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ABSTRACT

Asymptotic Estimates for Some Dispersive Equations

on the α-Modulation Space.

by

Justin G. Trulen

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Dr. Lijing Sun

The α-modulation space, M s,α
p,q (Rn), is a function space developed by Gröbner

in 1992. The α-modulation space is a generalization of the modulation space,

M s
p,q(Rn), and Besov space, Bs

p,q(Rn). In this thesis we obtain asymptotic estimates

for the Cauchy Problem for dispersive equation, a generalized half Klein-Gordon,

and the Klein-Gordon equations. The wave equations will also be considered in

this thesis too. These estimates were found by using standard tools from harmonic

analysis. Then we use these estimates with a multiplication algebra property of

the α-modulation space to prove that there are unique solutions locally in time

for a nonlinear version of these partial differential equations in the function space

C([0, T ],M s,α
p,q (Rn)). These results are obtained by using the fixed point theorem.
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Chapter 1

Background

1.1 Introduction

Nonlinear dispersive equations have been studied both in mathematics and physics

due to their importance in describing how waves of different wavelength propagate at

different velocities. The Schrödinger equation, Airy and Klein-Gordon equation are

classic examples of dispersive equations. We will also consider the wave equation

in this thesis too. An intuitive description of what dispersive equations describe

would be the following: as the main wave travels through a medium it will begin

to break into many smaller waves as time evolves. As time continues to evolve,

the waves of different wavelengths propagate at different velocities. A quantitative

understanding of this behavior gives one insight into the behavior of the solution.

Since very few partial differential equations (PDEs) can be solved explicitly other

methods need to be used to establish the existence of a solution. Thus additional

techniques are required to understand when a PDE has a solution and how such a

solution behaves. Some of these analytical techniques are: separation of variables,

method of characteristics, change of variables, the Lie group method, and numerical

methods. In this thesis we are going to focus on one analytical method that would

be classified as an integral transform. Our integral transform relies on using the

Fourier transform to turn the PDE into a differential equation that is easier to solve

explicitly. In this process Fourier multipliers are produced.

As mentioned above, Fourier multipliers arise naturally in the study of PDEs
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and in the convergence of Fourier series. The fundamental problem in the study of

Fourier multipliers is to relate the boundness properties of the Fourier multiplier on

certain function spaces to properties of its symbol. In 1977 Strichartz [25] found

Lp(Rn) space decay estimates for the solutions to the Schrödinger equation and the

Klein-Gordon equation with certain conditions on the initial data. In 1995 both

Lindblad and Sogge [21], and Ginibre and Velo [13] found non-endpoint estimates

for the wave equation. Shortly after that in 1998 Keel and Tao [19] found endpoint

estimates for the Schrödinger and wave equation.

In general unimodular Fourier multipliers do not preserve any Lp-norm except

for when p = 2. For this reason Lp(Rn) spaces may not be an appropriate space

for this study. In 1983 Feichtinger [8] introduced a new function space called the

modulation space, denoted M s
p,q(Rn). The modulation space is used to measure the

smoothness of a function or distribution in a different way than the Lp(Rn) space,

and can be understood as a measure of the phase space concentration of a function.

This has made it possible for other Strichartz estimates to be found.

In 2007 Benyi and Grochenig [2] showed that the solutions to both the Schrödinger

equation and the Wave equation are in the non-weighted modulation space M0
p,q(Rn)

provided their initial data is in M0
p,q(Rn). Wang and Hudzik [27] studied the non-

linear Schrödinger equation and the nonlinear Klein-Gordon equation. Supposing

that the initial data is in the non-weighted modulation space, M0
p,q(Rn), using spec-

ified nonhomogenuous functions they were able to show that both the nonlinear

Schrödinger equation and the nonlinear Klein-Gordon equation have solutions in a

similar non-weighted modulation space. More general results were found by Chen,

Fan, and Sun [5] in 2012 and by Deng, Ding, and Sun [6] in 2013.

Gröbner’s Ph.D thesis [15], written in 1992, introduced another function space

called the α-modulation space, denoted by M s,α
p,q (Rn). This function space was not

only a generalization for the modulation space M s
p,q(Rn), but also served as an

intermediate space for both the modulation space M s
p,q(Rn) and the Besov space,

Bs
p,q(Rn). The parameter α ∈ [0, 1] serves as a tuner in the sense that as α approaches

0+ the α-modulation space M s,α
p,q (Rn) begins to “look” more like modulation space
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M s
p,q(Rn). As α approaches 1− the α-modulation space, M s,α

p,q (Rn) begins to “look”

more like the Besov space Bs
p,q(Rn). Because of this fact, and the fact that Fourier

multipliers can preserve the M s,α
p,q -norm in more general cases this makes the α-

modulation space M s,α
p,q (Rn) a more suitable function space to work on.

In the following sections we will present basic equations and definitions that will

be used throughout this dissertation. The goal is to provide a simple introduction

and reference that will serve as a basis for the remainder of the chapters. Other

important notations used throughout this dissertation are as follows: define Z∗ =

Z+ ∪ {0}, for a space X let X′ denote the dual space of X, for p ∈ R+ denote the

conjugate of p as p′, that is
1

p
+

1

p′
= 1,

with the modifications that if p = 0, then p′ = ∞ or if p = ∞, then p′ = 0.

For all multi-indices α′ define |α′| = α1 + · · · + αn, for all x, ξ ∈ Rn define xξ =

x1ξ1+· · ·+xnξn, we write A � B if there is a positive constant C such that A ≤ CB,

and define 〈x〉 = (1 + |x|)
1
2 .

1.2 Fourier Transform

Let Lp(Rn) denote the usually Lp function space with the norm

||f ||Lp(Rn) =

(∫
Rn
|f(x)|pdx

) 1
p

.

where 0 < p <∞. When p =∞ we will make the usual modification of

||f ||L∞ = ess supx∈Rn|f(x)|.

Suppose α′ = (α′1, · · · , α′n) and β′ = (β′1, · · · , β′n), where α′i, β
′
i ∈ Z∗ for all 1 ≤

i ≤ n, are multi-indices. Also, suppose the conventions of xα
′

= x
α′1
1 · · ·xα

′
n
n and

∂β
′
f(x) = ∂β

′
1
x1
· · · ∂β′nxnf(x). The Schwartz Space, denoted by S (Rn), is the set of

all smooth functions f(x), meaning functions that are infinitely differentiable, that

satisfy the following

sup
x∈Rn

∣∣∣xα′∂β′f(x)
∣∣∣ < Cα′,β′ <∞,

3



where Cα′,β′ is a constant that depends on all multi-indices α′ and β′. The Schartz

space can be thought of as the set of all smooth functions that decay faster than the

reciprocal of any polynomial. With this view point it is clear that S (Rn) ⊂ Lp(Rn)

for all 1 ≤ p ≤ ∞.

For all f ∈ S (Rn) define the Fourier transform, denoted by f̂(ξ) = Ff(ξ), by

f̂(ξ) =

∫
Rn
f(x)e−ixξdx, (1.1)

where ξ ∈ Rn and xξ = x1ξ1 + · · · + xnξn. Since S (Rn) ⊂ L1(Rn) equation (1.1)

makes sense for all f ∈ S (Rn). Furthermore, the Fourier transform enjoys the

linear property

̂af + bg(ξ) = af̂(ξ) + bĝ(ξ),

where f, g ∈ S (Rn) and a, b ∈ C, and enjoys the following other properties as well:

1. ˆ̃f =
˜̂
f ,

2. τ̂ y(f)(ξ) = e−iyξf̂(ξ),

3. (eixyf(x))̂(ξ) = τ y(f̂)(ξ),

4. (δaf)̂(ξ) = t−nδt
−1

(f̂),

5. (∂α
′
f)̂(ξ) = (iξ)α

′
f̂(ξ),

6. (∂α
′
f̂)(ξ) = ((−ix)α

′
f(x))̂(ξ),

7. f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ),

with a > 0, t > 0, and τ y(f)(x), δaf(x), f̃(x) and f ∗ g(x) are defined as

τ y(f)(x) = f(x− y), (1.2)

δaf(x) = f(ax), (1.3)

f̃(x) = f(−x), (1.4)

f ∗ g(x) =

∫
Rn
f(x− y)g(y)dy. (1.5)

4



See [14, 20] for details of the proofs of these properties.

To define the inverse of the Fourier transform, first note that if f ∈ S (Rn),

then f̂ ∈ S (Rn) [14]. Because of this fact, we are able to define the inverse of the

Fourier transform for all f ∈ S (Rn). Define the inverse f̌(x) = F−1f(x) by

F−1f(x) = f̌(x) =
1

(2π)n

∫
Rn
f(ξ)eixξdξ. (1.6)

With this definition we have the following Fourier inversion property:

F−1 (F (f)(ξ)) (x) = F
(
F−1(f)(ξ)

)
(x) = f(x).

We also have the important Plancherel’s Identity.

Theorem 1.2.1. (Plancherel’s Identity [14]) For all f ∈ S (Rn) the following holds

||f ||L2(Rn) =
∣∣∣∣∣∣f̂ ∣∣∣∣∣∣

L2(Rn)
=
∣∣∣∣f̌ ∣∣∣∣

L2(Rn)
.

Note that Plancherel’s Identity is often associated with a conservation of energy

estimate.

We are able to define the Fourier transform on L1(Rn). This follows immediately

because if f ∈ L1(R) then

f̂(ξ) =

∫
Rn
f(x)e−ixξdx,

converges and makes sense. Decay and continuity of such Fourier transforms of

L1(Rn) functions are characterized in the following theorem:

Theorem 1.2.2. (Riemann-Lebesgue Lemma [16, 14, 20]) If f ∈ L1(Rn), then f̂ is

uniformly continuous and

lim
|ξ|→∞

|f̂(ξ)| = 0.

This result can also be interpreted as a smoothing effect that the Fourier trans-

form has on L1-functions, which may not be continuous.

Note that we are not always able to define the inversion. To see this, consider

the following example:

5



Example 1.2.3. ([20]) Let n = 1 and set f(x) = χ(a,b)(x) to be the characteristic

function on the interval (a, b). Clearly f ∈ L1(R). Then it follows that

f̂(ξ) =

∫ ∞
−∞

f(x)e−ixξdx

=

∫ b

a

e−ixξdx

= −e
−ibξ − e−iaξ

iξ

= −e−i(a+b)ξ sin((b− a)ξ)

ξ
.

Here we see f̂ /∈ L1(R).

Because of this, the Fourier inverse is defined only when it makes sense, that is,

the integral is convergent in the L1-sense; or when f̂ ∈ L1(Rn).

We can also extend the definition of the Fourier transform to L2(Rn) by con-

sidering a dense subspace of L2(Rn). Such a space would be L1(Rn) ∩ L2(Rn).

Using Theorem 1.2.1, to define the Fourier transform of f ∈ L2(Rn) pick a sequence

fN ∈ L1(Rn) ∩ L2(Rn) that converges to f in L2(Rn). Since fN ∈ L1 ∩ L2, then f̂N

will be defined for all N . Then it follows that the function f̂ such that∣∣∣∣∣∣f̂N − f̂ ∣∣∣∣∣∣
L2(Rn)

→ 0 as N →∞,

can be taken as the Fourier transform of f . The existence of f̂ ∈ L2(Rn) is guar-

anteed since the Fourier Transform is an isometry on L2(Rn) [14]. Note that the

definition of f̂ is independent from the choice of fN . See [14, 20].

The final extension we will define is the Fourier transform for all Lp(Rn) where

1 < p < 2. This is simply done by decomposing an Lp-function, f , into the sum of

an L1-function, f1, and an L2-function, f2. One such decomposition is set f1(x) =

f(x)χ{x∈Rn:|f(x)|>1}(x) and f2(x) = f(x)χ{x∈Rn:|f(x)|≤1}(x). Thus f̂ is defined as

f̂(ξ) = f̂1(ξ) + f̂2(ξ).

Note that the definition of f̂ is independent of the choice of f1 and f2 [14]. Such an

extension leads to the following well-know theorem:

6



Theorem 1.2.4. (Hausdorff-Young inequality [14, 20]) For 1 ≤ p ≤ 2 and every

function f ∈ Lp(Rn) we have the following estimate:∣∣∣∣∣∣f̂ ∣∣∣∣∣∣
Lp′ (Rn)

≤ ||f ||Lp(Rn) .

From the Hausdorff-Young inequality we get the following well known corollary:

Corollary 1.2.5. ([14, 20]) The following estimate holds∣∣∣∣∣∣f̂ ∣∣∣∣∣∣
L∞(Rn)

≤ ||f ||L1(Rn) .

This result gives one an upper bound for the supremum of f̂ over ξ ∈ Rn, which

is the L1-norm of f .

1.3 Fourier Multipliers

Let C∞C (Rn) be the set of all functions that are smooth and have compact support.

We call C∞C (Rn) the set of Test Functions. For all f ∈ C∞C (Rn) we define the Fourier

multiplier with symbol µ, denoted Hµf(x), by

Hµf(x) =
1

(2π)n

∫
Rn
µ(ξ)f̂(ξ)eixξdξ. (1.7)

First note that C∞C (Rn) ⊂ S (Rn). From this, if f ∈ C∞C (Rn), then Hµf makes

sense. Second, the Fourier multiplier is a linear operator. As we will see later,

the Fourier multiplier arises naturally in the formal solution of PDEs with constant

coefficients. As mentioned earlier, a fundamental problem in the study of Fourier

multipliers is to relate the boundedness properties of Hµ on certain function spaces

to properties of the symbol µ. We will now cite a couple well-known theorems about

Fourier multipliers.

The next two theorems give sufficient conditions for the µ ∈ L∞(Rn) and when

the operator Hµ is bounded. These results are known as the Hörmander-Mihlin

Multiplier Theorem and Marcinkiewicz Multiplier Thoerem.

Theorem 1.3.1. (The Hörmander-Mihlin Multiplier Theorem on Rn [14, 3]) Let

µ(ξ) be a complex-valued bounded function on Rn/ {0} that satisfies either:

7



1. Mihlin’s condition

|∂αµ(ξ)| ≤ A|ξ|−|α|,

for all multi-indices |α| ≤
[n

2

]
+ 1, or,

2. Hörmander’s condition

sup
R>0

R−n+2|α|
∫
R<|ξ|<2R

|∂αµ(ξ)|2 dξ ≤ A2 <∞,

for all multi-indices |α| ≤
[n

2

]
+ 1,

then for all 1 < p <∞ we have the following estimate

||Hµ||Lp→Lp ≤ Cn max
(
p, (p− 1)−1

)
(A+ ||µ||L∞) .

For the next theorem let Ij =
(
−2j+1,−2j

]
∪
[
−2j+1,−2j

)
and Rj = Ij1×· · ·×Ijn

for all j = (j1, · · · , jn) ∈ Zn.

Theorem 1.3.2. (The Marcinkiewicz Multiplier Thoerem on Rn [14]) Let µ be a

bounded function on Rn that is C n, i.e. functions whose nth derivative exists, in

all regions Rj. Suppose there is a constant A such that for all k ∈ {1, · · · , n}, all

j1, · · · , jk ∈ {1, · · · , n}, all lj1 , · · · , ljk ∈ Z, and all ξ ∈ Ils for s ∈ {1, · · · , n} /
{j1, · · · , jk} we have∫

Ilj1

· · ·
∫
Iljk

∣∣∂jµ(ξ)
∣∣ dξjk · · · dξj1 ≤ A <∞,

then for 1 < p <∞ there is a constant Cn <∞ such that

||Hµ||Lp→Lp ≤ Cn (A+ ||µ||L∞) max
(
p, (p− 1)−1

)6n
.

