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which will be used at the end of the exercise to assess the quality of model-based
predictions. This data-splitting scenario implies that there are 54 observed losses.
A quick exploratory analysis of the observed data shows that it is right-skewed and
potentially heavy-tailed as shown in Figure 3.2, with the first quartile 248,342, me-
dian 355,000, and the third quartile 630,200; its mean is 546,021, standard deviation
602,912, and skewness 3.8.
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Figure 3.2: Histogram and boxplot for legal risk data above the threshold. Data
collection threshold t = 195, 000.

3.3.2 Model Fitting

We fit three models to the observed data, exponential, Lomax, and lognormal, and
use three parametric approaches, truncated, naive, and shifted. The truncation
threshold is t = 195, 000. For the exponential model, MLE formulas for σ are
available in Section 3.2.2. For the Lomax distribution, we perform numerical maxi-
mization of the log-likelihoods (3.11)–(3.13) to estimate model parameters. For the
lognormal distribution, we perform numerical maximization of the log-likelihood
(3.14) and analytical maximization of the log-likelihoods (3.15) and (3.16) to esti-
mate model parameters. For the data set under consideration, the resulting MLE
values are reported in Table 3.6. Also, the corresponding estimates for parameter
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variances and covariances were computed using Theorem 2.1.3 and the following
proposition.

Proposition 3.3.1. [Asymptotic Distributions of Parameter MLE’s.]

Exponential models:

σ̂T is AN
(
σ,
σ2

n

)
, σ̂N is AN

(
σ + t,

σ2

n

)
, σ̂S is AN

(
σ,
σ2

n

)
.

Lomax models: (
α̂T , θ̂T

)
is AN

(
(α, θ), 1

n
ΣLomax

T

)
,

(
α̂N , θ̂N

)
is AN

(
(αN , θN) , 1

n
ΣLomax

N

)
,

(
α̂S, θ̂S

)
is AN

(
(α, θ + t), 1

n
ΣLomax

S

)
,

where entries for ΣLomax
T = ΣLomax

S and ΣLomax
N are provided in (A.1) and (A.2),

respectively.

Lognormal models:
(µ̂T , σ̂T ) is AN

(
(µ, σ), 1

n
ΣLN

T

)
,

(µ̂N , σ̂N) is AN
((
µ+ σκ, σ

√
1 + rκ− κ2

)
,

1
n

ΣLN

N

)
,

(µ̂S, σ̂S) is AN
(

(µS, σS) , 1
n

ΣLN

S

)
,

where entries for ΣLN
S , ΣLN

N , ΣLN
T and other terms are provided in (A.3)–(A.7) and

(A.11).

Proof: See Appendix A. 2

37



Table 3.6: Parameter MLEs (with variance and covariance estimates in parentheses)
of the exponential, Lomax and lognormal models, using truncated, naive, and shifted
approaches.

Model Truncated Naive Shifted

Exponential σ̂ = 351, 021
(
2.28× 109) σ̂ = 546, 021

(
5.52× 109) σ̂ = 351, 021

(
2.28× 109)

Lomax α̂ = 1.91 (0.569) α̂ = 22.51 (5, 189.86) α̂ = 1.91 (0.569)
θ̂ = 151, 234

(
3.84× 1010) θ̂ = 11, 735, 899

(
1.54× 1015) θ̂ = 346, 234

(
3.84× 1010)(

ĉov(α̂, θ̂) = 138, 934
) (

ĉov(α̂, θ̂) = 2.82× 109) (
ĉov(α̂, θ̂) = 138, 934

)
Lognormal µ̂ = 10.06 (2.349) µ̂ = 12.93 (0.001) µ̂ = 11.81 (0.042)

σ̂ = 1.61 (0.173) σ̂ = 0.66 (0.008) σ̂ = 1.50 (0.021)(
ĉov(µ̂, σ̂) = −0.6008

) (
ĉov(µ̂, σ̂) = −0.0040

) (
ĉov(µ̂, σ̂) = −0.0004

)
3.3.3 Model Validation

To validate the fitted models we employ quantile-quantile (Q-Q) plots and two
goodness-of-fit statistics, Kolmogorov-Smirnov (KS) and Anderson-Darling (AD).

In Figure 3.3, we present plots of the fitted-versus-observed quantiles for the nine
models of Section 3.3.2. In order to avoid visual distortions due to large spacings
between the most extreme observations, both axes in all the plots are measured on
the logarithmic scale. That is, the points plotted in those graphs are the following
pairs: (

log
(
Ĝ−1(ui)

)
, log

(
X(i)

))
, i = 1, . . . , 54,

where Ĝ−1 is the estimated parametric qf, X(1) ≤ · · · ≤ X(54) denote the ordered
losses, and ui = (i − 0.5)/54 is the quantile level. For the truncated approach,
Ĝ−1(ui) = F̂−1

(
ui+F̂ (195, 000)(1−ui)

)
; for the naive approach, Ĝ−1(ui) = F̂−1(ui);

for the shifted approach, Ĝ−1(ui) = F̂−1(ui) + 195, 000. Also, the corresponding cdf
and qf functions were evaluated using the MLE values from Table 3.6.
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Figure 3.3: Fitted-versus-observed log-losses for exponential (top row), Lomax (mid-
dle row) and lognormal (bottom row) distributions, using truncated (left), naive
(middle), and shifted (right) approaches.

We can see from Figure 3.3 that Lomax and lognormal models show a better
overall fit than exponential models, and especially in the extreme right tail. That
is, most of the points in those plots do not deviate from the 45◦ line. The naive
approach seems off, but the truncated and shifted approaches do a reasonably good
job for all distributions, with Lomax and lognormal models exhibiting slightly better
fits.
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The KS and AD goodness-of-fit statistics measure, respectively, the maximum
absolute distance and the cumulative weighted quadratic distance (with more weight
on the tails) between the empirical cdf F̂n(x) = n−1∑n

i=1 1{Xi ≤ x} and the para-
metrically estimated cdf Ĝ(x). Their respective computational formulas are given
by

KSn = max
1≤i≤n

{∣∣∣∣Ĝ(X(i))−
i− 1
n

∣∣∣∣, ∣∣∣∣Ĝ(X(i))−
i

n

∣∣∣∣}
and

ADn = −n+n
n∑
i=1

(
i/n

)2
log

(
Ĝ(X(i+1))
Ĝ(X(i))

)
−n

n−1∑
i=0

(
1− i/n

)2
log

(
1− Ĝ(X(i+1))
1− Ĝ(X(i))

)
,

where 195, 000 = X(0) ≤ X(1) ≤ · · · ≤ X(n) ≤ X(n+1) =∞ denote the ordered claim
severities. Also, Ĝ(X(i)) = F̂∗(X(i)) for the truncated approach, Ĝ(X(i)) = F̂ (X(i))
for the naive approach, and Ĝ(X(i)) = F̂ (X(i) − 195, 000) for the shifted approach.
Note that n = 54 and the corresponding cdf’s were evaluated using the MLE values
from Table 3.6. Also, the p-values of the KS and AD tests were computed using
parametric bootstrap with 10,000 simulation runs. For a brief description of the
parametric bootstrap procedure, see, e.g., Klugman, Panjer, Willmot (2012, Section
20.4.5).
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Table 3.7: Values of KS and AD statistics (with p-values in parentheses) for the
fitted models, using truncated, naive, and shifted approaches.

Kolmogorov-Smirnov Anderson-Darling
Model Truncated Naive Shifted Truncated Naive Shifted

Exponential 0.186 0.307 0.186 3.398 4.509 3.398
(0.004) (0.000) (0.004) (0.000) (0.000) (0.000)

Lomax 0.072 0.316 0.072 0.272 4.696 0.272
(0.632) (0.000) (0.631) (0.671) (0.000) (0.678)

Lognormal 0.068 0.136 0.086 0.244 1.614 0.308
(0.744) (0.013) (0.390) (0.793) (0.000) (0.584)

As the results of Table 3.7 suggest, all naive models are rejected by the KS
and AD tests (at the 5% significance level), which is consistent with the conclusions
based on Q-Q plots. The truncated and shifted exponential models are also rejected,
which strengthens our “weak” decisions based on Q-Q plots. Unfortunately, for this
data set, neither KS nor the AD test can help us with differentiating between the
truncated and shifted Lomax and lognormal models as all of them fit the data very
well.

3.3.4 VaR Estimates

Having fitted and validated the models, we now compute several point and interval
estimates of VaR(β) for all nine models. The purpose of calculating VaR(β) esti-
mates for all, “good” and “bad,” models is to see the impact that model fit (which
is driven by the initial assumptions) has on the capital estimates. The results are
summarized in Table 3.8, where, for completeness, empirical estimates of VaR(β) are
also reported. The confidence intervals are derived using Theorem 2.1.4 and based
on the variance and covariance estimates from Table 3.6. The following proposition
summarizes asymptotic distributions of V̂aR(β).
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Proposition 3.3.2. [Asymptotic Distributions of VaR Estimators.]

Exponential models:

V̂aR
Exp

T (β) is AN
(
−σ log(1− β), σ

2 log2(1− β)
n

)
,

V̂aR
Exp

N (β) is AN
(
−(σ + t) log(1− β), σ

2 log2(1− β)
n

)
,

V̂aR
Exp

S (β) is AN
(
−σ log(1− β) + t,

σ2 log2(1− β)
n

)
.

Lomax models:

V̂aR
Lomax

T (β) is AN
(
θ
(
(1− β)−1/α − 1)

)
, V

(
V̂aR

Lomax

T (β)
))
,

V̂aR
Lomax

N (β) is AN
(
θN
(
(1− β)−1/αN − 1)

)
, V

(
V̂aR

Lomax

N (β)
))
,

V̂aR
Lomax

S (β) is AN
(
(θ + t)

(
(1− β)−1/α − 1)

)
, V

(
V̂aR

Lomax

S (β)
))
,

where variance formulas are provided in (A.12)–(A.14).

Lognormal models:

V̂aR
LN

T (β) is AN
(
eµ+ σΦ−1(β), V

(
V̂aR

LN

T (β)
))

,

V̂aR
LN

N (β) is AN
(
eµ+ σκ+ σ

√
1 + rκ− κ2Φ−1(β), V

(
V̂aR

LN

N (β)
))

,

V̂aR
LN

S (β) is AN
(
eµS + σSΦ−1(β), V

(
V̂aR

LN

S (β)
))

,

where expressions for the variances and other terms are provided in (A.15)–(A.18).

Proof: See Appendix A. 2
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Table 3.8: Legal Risk: VaR(β) estimates (with 95% confidence intervals in paren-
theses), measured in millions and based on the fitted models, using truncated, naive,
and shifted approaches.

Model β Truncated Naive Shifted

Exponential 0.95 1.052 (0.771; 1.332) 1.636 (1.199; 2.072) 1.247 (0.966; 1.527)
0.99 1.617 (1.185; 2.048) 2.515 (1.844; 3.185) 1.812 (1.380; 2.243)
0.999 2.425 (1.778; 3.071) 3.772 (2.766; 4.778) 2.620 (1.973; 3.266)

Lomax 0.95 0.576 (-0.126; 1.278) 1.670 (1.134; 2.206) 1.514 (0.689; 2.339)
0.99 1.540 (0.101; 2.979) 2.664 (1.373; 3.954) 3.721 (-0.099; 7.540)
0.999 5.504 (-0.037; 11.045) 4.214 (0.865; 7.564) 12.797 (-10.925; 36.519)

Lognormal 0.95 0.328 (-0.262; 0.919) 1.220 (0.886; 1.554) 1.768 (0.814; 2.723)
0.99 0.981 (-0.365; 2.326) 1.912 (1.193; 2.631) 4.559 (1.238; 7.881)
0.999 3.343 (-0.172; 6.858) 3.163 (1.576; 4.751) 13.889 (0.874; 26.905)

Empirical estimates of VaR(β): 1.416 (for β = 0.95) and 3.822 (for β = 0.99 and 0.999).

We see from Table 3.8 that the VaR(β) estimates based on the naive approach
significantly differ from the rest. The difference between truncated and shifted
estimates at the exponential model is t = 195, 000. For the Lomax and lognormal
models, these two approaches, which exhibited nearly perfect fits to data, produce
substantially different estimates, especially at the very extreme tail. Finally, in view
of such large differences between parametric estimates (which resulted from models
with excellent fits), the empirical estimates do not seem completely off.

3.3.5 Model Predictions

As the final test of our models, we check their out-of-sample predictive power. Table
B.1 (Appendix B) provides the “unobserved” legal losses, which will be used to
verify how accurate are our model-based predictions. To start with, we note that
the empirical and shifted models are not able to produce meaningful predictions
because they assume that such data were impossible to occur (i.e., F̂ (195, 000) = 0
for these two approaches). So now we work only with the truncated and naive
models.

43



First of all, we report the estimated probabilities of losses below the data col-
lection threshold, F̂ (195, 000). For the exponential models it is 0.300 (naive) and
0.426 (truncated). For the Lomax models it is 0.310 (naive) and 0.794 (truncated).
For the lognormal models it is 0.128 (naive) and 0.907 (truncated). Secondly, using
these probabilities we can estimate the total, observed and unobserved, number of
losses: N̂ = 54

1− F̂ (195, 000)
. For the exponential models N̂ = 77.2 ≈ 77 (naive)

and N̂ = 94.1 ≈ 94 (truncated). For the Lomax models N̂ = 78.3 ≈ 78 (naive) and
N̂ = 262.1 ≈ 262 (truncated). For the lognormal models N̂ = 61.9 ≈ 62 (naive) and
N̂ = 578.1 ≈ 578 (truncated). Note how different from the rest are the estimates
of the truncated Lomax and lognormal models. By the way, one should not forget
that these models exhibited the best statistical fit for the observed data.

For predictions that are verifiable, in Table 3.9 we report model-based esti-
mates of the number of losses, the average loss, and the total loss in the interval[
150,000; 175,000

]
. We also provide the corresponding 95% confidence intervals for

the predictions. The intervals were constructed by using the variance and covariance
estimates of Table 3.6 in conjunction with Theorem 2.1.4.

Notice that using the data points from Table B.1 it is straightforward to verify
that

number of losses: 8
average loss: 156, 627
total loss: 1, 253, 017.