Both theorems are consequences of Littlewood-Paley theory and dyadic decom-

position, see [14, 24] for more details.

In this thesis we will be focused on a special type of Fourier multiplier. The

Unimodular Fourier multiplier is a Fourier multiplier whose symbol has the form

eiν(ξ) where ν is a real-valued function. It is important to note that unimodular

Fourier multipliers in general do not preserve the Lp-norm, except when p = 2. In

the case when p = 2, one can simply apply Plancherel’s identity, Theorem 1.2.1. To

better understand this we first need a well known lemma.

8



Lemma 1.3.3. ([20]) If t 6= 0 and p′ ∈ [1, 2], then we have eit∆ : Lp
′
(Rn)→ Lp(Rn),

where eit∆ is the Fourier Multiplier with the symbol eit|ξ|, is continuous and the

following estimate holds∣∣∣∣eit∆f ∣∣∣∣
Lp(Rn)

≤ c|t|−
n
2

(
1
p′−

1
p

)
||f ||Lp′ (Rn) .

Now we can consider the following example:

Example 1.3.4. ([20]) Consider the Fourier multiplier e−it∆ with the symbol e−it|ξ,

then the Fourier multiplier Hµ is not a bounded operator from Lp(Rn) → Lp(Rn)

for p 6= 2 and t 6= 0. If it was a bounded operator from Lp → Lp it would be

bounded for p′. So without loss of generality, suppose p > 2. Let t 6= 0 and pick

f ∈ Lp′(Rn) ∩ Lp(Rn) ⊂ L2(Rn). Then it follows

||f ||Lp(Rn) =
∣∣∣∣eit∆e−it∆f ∣∣∣∣

Lp(Rn)

≤ c0

∣∣∣∣e−it∆∣∣∣∣
Lp(Rn)

≤ c0c(t) ||f ||Lp′ (Rn) ,

which is a contradition.

Furthermore, using the same unimodular Fourier multiplier from Example 1.3.4

we have the next example.

Example 1.3.5. Suppose p > 2 and t 6= 0. Let g ∈ L2(Rn) such that g /∈ Lp(Rn).

Define f to be

f(x) = Hµg(x) =
1

(2π)n

∫
Rn
e−it|ξ|ĝ(ξ)eixξdξ.

Note that f ∈ Lp(Rn). Then the unimodular Fourier multiplier Hµ0 , with symbol

9



µ0(ξ) = eit|ξ| is not a bounded operator from L2(Rn)→ Lp(Rn) since

Hµ0f(x) =
1

(2π)n

∫
Rn
eit|ξ|f̂(ξ)eixξdξ

1

(2π)n

∫
Rn
eit|ξ|F

(
1

(2π)n

∫
Rn
e−it|ξ|ĝ(ξ)eixξdξ

)
(x)eixξdξ

=
1

(2π)n

∫
Rn
eit|ξ|F

(
F−1

(
e−it|ξ|ĝ(ξ)

))
(x)eixξdξ

=
1

(2π)n

∫
Rn
eit|ξ|e−it|ξ|ĝ(ξ)eixξdξ

=
1

(2π)n

∫
Rn
ĝ(ξ)eixξdξ

= g(x).

and this is not in Lp(Rn).

Because of these two examples, one sees that Lp spaces may not be appropriate

function spaces to study Fourier multipliers and formal solutions to PDEs. Next we

will make the precise definition of what we mean by dispersive equations, and look

at some dispersive equations that we will be considering in this dissertation.

1.4 Dispersive Equations

Consider the general PDE of the form

F (∂x, ∂t)u(t, x) = 0,

where F is a polynomial in the partial derivatives. We seek to find a solution to this

PDE that takes the form of

u(t, x) = Aei(kx−tξ).

Note u(t, x) will be a solution if and only if F (ik,−iξ) = 0, which is called a

dispersive relation. In some cases we can write ξ = ξ(k). With this we can define

the group velocity, denoted by cg(k), as

cg(k) = ξ′(k).
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If cg is not constant, i.e. c′g(k) = ξ′′(k) 6= 0, then the waves are called dispersive.

The physical meaning can be interpreted as time evolves waves of different wave-

lengths disperse in the medium at different velocities. That is a wave with one hump

will break into several smaller waves over time. Such equations have been studied in

both mathematics and physics because of this property. In this dissertation we will

consider both Cauchy problem for dispersive equation, a generalized Klein-Gordon,

wave, and the Klein-Gordon equation. First we must introduce the fractional Lapla-

cian.

Let ∆ = ∆x = ∂2
x1

+ · · ·+ ∂2
xn the standard Laplacian. Let αo ∈ R+. Now define

the fractional Laplacian with order αo of f , denoted by (−∆)
αo
2 f(x), by

(−∆)
αo
2 f(x) =

1

(2π)n

∫
Rn
|ξ|αo f̂(ξ)eixξdξ. (1.8)

Such an operator is formally known as the Riesz potential, and has been studied

independently. The reader is directed to [23] for more details. With this definition

we can state the Cauchy problem for dispersive equation as{
i∂tu(t, x) + |∆|

αo
2 u(t, x) = 0, for (t, x) ∈ R+ × Rn,

u(0, x) = u0(x), for x ∈ Rn.
(1.9)

We can get a formal solution to this PDE by taking the Fourier transform to get

an equivalent system of{
∂tû(t, ξ) = i|ξ|αoû(t, ξ), for (t, ξ) ∈ R+ × Rn,
û(0, ξ) = û0(ξ), for ξ ∈ Rn,

which is a first order differential equation. Such equation has a solution of the form

û = eit|ξ|
αo
û0(ξ).

Now taking the Fourier inverse we have the formal solution to Cauchy problem for

dispersive equation (1.9)

u(t, x) =
1

(2π)n

∫
Rn
eit|ξ|

αo
û0(ξ)eixξdξ

= Heit|ξ|αou0(x).

11



For the sake of convenience we will write the formal solution, Heit|ξ|αou0(x), in the

form

Heit|ξ|αou0(x) = eit|∆|
αo
2 u0(x). (1.10)

When αo = 1, 2, 3, the Cauchy problem for dispersive equation corresponds to the

(half-) wave equation, the Schrödinger equation, and (essentially) the Airy equation.

These cases will be of particular interest, and their solution’s asymptotic estimates

will be explored in more detail later in the dissertation.

To understand how the wave equation fits into the big picture, first we have
∂ttu(t, x)−∆u(t, x) = 0, for (t, x) ∈ R+ × Rn,
u(0, x) = u1(x), for x ∈ Rn,
∂tu(0, x) = u1(x), for x ∈ Rn,

(1.11)

and take the Fourier transform we get
∂ttû(t, ξ) + |ξ|2û(t, ξ) = 0, for (t, ξ) ∈ R+ × Rn,
û(0, ξ) = û1(ξ), for ξ ∈ Rn,
∂tû(0, ξ) = û1(ξ), for ξ ∈ Rn.

Solving this second order ordinary differential equation we get a solution in the

form

û(t, ξ) = c1 cos(t|ξ|) + c2 sin(t|ξ|).

Using the initial conditions we get

û0(ξ) = c1 and û1(ξ) = c2|ξ|.

Thus we get a solution of

u(t, x) =
1

(2π)n

∫
Rn

cos(t|ξ|)û0(ξ)eixξdξ +
1

(2π)n

∫
Rn

sin(t|ξ|)
|ξ|

û1(ξ)eixξdξ

= Hcos(t|ξ|)u0(x) +H sin(t|ξ|)
|ξ|

u1(x),

where we can take

Hcos(t|ξ|)u0(x) = cos(t(−∆)
1
2 )u0(x) and H sin(t|ξ|)

|ξ|
u1(x) =

sin(t(−∆)
1
2

(−∆)
1
2

u1(x).
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The α-modulation space estimate for cos(t∆)u0(x) is equivalent to the α-Modulation

space estimate for eit|∆|
αo
2 u0(x). Furthermore, to see why αo = 1 corresponds to what

is called the (half-) wave equation we can rewrite Wave equation (1.11) as

(∂t + i|ξ|)(∂t − i|ξ|)û(t, ξ) = 0,

and if we consider the second factor of this factorized form we have

(∂t − i|ξ|)û(t, ξ) = 0.

Now working backwards we have

(∂t − i|ξ|)û(t, ξ) = 0⇒,

i∂tû(t, ξ) + |ξ|û(t, ξ) = 0⇒,

i∂tu(t, x) + |∆|
1
2u(t, x) = 0. (1.12)

The other dispersive equation we will consider in this paper is a generalized

Klein-Gordon equation. To familiarize ourselves with this dispersive equation we

will first consider the Klein-Gordon equation of the form
∂ttu(t, x) + (I −∆)u(t, x) = 0, for (t, x) ∈ R+ × Rn,
u(0, x) = u0(x), for x ∈ Rn,
∂tu(0, x) = u1(x), for x ∈ Rn,

where Iu(t, x) = u(t, x) is the identity operator. Again we can find the formal

solution of this equation by taking the Fourier transform and writing this equation

in the equivalent form
∂ttû(t, ξ) + (1 + |ξ|2)û(t, ξ) = 0, for (t, ξ) ∈ R+ × Rn,
û(0, ξ) = û0(ξ), for ξ ∈ Rn,
∂tû(0, ξ) = û1(ξ), for ξ ∈ Rn.

The general solution has the form of

û(t, ξ) = c1 cos
(
t(1 + |ξ|2)

1
2

)
+ c2 sin

(
t(1 + |ξ|2)

1
2

)
,

and using the initial conditions to get the relationships

û0(ξ) = c1 and û1(ξ) = c2

(
1 + |ξ|2

) 1
2 ,

13



we obtain the particular solution

û(t, ξ) = cos
(
t(1 + |ξ|2)

1
2

)
û0(ξ) +

sin
(
t(1 + |ξ|2)

1
2

)
(1 + |ξ|2)

1
2

û1(ξ).

Again, taking the Fourier inverse we get

u(t, x) =
1

(2π)n

∫
Rn

cos
(
t(1 + |ξ|2)

1
2

)
û0(ξ)eixξdξ+

1

(2π)n

∫
Rn

sin
(
t(1 + |ξ|2)

1
2

)
(1 + |ξ|2)

1
2

û1(ξ)eitxξdξ.

Again we will define these Fourier multipliers as the following operators

H
cos

(
t(1+|ξ|2)

1
2

)u0(x) = cos
(
t(I −∆2)

1
2

)
u0(x),

and

H
sin

(
t(1+|ξ|2)

1
2

)

(1+|ξ|2)
1
2

u1(x) =
sin
(
t(I −∆2)

1
2

)
(I −∆2)

1
2

u1(x).

Now we can turn our attention to the generalized Klein-Gordon equation. First,

we define the Bessel Potential (I −∆)αo [23] by

(I −∆)αof(x) =
1

(2π)n

∫
Rn

(1 + |ξ|2)αo f̂(ξ)eixξdξ. (1.13)

Then the Generalized Klein-Gordon equation of order αo by
∂ttu(t, x) + (I −∆)αou(t, x) = 0, for (t, x) ∈ R+ × Rn,
u(0, x) = u0(x), for x ∈ Rn,
∂tu(0, x) = u1(x), for x ∈ Rn.

(1.14)

Using the same techniques as before for with the Klein-Gordon equation we find

the formal solution

u(t, x) =
1

(2π)2

∫
Rn

cos
(
t(1 + |ξ|2)

αo
2

)
û0(ξ)eixξdξ+

1

(2π)2

∫
Rn

sin
(
t(1 + |ξ|2)

αo
2

)
(1 + |ξ|2)

αo
2

û1(ξ)eixξdξ,
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using the convention of

cos
(
t(I −∆)

αo
2

)
u0(x), and

sin
(
t(I −∆)

αo
2

)
(I −∆)

αo
2

u1(x),

correspond to the appropriate Fourier Multipliers.

Furthermore, like the treatment of the wave equation, items (1.11)

through (1.12) we get a generalized half Klein-Gordon equation of the form

i∂tu(t, x) + (I −∆)
αo
2 u(t, x) = 0. (1.15)

Again, with the same calculations we arrive at a solution of

u(t, x) =
1

(2π)n

∫
Rn
eit(1+|ξ|2)

αo
2

û0(ξ)dixξdξ

= H
eit(1+|ξ|2)

αo
2
u0(x).

Furthermore, we will use the following convention of

H
eit(1+|ξ|2)

αo
2
u0(x) = eit(I−∆)

αo
2 u0(x).

We will now close this section by providing in detail some known results of

dispersive equations. The first two results are the original Strichartz estimates that

can be found in [25]. These are non-endpoint estimates and the first of the two deals

with the Schrödinger equation.

Theorem 1.4.1. ([25]) Let u(x, t) be a solution of the inhomogeneous free

Schrödinger equation{
i∂tu(t, x) + λ∆u(t, x) = g(t, x), for (t, x) ∈ R× Rn,
u(0, x) = u0(x), for x ∈ Rn,

where λ be a nonzero constant, u0 ∈ L2(Rn), and g ∈ Lp(Rn+1) for p =
2(n+ 2)

n+ 4
,

then u ∈ Lq(Rn+1) for q =
2(n+ 2)

n
and

||u||Lq(Rn+1) � ||f ||L2(Rn) + ||g||Lq(Rn+1) .
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The second result deals with the Klein-Gordon equation.

Theorem 1.4.2. ([25]) Let u(t, x) be a solution to the Klein-Gordon, where m > 0
−∂ttu(t, x) + ∆u(t, x)−m2u(t, x) = g(t, x), for (t, x) ∈ R× Rn,
u(0, x) = u0(x), for x ∈ Rn,
∂tu(0, x) = u1(x), for x ∈ Rn,

where B
1
2u0 ∈ L2(Rn), B−

1
2u1 ∈ L2(Rn), where B = (m2 −∆)

1
2 , and g ∈ Lq(Rn+1),

then u ∈ Lq(Rn+1) and

||u||Lq(Rn+1) �
∣∣∣∣∣∣B 1

2u0

∣∣∣∣∣∣
L2(Rn)

+
∣∣∣∣∣∣B− 1

2u1

∣∣∣∣∣∣
L2(Rn)

+ ||g||Lq(Rn+1) ,

with the following restrictions on p and q

if n = 1
2(n+ 1)

n+ 3
≤ p ≤ 2(n+ 2)

n+ 4
,

2(n+ 2)

n
≤ q ≤ 2(n+ 1)

n− 1
,

if n ≥ 2 1 < p ≤ 6

5
, 6 ≤ q <∞.

After Strichartz results, the non-endpoint estimates for the wave equation were

found by both Lindblad and Sogge [21], and Ginibre and Velo [13].

The last result is one found by Tao and Keel [19]. This finds the endpoint

estimates for both the Schrödinger and wave equation. Though the theorem is stated

in the context of Hilbert spaces, it is easily applied to these differential equations.

First, we need to start with a definition.