We see from Table 3.9 that, except for the average loss measure, there are big
disparities in predictions between different approaches. This has mostly to do with
the quality of model fit for the given data set, which is good for the truncated
Lomax and lognormal models but bad for the other models and/or approaches.
As a consequence, 95% confidence intervals based on the truncated Lomax and
lognormal models cover the actual values of two important measures—number of
losses (8) and total loss (1,253,017)—but those based on the truncated exponential
model do not. Moreover, all naive models fit the data poorly and produce point and
interval predictions that are even further from their respective targets than those
of the truncated exponential model. In addition, if one chose to ignore the model
validation step and proceeded directly to predictions based on the naive models,
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they would be falsely reassured by the consistency of such predictions (number of
losses: 2.6, 2.7, 2.1; total loss: 426,197, 441,155, 344,785).

Table 3.9: Legal Risk: Model-based predictions (with 95% confidence intervals in
parentheses) of several statistics for the unobserved losses between $150,000 and
$175,000.

Model Truncated Naive
number average total number average total
of losses loss loss of losses loss loss

Exponential 4.2 162,352 685,108 2.6 162,405 426,197
(3.0; 5.5) (162,312; 162,391) (452,840; 917,376) (1.9; 3.4) (162,379; 162,430) (141,592; 710,802)

Lomax 9.9 162,017 1,609,649 2.7 162,397 441,155
(3.3; 16.5) (161,647; 162,388) (543,017; 2,676,281) (1.8; 3.7) (162,343; 162,451) (288,324; 593,985)

Lognormal 10.7 161,938 1,736,367 2.1 162,868 344,785
(6.8; 14.7) (161,773; 162,103) (1,095,893; 2,376,842) (0.6; 3.6) (162,411; 163,324) (99,137; 590,432)

3.4 Preliminary Conclusions
In this chapter, we have studied the problem of model uncertainty in operational
risk modeling, which arises due to different (seemingly plausible) model assumptions.
We have focused on the statistical aspects of the problem by utilizing asymptotic
theorems of mathematical statistics, Monte Carlo simulations, and real-data exam-
ples. Similar to other authors who have studied some aspects of this topic before,
we conclude that:

• The naive and empirical approaches are inappropriate for determining VaR
estimates.

• The shifted approach, although fundamentally flawed (simply because it as-
sumes that operational losses below the data collection threshold are impos-
sible), has the flexibility to adapt to data well and successfully pass standard
model validation tests.

• The truncated approach is theoretically sound, when appropriate fits data
well, and (in our examples) produces lower VaR-based capital estimates than
those of the shifted approach.
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• The question that remains unanswered is: why are standard model validation
tools unable to detect flaws of the shifted approach?
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Chapter 4

Model Selection for Truncated and

Shifted Distributions

The structure of this chapter is as follows. In Section 4.1, we give an introduction to
several model selection techniques. After reviewing standard information criteria in
Section 4.2, information complexity is explored in Section 4.3, where Fisher infor-
mation matrices for the truncated and shifted versions of the Lomax, lognormal and
Champernowne distributions are used to compute information complexity. Further,
in Section 4.4, a new criterion based on the asymptotic mean curvature of the model
log-likelihood surface is developed. Finally, in Section 4.5, practical performance of
all information criteria presented in this chapter is studied by revisiting the case
study of Section 3.3.

4.1 Introduction
Let us recall that the unanswered question from Chapter 3 was why various model
validation tools are not able to distinguish between the truncated and shifted ap-
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proaches, although the latter is fundamentally flawed for estimating operational risk
capital. As mentioned in Section 1.3, this same question has been investigated by
Cavallo, Rosenthal, Wang, Yan (2012), who applied Vuong’s test and found that
the truncated lognormal and shifted lognormal models may be statistically indis-
tinguishable. Therefore, here we will revisit this challenging issue but approach it
from a different perspective; it will be treated as a model selection problem. In
addition to the lognormal distribution, we will also consider Champernowne and
Lomax models.

As will be seen in the numerical illustrations of Section 4.5, the well-established
model selection tools such as Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) are not effective at solving the problem described above.
Thus, we have to turn to more refined measures. In particular, we will first consider
the information complexity techniques of Bozdogan (1988) and then propose a new
criterion based on the asymptotic mean curvature of the log-likelihood surface.

Bozdogan (1988) has introduced so-called information complexity (ICOMP) us-
ing the inverse Fisher information matrix to penalize the complexity of variance-
covariance structure of model’s maximum likelihood estimators. His approach is a
generalization of the maximal information measure proposed by van Emden (1971).
Let In = n · I denote the Fisher information matrix based on a sample of size n.
The ICOMP penalty term is a function of the matrix I rank, trace and determi-
nant. Its minimum value is zero which is reached when the variances of parameter
estimators are equal and the covariances are zeros. This criterion is very effective
for regression-type models.

Our numerical experiments using the ICOMP criterion revealed, however, that
penalizing the inequality in estimators’ variances may not be appropriate for models
that involve scale and shape parameters, as those parameters usually take values
on quite different scales. A new criterion based on the asymptotic mean curvature
(AMC) of the log-likelihood surface is structurally similar to ICOMP, but designed
to penalize the flatness of the log-likelihood surface. Flat log-likelihood surfaces is
a common technical problem when one deals with truncated distributions (Cope,
2011). Thus, in a two-parameter case, the mean curvature H is the average of
two principal curvatures of the log-likelihood surface. When the normal vector is
oriented towards above the surface, the mean curvature H is negative. It does
approach zero from below for flat surfaces, which prompts us to define the penalty
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term in the AMC criterion as proportional to log(1− 1/H) (penalty approaches ∞,
when the surface becomes flatter).

4.2 Standard Information Criteria
Given a data set, X1, . . . , Xn, the amount of objective information contained in
the data is fixed. However, different models may be fitted to the same data set to
extract the information. In general, it is known that when the number of parameters
increases, the model likelihood increases as well.

Let L
(
θ1, . . . , θk

∣∣∣X1, . . . , Xn

)
be the likelihood function of a model with k pa-

rameters based on a sample of size n, and let θ̂1, . . . , θ̂k denote the corresponding
MLE of those parameters. The Akaike Information Criterion (Akaike, 1973) and
Bayesian Information Criterion (Schwarz, 1978) are defined as follows:

AIC = −2 logL
(
θ̂1, . . . , θ̂k

∣∣∣X1, . . . , Xn

)
+ 2k,

BIC = −2 logL
(
θ̂1, . . . , θ̂k

∣∣∣X1, . . . , Xn

)
+ k log n.

Using these criteria, the preferred model is the one that minimizes AIC and BIC.
Both criteria assume that the true model is included in the class of candidate models.
Also, we see that there is a competition between the increase in the log-likelihood
value and the increase in the number of model parameters in the AIC and BIC
formulas. If the increase in the log-likelihood value is not sufficient to compensate the
increase in the number of parameters, then it is not worthwhile to have the additional
parameters. Note also that the BIC criterion penalizes the model dimensionality
more than AIC for log n > 2.
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4.3 Information Complexity
The ICOMP criterion (Bozdogan, 1988) penalizes the interdependencies among pa-
rameter MLEs and is defined as follows:

ICOMP = −2 logL
(
θ̂1, . . . , θ̂k

∣∣∣X1, . . . , Xn

)
+ 2C1

(
I−1(θ̂1, . . . , θ̂k)

)
, (4.1)

where

C1
(
I−1(θ̂1, . . . , θ̂k)

)
= s

2 log
tr

(
I−1(θ̂1, . . . , θ̂k)

)
s

− 1
2 log

(
det

(
I−1(θ̂1, . . . , θ̂k)

))
,

with s, tr, and det denoting the rank, trace, and determinant of I−1 (the inverse
of Fisher information matrix), respectively. The log-likelihood function in (4.1)
corresponds to either the truncated approach (given by equation (3.5)) or shifted
approach (given by equation (3.7)) and can be evaluated for the models of Sec-
tion 2.2. Likewise, the Fisher information matrix I(θ1, . . . , θk), defined in Theorem
2.1.3, will be derived using the truncated (3.5) and shifted (3.7) likelihoods for the
same parametric distributions. The explicit formulas of ICOMP for the truncated
and shifted Lomax, lognormal, and Champernowne distributions are provided in
Appendix A. Specifically, ICOMPLomax

T and ICOMPLomax

S are given by (A.25) and
(A.26), respectively; ICOMPLN

T and ICOMPLN

S are given by (A.27) and (A.28),
respectively; ICOMPChamp

T and ICOMPChamp

S are given by (A.29) and (A.30), respec-
tively.

4.4 Asymptotic Mean Curvature
Motivated by the ICOMP criterion, in this section we will derive and analyze the
mean curvature of the log-likelihood surface, which has similarities with ICOMP.
For the truncated distributions, one often needs to deal with flat log-likelihood sur-
faces (Cope, 2011), which may cause instability in MLE. The mean curvature is the
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average of principal curvatures. The curvature of a surface is related to the flat-
ness/steepness of the surface. If the log-likelihood surface is flat, then convergence
of numerical algorithms towards the surface maximum is very slow, leading to unsta-
ble parameter estimates. A steeper log-likelihood surface will have the log-likelihood
value converge faster to its maximum value, leading to more stable parameter esti-
mates. In this sense, it is better to have a steeper log-likelihood surface.

To simplify the derivations (for technical details, see for example, Raussen, 2008,
p. 109–132), we will focus on the two-dimensional surfaces (denoted `(θ1, θ2) =
`(θ)), but the general version is not difficult to rederive. To find the mean curvature
of the 2-parameter log-likelihood surface, let us start by defining

~v = (θ1, θ2, `(θ1, θ2)).

The first partial derivatives of ~v with respect to θ1 and θ2 are

~vθ1 =
(

1, 0, ∂`
∂θ1

)
, ~vθ2 =

(
0, 1, ∂`

∂θ2

)
,

respectively. The second partial derivatives are

~vθ1θ1 =
(

0, 0, ∂
2`

∂θ2
1

)
, ~vθ1θ2 =

(
0, 0, ∂2`

∂θ1θ2

)
, ~vθ2θ2 =

(
0, 0, ∂

2`

∂θ2
2

)
.

Then, the normal vector of `(θ1, θ2) is derived as follows:

A = ~vθ1 · ~vθ1 = 1 +
(
∂`

∂θ1

)2

,

B = ~vθ1 · ~vθ2 =
(
∂`

∂θ1

)
·
(
∂`

∂θ2

)
,
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C = ~vθ2 · ~vθ2 = 1 +
(
∂`

∂θ2

)2

.

~vθ1 × ~vθ2 =
(
− ∂`

∂θ1
, − ∂`

∂θ2
, 1
)
,

~n = ~vθ1 × ~vθ2

|~vθ1 × ~vθ2|

=

 − ∂`
∂θ1√(

∂`
∂θ1

)2
+
(
∂`
∂θ2

)2
+ 1

,
− ∂`
∂θ2√(

∂`
∂θ1

)2
+
(
∂`
∂θ2

)2
+ 1

,
1√(

∂`
∂θ1

)2
+
(
∂`
∂θ2

)2
+ 1

 .

The mean curvature H follows from these steps:

a = ~n · ~vθ1θ1 =
∂2`
∂θ2

1√(
∂`
∂θ1

)2
+
(
∂`
∂θ2

)2
+ 1

,

b = ~n · ~vθ1θ2 =
∂2`

∂θ1∂θ2√(
∂`
∂θ1

)2
+
(
∂`
∂θ2

)2
+ 1

,

c = ~n · ~vθ2θ2 =
∂2`
∂θ2

2√(
∂`
∂θ1

)2
+
(
∂`
∂θ2

)2
+ 1

.

H =
(1

2

)(
aC − 2bB + Ac

AC −B2

)
.
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Thus, the mean curvature of the two-parameter log-likelihood surface is:

H =
∂2`(θ)
∂θ2

1

[
1 +

(
∂`(θ)
∂θ2

)2
]
− 2 ∂2`(θ)

∂θ1∂θ2

∂`(θ)
∂θ1

∂`(θ)
∂θ2

+ ∂2`(θ)
∂θ2

2

[
1 +

(
∂`(θ)
∂θ1

)2
]

2
√((

∂`(θ)
∂θ1

)2
+
(
∂`(θ)
∂θ2

)2
+ 1

)3
. (4.2)

Next, we formulate the following proposition to connect convergence in proba-
bility involving the mean curvature of `(θ) with an expression in terms of entries of
the corresponding Fisher information matrix I.
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Proposition 4.4.1. [Asymptotic Behavior of Mean Curvature of Two-parameter
Log-likelihood Surfaces.]

−H√
n
−

1
n
· tr(I) + 2 · det(I)
2
√

(tr(I) + 1
n
)3

P−→ 0.

Proof: See Appendix A. 2

Hence, in view of Proposition 4.4.1, we define the new information criterion as

AMC = −2
n∑
i=1

log f̃(Xi|θ̂) + 2 log
(

1− 1
H

)
, (4.3)

where

H = n · tr(I) + 2n2 · det(I)
−2
√

(n · tr(I) + 1)3
. (4.4)

Note that by Proposition 4.4.1, H as defined in (4.4) behaves the same way as
the mean curvature H in (4.2) asymptotically. The penalty term in (4.3) may be
constructed using other transformations instead of the logarithmic transformation.
Specific expressions of the AMC criterion for the truncated and shifted Lomax, log-
normal and Champernowne distributions are provided in Appendix A (see formulas
(A.31)–(A.36)).

4.5 Case Study: Legal Risk - Revisited
Here we revisit the case study of Section 3.3 and include Champernowne models in
addition to Lomax and lognormal models. Suppose Y1, . . . , YN are i.i.d. and follow
a Champernowne distribution, with pdf, cdf, and qf given by (2.9), (2.10), and
(2.11), respectively. Maximization of the log-likelihoods (in terms of the observed
data X1, . . . , Xn) obtained by plugging Champernowne pdf and cdf into (3.5) and
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(3.7),

logLT = n logα + (α− 1)
n∑
i=1

log(Xi) + n log(tα +Mα)

− 2
n∑
i=1

log(Xα
i +Mα), (4.5)

logLS = n logα + nα log(M) + (α− 1)
n∑
i=1

log(Xi − t)

− 2
n∑
i=1

log((Xi − t)α +Mα) (4.6)

does not yield explicit formulas for MLEs, but they can be solved numerically.
The resulting MLE values are: α̂T = 1.609, M̂T = 124, 481 (for truncated) and
α̂S = 1.152, M̂S = 141, 105 (for shifted).

Further, both models pass the visual inspection of Q-Q plots (these will not be
presented here) and goodness-of-fit tests. For the truncated model, the p-values are
0.799 (for KS) and 0.415 (for AD). And for the shifted model, they are 0.450 (KS)
and 0.407 (AD).

Finally, in Table 4.1 we present the values of all information criteria considered
in this chapter for truncated and shifted Champernowne, Lomax, and lognormal
models.

Table 4.1: Legal Risk: Information measures for truncated and shifted Champer-
nowne, lognormal, and Lomax models (t = 195, 000, n = 54).

Champernowne Lognormal Lomax
Criterion T S T S T S

−2 logL 1,473 1,474 1,472 1,472 1,472 1,472
AIC 1,477 1,478 1,476 1,476 1,476 1,476
BIC 1,481 1,482 1,480 1,480 1,480 1,480

ICOMP 1,498 1,497 1,478 1,472 1,498 1,498
AMC 1,478 1,479 1,478 1,473 1,477 1,477

As we can see from the table, the six models are indistinguishable using tradi-
tional information criteria such as AIC and BIC, since the values of each criterion are
very close for all models, with the shifted Champernowne model having a little bit
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larger value though. The use of new information measures (ICOMP and AMC) does
not help with Lomax or Champernowne models, but has the ability to distinguish
shifted lognormal model from the truncated lognormal model, favoring the shifted
one since it has lower values of ICOMP and AMC. Moreover, if we compare across
Lomax, lognormal, and Champernowne models, ICOMP values are close for Lomax
and Champernowne models, but significantly differ from those of lognormal models.
This is due to quite different scales of shape, scale, and location parameters, while
ICOMP penalizes the inequality in variances of parameters. Note that this phe-
nomenon disappears in AMC values. Despite being close in terms of information
criteria and passing all model validation tests, the models produce very different
VaR (0.99) estimates from 980, 790 (truncated lognormal) to 7, 812, 655 (shifted
Champernowne). The other models produce VaR estimates between 1, 539, 996 and
4, 704, 211.
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Chapter 5

Conclusions and Future Research

5.1 Concluding Remarks
In this dissertation, we have concentrated on statistical aspects of operational risk
modeling. Over the last couple decades, operational risk has emerged as a major
risk factor for banking and insurance industries, public organizations, and private
businesses. Due to a number of bankruptcies by well-established internationally-
known institutions that were, in part, caused by operational risk events (e.g., collapse
of Barings Bank in 1995 and Lehman Brothers in 2008), this risk is now viewed as
a serious threat to global economy. In such environment regulation of banking
and insurance industries is crucial, and it has been evolving rapidly. Basel III and
Solvency II are the latest editions of international regulatory frameworks for banks
and insurers, respectively. Moreover, the so-called AMA (Advanced Measurement
Approaches) methodologies are now commonly applied to set regulatory minimum
capital reserves. All this progress, however, generates new challenges, including
statistical modeling challenges.

Within the AMA framework, the LDA (Loss Distribution Approach) is the most
sophisticated tool for estimating operational risk capital which is defined as an
extreme quantile of the annual aggregate loss distribution, and called value-at-risk
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or VaR. The LDA implementation, however, is tricky because the available loss
severities used for constructing LDA models are observed above a certain (high)
threshold. Such a setup provoked numerous discussions and disagreements on how to
treat the data collection threshold in operational risk modeling. Several approaches
for estimating VaR are documented in the academic and professional literatures: the
empirical approach, the “naive” approach, the shifted approach, and the truncated
approach. Since each approach is based on a different set of assumptions, different
probability models emerge leading to model uncertainty. It is worth mentioning here
that the model uncertainty considered in this dissertation is an epistemic one, not a
random uncertainty. As our careful analysis has shown, it can be reduced (but not
completely eliminated) by employing sound model validation tools and in some cases
may require out-of-model knowledge. In a more general context, model uncertainty
is an important topic within the model risk governance framework as regulated by
the OCC and the Federal Reserve Bank in the U.S. and the Basel Committee on
Banking Supervision for the G20 countries (see, e.g., Office of the Comptroller of
the Currency, 2011, and Basel Coordination Committee, 2014).

To quantify the effect of model uncertainty on risk measurements, we used
asymptotic theorems of mathematical statistics (e.g., asymptotic normality of sam-
ple quantiles, large-sample properties of maximum likelihood estimators, and the
delta method), Monte Carlo simulations, and real-data examples. This effect has
been evaluated by computing the probability of each approach producing conserva-
tive capital allocations based on the VaR measure. As specific parametric examples
we have employed exponential, Lomax, lognormal and Champernowne distributions.
For numerical illustrations, we have relied on a data set for legal losses in a busi-
ness unit (Cruz, 2002). Similar to other authors who studied some aspects of this
problem in the past, we have concluded that:

• The naive and empirical approaches are inappropriate for determining VaR
estimates.

• The shifted approach, although fundamentally flawed (simply because it as-
sumes that operational losses below the data collection threshold are impos-
sible), has the flexibility to adapt to data well and successfully pass standard
model validation tests.

• The truncated approach is theoretically sound, when appropriate fits data
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well, and (in our examples) produces lower VaR-based capital estimates than
those of the shifted approach.

The investigations we have conducted, however, raised new questions: why stan-
dard model validation tools are unable to distinguish between the truncated and
shifted approaches? And how to choose between several truncated models that pass
typical goodness-of-fit tests, but produce markedly different VaR estimates? In the
second part of the dissertation, we have proceeded to explore these issues further
treating them as a model selection problem. Using standard measures such as AIC
(Akaike Information Criterion) and BIC (Bayesian Information Criterion) we could
not get satisfactory answers to the questions formulated above. This has prompted
us to search for more refined measures. Therefore, we first have identified a crite-
rion based on information complexity (Bozdogan, 1988) and then proposed a new
criterion based on the asymptotic mean curvature of the model log-likelihood. Ap-
plication of all model selection measures to the legal losses data have shown that
these criteria are more effective at distinguishing between the competing models
than AIC and BIC.

5.2 Future Research
The research presented in this dissertation invites follow-up studies in several di-
rections. For example, as the first and most obvious direction, one may choose
to explore these issues for other popular in practice distributions such as Burr or
loggamma. If the chosen model lends itself to analytic investigations, then our ap-
proach in Section 3.2.2 is a blueprint for analysis. Otherwise, one may follow Section
3.2.3 for a simulations-based approach.

Another interesting direction would be to study further the newly proposed
AMC (Asymptotic Mean Curvature) criterion. One could try to generalize it to ar-
bitrary dimension surfaces and/or replace mean curvature with Gaussian curvature.
Also, understanding statistical properties of AMC would help to refine this method.
Overall, development of model-selection strategies for truncated, but not necessarily
nested, models may be quite challenging due to flatness of the truncated likelihoods,
a phenomenon frequently encountered in practice (see Cope, 2011). This raises a
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question whether it is worthwhile to stay with maximum likelihood procedures for
fitting operational risk models or better pursue other parameter estimation methods.

Further, a research direction that has a number of desirable properties and may
also help with the flat likelihood problem is robust model fitting. There are several
excellent contributions to this topic in the operational risk literature (see Horbenko,
Ruckdeschel, Bae, 2011, Opdyke and Cavallo, 2012, and Chau, 2013), but more
work could be done. In particular, the method of trimmed moments introduced by
Brazauskas, Jones, Zitikis (2009) and Brazauskas (2009) and extended to several
loss severity models by Brazauskas and Kleefeld (2009, 2011, 2014) and Kleefeld
and Brazauskas (2012) offers various degrees of robustness and is computationally
efficient. However, it needs to be redesigned for truncated distributions and hence
become applicable to operational risk models.

Finally, the ultimate goal of risk management is to measure and manage all rele-
vant risks simultaneously in a consolidated framework, and to align actual risk and
regulatory capital more closely (see, e.g., Tarullo, 2008, p. 158). Thus aggregation
of the severity and frequency distributions into the compound process for a particu-
lar time frame is necessary. This is typically done using compound Poisson models,
but other compound models could be explored as well. Finding operational VaR (a
quantile of the aggregate distribution) then is an inversion problem that may involve
numerical algorithms such as Monte Carlo approximations, fast Fourier transform,
and Panjer recursion.
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Appendix A: Proofs and

Derivations

Proof of Proposition 3.3.1:

Exponential models: Recall (3.8):

`T = logLT =
n∑
i=1

−(Xi − t)
σ

− n log σ,

∂`T
∂σ

=
n∑
i=1

Xi − t
σ2 − n

σ
.

Put n = 1 and use generic X:

∂2`T
∂σ2 = −2(X − t)

σ3 + 1
σ2 .

J = −E
[
∂2`T
∂σ2

]
= 2
σ3 E [X − t]− 1

σ2 = 2σ
σ3 −

1
σ2 = 1

σ2 ,
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E
(
X
)

= E(X) = σ + t,

σ̂T = X − t, σ̂N = X, σ̂S = X − t,

E (σ̂T ) = σ, E (σ̂N) = σ + t, E (σ̂S) = σ.

V (σ̂T ) = V (σ̂N) = V (σ̂S) = 1
n
· J−1 = σ2

n
.

Lomax models: Put 1/γ = α, µ = 0, σ/γ = θ in (2.2) and (2.3) to get Lomax cdf
and pdf:

F (x) = 1−
(

θ

θ + x

)α
, f(x) = αθα

(θ + x)α+1 , x > 0.

Truncated Lomax pdf:

f∗(x) = f(x)
1− F (t) = α(θ + t)α

(θ + x)α+1 , x > t.

Recall (3.11):

`T = logLT = n logα + nα log(θ + t)− (α + 1)
n∑
i=1

log(θ +Xi),



∂`T
∂α

= n

α
+ n log(θ + t)−

n∑
i=1

log(θ +Xi) = 0,

∂`T
∂θ

= nα

θ + t
− (α + 1)

n∑
i=1

1
θ +Xi

= 0,

eliminating α to obtain

n−
[
1 + 1

n

n∑
i=1

log
(
θ +Xi

θ + t

)]
n∑
i=1

θ + t

θ +Xi

= 0,
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which is solved numerically for θ̂T , and

α̂T = 1
1
n

n∑
i=1

log
(
θ̂T +Xi

θ̂T + t

) .

Similarly,
α̂N = 1

1
n

n∑
i=1

log
(
θ̂N +Xi

θ̂N

) ,

α̂S = 1
1
n

n∑
i=1

log
(
θ̂S +Xi − t

θ̂S

) .

Note that
θ̂S = θ̂T + t, α̂S = α̂T ,

since

P
{
X ≤ x

∣∣∣X > t
}

= 1−
(

θ + t

θ + t+ x− t

)α
, x > t,

as shown in (2.4), which suggests that maximizing

`T = logLT =
n∑
i=1

log
(

f(Xi)
1− F (t)

)

is equivalent to maximizing

`S = logLS =
n∑
i=1

log f(Xi − t).

E (α̂T ) = α, E (α̂N) = αN , E (α̂S) = α,

E
(
θ̂T
)

= θ, E
(
θ̂N
)

= θN , E
(
θ̂S
)

= θ + t.
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Σ = I−1, I =
I11 I12

I21 I22

 .
V (α̂) = 1

n
· I22

I11I22 − I2
12
,

V
(
θ̂
)

= 1
n
· I11

I11I22 − I2
12
,

COV
(
α̂, θ̂

)
= 1
n
· −I12

I11I22 − I2
12
.

To derive I for the truncated Lomax model, set n = 1 and use generic X.

I11 = −E
[
∂2`T
∂α2

]
= −E

[
− 1
α2

]
= 1
α2 ,

I12 = I21 = −E
[
∂2`T
∂α∂θ

]
= −E

[ 1
θ + t

− 1
X + θ

]

= − 1
θ + t

+
∫ ∞
t

(x+ θ)−1 α(θ + t)α
(θ + x)α+1 dx

= − 1
θ + t

+ α

(t+ θ)−α ·
(t+ θ)−α−1

α + 1 = − 1
θ + t

· 1
α + 1 ,

I22 = −E
[
∂2`T
∂θ2

]
= −E

[
− α

(θ + t)2 + α + 1
(X + θ)2

]

= α

(θ + t)2 − (α + 1)
∫ ∞
t

(x+ θ)−2 · α(θ + t)α
(θ + x)α+1 dx

= α

(θ + t)−α ·
(t+ θ)−α−2

α + 2 = α

(α + 2)(t+ θ)2 ,
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1
n

ΣLomax

S =


V (α̂S) COV

(
α̂S, θ̂S

)

COV
(
α̂S, θ̂S

)
V
(
θ̂S
)



= 1
n

ΣLomax

T =


V (α̂T ) COV

(
α̂T , θ̂T

)

COV
(
α̂T , θ̂T

)
V
(
θ̂T
)



=


α2(α + 1)2

n

α(α + 1)(α + 2)(t+ θ)
n

α(α + 1)(α + 2)(t+ θ)
n

(α + 1)2(α + 2)(t+ θ)2

nα

 , (A.1)

and similarly,

1
n

ΣLomax

N =


V (α̂N) COV

(
α̂N , θ̂N

)

COV
(
α̂N , θ̂N

)
V
(
θ̂N
)



=


α2(α + 1)2

n

α(α + 1)(α + 2)θ
n

α(α + 1)(α + 2)θ
n

(α + 1)2(α + 2)θ2

nα

 . (A.2)

Lognormal models:

E[µ̂S] = E[log(X − t)] = µS,
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E[σ̂2
S] = V[log(X − t)] = σ2

S.