Definition 1.4.3. A pair (q, r) that satisfies q, r ≥ 2, (q, r, σ) 6= (2,∞, 1), and

1

q
+
σ

r
≤ σ

2
,

is called σ-admissible. A pair (q, r) that satisfies q, r ≥ 2, (q, r, σ) 6= (2,∞, 1), and

1

q
+
σ

r
=
σ

2
,

is called sharp σ-admissible.

Now we can state Tao and Keel [19] result.
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Theorem 1.4.4. ([19]) Suppose t ∈ R+ and let U(t) : H → L2
x(X), where (X, dx)

is a measure space, be an operator defined on a Hilbert space H. If U obeys the

following estimates:

||U(t)f ||L2
x(X) � ||f ||H for all f ∈ H, and (1.16)

||U(s)(U(t))∗g||L∞x (X) � |t− s|
−σ ||g||L1

x(X) , (1.17)

for some σ > 0, t 6= s, and all g ∈ L1
x(X), then for all sharp σ-admissible exponent

pairs (q, r) and (q̃, r̃) U obeys the following estimates

||U(t)f ||LqtLrx � ||f ||H ,∣∣∣∣∣∣∣∣∫ (U(s))∗F (s)ds

∣∣∣∣∣∣∣∣
H

� ||F ||
Lq
′
t L

r′
x
,∣∣∣∣∣∣∣∣∫

s<t

U(t)(U(s))∗F (s)ds

∣∣∣∣∣∣∣∣
LqtL

r
x

� ||F ||
Lq̃
′
t L

r̃′
x
.

Furthermore, for all t and s, and g ∈ L1
x(X), if the equation (1.17) in the hypothesis

can be strengthen to

||U(s)(U(t))∗g||L∞x (X) � (1 + |t− s|)−σ ||g||L1
x(Rn) ,

then the conclusion can be extend to all σ-admissible exponent pairs (q, r) and (q̃, r̃).

1.5 Thesis Outline

The remainder of this thesis is organized as follows: in Chapter 2 we introduce

the Besov, Modulation, and α-Modulation spaces. We will discuss the construction

of these function spaces, behavior of these function spaces and various embedding

properties of these function spaces. We also discuss some recent developments of

asymptotic estimates of Fourier Multipliers on these function spaces.

In Chapter 3 we state our main results dealing with asymptotic estimates of

several Fourier Multipliers on the α-Modulation space. We will discuss the existing

theory in harmonic analysis needed for this dissertation as well as develop some basic
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estimates. We present the proofs to these main results followed by asymptotic esti-

mates for homogeneous solutions of several well known PDEs on the α-Modulation

space.

In Chapter 4 we conclude with presenting several results detailing when a unique

local solution exists for some nonlinear PDEs. These results are obtained by using

the results from Chapter 3 and using a fixed point theorem.
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Chapter 2

Function Spaces

In this chapter we will look at the construction of three well know function spaces:

Besov, modulation, and α-modulation. Then we will discuss some properties, em-

bedding and multiplier theorems. First we will give the definition of some basic

function spaces that will be used throughout this chapter.

Let C (Rn) be the set of all complexed-valued, bounded, and uniformly continu-

ous functions on Rn. Now define Cm(Rn) to be the set of all functions, f , such that

∂αf ∈ C (Rn) for all multi-indices α′, where |α′| ≤ m. See [26] for a full treatment

of these function spaces.

For k ≥ 0 an integer, define the Sobolev space, denoted W p,k(Rn), be the set of

all locally integrable functions f on Rn such that ∂α
′
f exists in the weak sense and

belongs to Lp(Rn) for all multi-indices |α′| ≤ k. See [26, 7, 1] for more information

about this classic space.

2.1 Besov Spaces

First introduced in 1959 by Besov [4] the Besov space is a function space that

measures functions in a different way than the Lp function spaces. The Besov space

breaks the spatial domain into different regions using the dyadic decomposition,

that is, on regions localized in
{
ξ : |ξ| ∼ 2j

}
. The construction of the Besov space

relies on the Littlewood-Paley decomposition operators, 4j.
Let {φj}∞j=0 be a sequence of functions in S (Rn) and α′ = (α1, · · · , α′n) with
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α′i ∈ Z∗ for all 1 ≤ i ≤ n, be a multi-index such that the following is satisfied:

suppφ0 ⊂ {ξ : |ξ| ≤ 2} ,
suppφj ⊂

{
ξ : 2j−1 ≤ |ξ| ≤ 2j+1

}
, for j ∈ {1, 2, · · · } ,

2j|α
′||Dα′φj(ξ)| ≤ cα′ , where cα′ > 0 is a constant,

∞∑
j=0

φj(ξ) ≡ 1.

(2.1)

Denote the set of all functions that satisfy condition (2.1) as XB. First note XB

is not empty. A standard construction of such a function follows by letting ρ be

a smooth radial bump function supported in the ball centered at the origin with

radius 2 such that ρ(ξ) = 1 if |ξ| < 1 and ρ(ξ) = 0 if |ξ| ≥ 2. Now define φ to be

φ(ξ) = ρ(ξ)− ρ(2ξ).

Define the sequence of functions {φj(ξ)}∞k=0 by
φj(ξ) = φ(2−jξ), if j ∈ N,

φ0(ξ) = 1−
∞∑
j=1

φj(ξ).
(2.2)

The sequence of functions defined in (2.2) satisfies the properties in (2.1). For any

sequence of functions {φj}∞j=0 ∈ XB, define the Littlewood-Paley decomposition

operators, 4j, by

4j = F−1φjF for all j ∈ N ∪ {0} .

The Besov norm, denoted by ||f ||Bsp,q(Rn), is defined by

||f ||Bsp,q(Rn) =

(
∞∑
j=0

2sjq ||4jf ||qLp(Rn)

) 1
q

.

Then the Besov space, denoted by Bs
p,q(Rn), is a set of functions f ∈ S ′(Rn) where

||f ||Bsp,q(Rn) < ∞. The reader is directed to [26, 12, 18] for this and other similar

constructions of the Besov space.

The Besov space enjoys many properties some of which we will list below. The

reader is directed to [26] for a more exhaustive discussion. First we can make a

statement as to how Cauchy sequences behave in Bs
p,q(Rn).
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Proposition 2.1.1. ([26]) If 0 < p, q ≤ ∞ and s ∈ R, then Bs
p,q(Rn) is a quasi-

Banach space. If 1 ≤ p, q ≤ ∞ and s ∈ R, then Bs
p,q(Rn) is a Banach space.

The construction of the Besov space is independent of the choice of {φj}∞j=0.

This is formalized in the next proposition.

Proposition 2.1.2. ([26]) If {φj}∞j=0 , {ϕj}
∞
j=0 ∈ XB(Rn), then they genarate equiv-

alent quasi-norms on Bs
p,q(Rn).

The Besov space enjoys several embedding properties with some of the other

function spaces discussed already.

Proposition 2.1.3. ([26]) The followings embeddings are valid:

1. S (Rn) ⊂ Bs
p,q(Rn) ⊂ S ′(Rn) for 0 < p, q ≤ ∞, s ∈ R.

2. S (Rn) is dense in Bs
p,q(Rn).

3. Bs
p,q(Rn) ⊂ Lp(Rn) for 1 ≤ p <∞, 0 < q ≤ ∞, s > 0.

4. B0
p,1(Rn) ⊂ Lp(Rn) ⊂ B0

p,∞(Rn) for 1 ≤ p ≤ ∞.

5. B0
∞,1(Rn) ⊂ C (Rn) ⊂ B0

∞,∞(Rn).

6. Bm
∞,1(Rn) ⊂ Cm(Rn) ⊂ Bs

∞,∞(Rn) for 1 ≤ p ≤ ∞,m = 1, 2, · · · .

7. Bs
p,q0
⊂ Bs

p,q1
for 0 < p ≤ ∞, 0 < q1 ≤ q1 ≤ ∞, s ∈ R.

8. Bs
p,min(p,q) ⊂ Bs

p,max(p,q)for 0 < p, q ≤ ∞, s ∈ R.

9. Bs
p,1(Rn) ⊂ W p,k(Rn) ⊂ B,

p,∞(Rn) for 1 ≤ p ≤ ∞,m = 1, 2, · · · .

Note that S (Rn) is not dense in Bs
∞,q(Rn) or in Bs

p,∞(Rn). Next we can say

something about the diversity of Bs
p,q(Rn).

Proposition 2.1.4. ([26]) For 0 < p0, p1, q0, q1 ≤ ∞ and s0, s1 ∈ R, then

Bs0
p0,q0

(Rn) = Bs1
p1,q1

(Rn),

if and only if s0 = s1, p0 = p1, and q0 = q1.
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This is to say that two Besov spaces coincide if and only if all of the parameters

agree.

The next few propositions describe other types of properties. To start, there are

certain conditions that will make the Besov space a multiplication algebra.

Proposition 2.1.5. ([18]) For functions f, g ∈ Bs
p,q(Rn) and s >

n

p
, we have

||fg||Bsp,q(Rn) � ||f ||Bsp,q(Rn) ||g||Bsp,q(Rn) .

For a function f ∈ Bs
p,q(Rn), there is a well known scaling property. Recall the

definition of δa from Chapter 1 Section 1.2 equation (1.3).

Proposition 2.1.6. ([18]) The following estimate is valid∣∣∣∣δλf ∣∣∣∣
Bsp,q(Rn)

� λ−
n
p max {2, λs} ||f ||Bsp,q(Rn) .

The dual space of Bs
p,q(Rn) is well understood. It is formalized as:

Proposition 2.1.7. ([26, 27]) For 0 < p, q < ∞ and s ∈ R, the dual space of

Bs
p,q(Rn), denoted (Bs

p,q(Rn))′, is given by

(Bs
p,q(Rn))′ = B

−s+n( 1
min{p,1}−1)

p′,q′ .

Bs
p,q(Rn) has a few isomorphic properties. The next proposition deals with the

Bessel Potential (I − ∆)
σ
2 which was defined in Chapter 1 Section 1.4 equation

(1.13).

Proposition 2.1.8. ([26]) Iσ : Bs
p,q(Rn)→ Bs−σ

p,q (Rn) is an isomorphism for s, σ ∈
R and 0 < p, q ≤ ∞.

Recall the definition of τ y in Chapter 1 Section 1.2, equation (1.2). Note that

F−1φjF τ yf(x) = F−1φje
−iyξFf

= τ yF−1φjFf(x)

= F−1φjFf(x− y).

Thus 4j commutes with translation. Then we have the following proposition:
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Proposition 2.1.9. ([26]) τ y : Bs
p,q(Rn)→ Bs

p,q(Rn) is an isomorphism for s ∈ Rn

and 0 < p, q ≤ ∞.

The next proposition describes a multiplier theorem that is associated with

Bs
p,q(Rn). Define the norm ||·||N [26] by

||µ||N = sup
|α′|≤N

sup
ξ∈Rn

(1 + |ξ|2)
|α′|
2 |Dα′µ(ξ)|,

where α′ is a multi-index and N is a positive integer.

Proposition 2.1.10. ([26]) Let 0 < p, q ≤ ∞ and s ∈ R. If µ ∈ C∞(Rn), f ∈
Bs
p,q(Rn), and if N is sufficiently large, then there exists a constant c > 0 such that

||Hµf ||Bsp,q(Rn) ≤ c ||µ||N ||f ||Bsp,q(Rn) .

Here we see that the Besov norm is preserved.

Bs
p,q(Rn) enjoys a couple of real and complex interpolation properties. Let H be

a linear complex Hausdorff space. A0, A1 be quasi-Banach spaces such that A0 ⊂H

and A1 ⊂H where “⊂” means linear and continuous embedding. Define k(t, a) as

k(t, a) = inf
a0∈A0
a1∈A1

(
||a0||A1

+ t ||a1||A1

)
.

This is known as the k-functional [3, 26]. A0 + A1 is the set defined as

A0 + A1 = {a ∈ A : a = a0 + a1 where a0 ∈ A0 and a1 ∈ A1} .

Define the real interpolation space, (A0, A1)Θ,q, by

(A0, A1)Θ,q =
{
a ∈ A0 + A1 : ||a||(A0,A1)Θ,q

<∞
}
,

where ||a||(A0,A1)Θ,q
is defined as

||a||(A0,A1)Θ,q
=

(∫ ∞
0

(
t−Θk(t, a)

)q dt
t

) 1
q

,

and with the usual modification made when q = ∞. For this construction and a

more in-depth treatment of real interpolation see [3]. With the above setup we state

the following proposition.
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Proposition 2.1.11. ([26]) For 0 < Θ < 1, 0 < q, q0, q1 ≤ ∞, s0, s1 ∈ R where

s0 6= s1 and s = (1−Θ)s0 + Θs1, then for 0 ≤ p ≤ ∞(
Bs0
p,q0

(Rn), Bs1
p,q1

(Rn)
)

Θ,q
= Bs

p,q(Rn).

Furthermore, if s0, s1 ∈ R with s = (1−Θ)s0 + Θs1 and 0 < p0, p1 <∞ with

1

p
=

1−Θ

p0

+
Θ

p1

,

then (
Bs0
p0,p0

(Rn), Bs1
p1,p1

(Rn)
)

Θ,p
= Bs

p,p(Rn).

For complex interpolation, let A = {z ∈ C : 0 < Re(z) < 1} and the closure of

A, denoted by A, to be A = {z ∈ R : 0 ≤ Re(z) ≤ 1}. We say f is S ′(Rn)-analytic

function in A if it satisfies the following three conditions:

• for fixed z ∈ A, f(z) ∈ S ′(Rn),

• F−1φFf(x, z) is a uniformly continuous and bounded function in Rn×A for

all φ ∈ S (Rn) with compact support in Rn,

• F−1φFf(x, z) is an analytic function in A for all φ ∈ S (Rn) with compact

support in Rn and every fixed x ∈ Rn.

For f(z), an S ′(Rn)-analytic function in A, define F (Bs0
p0,p0

(Rn), Bs1
p1,p1

(Rn))

where s0, s1 ∈ R and 0 < p0, p1, q0, q1 ≤ ∞ to be

F (Bs0
p0,p0

(Rn), Bs1
p1,p1

(Rn)) =
{
f : f(it) ∈ Bs0

p0,p0
(Rn), f(1 + it) ∈ Bs1

p1,p1
(Rn) for

all t ∈ R, ||f ||F (B
s0
p0,p0

(Rn),B
s1
p1,p1

(Rn)) <∞
}
,

and where ||f ||F (B
s0
p0,p0

(Rn),B
s1
p1,p1

(Rn)) is defined as

||f ||F (B
s0
p0,p0

(Rn),B
s1
p1,p1

(Rn)) = max
l=0,1

sup
t∈R
||f(l + it)||Bslpl,pl (Rn) .

Note F (Bs0
p0,p0

(Rn), Bs1
p1,p1

(Rn)) is a quasi-Banach space. For 0 < Θ < 1 define

(Bs0
p0,p0

(Rn), Bs1
p1,p1

(Rn))Θ by

(Bs0
p0,p0

(Rn), Bs1
p1,p1

(Rn))Θ

=
{
g : there exists f ∈ F (Bs0

p0,p0
(Rn), Bs1

p1,p1
(Rn)) with g = f(Θ)

}
.
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Define the norm, ||·||(Bs0p0,p0 (Rn),B
s1
p1,p1

(Rn))Θ
, on this space by

||g||(Bs0p0,p0 (Rn),B
s1
p1,p1

(Rn))Θ
= inf

f∈F (B
s0
p0,p0

(Rn),B
s1
p1,p1

(Rn))
||f ||F (B

s0
p0,p0

(Rn),B
s1
p1,p1

(Rn)) . (2.3)

See [3] for more details of complex interpolation. With this setup we have the

following proposition.

Proposition 2.1.12. ([26]) Let s0, s1 ∈ R and 0 < p0, p1, q0, q1 ≤ ∞. If s, p, and q

satisfy

s = (1−Θ)s0 + Θs1,
1

p
=

1−Θ

p0

+
Θ

p1

,
1

q
=

1−Θ

q0

+
Θ

q1

,

then (Bs0
p0,p0

(Rn), Bs1
p1,p1

(Rn))Θ = Bs
p,q(Rn).

A recent result for unimodular Fourier multipliers was developed by G. Zhao, J.

Chen, D. Fan, and W. Guo in 2015 [28]. Their result can be summed up as follows

Theorem 2.1.13. ([28]) Let β > 0, and µ be a real-valued C∞(Rn\ {0}) function

which is homogeneous of degree β. Suppose that the Hessian matrix of µ is non-

degenerate at Rn\ {0}. Let 0 ≤ pi, qi ≤ ∞, si ∈ R for i = 1, 2. Then the Fourier

multiplier eiµ(D) is bounded from Bs1
p1,q1

(Rn) to Bs2
p2,q2

(Rn) if and only if

1

p2

≤ 1

2
≤ 1

p1

,

s2 −
n

p2

= s1 −
n

p1

+ θβnmin

{
1

p1

− 1

2
,
1

2
− 1

p2

}
,(

1

q2

− 1

q2

)
χ{0,1}(θ) ≤ 0,

(2.4)

holds for some θ ∈ [0, 1]. Moreover, we have the following asymptotic estimates for

the operator norm

∣∣∣∣eiµ(D)
∣∣∣∣
B
s1
p1,q1

(Rn)→Bs2p2,q2 (Rn)
∼


(B(θA, (1− θ)A))

1
q2
− 1
q1 , when

1

q2

>
1

q1

,

1, when
1

q2

≤ 1

q1

where θ ∈ (0, 1) and θ ∈ [0, 1] respectively if condition (2.4) holds, where A =

nmin

{
1

p1

− 1

2
,
1

2
− 1

p2

}
1

1
q2
− 1

q1

and B(p, q) is the beta function defined as

B(p, q) =

∫ 1

0

tx−1(1− t)y−1dt.
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Precisely, for fixed
1

p2

<
1

2
<

1

p1

and
1

q2

>
1

q1

, we have the following blow-up rates

∣∣∣∣eiµ(D)
∣∣∣∣
B
s1
p1,q1

(Rn)→Bs2p2,q2 (Rn)
∼

{
θ

1
q1
− 1
q2 , as θ → 0+,

(1− θ)
1
q1
− 1
q2 , as θ → 1−.

2.2 Modulation Spaces

The next function space we will construct will be the modulation space. This func-

tion space was first introduced by Feichtinger in 1983 [8]. There are two com-

mon constructions of the modulation space: a continuous, and a discrete construc-

tion. The continuous definition of the modulation space makes use of the short-time

Fourier transform of a function f with respect to g ∈ S (Rn), denoted by Vgf(x, ξ),

which is defined as

Vgf(x, ξ) =

∫
Rn
g(t− x)f(t)e−itξdt,

for x, ξ ∈ Rn. Here we say g is a window function. For 0 < p, q < ∞ we define the

norm ||f ||M̃s
p,q(Rn) by

||f ||M̃s
p,q(Rn) =

(∫
Rn

(∫
Rn
|Vgf(x, ξ)|pdx

) q
p

(1 + |ξ|2)
sq
2 dξ

) 1
q

,

with the usual modifications if p or q are infinite. Then the modulation space,

denoted by M s
p,q(Rn) is defined as the set of all functions f ∈ S ′(Rn) where

||f ||M̃s
p,q(Rn) <∞. The reader is directed to [8, 9, 16] for more details about this and

similar continuous construction of the modulation space.

To define the modulation space in a discrete way let Qk be the unit closed cube

with center k, c < 1, C > 1, and {σk}k∈Zn ∈ C
∞
c be a sequence of functions such

that 
|σk(ξ)| ≥ c, for all ξ ∈ Qk,
suppσk ⊂ {ξ : |ξ − k| < C} ,∑
k∈Zn

σk(ξ) ≡ 1, for all ξ ∈ Rn,

|∂α′σk(ξ)| � 1.

(2.5)
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Denote the set of all sequences of functions that satisfy conditions (2.5) by XM(Rn).

Note that XM(Rn) is not empty. To see this let ρ ∈ S (Rn) where ρ : Rn → [0, 1]

be a smooth radial bump function with support on the ball B(0,
√
n) and ρ(ξ) = 1

if |ξ| ≤
√
n

2
. Define ρk by

ρk(ξ) = ρ(ξ − k),

for k ∈ Zn. Now define σk by

σk(ξ) = ρk(ξ)

(∑
j∈Zn

ρj(ξ)

)−1

.

Thus, the sequence of functions {σk}k∈Zn defined above satisfy condition (2.5).

For any sequence of functions {σk}k∈Zn in XM(Rn) and fixed k ∈ Zn define the

smooth projection of f onto {ξ : |ξ − k| < C}, denoted by �kf , as

�k = F−1σkF .

For 0 < p, q ≤ ∞ define the norm ||f ||Ms
p,q(Rn) by

||f ||Ms
p,q(Rn) =

(∑
k∈Zn
〈k〉sq ||�kf ||

q
p

) 1
q

.

Now we can define the modulation space, M s
p,q(Rn), for all f ∈ S ′(Rn) where

||f ||Ms
p,q(Rn) <∞. Note that M s

p,q(Rn) is a quasi-Banach space and when 1 ≤ p, q ≤
∞, then M s

p,q(Rn) is a Banach space [8, 27]. Furthermore, we have the exact nature

of the modulation space M s
p,q(Rn) when we pick different φ ∈ XM and a relationship

between the discrete and continuous definitions.

Proposition 2.2.1. ([8]) If {σk}k∈Zn , {ϕk}k∈Zn ∈ XM(Rn), they generate the same

quasi-Banach space M s
p,q(Rn).

Proposition 2.2.2. ([8]) For 0 < p, q ≤ ∞, s ∈ R, then ||·||M̃s
p,q(Rn) and ||·||Ms

p,q(Rn)

are equivalent norms on the modulation space M s
p,q(Rn).

We will see later that M s
p,q(Rn) = M s,0

p,q (Rn) and other properties of the modu-

lation space M s
p,q(Rn) will be an immediate consequence of the properties for the

27



α-modulation space M s,α
p,q (Rn). Thus, we will forgo all other properties of the mod-

ulation space M s
p,q(Rn). Instead we will cover more recent results of the modulation

space M s
p,q(Rn), as it relates to the study of PDEs and Fourier multipliers. For

convenience let M0
p,q(Rn) = Mp,q(Rn).

Bényi, Gröchenig, Okoudjou, and Roders [2] showed the following multiplier

theorem:

Theorem 2.2.3. ([2]) If αo ∈ [0, 2], then the Fourier multiplier with symbol ei|ξ|
αo

is bounded from Mp,q(Rn) into Mp,q(Rn) for all 1 ≤ p, q ≤ ∞ and for any dimension

n ≥ 1.

As of consequence of Theorem 2.2.3 A. Bényi, K. Gröchenig, K. Okoudjou, and

L. Roders were able to establish the following Fourier Multiplier Theorem:

Corollary 2.2.4. ([2]) Let u(t, x) be the solution of the Cauchy problem of dispersive

equation (1.9) that takes the form of equation (1.10). For αo = 2, t > 0, and any

dimension, then

||u||Mp,q(Rn) =
∣∣∣∣eit∆u0

∣∣∣∣
Mp,q(Rn)

� (1 + t)
n
2 ||u0||Mp,q(Rn) .

Wang and Hudzik [27] used an almost orthogonality argument and simple cal-

culations to show the following multiplier theorem:

Theorem 2.2.5. ([27]) Let s ∈ R, 2 ≤ p ≤ ∞, and 0 ≤ q ≤ ∞, then∣∣∣∣eit∆f ∣∣∣∣
Ms
p,q(Rn)

� (1 + t)−n(
1
2
− 1
p) ||f ||Ms

p′,q(R
n) .

Chen, Fan, and Sun [5] also use an almost orthogonality argument and techniques

for oscillating integrals to show:

Theorem 2.2.6. ([5]) If αo = 1, t > 1, s ∈ R, and 1 ≤ p, q ≤ ∞, then∣∣∣∣∣∣eit|∆|αo2 f ∣∣∣∣∣∣
Ms
p,q(Rn)

� tn|
1
2
− 1
p | ||f ||Ms

p,q(Rn) ,

and:
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Theorem 2.2.7. ([5]) If t > 1, s ∈ R, 1 ≤ p, q ≤ ∞, and αo >
1

2
but αo 6= 1, then∣∣∣∣∣∣eit|∆|αo2 f ∣∣∣∣∣∣

Ms
p,q(Rn)

� ||f ||Ms
p,q(Rn) + tn|

1
2
− 1
p | ||f ||

M
s+γ(αo)
p,q (Rn)

,

where

γ(αo) = (αo − 2)n

∣∣∣∣12 − 1

p

∣∣∣∣ .
2.3 α-Modulation Spaces

The final function space we will look at is the α-modulation space M s,α
p,q (Rn). Much

like the modulation space M s
p,q(Rn), there are two ways of constructing it. One way

is the continuous definition using an admissible covering, and the other way is the

discrete construction.

Let # denote the cardinality of a finite set. Suppose I is a set of countable

intervals I ⊂ Rn denoted by I is called admissible covering of Rn if the following

is satisfied:

1. Rn =
⋃
I∈I

I,

2. # {I ∈ I : x ∈ I} ≤ m0 for all x ∈ Rn and where m0 is some positive integer.

Also, if there exists a constant 0 ≤ α ≤ 1 such that (1 + |ξ|)α � |I| � (1 + |ξ|)α

for all I ∈ Iα and for all ξ ∈ Rn, then Iα is called α-covering. For the sake of

convenience, we can let m0 = 2. See [10] for a more detailed treatment of admissible

coverings.

Without loss of generality, we can construct a bounded admissible partition of

the unity, {ψαI }I∈Iα
∈ S (Rn), that is associated with an admissible α-covering. Let

||f ||FL1(Rn) be defined by

||f ||FL1(Rn) =
∣∣∣∣F−1(f)(ξ)

∣∣∣∣
L1(Rn)

,

then {ψαI }I∈Iα
∈ S (Rn) satisfies the following:

1. sup
I∈Iα

||ψαI ||FL1(Rn) <∞,
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2. suppψαI ⊂ I for all I ∈ Iα,

3.
∑
I∈Iα

ψαI (ξ) ≡ 1 for all ξ ∈ Rn.

Finally, define the segmentation operator, denoted by Pα
I , by

Pα
I (f) = F−1ψαI F (f),

for all I ∈ Iα and for all f ∈ S ′(Rn).

Let 1 ≤ p, q < ∞, s ∈ R, and 0 ≤ α ≤ 1. Suppose Iα is an admissible α-

covering of Rn and {ψαI }I∈Iα
is the associated bounded admissible partition of the

unity. Define the α-modulation space, denoted by M s,α
p,q (Rn), on the set of tempered

distributions f ∈ S ′(Rn) that satisfies:

||f ||M̃s,α
p,q (Rn) α =

(∑
I∈Iα

||Pα
I (f)||qLp(Rn) (1 + |ωI |)sq

) 1
q

<∞,

where ωI ∈ I for all I ∈ Iα, and making the usual modification when p and q are

infinite.

First note that the definition of the α-modulation space does not depend on the

choice of {ωI}I∈I . See [15, 11] for more details of this construction.

For the discrete construction, let c < 1 and C > 1 be two positive numbers which

relate to the space dimension n, and 0 ≤ α < 1. Suppose {ηαk }k∈Zn be a sequence of

Schwartz functions that satisfies the following:

|ηαk (ξ)| � 1, if
∣∣∣ξ − 〈k〉 α

1−α k
∣∣∣ < c 〈k〉

α
1−α ,

supp ηαk ⊂
{
ξ ∈ Rn :

∣∣∣ξ − 〈k〉 α
1−α k

∣∣∣ < C 〈k〉
α

1−α

}
,∑

k∈Zn
ηαk (ξ) ≡ 1, for all ξ ∈ Rn,

〈k〉
α|δ|
1−α
∣∣Dδηαk (ξ)

∣∣ � 1, for all ξ ∈ Rn and all multi-index δ.

(2.6)

Denote the set of sequences of functions that satisfies (2.6) by XA. Note that

XA is not empty. To see this, let ρ be a smooth radial bump function supported on
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the open ball of radius 2 centered at the origin that satisfies ρ(ξ) = 1 when |ξ| < 1

and ρ(ξ) = 0 when |ξ| ≥ 2. For any k ∈ Zn define ραk by

ραk (ξ) = ρ

(
ξ − 〈k〉

α
1−α k

C 〈k〉
α

1−α

)
.

Now define ηαk by

ηαk (ξ) = ρ(ξ)

(∑
l∈Zn

ραl (ξ)

)−1

.

Thus this ηαk satisfies condition (2.6).

For {ηαk }
∞
k=0 ∈ XA define �α

k by

�α
k = F−1ηαkF . (2.7)

For 0 < p, q ≤ ∞, s ∈ R, and α ∈ [0, 1) define the norm ||·||Ms,α
p,q (Rn) by

||f ||Ms,α
p,q (Rn) =

(∑
k∈Zn
〈k〉

sq
1−α ||�α

kf ||
q
Lp(Rn)

) 1
q

. (2.8)

We now define the α-modulation space M s,α
p,q (Rn) as the set of all f ∈ S ′, such

that ||f ||Ms,α
p,q (Rn) < ∞. When α = 1 it will be understood that we are using the

continuous definition of M s,α
p,q (Rn).

We will now cover some properties of the α-modulation space M s,α
p,q (Rn), and by

doing so, add to our understanding of the modulation Space M s
p,q(Rn) as well. The

next few theorems are similar to the theorems we had for the Besov Space Bα
p,q(Rn).

Proposition 2.3.1. ([15]) For 0 < p, q ≤ ∞, s ∈ R and α ∈ [0, 1), then ||·||Ms,α
p,q (Rn)

and ||·||M̃s,α
p,q (Rn) are equivalent norms on the modulation space M s,α

p,q (Rn).

Proposition 2.3.2. ([18]) Let {ηαk }k∈Zn and {η̃αk }k∈Zn be in XA, then they generate

equivalent quasi-norms on M s,α
p,q (Rn).

Proposition 2.3.3. ([18]) For 0 < p, q ≤ ∞, s ∈ R, and α ∈ [0, 1], then M s,α
p,q (Rn)

is a quasi-norm. If 1 ≤ p, q ≤ ∞, then M s,α
p,q (Rn) is a Banach space.
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Proposition 2.3.4. ([18]) The following embedding is true

S (Rn) ⊂M s,α
p,q (Rn) ⊂ S ′(Rn).

If 0 < p, q <∞, then S (Rn) is dense in M s,α
p,q (Rn).