1
n

ΣLN

S =


V (µ̂S) COV (µ̂S, σ̂S)

COV (µ̂S, σ̂S) V (σ̂S)



=


σ2
S

n
0

0 σ2
S

2n

 . (A.3)

E[µ̂N ] = E[log(X)] = E[log(Y )
∣∣∣Y > t]

= E[µ+ σZ
∣∣∣Z > r] = µ+ σκ, (A.4)

where

κ = φ(r)
1− Φ(r) , r = log(t)− µ

σ
. (A.5)

E
[
log2 X

]
= E[log2(Y )

∣∣∣Y > t] = E[(µ+ σZ)2
∣∣∣Z > r]

= µ2 + 2µσ E[Z
∣∣∣Z > r] + σ2 E[Z2

∣∣∣Z > r]

= µ2 + 2µσκ+ σ2 rφ(r) + 1− Φ(r)
1− Φ(r)

= µ2 + 2µσκ+ σ2(rκ+ 1).
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E[σ̂2
N ] = V[log(X)] = E[log2(X)]− E[log(X)]2

= µ2 + 2µσκ+ σ2(rκ+ 1)− (µ+ σκ)2

= σ2(1 + rκ− κ2). (A.6)

1
n

ΣLN

N =


V (µ̂N) COV (µ̂N , σ̂N)

COV (µ̂N , σ̂N) V (σ̂N)



= σ2

n
·


2 + 3rκ

2 + 3rκ− 4κ2
−2κ

2 + 3rκ− 4κ2

−2κ
2 + 3rκ− 4κ2

1
2 + 3rκ− 4κ2

 . (A.7)

Recall (3.14):

`T = logLT = C1 − n log σ − 1
2σ2

n∑
i=1

(logXi − µ)2 − n log
(

1− Φ
(

log t− µ
σ

))
,



∂`T
∂µ

= 1
σ2

n∑
i=1

(log(Xi)− µ)− n

σ
· κ,

∂`T
∂σ

= −n
σ

+ 1
σ3

n∑
i=1

(log(Xi)− µ)2 − n

σ
· rκ,
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Put n = 1 and use generic X to derive I:

∂2`T
∂µ2 = ∂

∂µ

 logX − µ
σ2 − 1

σ
·

φ
(

log t−µ
σ

)
1− Φ

(
log t−µ
σ

)


= −1
σ2 + 1

σ2 ·
log t−µ
σ2 · φ

(
log t−µ
σ

)
· (−σ) (1− Φ(r)) + φ2(r)

(1− Φ(r))2

= −1
σ2

(
1 + rκ− κ2

)
,

∂2`T
∂µ∂σ

= ∂

∂σ

 logX − µ
σ2 − 1

σ
·

φ
(

log t−µ
σ

)
1− Φ

(
log t−µ
σ

)


= −2(logX − µ)
σ3 + κ

σ2

− 1
σ
·

(log t−µ)2

σ3 · φ
(

log t−µ
σ

)
(1− Φ(r)) + φ(r)

(
− log t−µ

σ2

)
φ(r)

(1− Φ(r))2

= −2(logX − µ)
σ3 + κ

σ2 −
r2κ

σ2 + rκ2

σ2 ,

∂2`T
∂σ2 = ∂

∂σ

−1
σ

+ (logX − µ)2

σ3 − log t− µ
σ2 ·

φ
(

log t−µ
σ

)
1− Φ

(
log t−µ
σ

)


= 1
σ2 −

3(logX − µ)2

σ4 + 2(log t− µ)
σ3 · κ

− r

σ
·

(log t−µ)2

σ3 · φ
(

log t−µ
σ

)
(1− Φ(r)) + φ(r)

(
− log t−µ

σ2

)
φ(r)

(1− Φ(r))2

= 1
σ2 −

3(logX − µ)2

σ4 + 2rκ
σ2 −

r3κ

σ2 + r2κ2

σ2 ,

I11 = −E
[
∂2`T
∂µ2

]
= 1
σ2

(
1 + rκ− κ2

)
, (A.8)
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I12 = I21 = −E
[
∂2`T
∂µ∂σ

]
= 2
σ3 · E [logX]− 2µ

σ3 −
κ

σ2 + r2κ

σ2 −
rκ2

σ2

= 2
σ3 (µ+ σκ)− 2µ

σ3 −
κ

σ2 + r2κ

σ2 −
rκ2

σ2

= κ(1 + r2 − rκ)
σ2 , (A.9)

I22 = −E
[
∂2`T
∂σ2

]
=

3 · E
[
log2 X

]
σ4 − 6µ · E [logX]

σ4 + 3µ2

σ4 + −1− 2rκ+ r3κ− r2κ2

σ2

= 3(µ2 + 2µσκ+ σ2(rκ+ 1))
σ4 − 6µ(µ+ σκ)

σ4 + 3µ2

σ4 + −1− 2rκ+ r3κ− r2κ2

σ2

= 2 + rκ+ r3κ− r2κ2

σ2 , (A.10)

I11I22 − I2
12 = 2 + 3rκ− 2κ2 + r3κ− rκ3 + r4κ2 − 2r3κ3 + r2κ4

σ4 .

1
n

ΣLN

T =


V (µ̂T ) COV (µ̂T , σ̂T )

COV (µ̂T , σ̂T ) V (σ̂T )



= σ2

n
·


a11 a12

a21 a22

 , (A.11)

where
a11 = 2 + rκ+ r3κ− r2κ2

2 + 3rκ− 2κ2 + r3κ− rκ3 + r4κ2 − 2r3κ3 + r2κ4 ,

a12 = a21 = −κ(1 + r2 − rκ)
2 + 3rκ− 2κ2 + r3κ− rκ3 + r4κ2 − 2r3κ3 + r2κ4 ,
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a22 = 1 + rκ− κ2

2 + 3rκ− 2κ2 + r3κ− rκ3 + r4κ2 − 2r3κ3 + r2κ4 .

2

Proof of Proposition 3.3.2:

Exponential models:
E (σ̂T ) = σ, V (σ̂T ) = σ2

n
.

E (σ̂N) = σ + t, V (σ̂N) = σ2

n
.

E (σ̂S) = σ, V (σ̂S) = σ2

n
.

V̂aRT (β) = −σ̂T log(1− β),

V̂aRN(β) = −σ̂N log(1− β),

V̂aRS(β) = −σ̂S log(1− β) + t.

E
(
V̂aRT (β)

)
= −σ log(1− β),

E
(
V̂aRN(β)

)
= −(σ + t) log(1− β),

E
(
V̂aRS(β)

)
= −σ log(1− β) + t.

Differentiating F−1(β) = −σ log(1− β), we get

∂F−1(β)
∂σ

= − log(1− β).
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Applying Theorem 2.1.4,

V
(
V̂aRT (β)

)
= V

(
V̂aRN(β)

)
= V

(
V̂aRT (β)

)
= σ2 log2(1− β)

n
.

Lomax models:

E (α̂T ) = α, E
(
θ̂T
)

= θ, E
(
V̂aR

Lomax

T (β)
)

= θ
(
(1− β)−1/α − 1)

)
.

Differentiating F−1(β) = θ
(
(1− β)−1/α − 1)

)
, we obtain

∂F−1(β)
∂α

= θ(1− β)−1/α log(1− β)
α2 ,

∂F−1(β)
∂θ

= (1− β)−1/α − 1.

Since V̂aR
Lomax

T (β) is obtained by plugging unbiased MLE parameter estimates into
F−1(β), applying Theorem 2.1.4,

V
(
V̂aR

Lomax

T (β)
)

=
(
∂F−1(β)
∂α

)2

V (α̂T ) +
(
∂F−1(β)

∂θ

)2

V
(
θ̂T
)

+ 2∂F
−1(β)
∂α

∂F−1(β)
∂θ

COV
(
α̂T , θ̂T

)
, (A.12)

where the variance-covariance matrix is given in (A.1).

E (α̂N) = αN , E
(
θ̂N
)

= θN , E
(
V̂aR

Lomax

N (β)
)

= θN
(
(1− β)−1/αN − 1)

)
.
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V̂aR
Lomax

N (β) is obtained by plugging biased MLE estimates of α and θ into
F−1(β), and applying Theorem 2.1.4,

V
(
V̂aR

Lomax

N (β)
)

=
(
θN(1− β)−1/αN log(1− β)

α2
N

)2

V (α̂N)

+
(
(1− β)−1/αN − 1

)2
V
(
θ̂N
)

+ 2
(
θN(1− β)−1/αN log(1− β)

α2
N

)(
(1− β)−1/αN − 1

)

×COV
(
α̂N , θ̂N

)
, (A.13)

where the variance-covariance matrix is given in (A.2).

E (α̂S) = α, E
(
θ̂S
)

= θ + t, E
(
V̂aR

Lomax

S (β)
)

= (θ + t)
(
(1− β)−1/α − 1)

)
.

V̂aR
Lomax

S (β) is obtained by plugging unbiased MLE estimate of α and biased MLE
estimate of θ into F−1(β) + t, and applying Theorem 2.1.4,

V
(
V̂aR

Lomax

S (β)
)

=
(
∂F−1(β)
∂α

+ t(1− β)−1/α log(1− β)
α2

)2

V (α̂S)

+
(
∂F−1(β)

∂θ

)2

V
(
θ̂S
)

+ 2
(
∂F−1(β)
∂α

+ t(1− β)−1/α log(1− β)
α2

)
∂F−1(β)

∂θ

×COV
(
α̂S, θ̂S

)
, (A.14)
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where the variance-covariance matrix is given in (A.1).

Lognormal models: Differentiating F−1(β) = eµ+ σΦ−1(β), we obtain

∂F−1(β)
∂µ

= eµ+ σΦ−1(β),

∂F−1(β)
∂σ

= Φ−1(β) · eµ+ σΦ−1(β).

E (µ̂T ) = µ, E (σ̂T ) = σ, E
(
V̂aR

LN

T (β)
)

= eµ+ σΦ−1(β).

Applying Theorem 2.1.4,

V
(
V̂aR

LN

T (β)
)

=
(
∂F−1(β)
∂µ

)2

V (µ̂T ) +
(
∂F−1(β)
∂σ

)2

V (σ̂T )

+ 2∂F
−1(β)
∂µ

∂F−1(β)
∂σ

COV (µ̂T , σ̂T ) , (A.15)

where the variance-covariance matrix is given in (A.11).

E (µ̂N) = µ+ σκ, E (σ̂N) = σ
√

1 + rκ− κ2,

E
(
V̂aR

LN

N (β)
)

= eµ+ σκ+ σ
√

1 + rκ− κ2Φ−1(β), (A.16)

with r and κ as defined in (A.5). Applying Theorem 2.1.4,
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V
(
V̂aR

LN

N (β)
)

=
(
eµ+ σκ+ σ

√
1 + rκ− κ2Φ−1(β)

)2

V (µ̂N)

+
((
κ+
√

1 + rκ− κ2Φ−1(β)
)
eµ+ σκ+ σ

√
1 + rκ− κ2Φ−1(β)

)2

×V (σ̂N)

+ 2
(
κ+
√

1 + rκ− κ2Φ−1(β)
)(

eµ+ σκ+ σ
√

1 + rκ− κ2Φ−1(β)
)2

×COV (µ̂N , σ̂N) , (A.17)

where the variance-covariance matrix is given in (A.7).

E (µ̂S) = µS, E (σ̂S) = σS, E
(
V̂aR

LN

S (β)
)

= eµS + σSΦ−1(β).

Applying Theorem 2.1.4,

V
(
V̂aR

LN

S (β)
)

=
(
eµS + σSΦ−1(β)

)2
V (µ̂S)

+
(

Φ−1(β)eµS + σSΦ−1(β)
)2

V (σ̂S)

+ 2Φ−1(β)
(
eµS + σSΦ−1(β)

)2
COV (µ̂S, σ̂S) , (A.18)

where the variance-covariance matrix is given in (A.3). 2
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Derivation of I for Champernowne models:

Truncated Champernowne pdf and cdf:

f∗(x) = f(x)
1− F (t) = αxα−1(tα +Mα)

(xα +Mα)2 , x > t,

F∗(x) = F (x)
1− F (t) = xα(tα +Mα)

Mα(xα +Mα) , x > t.

Recall (4.5):

`T = n logα + (α− 1)
n∑
i=1

log(Xi) + n log(tα +Mα)− 2
n∑
i=1

log(Xα
i +Mα),



∂`T
∂α

= n

α
+

n∑
i=1

logXi + n · t
α log t+Mα logM

tα +Mα
− 2

n∑
i=1

Xα
i logXi +Mα logM

Xα
i +Mα

,

∂`T
∂M

= n · αM
α−1

tα +Mα
− 2

n∑
i=1

αMα−1

Xα
i +Mα

,
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Put n = 1 and use generic X:

∂2`T
∂α2 = −1

α2 + tαMα (log t− logM)2

(tα +Mα)2 − 2 · X
αMα (logX − logM)2

(Xα +Mα)2 ,

∂2`T
∂M∂α

= −2Mα−1

Xα +Mα
+ 2αMα−1Xα (logX − logM)

(Xα +Mα)2

+ Mα−1

tα +Mα
− αMα−1tα (log t− logM)

(tα +Mα)2 ,

∂2`T
∂M2 = −2 · α(α− 1)Mα−2

Xα +Mα
+ 2 · (αMα−1)2

(Xα +Mα)2

+ α(α− 1)Mα−2

tα +Mα
− (αMα−1)2

(tα +Mα)2 ,

E
[
XαMα (logX − logM)2

(Xα +Mα)2

]
=
∫ ∞
t

xαMα (log x− logM)2

(xα +Mα)2 d
xα(tα +Mα)
Mα(xα +Mα)

= tα +Mα

Mα

∫ ∞
(t/M)α

w log2 w

α2 (w + 1)2 d
w

w + 1

= tα +Mα

6α2Mα

∫ ∞
(t/M)α

log2 w · 6w
(w + 1)4 dw,
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I11 = −E
[
∂2`T
∂α2

]
= 1
α2 −

tαMα (log t− logM)2

(tα +Mα)2 + 2 · E
[
XαMα (logX − logM)2

(Xα +Mα)2

]

= 1
α2 −

tαMα (log t− logM)2

(tα +Mα)2

+ tα +Mα

3α2Mα

∫ ∞
(t/M)α

log2 w · 6w
(w + 1)4 dw, (A.19)

E
[
XαMα−1 (logX − logM)

(Xα +Mα)2

]
=
∫ ∞
t

xαMα−1 (log x− logM)
(xα +Mα)2 d

xα(tα +Mα)
Mα(xα +Mα)

= tα +Mα

Mα+1

∫ ∞
(t/M)α

w logw
α (w + 1)2 d

w

w + 1

= tα +Mα

6αMα+1

∫ ∞
(t/M)α

logw · 6w
(w + 1)4 dw,

E
[ 1
Xα +Mα

]
=
∫ ∞
t

1
xα +Mα

d
xα(tα +Mα)
Mα(xα +Mα)

= tα +Mα

M2α

∫ ∞
(t/M)α

1
(w + 1)3 dw

= tα +Mα

2M2α((t/M)α + 1)2 = 1
2(tα +Mα) ,
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I12 = I21 = −E
[
∂2`T
∂M∂α

]

= 2Mα−1 · E
[ 1
Xα +Mα

]
− 2α · E

[
XαMα−1 (logX − logM)

(Xα +Mα)2

]

− Mα−1

tα +Mα
+ αMα−1tα (log t− logM)

(tα +Mα)2

= −t
α +Mα

3Mα+1

∫ ∞
(t/M)α

logw · 6w
(w + 1)4 dw

+ αMα−1tα (log t− logM)
(tα +Mα)2 , (A.20)

E
[

1
(Xα +Mα

)2
]

=
∫ ∞
t

1
(xα +Mα)2 d

xα(tα +Mα)
Mα(xα +Mα)

= tα +Mα

M3α

∫ ∞
(t/M)α

1
(w + 1)4 dw

= tα +Mα

3M3α((t/M)α + 1)3 = 1
3(tα +Mα)2 ,
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I22 = −E
[
∂2`T
∂M2

]