There are conditions which we have for an embedding from M s1,α
p1,q1

(Rn) into

M s2,α
p2,q2

(Rn). These results are summed up as follows:

Proposition 2.3.5. ([18]) Let 0 < p1 ≤ p2 ≤ ∞ and 0 < q1, q2 ≤ ∞. If q1 ≤ q2

and s1 ≥ s2 + nα

(
1

p1

− 1

p2

)
, then

M s1,α
p1,q1

(Rn) ⊂M s2,α
p2,q2

(Rn).

If q1 > q2 and s1 > s2 + nα

(
1

p1

− 1

p2

)
+ n(1− α)

(
1

q2

− 1

q1

)
, then

M s1,α
p1,q1

(Rn) ⊂M s2,α
p2,q2

(Rn).

With this proposition we can say something about the modulation space

M s
p,q(Rn), which takes the form of the following corollary, shown by Wang and

Hudzik [27].

Corollary 2.3.6. ([27]) If s1 ≥ s2, 0 < p1 ≤ p2 ≤ ∞, and 0 < q1 ≤ q2 ≤ ∞, then

M s1
p1,q1

(Rn) ⊂M s2
p2,q2

(Rn).

Furthermore, if q1 > q2 and with s1 − s2 > n

(
1

q2

− 1

q1

)
, then

M s1
p,q1

(Rn) ⊂M s2
p,q2

(Rn).

There are also conditions that guarantee an embedding from M s1,α1
p,q (Rn) into

M s2,α2
p,q (Rn) and dilation property. To be able to state these results first we need

to decompose R2
+ into suitable regions. These decompositions can be found in [18].

Let 0 < p, q ≤ ∞ and (α1, α2) ∈ [0, 1]× [0, 1]. Now define R(p, q;α1, α2) as:

R(p, q;α1, α2) = max

{
0, n(α1 − α2)

(
1

q
− 1

p

)
, n(α1 − α2)

(
1

p
+

1

p
− 1

)}
. (2.9)
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Now we decompose R2
+ into three regions in two different ways. These decomposi-

tions will help us understand and simplify R(p, q;α1, α2). The first decomposition

is defined as R2
+ = S1 ∪ S2 ∪ S3 where S1, S2, and S3 are defined as

S1 =

{(
1

p
,
1

q

)
∈ R2

+ :
1

q
≥ 1

p
,
1

p
≤ 1

2

}
,

S2 =

{(
1

p
,
1

q

)
∈ R2

+ :
1

p
+

1

q
≥ 1,

1

p
>

1

2

}
,

S3 = R2
+/ {S1 ∪ S2} .

See Figure 2.1 for how R2
+ is decomposed in this case. The second decomposition is

defined as R2
+ = T1 ∪ T2 ∪ T3 where T1, T2, and T3 are defined as:

T1 =

{(
1

p
,
1

q

)
∈ R2

+ :
1

p
≥ 1

q
,
1

p
>

1

2

}
,

T2 =

{(
1

p
,
1

q

)
∈ R2

+ :
1

p
+

1

q
≤ 1,

1

p
≤ 1

2

}
,

T3 = R2
+/ {S1 ∪ S2} .

See Figure 2.2 for how R2
+ is decomposed in this case.

With the above decomposition for R2
+ we have the following for R(p, q;α1, α2).

For α1 ≥ α2, we have

R(p, q;α1, α2) =



n(α1 − α2)

(
1

q
− 1

p

)
, when

(
1

p
,
1

q

)
∈ S1,

n(α1 − α2)

(
1

p
+

1

q
+ 1

)
, when

(
1

p
,
1

q

)
∈ S2,

0, when

(
1

p
,
1

q

)
∈ S3.

If α1 < α2, then we have

R(p, q;α1, α2) =



n(α1 − α2)

(
1

q
− 1

p

)
, when

(
1

p
,
1

q

)
∈ T1,

n(α1 − α2)

(
1

p
+

1

q
− 1

)
, when

(
1

p
,
1

q

)
∈ T2,

0, when

(
1

p
,
1

q

)
∈ T3.

With this understanding of R(p, q;α1, α2) we can state under what condition

M s1,α1
p,q (Rn) is embedded into M s2,α2

p,q (Rn).
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Figure 2.1: Distribution of sc when λ > 1.

Proposition 2.3.7. ([18]) For (α1, α2) ∈ [0, 1)× [0, 1), then

M s1,α1
p,q (Rn) ⊂M s2,α2

p,q (Rn),

if and only if s1 ≥ s2 +R(p, q;α1, α2).

Now define sc and sp as

sc =

{
R(p, q; 1, α), λ > 1,
R(p, q;α, 1), λ ≤ 1,

and

sp = n

(
1

min(1, p)
− 1

)
.

Proposition 2.3.8. ([18]) Let 0 ≤ α < 1, λ > 0, and s+ sc 6= 0, then∣∣∣∣δλf ∣∣∣∣
Ms,α
p,q (Rn)

� λ−
n
p
(
max

{
max {1, λ}sp , λs+sc

})
||f ||Ms,α

p,q (Rn) ,
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Figure 2.2: Distribution of sc when λ ≤ 1.

for all f ∈M s,α
p,q (Rn). Conversely, if∣∣∣∣δλf ∣∣∣∣

Ms,α
p,q (Rn)

� λ−
n
pF (λ) ||f ||Ms,α

p,q (Rn) ,

holds for some F : (0,∞)→ (0,∞) and f ∈M s,α
p,q (Rn), then

F (λ) � max
{

max {1, λ}sp , λs+sc
}

.

Furthermore letting s = −sc, then it follows that∣∣∣∣δλf ∣∣∣∣
Ms,α
p,q (Rn)

� λ−
n
pF (λ) ||f ||Ms,α

p,q (Rn) ,

where F is the following:

F (λ) =


(ln(λ))max{0, 1

q
− 1
p
, 1
q

+ 1
p
−1} , when λ > 1, p ≥ 1,

λn(
1
p
−1) (ln(λ))

1
q , when λ > 1, p ≤ 1,

(ln(λ))max{0, 1
p
− 1
q
,1− 1

p
− 1
q} , when λ ≤ 1.
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The next theorem gives us an understanding of the dual space of the

α-modulation space M s,α
p,q (Rn).

Proposition 2.3.9. ([18]) For 0 < p, q <∞, s ∈ R, and α ∈ [0, 1], then:

(
M s,α

p,q (Rn)
)′

= M
−s+nα( 1

min(1,p)
−1)

max(1,p)′,max(1,q)′ (Rn).

With this proposition, a similar statement can be made about the dual space of

the modulation space M s
p,q(Rn), which can be found in Wang and Hudzik [27] and

Han and Wang [18].

Proposition 2.3.10. ([27, 18] For s ∈ R and 0 < p, q <∞, we have(
M s

p,q(Rn)
)′

= M−s
max(1,p)′,max(1,q)′(R

n).

Proposition 2.3.11. ([18]) For s, σ ∈ R the mapping (I − ∆)
σ
2 : M s,α

p,q (Rn) →
M s−σ,α

p,q (Rn) is an isomorphism.

This leads us straight to the following corollary:

Corollary 2.3.12. ([27]) For s, σ ∈ R the mapping (I − ∆)
σ
2 : M s

p,q(Rn) →
M s−σ

p,q (Rn) is an isomorphism.

The next theorem deals with the understanding of the α-modulation space as an

multiplication algebra, i.e. when

||fg||Ms,α
p,q (Rn) � ||f ||Ms,α

p,q (Rn) ||g||Ms,α
p,q (Rn) .

First we must decompose R2
+ into two regions, this decomposition can be found in

[18]. Define D1 as

D1 =

{(
1

p
,
1

q

)
∈ R2

+ :
1

q
≥ 2

p
,
1

p
≤ 1

2

}
,

and define D2 as

D2 = R2
+/D1.
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Define s0 as

s0 =
nα

p
+ n(1− α)

(
1−min

{
1,

1

q

})
+
nα(1− α)

2− α

(
1

q
− 2

p

)
when

(
1

p
,
1

q

)
∈ D1 and

s0 =
nα

p
+ n(1− α)

(
max

{
1,

1

p
,
1

q

}
− 1

q

)
+
nα(1− α)

2− α

(
max

{
1,

1

p
,
1

q

}
− 1

)
,

when

(
1

p
,
1

q

)
∈ D2. See Figure 2.3 to see such a distribution of s0. Now we are

1

q

1

p

(0, 0)

(
1

2
, 1

)
D1

D2

Figure 2.3: Distribution of s0 for all p and q.

able to state the multiplication algebra theorem.

Proposition 2.3.13. ([18]) If s > s0, then for all f, g ∈M s,α
p,q (Rn), then

||fg||Ms,α
p,q (Rn) � ||f ||Ms,α

p,q (Rn) ||g||Ms,α
p,q (Rn) ,

i.e. the α-modulation space M s,α
p,q (Rn) is a multiplication algebra.
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Using this result we obtain a similar version for the modulation space M s
p,q(Rn).

Corollary 2.3.14. ([18]) Suppose that

s >


n

(
1− 1 min

{
1,

1

q

})
, when

(
1

p
,
1

q

)
∈ D1,

n

(
max

{
1,

1

p
,
1

q

}
− 1

q

)
, when

(
1

p
,
1

q

)
∈ D2,

then the modulation space M s
p,q(Rn) is a multiplication algebra, i.e.,

||fg||Ms
p,q(Rn) � ||f ||Ms

p,q(Rn) ||g||Ms
p,q(Rn) ,

for all f, g ∈M s
p,q(Rn).

There are known results for the α-modulation space M s,α
p,q (Rn) when it comes

to complex interpolation. Recall the definition for complex interpolation spaces,

equation (2.3) in Section 2.1. We then have the following result:

Proposition 2.3.15. ([18]) For 0 ≤ α < 1, 0 < θ < 1,
1

p
=

1− θ
p0

+
θ

p1

,
1

q
=

1− θ
q0

+
θ

q1

, and s = (1− θ)s0 + θs1, then

(
M s0,α

p0,q0
(Rn),M s1,α

p1,q1
(Rn)

)
θ

= M s,α
p,q (Rn).

Next we will cover some of the recent results. First, Guo and Chen [17] developed

Strichartz estimates for the nonlinear Cauchy problem for dispersive equation (1.9)

and the nonlinear Wave equation (1.11) using a TT ∗ and duality argument. The

first result is for the nonlinear Cauchy problem for dispersive equation.

Theorem 2.3.16. ([17]) Suppose s ∈ R, q ≥ 1, αo ∈ (0, 2] and β 6= 1, (r, q) and

(p̃, q̃) satisfies
1

r
+

n

2p
≤ n

4
, and

1

r̃
+

n

2p̃
≤ n

4
,
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with (r, q, n), (p̃, q̃, ñ) 6= (2,∞, 2), then(∑
k∈Zn
〈k〉

sq
1−α

(∫
R
||u(t, ·)||rLpx dt

) q
r

) 1
q

�

||u0||Ms+δ(r,p),α
2,q (Rn)

+

(∑
k∈Zn
〈k〉

(s+δ(r,p)+δ(r̃,p̃))q
1−α

(∫
R
||F (t, ·)||r̃

′

Lp̃
′
x
dt

) q
r̃′
) 1

q

,

where δ(r, p) = α

(
n

2
− 2

r
− n

p

)
+ (2− β)

1

r
and F (t, x) is a nonlinear term. More

precisely we have:(∑
k∈Zn
〈k〉

sq
1−α

(∫
R

∣∣∣∣∣∣�k
αe

it(−∆)
αo
2 u0

∣∣∣∣∣∣r
Lp(Rn)

dt

) q
r

) 1
q

� ||u0||Ms+δ(r,q),α
2,q (Rn)

,

and ∑
k∈Zn
〈k〉

sq
1−α

(∣∣∣∣∣∣∣∣∫
R
ei(t−s)(−∆)

αo
2 F (s)ds

∣∣∣∣∣∣∣∣r
Lp(Rn)

dt

) q
r

 1
q

�

(∑
k∈Zn
〈k〉

(s+δ(r,p)+δ(r̃,p̃))q
1−α

(∫
R
||F ||r̃

′

Lp̃′ (Rn) dt

) q
r̃′
) 1

q

.

Along similar lines as Theorem 2.3.16, Guo and Chen [17] found Strichartz esti-

mates for the nonlinear Wave equation, which are as follows:

Theorem 2.3.17. ([17]) Let s ∈ R, q ≥ 1, 0 ≤ α < 1, and (p, r) and (p̃, r̃) both

satisfy
n

2
− n

p
− 1

r
− 1 > 0,

and

n− 1− n

p
− 1

r
− n

p̃
− 1

r̃
> 0,
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then the solutions to the wave equation satisfy the following estimate:(∑
k∈Zn
〈k〉

sq
1−α

(∫
R
||�α

ku||
r
Lqx(Rn)

) q
r

) 1
q

� ||u0||Ms+θ(r,p),α
2,q (Rn)

+ ||u1||Ms+θ(r,p)−1,α
2,q (Rn)

+

(∑
k∈Zn
〈k〉

(s+θ(r,q)+θ(r̃,p̃)−1)q
1−α

(∫
R
||�α

kF ||
r̃′

Lp̃
′
x (Rn)

dt

) q
r̃′
) 1

q

,

where θ is defined as

θ(r, p) = α
n

n− 1

(
n− 1

2
− 2

r
− n− 1

p

)
+

n+ 1

r(n− 1)
.

More precisely we have the following three estimates:(∑
k∈Zn
〈k〉

sq
1−α

(∫
R

∣∣∣∣∣∣cos(t(−∆)
1
2 )u0

∣∣∣∣∣∣r
Lqx(Rn)

dt

) q
r

) 1
q

� ||u0||Ms+θ(r,q),α
2,q (Rn)

,

∑
k∈Zn
〈k〉

sq
1−α

∫
R

∣∣∣∣∣
∣∣∣∣∣sin(t(−∆)

1
2

(−∆)
1
2

u1

∣∣∣∣∣
∣∣∣∣∣
r

Lqx(Rn)

dt


q
r


1
q

� ||u1||Ms+θ(r,q)−1,α
2,q (Rn)

,

and ∑
k∈Zn
〈k〉

sq
1−α

∫
R

∣∣∣∣∣
∣∣∣∣∣
∫
R

sin((t− s)(−∆)
1
2

(−∆)
1
2

F (s)ds

∣∣∣∣∣
∣∣∣∣∣
r

Lqx(Rn)

dt


q
r


1
q

�

(∑
k∈Zn
〈k〉

(s+θ(r,q)+θ(r̃,q̃)−1)q
1−α

(∫
R
||F ||r̃

′

Lp̃
′
x (Rn)

dt

) q
r̃′
) 1

q

Guo and Chen also found similar estimates for the nonelliptic Schrödinger equa-

tion and the Cauchy problem for Wave equation. Also, this result is in line with

the results that Keel and Tao found in [19] that extended the results that Strichartz

first developed in [25].

Furthermore, Zhao, Chen, and Guo [29] used a direct calculation to find the

following estimates for the Fourier multiplier with symbol eiµ(ξ) where µ(ξ) is a

real-valued function:
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Theorem 2.3.18. ([29]) Let δ > 0, L ∈ N, L ≥
[n

2

]
+ 1, β > 0 and

Sp(β) =

(
1

p
− 1

2

)
max {(β − 2)n+ 2αn, 0} .

Assume that µ is a class CN(Rn) with N ≥ L,
[n

2

]
+ 3 on Rn\ {0} which satisfies

|∂γµ(ξ)| ≤ Cγ|ξ|δ−|γ|, 0 < |ξ| ≤ 1, |γ| = L,

|∂γµ(ξ)| ≤ Cγ|ξ|β−|γ|, |ξ| > 1, 2 ≤ |γ| ≤
[n

2

]
+ 3.

Suppose also that 1 ≤ p, q ≤ ∞, si ∈ R, α ∈ [0, 1], for i = 1, 2 and satisfies

s1 − s2 ≥ |Sp(β)|, then ∣∣∣∣eiµ(D)f
∣∣∣∣
M
s2,α
p,q (Rn)

≤ C ||f ||Ms1,α
p,q (Rn) ,

where the constant C is independent of f .

Zhao, Chen, and Guo [29] also developed necessary and sufficient conditions on

a similar multiplier theorem.

2.4 Embedding Properties

There are some embedding relationships between these three function spaces, but

such relationships are not clear cut. The various embedding properties between

these three spaces are dependent on the essential parameters that define the function

space. In this section we explore the nature of these embedding properties. The

most obvious relationship is between the modulation space M s
p,q(Rn) and the α-

modulation space M s,α
p,q (Rn) when α = 0, which is stated as

M s
p,q(Rn) = M s,0

p,q (Rn).

This is an immediate result from the definition of the α-modulation space M s,α
p,q (Rn).

The next two embedding properties are ones between the modulation space

M s
p,q(Rn), and the Besov space Bs

p,q(Rn). These results state under what conditions

you need for M s
p,q(Rn) to be embedded into Bs

p,q(Rn), and for the reverse direction.

These results were explored by Wang and Hudzik in [27].
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Proposition 2.4.1. ([27]) Define σ(p, q) by

σ(p, q) = max

{
0, n

(
1

min {p, p′}
− 1

q

)}
. (2.10)

Let 0 < p, q ≤ ∞ and s ∈ R, then

M s+σ(p,q)
p,q (Rn) ⊂ Bs

p,q(Rn).

Similarly, Wang and Hudzik in [27] found conditions for the reverse direction

which is summed up as the following:

Proposition 2.4.2. ([27]) Define τ(p, q) as

τ(p, q) =


max

{
0, n

(
1

q
− 1

max {p, p′}

)}
, when 1 ≤ p, q ≤ ∞,

n

q
, when 0 < p < 1 or 0 < q < 1.

For 0 < p, q ≤ ∞ and s ∈ R, then

Bs+τ(p,q)
p,q (Rn) ⊂M s

p,q(Rn).

The next embedding was obtained in Gröbner’s Ph.D. thesis [15] and relates the

Besov space Bs
p,q(Rn) to the α-modulation space M s,α

p,q (Rn).

Proposition 2.4.3. ([15]) For 1 ≤ p, q ≤ ∞, s ∈ R, and 0 ≤ α ≤ 1, we have

B
s+

(1−α)n
q

p,q (Rn) ⊆M s,α
p,q (Rn).

Furthermore, for q′ that satisfies
1

q
+

1

q′
= 1 we have

M s,α
p,q (Rn) ⊆ B

s− (1−α)n

q′
p,q (Rn).

Note Proposition 2.4.3 shows that as α→ 1− we obtain

Bs
p,q(Rn) ⊆M s,1

p,q (Rn) ⊆ Bs
p,qRn),

which gives us justification for saying

M s,1
p,q (Rn) = Bs

p,q(Rn).

There are a few other embedding properties. Using Proposition 2.1.3 from Chap-

ter 2 Section 2.1 we have the following.
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Corollary 2.4.4. The following embedding holds

M s+σ(p,q)
p,q (Rn) ⊂ Lp(Rn),

where σ is defined in equation (2.10). Furthermore, we the following embedding

holds

M
s+σ(p,q)
p,1 (Rn) ⊂ W p,k(Rn).

Proof. These embeddings follow directly from Propositions 2.1.3 and 2.4.1.

Han and Wang [18] showed another embedding property between the Besov

space Bs
p,q(Rn) and the α-modulation space M s,α

p,q (Rn). Recall the definition of

R(p, q;α1, α2), equation (2.9) in Section 2.3.

Proposition 2.4.5. ([18]) Let 0 ≤ α < 1. Then Bs1
p,q(Rn) ⊂ M s2,α

p,q holds if and

only if s1 ≥ s2 + R(p, q; 1, α). Conversely, M s1,α
p,q (Rn) ⊂ Bs2

p,q(Rn) holds if and only

if s1 ≥ s2 +R(p, q;α, 1).

With the above ideas we can see that the α-modulation space M s,α
p,q (Rn) serves

as more of an intermediate space. That means that as α varies from 0 to 1, the

α-modulation space M s,α
p,q (Rn) begins to “look” like the modulation space M s

p,q(Rn),

or the Besov space Bs
p,q(Rn) respectively. Note that the term intermediate is not

to be confused with the idea that there is a clear cut embedding between the three

spaces that takes the form of M s
p,q(Rn) ⊂ M s,α

p,q (Rn) ⊂ Bs
p,q(Rn). The above results

makes this point very clear.

See Figure 2.4 for the classic picture that relates the three function spaces

M s
p,q(Rn), M s,α

p,q (Rn), and Bs
p,q(Rn) when p = q and an additional function space

Hs(Rn), which is defined as

Hs(Rn) =
{
f ∈ S ′(Rn) : ||f ||Hs(Rn) <∞

}
,

where ||f ||Hs(Rn) is defined as

||f ||Hs(Rn) =
∣∣∣∣(I −∆)

s
2f
∣∣∣∣
L2(Rn)

.
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M s
p,p(Rn)

M s,α
p,p (Rn)

Bs
p,p(Rn)

Hs(Rn)

α

Figure 2.4: Relationship between M s
p,p(Rn),M s,α

p,p (Rn), Bs
p,p(Rn), and Hs(Rn).

The diagram above illustrates how the parameter α acts a “tuner” that can

produce a suitable decomposition of Rn that is in between the decomposition of the

modulation space’s M s
p,q(Rn) uniformed rectangles, and the Besov space’s Bs

p,q(Rn)

annuli of size [2j−1, 2j). The diagram also show that all four spaces coincide in the

case of

M s
2,2(Rn) = M s,α

2,2 (Rn) = Bs
2,2(Rn) = Hs(Rn).

This further adds to our understanding of the behavior of these function spaces.
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Chapter 3

Asymptotic Estimates

3.1 Statement of Main Results

Here we state the main results that quantify the asymptotic behavior for several

Fourier Multipliers. For the remainder of the theorems we will suppose that 0 ≤
α < 1. The following two theorems specifically deal with the Cauchy problem for

dispersive equation.

Theorem 3.1.1. (Trulen) If αo = 1, 1 ≤ p, q,≤ ∞, and t > 1, then∣∣∣∣∣∣eit|∆|αo2 f ∣∣∣∣∣∣
Ms,α
p,q (Rn)

� tn|
1
p
− 1

2 | ||f ||Ms−γ,α
p,q (Rn) + tn|

1
p
− 1

2 | ||f ||
M
s+β(α),α
p,q (Rn)

,

where γ > 0 and β(α) is

β(α) = nα

∣∣∣∣1p − 1

2

∣∣∣∣ . (3.1)

Theorem 3.1.2. (Trulen) If
1

2
< αo with αo 6= 1, 1 ≤ p, q ≤ ∞, and t > 1, then∣∣∣∣∣∣eit|∆|αo2 f ∣∣∣∣∣∣

Ms,α
p,q (Rn)

� tn|
1
p
− 1

2 | ||f ||Ms−γ,α
p,q (Rn) + tn|

1
p
− 1

2 | ||f ||
M
s+β(αo,α),α
p,q (Rn)

,

where γ > 0 and β(αo, α) is defined as

β(αo, α) = n(αo − 2 + 2α)

∣∣∣∣1p − 1

2

∣∣∣∣ . (3.2)
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The first thing to note is that these estimates are in line with the results found

by Chen, Fan, and Sun [5] when α = 0. The second thing to note is that these

estimates are similar to those found by Zhao, Chen, and Guo [29]. Since we used

different methods to obtain these results, our estimates are a little more general

than [29].

We also obtain similar results for the generalized half Klein-Gordon equation.

The results are as follows:

Theorem 3.1.3. (Trulen) For αo ≥ 1, 1 ≤ p, q ≤ ∞, and t > 1,∣∣∣∣∣∣eit(I−∆)
αo
2 f
∣∣∣∣∣∣
Ms,α
p,q (Rn)

� tn|
1
p
− 1

2 | ||f ||Ms−γ,α
p,q (Rn) + tn|

1
p
− 1

2 | ||f ||
M
s+β(αo,α),α
p,q (Rn)

,

where γ > 0 and β(αo, α) is defined as in equation (3.2).

Both Theorems 3.1.2 and 3.1.3 say that in the α-modulation space M s,α
p,q (Rn),

as t → ∞ the multipliers t−n|
1
p
− 1

2 |eit|∆|
αo
2 and t−n|

1
p
− 1

2 |eit(I−|∆|)
αo
2 gain a regularity

n(2 − 2α − αo)

∣∣∣∣1p − 1

2

∣∣∣∣ when
1

2
< αo ≤ 2(1 − α) and αo 6= 1 for the Cauchy

problem for dispersive equation multiplier and when 1 ≤ αo ≤ 2(1 − α) for the

generalized half Klein-Gordon equation multiplier. Both multipliers loss a regularity

n(αo − 2 + 2α)

∣∣∣∣1p − 1

2

∣∣∣∣ when αo > 2(1− α).

We also obtain asymptotic estimates for the Fourier multiplier Θ(t) =

sin(t(−∆)
1
2 )

(−∆)
1
2

and ΘK(t) =
sin(t(−∆)

1
2 )

(−∆)
1
2

which has symbols
sin(t|ξ|)
|ξ|

and

sin(t(1 + |ξ|2)
1
2 )

(1 + |ξ|2)
1
2

respectively. These estimates will be used to obtain a unique solu-

tion for a nonlinear wave and Klein-Gordon equations. The results are as follows.

Theorem 3.1.4. (Trulen) For 1 ≤ p ≤ ∞, and t ≥ 1,

||Θ(t)g||Ms,α
p,q (Rn) � tn|

1
p
− 1

2 |+1 ||g||Ms−γ,α
p,q (Rn) + tn|

1
p
− 1

2 | ||g||
M
s+β1(α),α
p,q (Rn)

,

where γ > 0 and β1(α) is defined as

β1(α) = (αn− 2)

∣∣∣∣1p − 1

2

∣∣∣∣ . (3.3)
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Theorem 3.1.5. (Trulen) Let 1 ≤ p, q ≤ ∞, and t ≥ 1. If there exists N > 0 such

that

||�α
kΘK(t)g||Lp(Rn) � tn|

1
p
− 1

2 |+1 ||g||L1(Rn) ,

when |k| < N and

||�α
kΘK(t)g||Lp(Rn) � tn|

1
p
− 1

2 | 〈k〉
αn−2
1−α | 1p− 1

2 | ||g||L1(Rn) ,

when |k| ≥ N with b1 ≥ b2 ≥ 0, d is a real number, then the following estimate

holds:

||ΘK(t)g||Ms,α
p,q (Rn) � tn|

1
p
− 1

2 |+1 ||g||Ms−γ,α
p,q (Rn) + tn|

1
p
− 1

2 | ||g||
M
s+β1(α),α
p,q (Rn)

,

where γ is any positive number, and β1 is defined by

β1(α) = (nα− 2)

∣∣∣∣1p − 1

2

∣∣∣∣ .
Before we are able to prove these results there are some known theorems, as

well as a new result relating Lp-estimates of a unimodular Fourier multiplier to its

M s,α
p,q -estimate. These topics will be covered in the next section.

3.2 Existing Theory and New Estimates

First we will start with a survey of well known theorems that will be of interest to

us. These results range from general analysis to harmonic analysis and interpolation

theory.

Proposition 3.2.1. (Schwartz Inequality [22]) Suppose f and g are integrable func-

tions on X, then the following holds∫
X
f(x)g(x)dx ≤

∫
X
|f(x)|2dx

∫
X
|g(x)|2dx.

Proposition 3.2.2. (Bernstein Multiplier Theorem ([3])) Let L >
n

2
be an integer

and Hµ(f) be the Fourier multiplier defined as in equation (1.7) in Chapter 1 Section

1.3. Then the operator norm of Hµ on the space Lp(Rn) satisfies

||Hµ||Lp→Lp � ||µ||
1− n

2L

L2

(
n∑
i=1

∣∣∣∣∂Lxiµ∣∣∣∣ n2LL2

)
,
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for all 1 ≤ p ≤ ∞.

In the case when αo = 1 and after a few substitutions, the Bernstein Multiplier

Theorem will produce the t and 〈k〉 factors, but using this proposition will produce

singularities.

Proposition 3.2.3. (Sobolev Embedding Theorem ([23])) Recall the Riesz potential

Iβ(f) = (−∆)−
β
2 (f) where 0 < β < n, see Chapter 1 Section 1.4. If we have

1

q
=

1

p
− β

n
,

then the following estimate holds

||Iβ(f)||Lq ≤ A ||f ||Lp .

On the surface the Sobolev Embedding Theorem says something about the Lq-

estimate of the Riesz potential when applied to an Lp-function. This operator

was defined and briefly discussed in Chapter 1 Section 1.4. Our use of the Sobolev

Embedding Theorem is to view it as a statement about the Lq-estimate of a singular

integral. This will prove useful when getting bounds on such integrals that are

created when using the Bernstein Multiplier Theorem.

Proposition 3.2.4. (Van der Corput Lemma ([24, 14, 20])) Let E ⊂ Rn denote an

open set and ψ ∈ C∞c (E). If φ ∈ C∞(E) and the rank of the matrix

(DxjDxiφ(x))ni,j=1,

is at least ρ > 0 for all x ∈ supp(ψ), then we have∣∣∣∣∫
Rn
eiλφ(x)ψ(x)dx

∣∣∣∣ � |λ|− ρ2 ||ψ||C2n .

The Van der Corput Lemma is used when αo >
1

2
and αo 6= 1, and when

integration-by-parts fails to work.
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Proposition 3.2.5. (Riesz-Thorin Interpolation Theorem ([3, 20])) Let p0 6= p1 and

q0 6= q1. Suppose T is a bounded linear operator from Lp0(Rn) to Lq0(Rn) with norm

M0 and from Lp1(Rn) to Lq1(Rn) with norm M1, then T is bounded from Lpθ(Rn)

to Lqθ(Rn) with norm Mθ such that

Mθ ≤M1−θ
0 M θ

1 ,

with
1

pθ
=

1− θ
p0

+
θ

p1

, and
1

qθ
=

1− θ
q0

+
θ

q1

,

where 0 ≤ θ ≤ 1.

With the Riesz-Thorin Interpolation Theorem we are able to state and prove a

proposition about how the Lp-estimates of a unimodular Fourier multiplier relate

to its M s,α
p,q -estimates. For the next proposition let eitM be the unimodular Fourier

multiplier with symbol eitν(ξ) where ν(ξ) is a real-valued function. Note that in our

case we will be interested in eitM = eit|∆|
αo
2 and eit(I−|∆|)

αo
2 are unimodular Fourier

multipliers with symbols eit|ξ|
αo

and eit(1+|ξ|2)
αo
2 respectively.