= 2α(α− 1)Mα−2 · E
[ 1
Xα +Mα

]
− 2(αMα−1)2 · E

[
1

(Xα +Mα
)2
]

− α(α− 1)Mα−2

tα +Mα
+ (αMα−1)2

(tα +Mα)2

= 2α(α− 1)Mα−2 · 1
2(tα +Mα) − 2(αMα−1)2 · 1

3(tα +Mα)2

− α(α− 1)Mα−2

tα +Mα
+ (αMα−1)2

(tα +Mα)2

= (αMα−1)2

3 (tα +Mα)2 . (A.21)

Shifted Champernowne pdf:

f(x− t) = αMα(x− t)α−1

((x− t)α +Mα)2 , x > t

Recall (4.6):

`S = n logα + nα logM + (α− 1)
n∑
i=1

log (Xi − t)− 2
n∑
i=1

log((Xi − t)α +Mα),
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

∂`S
∂α

= n

α
+ n logM +

n∑
i=1

log(Xi − t)− 2
n∑
i=1

(Xi − t)α log(Xi − t) +Mα logM
(Xi − t)α +Mα

,

∂`S
∂M

= nα

M
− 2

n∑
i=1

αMα−1

(Xi − t)α +Mα
,

Put n = 1 and use generic X:

∂2`S
∂α2 = −1

α2 − 2 · (X − t)α log2(X − t) +Mα log2 M

(X − t)α +Mα

+ 2 · ((X − t)α log(X − t) +Mα logM)2

((X − t)α +Mα)2 ,

∂2`S
∂M∂α

= 1
M
− 2 · M

α−1 + αMα−1 logM
(X − t)α +Mα

+ 2 · αM
α−1 ((X − t)α log(X − t) +Mα logM)

((X − t)α +Mα)2 ,

∂2`S
∂M2 = −α

M2 − 2 · α(α− 1)Mα−2

(X − t)α +Mα
+ 2 · (αMα−1)2

((X − t)α +Mα)2 ,
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I11 = −E
[
∂2`S
∂α2

]
= 1
α2 + 2E

[
(X − t)α log2(X − t) +Mα log2 M

(X − t)α +Mα

]

− 2E
[

((X − t)α log(X − t) +Mα logM)2

((X − t)α +Mα)2

]

= 1
α2 + log2 M

3 + 2
∫ ∞

0

αMαy2α−1 log2 y

(yα +Mα)3 dy

− 2
∫ ∞

0

αMαy3α−1 log2 y

(yα +Mα)4 dy − 4
∫ ∞

0

αM2α logMy2α−1 log y
(yα +Mα)4 dy,

(A.22)

I12 = I21 = −E
[
∂2`S
∂M∂α

]

= −1
M

+ 2E
[
Mα−1 + αMα−1 logM

(X − t)α +Mα

]

− 2E
[
αMα−1 ((X − t)α log(X − t) +Mα logM)

((X − t)α +Mα)2

]

= α logM
3M − 2

∫ ∞
0

α2M2α−1y2α−1 log y
(yα +Mα)4 dy, (A.23)
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I22 = −E
[
∂2`S
∂M2

]

= α

M2 + 2E
[
α(α− 1)Mα−2

(X − t)α +Mα

]
− 2E

[
(αMα−1)2

((X − t)α +Mα)2

]

= α2

3M2 . (A.24)

Formulas for ICOMP and AMC:

Rewriting (4.1) as

ICOMP = −2 logL+ 2 log(I11 + I22)− log(I11I22 − I2
12)− 2 log(2),

ICOMPLomax

T = −2
(
n logα + nα log(θ + t)− (α + 1)

n∑
i=1

log(θ +Xi)
)

+ 2 log
(

1
α2 + α

(α + 2)(t+ θ)2

)

− log
(

1
α(α + 1)2(α + 2)(t+ θ)2

)
− 2 log(2), (A.25)
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ICOMPLomax

S = −2
(
n logα + nα log θS − (α + 1)

n∑
i=1

log (θS +Xi − t)
)

+ 2 log
(

1
α2 + α

(α + 2)(θS)2

)

− log
(

1
α(α + 1)2(α + 2)(θS)2

)
− 2 log(2), (A.26)

ICOMPLN

T = −2
−n log

√
2π −

n∑
i=1

logXi − n log σ − 1
2σ2

n∑
i=1

(logXi − µ)2

− n log
(

1− Φ
(

log t− µ
σ

))+2 log
(

3 + 2rκ− κ2 + r3κ− r2κ2

σ2

)

− log
(

2 + 3rκ− 2κ2 + r3κ− rκ3 + r4κ2 − 2r3κ3 + r2κ4

σ4

)

− 2 log(2), (A.27)

with r and κ as defined in (A.5).

ICOMPLN

S = −2
(
−n log

√
2π −

n∑
i=1

log(Xi − t)− n log σS

− 1
2σ2

S

n∑
i=1

(log(Xi − t)− µS)2
)

+2 log
(

3
σ2
S

)
− log

(
2
σ4
S

)

− 2 log(2), (A.28)
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ICOMPChamp

T = −2
(
n logα + (α− 1)

n∑
i=1

log(Xi) + n log(tα +Mα)

− 2
n∑
i=1

log(Xα
i +Mα)

)

+ 2 log
 1
α2 −

tαMα (log t− logM)2

(tα +Mα)2

+ tα +Mα

3α2Mα

∫ ∞
(t/M)α

log2 w · 6w
(w + 1)4 dw + (αMα−1)2

3 (tα +Mα)2



− log
( 1

α2 −
tαMα (log t− logM)2

(tα +Mα)2

+ tα +Mα

3α2Mα

∫ ∞
(t/M)α

log2 w · 6w
(w + 1)4 dw

)
·
(

(αMα−1)2

3 (tα +Mα)2

)

−
(
−t

α +Mα

3Mα+1

∫ ∞
(t/M)α

logw · 6w
(w + 1)4 dw

+ αMα−1tα (log t− logM)
(tα +Mα)2

)2


− 2 log(2), (A.29)
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ICOMPChamp

S = −2
(
n logα + nα log(M) + (α− 1)

n∑
i=1

log(Xi − t)

− 2
n∑
i=1

log((Xi − t)α +Mα)
)

+ 2 log
 1
α2 + log2 M

3 + 2
∫ ∞

0

αMαy2α−1 log2 y

(yα +Mα)3 dy

− 2
∫ ∞

0

αMαy3α−1 log2 y

(yα +Mα)4 dy − 4
∫ ∞

0

αM2α logMy2α−1 log y
(yα +Mα)4 dy

+ α2

3M2



− log
( 1

α2 + log2 M

3 + 2
∫ ∞

0

αMαy2α−1 log2 y

(yα +Mα)3 dy

− 2
∫ ∞

0

αMαy3α−1 log2 y

(yα +Mα)4 dy − 4
∫ ∞

0

αM2α logMy2α−1 log y
(yα +Mα)4 dy

)

×
(
α2

3M2

)

−
(
α logM

3M − 2
∫ ∞

0

α2M2α−1y2α−1 log y
(yα +Mα)4 dy

)2


− 2 log(2). (A.30)
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Rewriting (4.3) as

AMC = −2 logL+ 2 log
1 +

2
√

(nI11 + nI22 + 1)3

nI11 + nI22 + 2n2(I11I22 − I2
12)

 ,

AMCLomax

T = −2
(
n logα + nα log(θ + t)− (α + 1)

n∑
i=1

log(θ +Xi)
)

+ 2 log

1 +
2
√(

n
α2 + nα

(α+2)(t+θ)2 + 1
)3

n
α2 + nα

(α+2)(t+θ)2 + 2n2

α(α+1)2(α+2)(t+θ)2

 , (A.31)

AMCLomax

S = −2
(
n logα + nα log θS − (α + 1)

n∑
i=1

log (θS +Xi − t)
)

+ 2 log

1 +
2
√(

n
α2 + nα

(α+2)(θS)2 + 1
)3

n
α2 + nα

(α+2)(θS)2 + 2n2

α(α+1)2(α+2)(θS)2

 , (A.32)

AMCLN

T = −2
−n log

√
2π −

n∑
i=1

logXi − n log σ − 1
2σ2

n∑
i=1

(logXi − µ)2

− n log
(

1− Φ
(

log t− µ
σ

))

+ 2 log
1 +

2
√

(nI lnT11 + nI lnT22 + 1)3

nI lnT11 + nI lnT22 + 2n2(I lnT11 I
lnT
22 − (I lnT12 )2)

 , (A.33)
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with I lnT11 , I lnT12 , I lnT22 as derived in (A.8)–(A.10), respectively.

AMCLN

S = −2
(
−n log

√
2π −

n∑
i=1

log(Xi − t)− n log σS

− 1
2σ2

S

n∑
i=1

(log(Xi − t)− µS)2
)

+ 2 log

1 +
2
√(

n · 1
σ2
S

+ n · 2
σ2
S

+ 1
)3

n · 1
σ2
S

+ n · 2
σ2
S

+ 2n2
(

2
σ4
S

)
 , (A.34)

AMCChamp

T = −2
(
n logα + (α− 1)

n∑
i=1

log(Xi) + n log(tα +Mα)

− 2
n∑
i=1

log(Xα
i +Mα)

)

+ 2 log
1 +

2
√

(nIchampT11 + nIchampT22 + 1)3

nIchampT11 + nIchampT22 + 2n2(IchampT11 IchampT22 − (IchampT12 )2)

 ,
(A.35)
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with IchampT11 , IchampT12 , IchampT22 as derived in (A.19)–(A.21), respectively.

AMCChamp

S = −2
(
n logα + nα log(M) + (α− 1)

n∑
i=1

log(Xi − t)

− 2
n∑
i=1

log((Xi − t)α +Mα)
)

+ 2 log
1 +

2
√

(nIchampS11 + nIchampS22 + 1)3

nIchampS11 + nIchampS22 + 2n2(IchampS11 IchampS22 − (IchampS12 )2)

 ,
(A.36)

with IchampS11 , IchampS12 , IchampS22 as derived in (A.22)–(A.24), respectively.

Proof of Proposition 4.4.1: By the weak law of large numbers (WLLN), we have
the following convergence in probability as n→∞,

− 1
n

∂2`(θ̂)
∂θ∂θT

= − 1
n

n∑
i=1

∂2 log f̃(Xi|θ)
∂θ∂θT

∣∣∣∣∣∣
θ=θ̂

P−→ I(θ),

where `(θ) =
n∑
i=1

log f̃(Xi|θ) and f̃ denotes either truncated or shifted pdf. In

particular, we have

− 1
n

∂2`(θ̂)
∂θ2

1

P−→ I11(θ), − 1
n

∂2`(θ̂)
∂θ1∂θ2

P−→ I12(θ), and − 1
n

∂2`(θ̂)
∂θ2

2

P−→ I22(θ).

Similarly, the following convergence in probability result can be proven using WLLN
when n→∞:

1
n

∂`(θ̂)
∂θ

∂`(θ̂)
∂θT

P−→ I(θ),
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since for i.i.d. data X1, . . . , Xn, the following steps are easily justified:

E
[
∂`(θ)
∂θ

∂`(θ)
∂θT

]
= V

[
∂`(θ)
∂θ

]
+ E

[
∂`(θ)
∂θ

]2

= V
[
n∑
i=1

∂ log f̃(Xi|θ)
∂θ

]

= n

(
V
[
∂ log f̃(Xi|θ)

∂θ

])
= nI(θ),

while
E
[
∂`(θ)
∂θ

]
= 0.

And in particular, we have

1
n

∂`(θ̂)
∂θ1

2
P−→ I11(θ), 1

n

∂`(θ̂)
∂θ1

∂`(θ̂)
∂θ2

P−→ I12(θ), and 1
n

∂`(θ̂)
∂θ2

2
P−→ I22(θ).

Since convergence in probability is preserved under addition and multiplication, and
since both the square root function and the reciprocal function are continuous, by
the continuous mapping theorem (see Shao, 1999, p. 42), the result follows by
applying above convergence in probability results to (4.2). 2
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Appendix B: Data Set

Table B.1: Unobserved and observed costs of legal events (below and above $195,000,
respectively).
142,774.19 146,875.00 151,000.00 160,000.00 176,000.00 182,435.12 191,070.31
143,000.00 150,411.29 153,592.54 165,000.00 176,000.00 185,000.00 192,806.74
145,500.50 150,930.39 157,083.00 165,000.00 180,000.00 186,330.00 193,500.00

200,000.00 220,357.00 252,000.00 332,000.00 416,562.38 630,200.00 907,077.00
200,000.00 229,368.50 255,414.00 350,000.00 423,319.62 650,000.00 917,000.00
202,077.38 230,000.00 260,000.00 350,000.00 426,000.00 660,000.00 1,299,345.00
204,450.00 232,500.00 270,341.11 360,000.00 483,711.60 734,900.00 1,415,988.00
210,536.56 239,102.93 274,509.80 394,672.11 505,947.00 742,651.56 2,567,921.00
214,634.95 248,341.96 294,835.23 400,203.01 550,000.00 750,000.00 3,821,987.00
220,000.00 250,000.00 297,035.48 406,001.47 556,000.00 800,000.00
220,070.00 251,489.59 301,527.50 410,060.72 600,000.34 845,000.00

Source: Cruz (2002), page 57.
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Appendix C: Computer Code

% MATLAB code
%
%
% Table 3 .3
% Compute how o f t e n Lomax VaR e s t i m a t e s
% exceed mul t i p l e o f t a r g e t VaR by s imu la t i on
c l e a r
count trunc = 0 ; count na ive = 0 ; c o u n t s h i f t = 0 ;

% Record t imes o f MLE nonconvergent and convergent
nonconvcount = 0 ;
convcount = 0 ;

% Run the f o l l o w i n g procedure 1000 t imes
i ter max = 1000 ;

% f o r i t e r a t i o n = 1 : i te r max
whi l e convcount < i t e r max
% Lomax models :
% F( t ) = 0 .5
alpha = 3 . 5 ; theta = 890355; t = 195000; N = 100 ;
x i = 1/ alpha ;
sigma = theta / alpha ;
% generate Lomax data
x = gprnd ( xi , sigma , 0 ,N, 1 ) ;
beta = . 9 5 ; % VaR l e v e l
VaR target = sigma∗((1−beta)ˆ−xi −1)/ x i ;
% mu l t i p l e o f t a r g e t VaR
c = 1 ;
VaR target = c∗VaR target ;
% observed data above the t h r e s h o l d
x = x (x>t ) ;

% f i t na ive model to s e l e c t MLE convergence
% produce parameter and VaR e s t i m a t e s
param naive = lomaxfitNLL ( x ) ;
% c r i t e r i o n to s e l e c t MLE convergence
errNonConv = getGlobalerrNonConv ;
i f ( errNonConv == 0)

nonconvcount = nonconvcount + 1 ;
cont inue % next i t e r a t i o n

% e l s e i f ( errNonConv == 1)
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% convcount = convcount + 1 ;
end

xi hat nMLE = 1/ param naive ( 1 ) ;
sigma hat nMLE = param naive (2)/ param naive ( 1 ) ;

i f ((1−beta)ˆ−xi hat nMLE−1 > 0)
VaR naive = sigma hat nMLE∗((1−beta)ˆ−xi hat nMLE−1)/xi hat nMLE ;

e l s e
% (1−beta)ˆ−xi hat nMLE−1 == 0
% convergent to exponent i a l
VaR naive = −sigma hat nMLE∗ l og (1−beta ) ;

end

i f VaR naive > VaR target
count na ive = count na ive + 1 ;

end

% f i t s h i f t e d model to s e l e c t MLE convergence ,
% produce parameter and VaR e s t i m a t e s
param = lomaxfitNLL (x−t+rea lmin ) ;
% c r i t e r i o n to s e l e c t MLE convergence
errNonConv = getGlobalerrNonConv ;
i f ( errNonConv == 0)

nonconvcount = nonconvcount + 1 ;
cont inue % next i t e r a t i o n

e l s e i f ( errNonConv == 1)
convcount = convcount + 1 ;

e l s e ( errNonConv == −1)
e r r o r ( message ( ’ s t a t s : g p f i t : NoSolution ’ ) ) ;

end
xi hat sMLE = 1/param ( 1 ) ;
sigma hat sMLE = param (2)/ param ( 1 ) ;

i f ((1−beta)ˆ−xi hat sMLE−1 > 0)
VaR shi f t = sigma hat sMLE∗((1−beta)ˆ−xi hat sMLE−1)/xi hat sMLE+t ;

e l s e
% (1−beta)ˆ−xi hat sMLE−1 == 0
% convergent to exponent i a l
VaR shi f t = −sigma hat sMLE∗ l og (1−beta)+t ;

end

i f VaR shi f t > VaR target
c o u n t s h i f t = c o u n t s h i f t + 1 ;

end

% f i t t runcated model , parameter and VaR e s t i m a t e s
xi hat tMLE = xi hat sMLE ;
sigma hat tMLE = sigma hat sMLE − xi hat sMLE∗ t ;

i f ((1−beta)ˆ−xi hat tMLE−1 > 0)
VaR trunc = sigma hat tMLE∗((1−beta)ˆ−xi hat tMLE−1)/xi hat tMLE ;

e l s e
% (1−beta)ˆ−xi hat tMLE−1 == 0
% convergent to exponent i a l
VaR trunc = −sigma hat tMLE∗ l og (1−beta ) ;

end

i f VaR trunc > VaR target
count trunc = count trunc + 1 ;

end

end
o v e r e s t p t r u n c = count trunc / i ter max
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o v e r e s t p n a i v e = count na ive / i ter max
o v e r e s t p s h i f t = c o u n t s h i f t / i te r max

% end o f Table 3 . 3
%
%
% Table 3 .5
% Compute how o f t e n lognormal VaR e s t i m a t e s
% exceed mul t i p l e o f t a r g e t VaR by s imu la t i on :
% S i m i l a r to what have been done in Table 3 . 3
% j u s t generate lognormal data and
% f i t truncated , naive , s h i f t e d lognormal models
% end o f Table 3 . 5
%
%
% Table 3 .6
% Fit exponent i a l /Lomax/ lognormal models
% to Cruz data by MLE
c l e a r
Data = text read ( ’ cruz−data . txt ’ ) ;
% reshape data
Data = reshape ( Data , 1 , [ ] ) ;
N = length ( Data ) ;
% t h r e s h o l d
t = 195000;
% observed data above the t h r e s h o l d
x = Data ( Data>=t ) ;
x = s o r t ( x ) ;
x r e v e r s e = s o r t (x , ’ descend ’ ) ;

% number o f o b s e r v a t i o n s
n = numel ( x ) ;
% VaR l e v e l
p = 0 . 9 9 ;

% truncated exponent i a l parameter e s t imate
theta hat tMLE = exp trunc mle (x , t ) ;

% naive exponent i a l parameter e s t imate
theta hat nMLE = mean( x ) ;

% s h i f t e d exponent i a l parameter e s t imate
theta hat sMLE = mean(x−t ) ;

% f i t na ive Lomax model , parameter e s t i m a t e s
param naive = lomaxfitFPD ( x ) ;

alpha hat nMLE = param naive ( 1 ) ;
theta hat nMLE = param naive ( 2 ) ;
xi hat nMLE = 1/ param naive ( 1 ) ;
sigma hat nMLE = param naive (2)/ param naive ( 1 ) ;

% f i t s h i f t e d Lomax model , parameter e s t i m a t e s
param sh i f t = lomaxfitNLL (x−t+rea lmin ) ;

alpha hat sMLE = param sh i f t ( 1 ) ;
theta hat sMLE = param sh i f t ( 2 ) ;
xi hat sMLE = 1/ param sh i f t ( 1 ) ;
sigma hat sMLE = param sh i f t (2)/ param sh i f t ( 1 ) ;

% f i t t runcated Lomax model , parameter e s t i m a t e s
alpha hat tMLE = alpha hat sMLE ;
theta hat tMLE = theta hat sMLE − t ;
xi hat tMLE = xi hat sMLE ;
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sigma hat tMLE = sigma hat sMLE − xi hat sMLE∗ t ;

% f i t t runcated lognormal model
[ mu hat tMLE , sigma hat tMLE ] = logn t runc mle (x , t ) ;

% Underlying lognormal d i s t r i b u t i o n f u n c t i o n with
% truncated MLE f o r the observed data
pd2 trunc = makedist ( ’ logn ’ , mu hat tMLE , sigma hat tMLE ) ;

% Method o f moments ( na ive MM) f i t t i n g lognormal model
% Parameter es imates by naive MM f o r lognormal model ,
% which i s e q u i v a l e n t to naive MLE f o r lognormal model
mu hat nMLE = mean( log ( x ) ) ;
sigma hat nMLE = std ( l og ( x ) ) ;

% Parameter e s t i m a t e s o f s h i f t e d lognormal model
mu hat sMLE = sum( log ( x − t ) )/ n ;
% Notice here d iv ided by (n−1)
sigma hat sMLE=s q r t (sum ( ( log (x−t)−mu hat sMLE ) . ˆ 2 ) / ( n−1)) ;
% end o f Table 3 . 6
%
%
% Table 3 .8
% VaR l e v e l
p = 0 . 9 9 ;
% truncated VaR est imate f o r exponent i a l model
VaR p tMLE = theta hat tMLE∗− l og (1−p ) ;
VaR p tMLE std = theta hat tMLE∗− l og (1−p)/ s q r t (n ) ;
% 95% Conf idence I n t e r v a l
VaR p tMLE CI = [ VaR p tMLE − norminv ( 0 . 9 7 5 )∗VaR p tMLE std , . . .

VaR p tMLE + norminv ( 0 . 9 7 5 )∗VaR p tMLE std ] ;

% naive VaR est imate f o r exponent i a l model
VaR p nMLE = theta hat nMLE∗− l og (1−p ) ;
VaR p nMLE std = theta hat nMLE∗− l og (1−p)/ s q r t (n ) ;
% 95% Conf idence I n t e r v a l
VaR p nMLE CI = [ VaR p nMLE − norminv ( 0 . 9 7 5 )∗VaR p nMLE std , . . .

VaR p nMLE + norminv ( 0 . 9 7 5 )∗VaR p nMLE std ] ;

% s h i f t e d VaR est imate f o r exponent i a l model
VaR p sMLE = theta hat sMLE∗− l og (1−p)+t ;
VaR p sMLE std = theta hat sMLE∗− l og (1−p)/ s q r t (n ) ;
% 95% Conf idence I n t e r v a l
VaR p sMLE CI = [ VaR p sMLE − norminv ( 0 . 9 7 5 )∗VaR p sMLE std , . . .

VaR p sMLE + norminv ( 0 . 9 7 5 )∗VaR p sMLE std ] ;
%
%
% naive VaR f o r Lomax model
VaR p nMLE = sigma hat nMLE∗((1−p)ˆ−xi hat nMLE−1)/xi hat nMLE ;

% s h i f t e d VaR f o r Lomax model
VaR p sMLE = sigma hat sMLE∗((1−p)ˆ−xi hat sMLE−1)/xi hat sMLE+t ;

% truncated VaR f o r Lomax model
VaR p tMLE = sigma hat tMLE∗((1−p)ˆ−xi hat tMLE−1)/xi hat tMLE ;
%
%
% Compute VaR f o r truncated lognormal model
VaR p tMLE = [ ] ;
f o r p = 0 . 9 : . 0 1 : 0 . 9 9

% 90 p e r c e n t i l e through 99 p e r c e n t i l e
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VaR p tMLE = [ VaR p tMLE , exp ( mu hat tMLE+sigma hat tMLE∗norminv (p ) ) ] ;
end

% Compute VaR f o r s h i f t e d lognormal model
VaR p sMLE = [ ] ;
f o r p = 0 . 9 : . 0 1 : 0 . 9 9

% 90 through 99 p e r c e n t i l e
VaR p sMLE = [ VaR p sMLE , exp ( mu hat sMLE+sigma hat sMLE∗norminv (p))+ t ] ;

end

% Compute VaR f o r naive lognormal model
VaR p nMLE = [ ] ;
f o r p = 0 . 9 : . 0 1 : 0 . 9 9

% 90 through 99 p e r c e n t i l e
VaR p nMLE = [ VaR p nMLE , exp (mu hat nMLE+sigma hat nMLE∗norminv (p ) ) ] ;

end
% end o f Table 3 . 8
%
%
% Table 3 .9
% Ver i fy d e l t a method f o r number o f l o s s between a and b
% f o r truncated exponent i a l model
a = 150000;
b = 175000;
% run dataExpMLE f i r s t to obta in theta hat tMLE
sigma = theta hat tMLE ;

% p a r t i a l d e r i v a t i v e o f number o f l o s s between a and b with r e s p e c t to sigma
part s igma = n∗( exp ( ( t−b)/ sigma )∗ ( t−b)/ sigmaˆ2−exp ( ( t−a )/ sigma )∗ ( t−a )/ sigma ˆ 2 ) ;

% var iance o f parameter e s t imator
var s igma = sigma ˆ2/n ;
% var iance o f number o f l o s s between a and b based on covar iance from d e l t a method
f p r i n t f ( ’ va r i ance o f number o f l o s s between a and b \n ’ )
var numLoss = part s igma ˆ2∗ var s igma

% c o n f i d e n c e l e v e l
beta = 0 . 9 5 ;
% number o f l o s s between a and b
numLoss = n∗(−exp ( ( t−b)/ sigma)+exp ( ( t−a )/ sigma ) ) ;
f p r i n t f ( ’ CI o f number o f l o s s between a and b \n ’ )

% c o n f i d e n c e i n t e r v a l f o r number o f l o s s between a and b
% f o r truncated exponent i a l model
[ numLoss−norminv ( beta+(1−beta )/2)∗ s q r t ( var numLoss ) . . .

numLoss+norminv ( beta+(1−beta )/2)∗ s q r t ( var numLoss ) ]
%
%
% Ver i fy d e l t a method f o r average l o s s between a and b
% f o r truncated exponent i a l model
%
% p a r t i a l d e r i v a t i v e o f average l o s s between a and b with r e s p e c t to sigma
part s igma = 1−(1/sigma ˆ2)∗ ( exp(−(a+b)/ sigma )∗ ( a−b)ˆ2 . . .

/( exp(−a/ sigma)−exp(−b/sigma ) ) ˆ 2 ) ;

% var iance o f average l o s s between a and b based on covar iance from d e l t a method
f p r i n t f ( ’ var i ance o f average l o s s between a and b \n ’ )
var aveLoss = part s igma ˆ2∗ var s igma

% c o n f i d e n c e l e v e l
beta = 0 . 9 5 ;
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% average l o s s between a and b
aveLoss = sigma+(a∗exp(−a/ sigma)−b∗exp(−b/sigma ) ) / ( exp(−a/ sigma)−exp(−b/sigma ) ) ;
f p r i n t f ( ’ CI o f average l o s s between a and b \n ’ )

% c o n f i d e n c e i n t e r v a l f o r average l o s s between a and b
% f o r truncated exponent i a l model
[ aveLoss−norminv ( beta+(1−beta )/2)∗ s q r t ( var aveLoss ) . . .

aveLoss+norminv ( beta+(1−beta )/2)∗ s q r t ( var aveLoss ) ]
%
%
% Ver i fy d e l t a method f o r t o t a l l o s s between a and b
% f o r truncated exponent i a l model
%
% p a r t i a l d e r i v a t i v e o f t o t a l l o s s between a and b with r e s p e c t to sigma
part s igma = n∗((1+( a/sigma+1/sigma )∗ ( a/sigma−t / sigma ) )∗ exp(−(a−t )/ sigma ) . . .

−(1+(b/ sigma+1/sigma )∗ ( b/sigma−t / sigma ) )∗ exp(−(b−t )/ sigma ) ) ;
% var iance o f t o t a l l o s s between a and b based on covar iance from d e l t a method
f p r i n t f ( ’ var i ance o f t o t a l l o s s between a and b \n ’ )
v a r t o t L o s s = part s igma ˆ2∗ var s igma

% c o n f i d e n c e l e v e l
beta = 0 . 9 5 ;
% t o t a l l o s s between a and b
totLoss = n ∗ ( ( a+sigma )∗ exp(−(a−t )/ sigma)−(b+sigma )∗ exp(−(b−t )/ sigma ) ) ;
f p r i n t f ( ’ CI o f t o t a l l o s s between a and b \n ’ )

% c o n f i d e n c e i n t e r v a l f o r t o t a l l o s s between a and b
% f o r truncated exponent i a l model
[ totLoss−norminv ( beta+(1−beta )/2)∗ s q r t ( v a r t o t L o s s ) . . .

to tLoss+norminv ( beta+(1−beta )/2)∗ s q r t ( v a r t o t L o s s ) ]
%
%
% Ver i fy d e l t a method f o r number o f l o s s between a and b
% f o r truncated Lomax model
a = 150000;
b = 175000;
% run dataLomaxMLE f i r s t
alpha = 1/ xi hat tMLE ;
theta = sigma hat tMLE/ xi hat tMLE ;

% p a r t i a l d e r i v a t i v e s o f number o f l o s s between a and b
% with r e s p e c t to alpha and theta
par t a lpha = n∗((1+( t−a )/ ( a+theta ) )ˆ alpha ∗ l og (1+( t−a )/ ( a+theta ) ) . . .