Proposition 3.2.6. (Trulen) Let t > 0 and �α
k be defined by equation (2.7) in

Chapter 2 Section 2.3. Suppose there exists an N > 0 such that∣∣∣∣�α
ke

itMf
∣∣∣∣
L1 � tb1 ||f ||L1 , (3.4)

if |k| < N and ∣∣∣∣�α
ke

itMf
∣∣∣∣
L1 � tb2 〈k〉d ||f ||L1 , (3.5)

if |k| ≥ N , where b1 ≥ b2 ≥ 0 and d is a real number, then∣∣∣∣eitMf ∣∣∣∣
Ms,α
p,q (Rn)

� t2b1|
1
p
− 1

2 | ||f ||Ms−γ,α
p,q (Rn) + t2b2|

1
p
− 1

2 | ||f ||Ms+β,α
p,q (Rn) ,

where γ ≥ 0 and β is defined as

β = 2d(1− α)

∣∣∣∣1p − 1

2

∣∣∣∣ .
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Proof. By repeated use of Plancherel’s Theorem 1.2.1 we have∣∣∣∣�α
ke

itMf
∣∣∣∣
L2 =

∣∣∣∣F−1ηαk (·)F (eitMf)
∣∣∣∣
L2

=
∣∣∣∣ηαk (·)F (eitMf)

∣∣∣∣
L2

�
∣∣∣∣F (eitMf)

∣∣∣∣
L2

=
∣∣∣∣eitMf ∣∣∣∣

L2

=
∣∣∣∣F−1eitν(ξ)Ff

∣∣∣∣
L2

=
∣∣∣∣eitν(ξ)Ff

∣∣∣∣
L2

= ||Ff ||L2

= ||f ||L2 .

Thus we have ∣∣∣∣�α
ke

itMf
∣∣∣∣
L2 � ||f ||L2 . (3.6)

Using estimate (3.4) from the hypothesis and estimate (3.6) we have by the

Riesz-Thorin Interpolation Theorem, Proposition 3.2.5∣∣∣∣�α
ke

itMf
∣∣∣∣
Lp
�
(
tb1 ||f ||L1

)θ ||f ||1−θL2 ,

when |k| < N and
1

p
=

1− θ
2

+ θ.

This implies that

θ = 2

(
1

p
− 1

2

)
.

Therefore, we have∣∣∣∣�α
ke

itMf
∣∣∣∣
Lp
�
(
tb1 ||f ||L1

)θ ||f ||1−θL2

=
(
tb1 ||f ||L1

)2( 1
p
− 1

2) ||f ||
1−2( 1

p
− 1

2)
L2

= t2b1(
1
p
− 1

2) ||f ||
2( 1

p
− 1

2)
L1 ||f ||

1−2( 1
p
− 1

2)
L2

� t2b1(
1
p
− 1

2) ||f ||Lp ,

since f ∈ S ′.
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Using estimate (3.5) from the hypothesis and estimate (3.6) we have again by

Riesz-Thorin Interpolation Theorem, Proposition 3.2.5∣∣∣∣�α
ke

itMf
∣∣∣∣
Lp
�
(
tb2|k|d ||f ||L1

)θ ||f ||1−θL2

=
(
tb2|k|d ||f ||L1

)2( 1
p
− 1

2) ||f ||
1−2( 1

p
− 1

2)
L2

= t2b2(
1
p
− 1

2) 〈k〉2d(
1
p
− 1

2) ||f ||
2( 1

p
− 1

2)
L1 ||f ||

1−2( 1
p
− 1

2)
L2

� t2b2(
1
p
− 1

2) 〈k〉2d(
1
p
− 1

2) ||f ||Lp ,

if |k| ≥ N . Using duality we get∣∣∣∣�α
ke

itMf
∣∣∣∣
Lp
� t2b1|

1
p
− 1

2 | ||f ||Lp ,

and ∣∣∣∣�α
ke

itMf
∣∣∣∣
Lp
� t2b2|

1
p
− 1

2 | 〈k〉2d|
1
p
− 1

2 | ||f ||Lp ,

for all 1 ≤ p ≤ ∞.

Since we have

1 =
∞∑

|k|=−∞

ηαk (ξ),

then by almost orthogonality for the family {�α
k} we have

�α
ke

itM =
∑
|l|≤γC,k

�α
k+l�

α
ke

itM .

Now for |k| < N we have

∣∣∣∣�α
ke

itMf
∣∣∣∣
Lp

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|l|≤γC,k

�α
k+l�

α
ke

itMf

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp

≤
∑
|l|≤γC,k

∣∣∣∣�α
k+le

itM�α
kf
∣∣∣∣
Lp

� t2b1|
1
p
− 1

2 | ||�α
kf ||Lp .
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For |k| ≥ N we have

∣∣∣∣�α
ke

itMf
∣∣∣∣
Lp

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|l|≤γC,k

�α
k+l�

α
ke

itMf

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp

≤
∑
|l|≤γC,k

∣∣∣∣�α
k+le

itM�α
kf
∣∣∣∣
Lp

� t2b2|
1
p
− 1

2 | 〈k〉2d|
1
p
− 1

2 | ||�α
kf ||Lp ,

where γC,k is a positive constant that depends on C and k.

Using the definition of α-modulation spaces we have∣∣∣∣eitMf ∣∣∣∣
Ms,α
p,q (Rn)

=
∣∣∣∣∣∣〈k〉 s

1−α
∣∣∣∣�α

ke
itMf

∣∣∣∣
Lp

∣∣∣∣∣∣
`q

=

(∑
k∈Zn
〈k〉

sq
1−α
∣∣∣∣�α

ke
itMf

∣∣∣∣q
Lp

) 1
q

≤

∑
|k|<N

〈k〉
sq

1−α
∣∣∣∣�α

ke
itMf

∣∣∣∣q
Lp

 1
q

+

∑
|k|≥N

〈k〉
sq

1−α
∣∣∣∣�α

ke
itMf

∣∣∣∣q
Lp

 1
q

� t2b1|
1
p
− 1

2 |
∑
|k|<N

〈k〉
sq

1−α ||�α
kf ||

q
Lp

 1
q

+ t2b2|
1
p
− 1

2 |
∑
|k|≥N

〈k〉2dq|
1
p
− 1

2 | 〈k〉
sq

1−α ||�α
kf ||

q
Lp

 1
q

� t2b1|
1
p
− 1

2 |
∑
|k|<N

||�α
kf ||

q
Lp

 1
q

+ t2b2|
1
p
− 1

2 |
∑
|k|≥N

〈k〉
q

1−α(2d(1−α)| 1p− 1
2 |+s) ||�α

kf ||
q
Lp

 1
q

� t2b1|
1
p
− 1

2 | ||f ||Ms−γ,α
p,q (Rn) + t2b2|

1
p
− 1

2 | ||f ||Ms+β,α
p,q (Rn) ,
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where γ ≥ 0 and β is defined as

β = 2d(1− α)

∣∣∣∣1p − 1

2

∣∣∣∣ .
This completes the proof.

Note that this result corresponds with a result found by Chen, Fan, and Sun [5]

when α = 0, i.e., for the modulation space M s
p,q(Rn).

The last two known results we need are ones that were found by Chen, Fan, and

Sun [5].

Lemma 3.2.7. ([5]) For |k| = 0 we have for αo >
1

2∣∣∣∣F−1(ηαk (ξ)eit|ξ|
αo

)
∣∣∣∣
L1 � t

n
2 .

Lemma 3.2.8. ([5]) When |k| = 0 we have the estimate for 1 ≤ p ≤ ∞

||�α
0 Θ(t)g||Lp � tn|

1
p
− 1

2 |+1 ||�α
0 g||Lp .

This result was originally stated in the case of the modulation space M s
p,q(Rn)

using a function that satisfy condition (2.5) in Chapter 2 Section 2.2. In the case

when |k| = 0 their results become equivalent to these results.

3.3 Proof for the Asymptotic Estimate for the

Cauchy Problem for Dispersive Equation

Throughout the following proofs let ξαk , |ξ|αk , and |ξ|α,αok denote the following

ξαk = 〈k〉
α

1−α (ξ + k), (3.7)

|ξ|αk = 〈k〉
α

1−α |ξ + k|, (3.8)

|ξ|α,αok = 〈k〉
αoα
1−α |ξ + k|αo . (3.9)

To prove Theorems 3.1.1 and 3.1.2 there is an additional lemma and proposition

that needs to be proven. The first is a technical lemma that describes the bound-

edness of various derivatives of the symbol eit|ξ|
αo

with a translation and scaling of

〈k〉
α

1−α |ξ + k|.
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Lemma 3.3.1. (Trulen) For all multi-indexes α′ where |α′| = L ≥ 1, we have the

following estimates for Dα′eit〈k〉
αoα
1−α |ξ+k|αo for all αo > 0

Dα′eit〈k〉
αoα
1−α |ξ+k|αo �

{
tL 〈k〉

Lαoα
1−α |ξ + k|αo−Leit〈k〉

αoα
1−α |ξ+k|αo , if |ξ + k| < 1,

tL 〈k〉
Lαoα
1−α |ξ + k|Lαo−Leit〈k〉

αoα
1−α |ξ+k|αo , if |ξ + k| ≥ 1.

Proof. A simple calculation shows that for all multi-index α′, Dα′eit|ξ|
α,αo
k is made

up of terms in the form of

∑
j1,j2

Cαo(it 〈k〉
αoα
1−α )B|ξ + k|j1αo−2j2

n∏
h=1

(ξh + kh)
βheit|ξ|

α,αo
k ,

plus the term

Cαo(it 〈k〉
αoα
1−α )L|ξ + k|Lαo−2L

n∏
h=1

(ξh + kh)
γheit|ξ|

α,αo
k ,

where Cαo is a constant dependent on αo, |α′| = L, B ≤ L, j1 ≤ j2, 1 ≤ j1 ≤ L− 1,⌈
L

2

⌉
≤ j2 ≤ L with the following relationship

β1 + · · ·+ βn − 2j2 = −L, and γ1 + · · ·+ γn − 2L = −L.

Thus it follows that

Dα′eit|ξ|
α,αo
k � tL 〈k〉

αoαL
1−α

(
|ξ + k|Lαo−L +

∑
j1

|ξ + k|j1αo−L
)
eit|ξ|

α,αo
k .

Now if |ξ + k| < 1 we have

Dα′eit|ξ|
α,αo
k � tL 〈k〉

αoαL
1−α

(
|ξ + k|Lαo−L +

∑
j1

|ξ + k|j1αo−L
)
eit|ξ|

α,αo
k

� tL 〈k〉
αoαL
1−α

(
|ξ + k|Lαo−L + |ξ + k|αo−L

)
eit|ξ|

α,αo
k

� tL 〈k〉
αoαL
1−α |ξ + k|αo−L

(
|ξ + k|(L−1)αo+1

)
eit|ξ|

α,αo
k

� tL 〈k〉
αoαL
1−α |ξ + k|αo−Leit|ξ|

α,αo
k .
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Now if |ξ + k| ≥ 1 then

Dα′eit|ξ|
α,αo
k � tL 〈k〉

αoαL
1−α

(
|ξ + k|Lαo−L +

∑
j1

|ξ + k|j1αo−L
)
eit|ξ|

α,αo
k

� tL 〈k〉
αoαL
1−α

(
|ξ + k|Lαo−L + |ξ + k|(L−1)αo−L

)
eit|ξ|

α,αo
k

� tL 〈k〉
αoαL
1−α |ξ + k|Lαo−L

(
1 + |ξ + k|−αo

)
eit|ξ|

α,αo
k

� tL 〈k〉
αoαL
1−α |ξ + k|Lαo−Leit|ξ|

α,αo
k .

This completes the proof.

With αo = 1 the statement and proof of the next proposition will give us Theorem

3.1.1.

Proposition 3.3.2. (Trulen) Let ηαk be a function defined that satisfy conditions

(2.6) in Chapter 2 Section 2.3 and t ≥ 1. If αo = 1, then we have∣∣∣∣F−1(ηαk (ξ)eit|ξ|
αo

)
∣∣∣∣
L1 � t

n
2 ,

for |k| = 0 and ∣∣∣∣F−1(ηαk (ξ)eit|ξ|)
∣∣∣∣
L1 � t

n
2 〈k〉

nα
2(1−α) ,

for |k| 6= 0.

Proof. For |k| = 0, the result follows immediately from Lemma 3.2.7.

Now suppose |k| 6= 0 and let L =
n+ 1

2
when n is odd and L =

n+ 2

2
when

n is even. First, making the substitutions of ξ = 〈k〉
α

1−α (ξ′ + k) followed by the
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substitution x =
x′

〈k〉
α

1−α
, then applying Lemmas 3.2.2 and 3.3.1 we get

∣∣∣∣F−1
(
ηαk e

it|ξ|)∣∣∣∣
L1 =

∫
Rn

∣∣F−1
(
ηαk (ξ)eit|ξ|

)
(x)
∣∣ dx

=

∫
Rn

∣∣∣∣∫
Rn
ηαk (ξ)eit|ξ|eixξdξ

∣∣∣∣ dx
= 〈k〉

α
1−α

∫
Rn

∣∣∣∣∫
Rn
ηαk (ξαk ) ei(t|ξ|

α
k+xξαk )dξ

∣∣∣∣ dx
=

∫
Rn

∣∣∣∣∫
Rn
ηαk (ξαk ) ei(t|ξ|

α
k+x(ξ+k))dξ

∣∣∣∣ dx
=

∫
Rn

∣∣∣∣∫
Rn
ηαk (ξαk ) ei(t|ξ|

α
k+xξ)dξ

∣∣∣∣ dx
=
∣∣∣∣F−1

(
ηαk (ξαk ) eit|ξ|

α
k

)∣∣∣∣
L1

� ||ηαk (ξαk )||1−
n
2L

L2

∑
|δ|≤L

∣∣∣∣Dδ
(
ηαk (ξαk ) eit|ξ|

α
k

)∣∣∣∣ n2L
L2

�
∑
|δ|≤L

∣∣∣∣∣
∣∣∣∣∣∑
β≤δ

Dδ−βηαk (ξαk ) t|β| 〈k〉
|β|α
1−α |ξ + k|1−|β|eit|ξ|αk

∣∣∣∣∣
∣∣∣∣∣
n
2L

L2({ξ:|ξ+k|<1})

+
∑
|δ|≤L

∣∣∣∣∣
∣∣∣∣∣∑
β≤δ

Dδ−βηαk (ξαk ) t|β| 〈k〉
|β|α
1−α eit|ξ|

α
k

∣∣∣∣∣
∣∣∣∣∣
n
2L

L2({ξ:|ξ+k|≥1})

.