− (1+( t−b )/( b+theta ) )ˆ alpha ∗ l og (1+( t−b )/( b+theta ) ) ) ;
p a r t t h e t a = n∗( alpha ∗(1+( t−a )/ ( a+theta ) ) ˆ ( alpha −1)∗(a−t )/ ( a+theta )ˆ2 . . .

− alpha ∗(1+( t−b )/( b+theta ) ) ˆ ( alpha −1)∗(b−t )/ ( b+theta ) ˆ 2 ) ;

% var iance−covar iance o f parameter e s t i m a t o r s
var a lpha = (1/ xi hat tMLE )ˆ2∗(1/ xi hat tMLE +1)ˆ2/n ;
v a r t h e t a = (d+sigma hat tMLE/ xi hat tMLE )ˆ2∗(1/ xi hat tMLE+2) . . .

∗(1/ xi hat tMLE +1)ˆ2/n/(1/ xi hat tMLE ) ;
c o v a l p h a t h e t a = (1/ xi hat tMLE ) ∗ (1/ xi hat tMLE+1) ∗ (1/ xi hat tMLE+2) . . .

∗ (d+sigma hat tMLE/ xi hat tMLE ) / n ;
% var iance o f number o f l o s s between a and b based on covar iance from d e l t a method
f p r i n t f ( ’ var i ance o f number o f l o s s between a and b \n ’ )
var numLoss = part a lpha ˆ2∗ var a lpha + 2∗ par t a lpha ∗ p a r t t h e t a ∗ c o v a l p h a t h e t a . . .

+ p a r t t h e t a ˆ2∗ v a r t h e t a

% c o n f i d e n c e l e v e l
beta = 0 . 9 5 ;
% number o f l o s s between a and b
numLoss = n∗((1+( t−a )/ ( a+theta ) )ˆ alpha−(1+(t−b )/( b+theta ) )ˆ alpha ) ;
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f p r i n t f ( ’ CI o f number o f l o s s between a and b \n ’ )
% c o n f i d e n c e i n t e r v a l f o r number o f l o s s between a and b
% f o r truncated Lomax model
[ numLoss−norminv ( beta+(1−beta )/2)∗ s q r t ( var numLoss ) . . .

numLoss+norminv ( beta+(1−beta )/2)∗ s q r t ( var numLoss ) ]
%
%
% Ver i fy d e l t a method f o r average l o s s between a and b
% f o r truncated Lomax model
R = (b+theta )/ ( a+theta ) ;

% p a r t i a l d e r i v a t i v e s o f average l o s s between a and b
% with r e s p e c t to alpha and theta
par t a lpha = ( a∗Rˆ alpha−b+alpha ∗a∗Rˆ alpha ∗ l og (b+theta )−alpha ∗b∗ l og ( a+theta ) ) . . .

/( alpha −1)/(Rˆ alpha−1)−alpha ∗( a∗Rˆ alpha−b) . . .
∗(Rˆ alpha−1+(alpha−1)∗Rˆ alpha ∗ l og (b+theta )−( alpha−1)∗ l og ( a+theta ) ) . . .
/( alpha −1)ˆ2/(Rˆ alpha−1)ˆ2− theta /( alpha −1)ˆ2;

p a r t t h e t a = ( alpha /( alpha −1))∗(( a∗ alpha ∗Rˆ alpha /(b+theta)−b∗ alpha /( a+theta ) ) . . .
∗(Rˆ alpha−1)−(a∗Rˆ alpha−b )∗ ( alpha ∗Rˆ alpha /(b+theta)−alpha /( a+theta ) ) ) . . .
/(Rˆ alpha−1)ˆ2 + 1/( alpha −1);

% var iance o f average l o s s between a and b based on covar iance from d e l t a method
f p r i n t f ( ’ va r i ance o f average l o s s between a and b \n ’ )
var aveLoss = par t a lpha ˆ2∗ var a lpha + 2∗ par t a lpha ∗ p a r t t h e t a ∗ c o v a l p h a t h e t a . . .

+ p a r t t h e t a ˆ2∗ v a r t h e t a

% c o n f i d e n c e l e v e l
beta = 0 . 9 5 ;
% average l o s s between a and b
aveLoss = ((−a∗alpha−theta )∗Rˆ alpha+b∗ alpha+theta )/(1− alpha )/ (Rˆ alpha −1);
f p r i n t f ( ’ CI o f average l o s s between a and b \n ’ )

% c o n f i d e n c e i n t e r v a l f o r average l o s s between a and b
% f o r truncated Lomax model
[ aveLoss−norminv ( beta+(1−beta )/2)∗ s q r t ( var aveLoss ) . . .

aveLoss+norminv ( beta+(1−beta )/2)∗ s q r t ( var aveLoss ) ]
%
%
% Ver i fy d e l t a method f o r t o t a l l o s s between a and b
% f o r truncated Lomax model
%
% t o t a l l o s s between a and b
totLoss = n ∗ ( ( t+theta )/ ( a+theta ) )ˆ alpha ∗((−a∗alpha−theta )/(1− alpha ) . . .

+(b∗ alpha+theta )/(1− alpha ) / ( ( b+theta )/ ( a+theta ) )ˆ alpha ) ;

% p a r t i a l d e r i v a t i v e s o f t o t a l l o s s between a and b
% with r e s p e c t to alpha and theta
par t a lpha = totLoss ∗ l og ( t+theta ) + n ∗ ( ( t+theta )/ ( a+theta ) )ˆ alpha . . .

∗(−a∗(1−alpha )+(a∗ alpha+theta )∗(−1+(1−alpha )∗ l og ( a+theta )))/(1− alpha )ˆ2 . . .
+ n ∗ ( ( t+theta )/ ( b+theta ) )ˆ alpha ∗(b∗(1−alpha )−(b∗ alpha+theta ) . . .
∗(−1+(1−alpha )∗ l og (b+theta )))/(1− alpha ) ˆ 2 ;

p a r t t h e t a = totLoss ∗ alpha /( t+theta ) + n ∗ ( ( t+theta )/ ( a+theta ) )ˆ alpha . . .
∗(−1+(a∗ alpha+theta )∗ alpha /( a+theta ))/(1− alpha ) . . .
+ n ∗ ( ( t+theta )/ ( b+theta ) )ˆ alpha ∗(1−(b∗ alpha+theta )∗ alpha /(b+theta ))/(1− alpha ) ;

% var iance o f t o t a l l o s s between a and b based on covar iance from d e l t a method
f p r i n t f ( ’ va r i ance o f t o t a l l o s s between a and b \n ’ )
v a r t o t L o s s = par t a lpha ˆ2∗ var a lpha + 2∗ par t a lpha ∗ p a r t t h e t a ∗ c o v a l p h a t h e t a . . .

+ p a r t t h e t a ˆ2∗ v a r t h e t a

% c o n f i d e n c e l e v e l
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beta = 0 . 9 5 ;
f p r i n t f ( ’ CI o f t o t a l l o s s between a and b \n ’ )

% c o n f i d e n c e i n t e r v a l f o r t o t a l l o s s between a and b
% f o r truncated Lomax model
[ totLoss−norminv ( beta+(1−beta )/2)∗ s q r t ( v a r t o t L o s s ) . . .

to tLoss+norminv ( beta+(1−beta )/2)∗ s q r t ( v a r t o t L o s s ) ]
%
%
% Ver i fy d e l t a method f o r number o f l o s s between a and b
% f o r truncated lognormal model
a = 150000;
b = 175000;
% run dataLognormalMLE f i r s t
mu = mu hat tMLE ;
sigma = sigma hat tMLE ;
r = ( log ( t)−mu)/ sigma ;
ra = ( log ( a)−mu)/ sigma ;
rb = ( log (b)−mu)/ sigma ;
K = normpdf ( r )/(1−normcdf ( r ) ) ;
% p a r t i a l d e r i v a t i v e s o f number o f l o s s between a and b
% with r e s p e c t to mu and sigma
part mu = n∗((1−normcdf ( r ) )∗ ( normpdf ( rb)−normpdf ( ra ) ) . . .

+(normcdf ( rb)−normcdf ( ra ) )∗ normpdf ( r ))/((1− normcdf ( r ))ˆ2)/(− sigma ) ;
part s igma = n∗((1−normcdf ( r ) )∗ ( normpdf ( rb )∗ ( l og (b)−mu)−normpdf ( ra ) . . .

∗( l og ( a)−mu))+( normcdf ( rb)−normcdf ( ra ) )∗ normpdf ( r )∗ ( l og ( t)−mu) ) . . .
/((1−normcdf ( r ))ˆ2)/(− sigma ˆ 2 ) ;

% Fi sher in fo rmat ion matrix e n t r i e s
I11 = (1− r ∗K/sigma−Kˆ2)/ sigma ˆ2 ;
I12 = K/sigma ˆ2 − r ˆ2∗K/ sigma ˆ3 − r ∗Kˆ2 ;
I22 = (2+ r ∗K+r ˆ3∗K−r ˆ2∗Kˆ2)/ sigma ˆ2 ;

% var iance−covar iance o f parameter e s t i m a t o r s
var mu = I22 /( I11 ∗ I22−I12 ˆ2)/n ;
var s igma = I11 /( I11 ∗ I22−I12 ˆ2)/n ;
cov mu sigma = −I12 /( I11 ∗ I22−I12 ˆ2)/n ;
% var iance o f number o f l o s s between a and b based on covar iance from d e l t a method
f p r i n t f ( ’ va r i ance o f number o f l o s s between a and b \n ’ )
var numLoss = part mu ˆ2∗var mu + 2∗part mu∗ part s igma ∗ cov mu sigma . . .

+ part s igma ˆ2∗ var s igma

% c o n f i d e n c e l e v e l
beta = 0 . 9 5 ;
% number o f l o s s between a and b
numLoss = n∗( normcdf ( rb)−normcdf ( ra ))/(1−normcdf ( r ) ) ;
f p r i n t f ( ’ CI o f number o f l o s s between a and b \n ’ )

% c o n f i d e n c e i n t e r v a l f o r number o f l o s s between a and b
% f o r truncated lognormal model
[ numLoss−norminv ( beta+(1−beta )/2)∗ s q r t ( var numLoss ) . . .

numLoss+norminv ( beta+(1−beta )/2)∗ s q r t ( var numLoss ) ]
%
%
% Ver i fy d e l t a method f o r average l o s s between a and b
% f o r truncated lognormal model
%
% lognpdf funx i s l ognpd f fun ∗ x as integrand
lognpdf funx = @( x ) exp(−( l og ( x)−mu) .ˆ2/2/ sigma ˆ2)/ sigma / s q r t (2∗ pi ) ;
% lognpdf funx dmu i s l ognpd f fun ∗ x d i f f e r e n t i a t e d w. r . t . mu as integrand
lognpdf funx dmu = @( x ) exp(−( l og ( x)−mu) .ˆ2/2/ sigma ˆ2) . . .

. ∗ ( l og ( x)−mu)/ sigma ˆ3/ s q r t (2∗ pi ) ;
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% lognpdf funx ds igma i s l ognpd f fun ∗ x d i f f e r e n t i a t e d w. r . t . sigma as integrand
lognpdf funx ds igma = @( x ) exp(−( l og ( x)−mu) .ˆ2/2/ sigma ˆ2) . . .

.∗(−1/ sigma+( log ( x)−mu) . ˆ 2 / sigma ˆ3)/ sigma/ s q r t (2∗ pi ) ;

% p a r t i a l d e r i v a t i v e s o f average l o s s between a and b
% with r e s p e c t to mu and sigma
part mu = ( ( normcdf ( rb)−normcdf ( ra ) )∗ i n t e g r a l ( lognpdf funx dmu , a , b) . . .

− i n t e g r a l ( lognpdf funx , a , b )∗ ( normpdf ( rb)−normpdf ( ra ))/− sigma ) . . .
/( normcdf ( rb)−normcdf ( ra ) ) ˆ 2 ;

part s igma = ( ( normcdf ( rb)−normcdf ( ra ) )∗ i n t e g r a l ( lognpdf funx ds igma , a , b ) . . .
− i n t e g r a l ( lognpdf funx , a , b )∗ ( normpdf ( rb )∗ rb−normpdf ( ra )∗ ra )/−sigma ) . . .
/( normcdf ( rb)−normcdf ( ra ) ) ˆ 2 ;

% var iance o f average l o s s between a and b based on covar iance from d e l t a method
f p r i n t f ( ’ var i ance o f number o f l o s s between a and b \n ’ )
var aveLoss = part mu ˆ2∗var mu + 2∗part mu∗ part s igma ∗ cov mu sigma . . .

+ part s igma ˆ2∗ var s igma

% c o n f i d e n c e l e v e l
beta = 0 . 9 5 ;
% average l o s s between a and b
aveLoss = i n t e g r a l ( lognpdf funx , a , b )/ ( normcdf ( rb)−normcdf ( ra ) ) ;
f p r i n t f ( ’ CI o f average l o s s between a and b \n ’ )

% c o n f i d e n c e i n t e r v a l f o r average l o s s between a and b
% f o r truncated lognormal model
[ aveLoss−norminv ( beta+(1−beta )/2)∗ s q r t ( var aveLoss ) . . .

aveLoss+norminv ( beta+(1−beta )/2)∗ s q r t ( var aveLoss ) ]
%
%
% Ver i fy d e l t a method f o r t o t a l l o s s between a and b
% f o r truncated lognormal model
%
% p a r t i a l d e r i v a t i v e s o f t o t a l l o s s between a and b
% with r e s p e c t to mu and sigma
part mu = n∗((1−normcdf ( r ) )∗ i n t e g r a l ( lognpdf funx dmu , a , b) . . .

− i n t e g r a l ( lognpdf funx , a , b)∗ normpdf ( r )/ sigma )/(1−normcdf ( r ) ) ˆ 2 ;
part s igma = n∗((1−normcdf ( r ) )∗ i n t e g r a l ( lognpdf funx ds igma , a , b ) . . .

− i n t e g r a l ( lognpdf funx , a , b)∗ normpdf ( r )∗ r / sigma )/(1−normcdf ( r ) ) ˆ 2 ;

% var iance o f t o t a l l o s s between a and b based on covar iance from d e l t a method
f p r i n t f ( ’ va r i ance o f number o f l o s s between a and b \n ’ )
v a r t o t L o s s = part mu ˆ2∗var mu + 2∗part mu∗ part s igma ∗ cov mu sigma . . .

+ part s igma ˆ2∗ var s igma

% c o n f i d e n c e l e v e l
beta = 0 . 9 5 ;
% t o t a l l o s s between a and b
totLoss = n∗ i n t e g r a l ( lognpdf funx , a , b)/(1−normcdf ( r ) ) ;
f p r i n t f ( ’ CI o f t o t a l l o s s between a and b \n ’ )

% c o n f i d e n c e i n t e r v a l f o r t o t a l l o s s between a and b
% f o r truncated lognormal model
[ totLoss−norminv ( beta+(1−beta )/2)∗ s q r t ( v a r t o t L o s s ) . . .

to tLoss+norminv ( beta+(1−beta )/2)∗ s q r t ( v a r t o t L o s s ) ]
%
% end o f Table 3 . 9
%
%
% Table 4 .1
%
%
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% Run dataLomaxMLE f i r s t
% Compute ICOMP AMC f o r truncated Lomax model
x i = xi hat tMLE ;
% alpha i s shape parameter o f Lomax d i s t r i b u t i o n
alpha = 1/ x i ;
sigma = sigma hat tMLE ;
% theta i s s c a l e parameter o f Lomax d i s t r i b u t i o n
theta = sigma / x i ;
% t i s the data c o l l e c t i o n t h r e s h o l d
t ;
% I 1 1 i s the negat ive expec ta t i on o f the second p a r t i a l
% d e r i v a t i v e o f the log−l i k e l i h o o d f u n c t i o n with r e s p e c t
% to alpha
I 1 1 = ( 1/ alpha ˆ2 ) ;
% I 1 2 i s the negat ive expec ta t i on o f the c r o s s p a r t i a l
% d e r i v a t i v e o f the log−l i k e l i h o o d f u n c t i o n with r e s p e c t
% to alpha & theta
I 1 2 = ( −1/(( alpha +1)∗( theta+t ) ) ) ;
% I 2 2 i s the negat ive expec ta t i on o f the second p a r t i a l
% d e r i v a t i v e o f the log−l i k e l i h o o d f u n c t i o n with r e s p e c t
% to theta
I 2 2 = ( alpha /( ( alpha +2)∗( theta+t )ˆ2) ) ;
% H i s the mean curvature , i . e . the average o f the two
% p r i n c i p a l curvature s o f the log−l i k e l i h o o d s u r f a c e
H = (n∗( I 1 1+I 2 2 )+2∗nˆ2∗( I 1 1 ∗ I 22−I 1 2 ˆ2) ) . . .
/ (−2∗ s q r t (n∗ I 1 1+n∗ I 2 2 +1)ˆ3) ;
format long
% ICOMP i s in fo rmat ion complexity us ing i n v e r s e
% o f F i sher in fo rmat ion matrix
ICOMP = 2∗ n e g l o g l i k t r u n c + 2∗ l og ( I 1 1+I 2 2 ) . . .
− l og ( I 1 1 ∗ I 22−I 1 2 ˆ2) − 2∗ l og (2 )
% AMC i s new model s e l e c t i o n c r i t e r i a : In format ion
% c r i t e r i a i n c o r p o r a t i n g both negat ive log−l i k e l i h o o d
% and the asymptotic mean curvature o f the log−l i k e l i h o o d s u r f a c e
AMC = 2∗ n e g l o g l i k t r u n c + 2∗ l og (1−1/H)
%
%
% Run dataLomaxMLE f i r s t
% Compute ICOMP and AMC f o r s h i f t e d Lomax model
x i = xi hat sMLE ;
% alpha i s shape parameter o f Lomax d i s t r i b u t i o n
alpha = 1/ x i ;
sigma = sigma hat sMLE ;
t h e t a s h i f t = sigma / x i ;

% theta i s s c a l e parameter o f Lomax d i s t r i b u t i o n
theta = t h e t a s h i f t ;

% Fi sher in fo rmat ion e n t r i e s
I 1 1 = ( 1/ alpha ˆ2 ) ;
I 1 2 = ( −1/(( alpha +1)∗( theta ) ) ) ;
I 2 2 = ( alpha /( ( alpha +2)∗( theta )ˆ2) ) ;
% mean curvature
H = (n∗( I 1 1+I 2 2 )+2∗nˆ2∗( I 1 1 ∗ I 22−I 1 2 ˆ2) ) . . .
/ (−2∗ s q r t (n∗ I 1 1+n∗ I 2 2 +1)ˆ3) ;
format long
% in fo rmat ion complexity c r i t e r i o n
ICOMP = 2∗ n e g l o g l i k s h i f t + 2∗ l og ( I 1 1+I 2 2 ) . . .
− l og ( I 1 1 ∗ I 22−I 1 2 ˆ2) − 2∗ l og (2 )
% asymptotic mean curvature c r i t e r i o n
AMC = 2∗ n e g l o g l i k s h i f t + 2∗ l og (1−1/H)
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%
%
% Run dataLognormalMLE f i r s t
% Compute ICOMP and AMC f o r truncated lognormal model
% sigma i s s c a l e parameter o f Lognormal d i s t r i b u t i o n
sigma = sigma hat tMLE ;
% mu i s l o c a t i o n parameter o f Lognormal d i s t r i b u t i o n
mu = mu hat tMLE ;
% t i s the data c o l l e c t i o n t h r e s h o l d
r = ( log ( t)−mu)/ sigma ;
K = normpdf ( r )/(1−normcdf ( r ) ) ;
% I 1 1 i s the negat ive expec ta t i on o f the second p a r t i a l
% d e r i v a t i v e o f the log−l i k e l i h o o d f u n c t i o n with r e s p e c t
% to mu
I 1 1 = (1+ r ∗K−Kˆ2)/ sigma ˆ2 ;
% I 1 2 i s the negat ive expec ta t i on o f the c r o s s p a r t i a l
% d e r i v a t i v e o f the log−l i k e l i h o o d f u n c t i o n with r e s p e c t
% to mu & sigma
I 1 2 = ( −K/ sigmaˆ2+r ˆ2∗K/ sigmaˆ2−r ∗Kˆ2/ sigma ˆ2) . . .
+ 2∗( Exp star logX−mu)/ sigma ˆ3 ;
% I 2 2 i s the negat ive expec ta t i on o f the second p a r t i a l
% d e r i v a t i v e o f the log−l i k e l i h o o d f u n c t i o n with r e s p e c t
% to sigma
I 2 2 = ( −(1+2∗ r ∗K)/ sigmaˆ2+r ˆ3∗K/ sigmaˆ2−r ˆ2∗Kˆ2/ sigma ˆ2 ) . . .
+ 3∗Exp star / sigma ˆ4 ;
% Same e x p r e s s i o n to compute mean curvature ,
% in fo rmat ion complexity c r i t e r i o n ,
% asymptotic mean curvature c r i t e r i o n
% as f o r truncated Lomax model
%
%
% Run dataLognormalMLE f i r s t
% Compute ICOMP and AMC f o r s h i f t e d lognormal model
% sigma i s s c a l e parameter o f Lognormal d i s t r i b u t i o n
sigma = sigma hat sMLE ;
% mu i s l o c a t i o n parameter o f Lognormal d i s t r i b u t i o n
mu = mu hat sMLE ;
% Fisher in fo rmat ion entry I 1 1
I 1 1 = 1/ sigma ˆ2 ;
% Def ine f u n c t i o n handle f o r integrand log (x−t ) f ( x )
fh1 = @( x ) log (x−t ) . . .
.∗ normpdf ( ( l og (x−t)−mu) . / sigma ) . / ( ( x−t ) . ∗ sigma ) ;
% Expectat ion o f l og (X) w. r . t . the c o n d i t i o n a l d i s t r i b u t i o n
% where the support o f X i s from t to i n f i n i t y
Exp logXminust = i n t e g r a l ( fh1 , t , i n f ) ;
% I 1 2
I 1 2 = 2∗( Exp logXminust−mu)/ sigma ˆ3 ;
% Def ine f u n c t i o n handle f o r integrand ( log ( x)−mu)ˆ2∗ f ( x )
fh2 = @( x ) ( l og (x−t)−mu) . ˆ 2 . . .
.∗ normpdf ( ( l og (x−t)−mu) . / sigma ) . / ( ( x−t ) . ∗ sigma ) ;
% Expectat ion o f ( l og (X)−mu)ˆ2 w. r . t . the c o n d i t i o n a l d i s t r i b u t i o n
% where the support o f X i s from t to i n f i n i t y
Exp = i n t e g r a l ( fh2 , t , i n f ) ;
% I 2 2
I 2 2 = 3∗Exp/ sigma ˆ4 − 1/ sigma ˆ2 ;
% Same e x p r e s s i o n to compute mean curvature ,
% in fo rmat ion complexity c r i t e r i o n ,
% asymptotic mean curvature c r i t e r i o n
% as f o r s h i f t e d Lomax model
%
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%
% Run dataChampernowneMLE f i r s t
% Compute ICOMP and AMC f o r truncated Champernowne model
% alpha i s shape parameter o f Champernowne d i s t r i b u t i o n
alpha = tao hat tMLE ;
% M i s s c a l e parameter o f Champernowne d i s t r i b u t i o n
M = theta hat tMLE ;
% d e f i n e the f u n c t i o n handle f o r the integrand o f
% ( log (w))ˆ2 t imes dens i ty o f beta prime (2 , 2)
fh2 = @( x ) log ( x ) . ˆ 2 . ∗ 6 . ∗ x . / ( x +1) .ˆ4 ;
% I 1 1 i s the negat ive expec ta t i on o f the second p a r t i a l
% d e r i v a t i v e o f the log−l i k e l i h o o d f u n c t i o n with r e s p e c t
% to alpha
I 1 1 = ( 1/ alpha ˆ2 − t ˆ alpha ∗Mˆ alpha ∗( l og ( t)− l og (M) ) ˆ 2 / ( t ˆ alpha+Mˆ alpha )ˆ2 ) . . .
+ i n t e g r a l ( fh2 , ( t /M)ˆ alpha , i n f )/(3∗ alpha ˆ2) . . .
∗ (1+ t ˆ alpha /Mˆ alpha ) ;
% d e f i n e the f u n c t i o n handle f o r the integrand o f
% ( log (w))ˆ2 t imes dens i ty o f beta prime (2 , 2)
fh1 = @( x ) log ( x ) . ∗ 6 . ∗ x . / ( x +1) .ˆ4 ;
% I 1 2 i s the negat ive expec ta t i on o f the c r o s s p a r t i a l
% d e r i v a t i v e o f the log−l i k e l i h o o d f u n c t i o n with r e s p e c t
% to alpha & M
I 1 2 = ( 1/M/(1+( t /M)ˆ alpha )ˆ2 − i n t e g r a l ( fh1 , ( t /M)ˆ alpha , i n f )/3/M ) . . .
∗ (1+ t ˆ alpha /Mˆ alpha ) . . .
− Mˆ( alpha −1)/( t ˆ alpha+Mˆ alpha ) . . .
+ alpha ∗ t ˆ alpha ∗Mˆ( alpha −1)∗( l og ( t)− l og (M) ) / ( t ˆ alpha+Mˆ alpha ) ˆ 2 ;
% I 2 2 i s the negat ive expec ta t i on o f the second p a r t i a l
% d e r i v a t i v e o f the log−l i k e l i h o o d f u n c t i o n with r e s p e c t
% to M
I 2 2 = ( alpha ∗( alpha−1)/Mˆ2/(1+( t /M)ˆ alpha )ˆ2 . . .
− 2∗ alpha ˆ2/(3∗Mˆ2)/(1+( t /M)ˆ alpha )ˆ3 ) . . .
∗ (1+ t ˆ alpha /Mˆ alpha ) . . .
− alpha ∗( alpha−1)∗Mˆ( alpha −2)/( t ˆ alpha+Mˆ alpha ) . . .
+ alpha ˆ2∗Mˆ(2∗ alpha −2)/( t ˆ alpha+Mˆ alpha ) ˆ 2 ;
% Same e x p r e s s i o n to compute mean curvature ,
% in fo rmat ion complexity c r i t e r i o n ,
% asymptotic mean curvature c r i t e r i o n
% as f o r truncated Lomax model
%
%
% Run dataChampernowneMLE f i r s t
% Compute ICOMP AMC f o r s h i f t e d Champernowne model
% alpha i s shape parameter o f Champernowne d i s t r i b u t i o n
alpha = tao hat sMLE ;
% M i s s c a l e parameter o f Champernowne d i s t r i b u t i o n
M = theta hat sMLE ;
% d e f i n e the f u n c t i o n handles f o r the integrand
f1 = @( y ) alpha ∗Mˆ alpha ∗y . ˆ ( 2∗ alpha −1).∗ l og ( y ) . ˆ 2 . . .

. / ( y . ˆ alpha+Mˆ alpha ) . ˆ 3 ;
f 2 = @( y ) alpha ∗Mˆ alpha ∗y . ˆ ( 3∗ alpha −1).∗ l og ( y ) . ˆ 2 . . .

. / ( y . ˆ alpha+Mˆ alpha ) . ˆ 4 ;
f 3 = @( y ) alpha ∗Mˆ(2∗ alpha )∗ l og (M)∗y . ˆ ( 2∗ alpha −1).∗ l og ( y ) . . .

. / ( y . ˆ alpha+Mˆ alpha ) . ˆ 4 ;
% I 1 1
I 1 1 = 1/ alpha ˆ2 + 2∗ i n t e g r a l ( f1 , 0 , i n f ) + log (M)ˆ2 . . .

− 2∗ i n t e g r a l ( f2 , 0 , i n f ) − 4∗ i n t e g r a l ( f3 , 0 , i n f ) . . .
−2∗ l og (M) ˆ 2 / 3 ;

% d e f i n e the f u n c t i o n handle f o r the integrand
f4 = @( y ) alpha ˆ2∗Mˆ(2∗ alpha−1)∗y . ˆ ( 2∗ alpha −1).∗ l og ( y ) . . .

. / ( y . ˆ alpha+Mˆ alpha ) . ˆ 4 ;
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% I 1 2
I 1 2 = alpha ∗ l og (M)/(3∗M) − 2∗ i n t e g r a l ( f4 , 0 , i n f ) ;
% I 2 2
I 2 2 = alpha ˆ2/(3∗Mˆ 2 ) ;
% Same e x p r e s s i o n to compute mean curvature ,
% in fo rmat ion complexity c r i t e r i o n ,
% asymptotic mean curvature c r i t e r i o n
% as f o r s h i f t e d Lomax model
% end o f Table 4 . 1
%
%
% end o f MATLAB code
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