Note that

||ηαk (ξαk )||1−
n
2L

L2 � 1,

since ηαk (ξαk ) has support |ξ| < C. Now for the first norm note

1− n+ 1

2
=

1− n
2

> −n,

when n is odd and

1− n+ 2

2
= −n

2
> −n,
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when n is even. Then by Sobolev Embedding Theorem, Proposition 3.2.3, it follows

∑
|δ|≤L

∣∣∣∣∣
∣∣∣∣∣∑
β≤δ

Dδ−βηαk (ξαk ) t|β| 〈k〉
|β|α
1−α |ξ + k|1−|β|eitξαk

∣∣∣∣∣
∣∣∣∣∣
n
2L

L2({ξ:|ξ+k|<1})

� t
n
2 〈k〉

nα
2(1−α)

∣∣∣∣ηαk (ξαk ) |ξ + k|1−Leit|ξ|αk
∣∣∣∣ n2L
L2({ξ:|ξ+k|<1})

� t
n
2 〈k〉

nα
2(1−α)

∣∣∣∣ηαk (ξαk ) eit|ξ|
α
k

∣∣∣∣ n2L
Lp({ξ:|ξ+k|<1})

� t
n
2 〈k〉

nα
2(1−α) ,

where p satisfies
1

2
=

1

p
− 1− L

n
.

For the second norm it is clear

∑
|δ|≤L

∣∣∣∣∣
∣∣∣∣∣∑
β≤δ

Dδ−βηαk (ξαk ) t|β| 〈k〉
|β|α
1−α ei|ξ|

α
k

∣∣∣∣∣
∣∣∣∣∣
n
2L

L2({ξ:|ξ+k|≥1})

� t
n
2 〈k〉

nα
2(1−α)

∣∣∣∣ηαk (ξαk ) eit|ξ|
α
k

∣∣∣∣ n2L
L2({ξ:|ξ+k|≥1})

� t
n
2 〈k〉

nα
2(1−α) .

This completes the proof.

To obtain Theorem 3.1.2 we need to prove the next proposition.

Proposition 3.3.3. (Trulen) If αo >
1

2
with αo 6= 1 and t ≥ 1, then∣∣∣∣F−1(ηαk (ξ)eit|ξ|

αo
)
∣∣∣∣
L1 � t

n
2 ,

for |k| = 0 and ∣∣∣∣F−1(ηαk (ξ)eit|ξ|
αo

)
∣∣∣∣
L1 � t

n
2 〈k〉

n(αo−2+2α)
2(1−α) ,

for |k| 6= 0

Proof. If αo >
1

2
with αo 6= 1 and |k| = 0, then by Lemma 3.2.7 we have∣∣∣∣F−1(ηαk (ξ)eit|ξ|

αo
)
∣∣∣∣
L1 � t

n
2 .
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Suppose that |k| 6= 0. Then, making the substitution of ξ = 〈k〉
α

1−α (ξ′ + k)

followed by the substitution x =
x′

〈k〉
α

1−α
we have

∣∣∣∣F−1
(
ηαk e

it|ξ|αo)∣∣∣∣
L1 =

∫
Rn

∣∣F−1
(
ηαk (ξ)eit|ξ|

αo)
(x)
∣∣ dx

=

∫
Rn

∣∣∣∣∫
Rn
ηαk (ξ)eit|ξ|

αo
eixξdξ

∣∣∣∣ dx
= 〈k〉

α
1−α

∫
Rn

∣∣∣∣∫
Rn
ηαk (ξαk )ei(t|ξ|

α,αo
k +xξαk )dξ

∣∣∣∣ dx
=

∫
Rn

∣∣∣∣∫
Rn
ηαk (ξαk )ei(t|ξ|

α,αo
k +x(ξ+k))dξ

∣∣∣∣ dx
=

∫
Rn

∣∣∣∣∫
Rn
ηαk (ξαk )ei(t|ξ|

α,αo
k +xξ)dξ

∣∣∣∣ dx.
Define Φ as

Φ = t|ξ|α,αok + xξ.

Then the first two derivatives are

∂Φ

∂ξi
= αot 〈k〉

ααo
1−α |ξ + k|αo−2(ξi + ki) + xi,

and
∂2Φ

∂ξi∂ξj
is equal to

αot 〈k〉
ααo
1−α |ξ + k|αo−2 + αo(αo − 2)t 〈k〉

ααo
1−α |ξ + k|αo−4(ξi + ki)

2,

if j = i and

αo(αo − 2)t 〈k〉
ααo
1−α |ξ + k|αo−4(ξi + ki)(ξj + kj),

if j 6= i. Note that
∂Φ

∂ξi
= 0 when

xi = −αot 〈k〉
ααo
1−α |ξ + k|αo−2(ξi + ki),

or equivalently,

x = −αot 〈k〉
ααo
1−α |ξ + k|αo−2(ξ + k).
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For the case of n = 2 we have∣∣∣det
(
DξiDξjΦ

)2

i,j=1

∣∣∣
=
∣∣∣(αo(αo − 2)t 〈k〉

αoα
1−α |ξ + k|αo−4(ξ1 + k1)2 + αot 〈k〉

αoα
1−α |ξ + k|αo−2

)
×(

αo(αo − 2)t 〈k〉
αoα
1−α |ξ + k|αo−4|(ξ2 + k2)2 + αot 〈k〉

αoα
1−α |ξ + k|αo−2

)
− α2

o(αo − 2)2t2 〈k〉
2αoα
1−α |ξ + k|2αo−8(ξ1 + k1)2(ξ2 + k2)2

∣∣∣
=
∣∣∣α2

ot
2 〈k〉

2αoα
1−α |ξ + k|2αo−4×(

(αo − 2)|ξ + k|−2(ξ1 + k1)2 + (αo − 2)|ξ + k|−2(ξ2 + k2)2 + 1
)∣∣

=
∣∣∣α2

ot
2 〈k〉

2αoα
1−α |ξ + k|2αo−4×(

(αo − 2)|ξ + k|−2
(
(ξ1 + k1)2 + (ξ2 + k2)2

)
+ 1
)∣∣

=
∣∣∣α2

ot
2 〈k〉

2αoα
1−α |ξ + k|2αo−4

(
(αo − 2)|ξ + k|−2|ξ + k|2 + 1

)∣∣∣
=
∣∣∣α2

ot
2 〈k〉

2αoα
1−α |ξ + k|2αo−4 ((αo − 2) + 1)

∣∣∣
=
∣∣∣α2

o(αo − 1)t2 〈k〉
2αoα
1−α |ξ + k|2αo−4

∣∣∣
=
(
t 〈k〉

αoα
1−α |ξ + k|αo−2

)2

α2
o|αo − 1|.

Since αo 6= 1, we have ∣∣∣det
(
DξiDξjΦ

)2

i,j=1

∣∣∣ ≥ t 〈k〉
αoα
1−α |k|αo−2.

Note, this calculation can be extended for n ≥ 3.

Now define Ci(k) and Di(k) as

Ci(k) = αot 〈k〉
αoα
1−α (|ki|+ C)

(
n∑
j=1

(|kj|+ C)2

)αo−2
2

,

and

Di(k) = αot 〈k〉
αoα
1−α (|ki| − C)

(
n∑
j=1

(|kj| − C)2

)αo−2
2

.

Now define the intervals Fi as the set of all xi ∈ Rn such that

Di(k)− t 〈k〉
αoα
1−α |k|αo−2 < |xi| < Ci(k) + t 〈k〉

αoα
1−α |k|αo−2,
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Gi,j as the set of all xi ∈ Rn such that

Ci(k) + t 〈k〉
αoα
1−α |k|αo−2 + j − 1 < |xi| ≤ Ci(k) + t 〈k〉

αoα
1−α |k|αo−2 + j,

and Hi,j as the set of all xi ∈ Rn such that

Di(k)− t 〈k〉
αoα
1−α |k|αo−2 − j < |xi| ≤ Di(k) + t 〈k〉

αoα
1−α |k|αo−2 − j + 1.

Since

|x| = αot 〈k〉
αoα
1−α |ξ + k|αo−2|ξ + k| = αot 〈k〉

αoα
1−α |ξ + k|αo−1,

it follows that

xi ∈ Fi.

It also it follows that

length(Fi) � t 〈k〉
αoα
1−α |k|αo−2,

and

length(Gi,j) = length(Hi,j) = 1.

Now define Ki,j as

Ki,j = Gi,j ∪Hi,j.

Then

χFi(xi) +
∞∑
j=1

χKi,j(xi) = 1.

Thus we have∣∣∣∣F−1(ηαk (ξ)eit|ξ|
αo

)
∣∣∣∣
L1 �∫

Rn

n∏
i=1

χFi(xi)

∣∣∣∣∫
Rn
ηαk (ξαk ) eit|ξ|

α,αo
k +xξdξ

∣∣∣∣ dx+

n∑
j∗=1

∑
Il

∫
Rn

AIl,j∗(x)

∣∣∣∣∫
Rn
ηαk (ξαk ) eit|ξ|

α,αo
k +xξdξ

∣∣∣∣ dx+

n∑
j1=1

· · ·
n∑

jn=1

∫
Rn

n∏
i=1

χKi,ji (xi)

∣∣∣∣∫
Rn
ηαk (ξαk ) eit|ξ|

α,αo
k +xξdξ

∣∣∣∣ dx
= I1 + I2 + I3,
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where AIl,j∗ is the product of characteristic functions χFi(xi) and χKi,j∗ (xi), where

there is at least one χFi(xi) and at least one χKi,j∗ (xi).

For I1, with ξ ∈ supp ηαk (ξαk ) and by Proposition 3.2.4 we have

I1 �
(
t 〈k〉

αoα
1−α |k|αo−2

)−n
2

∫
Rn

n∏
i=1

χFi(xi)dx

�
(
t 〈k〉

αoα
1−α |k|αo−2

)−n
2
(
t 〈k〉

αoα
1−α |k|αo−2

)n
= t

n
2 〈k〉

nαoα
2(1−α) |k|

n(αo−2)
2

� t
n
2 〈k〉

n(αo−2+2α)
2(1−α) .

The last line follows since

〈k〉
nαoα

2(1−α) |k|
n(αo−2)

2 � 〈k〉
nαoα

2(1−α)
+
n(αo−2)

2

= 〈k〉
n
2
αoα+(αo−2)(1−α)

1−α

= 〈k〉
n
2
αo−2+2α

1−α .

Now note for x ∈ Ki,j and ξ ∈ supp ηαk (ξαk ) we have

∂

∂ξl

(
ηαk (ξαk )
∂
∂ξi

Φ

)

=

∂Φ
∂ξi

∂
∂ξl
ηαk (ξαk )− ηαk (ξαk ) ∂2Φ

∂ξl∂ξi(
∂Φ
∂ξi

)2

�
αot 〈k〉

αoα
1−α |ξ + k|αo−2(ξi + ki) + xi − ∂2Φ

∂ξl∂ξi(
αot 〈k〉

αoα
1−α |ξ + k|αo−2(ξi + ki) + xi

)2

= O

 1

j +
√
t 〈k〉

αoα
2(1−α) |k|αo−2

2

+
t 〈k〉

αoα
1−α |k|αo−2(

j +
√
t 〈k〉

αoα
2(1−α) |k|αo−2

2

)2

 .
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Thus, using integration-by-parts twice on each variable ξ1, · · · , ξn we have

I3 �
n∑

j1=1

· · ·
n∑

jn=1

tn 〈k〉
nαoα
1−α |k|nαo−2n∏n

i=1

(
ji +
√
t 〈k〉

αoα
2(1−α) |k|αo−2

2

)2

∫
Rn

n∏
i=1

χKi,ji (xi)dx

� t
n
2 〈k〉

nαoα
2(1−α) |k|

n(αo−2)
2

� t
n
2 〈k〉

n(αo−2+2α)
2(1−α) .

When ξ ∈ supp ηαk (ξαk ), I2 is the sum of integrals of the form

n∑
jl+1=1

· · ·
n∑

jn=1

∫
Rn

Bl(xi0)

∣∣∣∣∫
Rn
ηαk (ξαk ) eit|ξ|

α,αo
k +xξdξ

∣∣∣∣ dx,
where Bl(xi0) is defined as

Bl(xi0) =
l∏

i0=1

χFio (xi0)
n∏

i0=l+1

χKi0,ji0
(xi0).

By doing integration-by-parts twice on the variables ξl+1, · · · , ξn, the above integral

is bounded by

I2 �
n∑

jl+1=1

· · ·
n∑

jn=1

tn−l 〈k〉
(n−l)αoα

1−α |k|(n−l)αo−2n∏n
i=l+1

(
ji +
√
t 〈k〉

αoα
2(1−α) |k|αo−2

2

)2

∫
Rn

Bl(xi0)dx

� t
n
2 〈k〉

nαoα
2(1−α) |k|

n(αo−2)
2

� t
n
2 〈k〉

n(αo−2+2α)
2(1−α) .

This completes the proof.

3.4 Proof for the Asymptotic Estimate for the

Generalized Half Klein-Gordon Equation

Throughout these proofs let (ξ)αo and (ξ)α,αok be defined as

(ξ)αo = (1 + |ξ|2)
αo
2 , and (3.10)

(ξ)α,αok = (1 + 〈k〉
2α

1−α |ξ + k|2)
αo
2 . (3.11)
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Lemma 3.4.1. (Trulen) For all multi-indexes α′ where |α′| = L ≥ 1 we have the

following estimates for Dα′eit(1+〈k〉
2α

1−α |ξ+k|2)
αo
2 for all αo ≥ 0

Dα′eit(1+〈k〉
2α

1−α |ξ+k|2)
αo
2 � tL 〈k〉

Lαoα
1−α |ξ + k|Lαo−Le

it

(
1+〈k〉

2α
1−α |ξ+k|2

)αo
2

,

for all ξ ∈ Rn and k ∈ Zn.

Proof. The α′ derivative takes the form of

Cαot
L 〈k〉

2Lα
1−α (1 + 〈k〉

2α
1−α |ξ + k|2)

Lαo−2L
2

n∏
h=1

(ξh + kh)
γheit(ξ)

α,αo
k ,

plus terms of the form

Cαot
β 〈k〉

2βα
1−α (1 + 〈k〉

2α
1−α |ξ + k|2)

j1αo−2j2
2

n∏
h=1

(ξh + kh)
βheit(ξ)

α,αo
k ,

where j1 ≤ j2, β ≤ L, 1 ≤ j1 ≤ L− 1,

⌈
L

2

⌉
≤ j2 ≤ L, γ1 + · · ·+ γn− 2L = −L, and

β1 + · · ·+ βn − 2L = −L.

Since 1 + 〈k〉
2α

1−α |ξ + k|2 ≥ 1 and

(j1 − L)αo
2

< 0,

then it follows that

Cαot
L 〈k〉

2Lα
1−α (1 + 〈k〉

2α
1−α |ξ + k|2)

Lαo−2L
2

n∏
h=1

(ξh + kh)
γheit(ξ)

α,αo
k

+
∑
j1,j2

Cαot
β 〈k〉

2βα
1−α (1 + 〈k〉

2α
1−α |ξ + k|2)

j1αo−2j2
2

n∏
h=1

(ξh + kh)
βheit(ξ)

α,αo
k

� 〈k〉
2Lα
1−α

(
1 + 〈k〉

2α
1−α |ξ + k|2

)Lαo−2L
2

×

(
n∏
h=1

(ξh + kh)
γh +

(
1 + 〈k〉

2α
1−α |ξ + k|2

) (j1−L)αo
2

n∏
h=1

(ξh + kh)
βh

)

� 〈k〉
2Lα
1−α

(
1 + 〈k〉

2α
1−α |ξ + k|2

)Lαo−2L
2 |ξ + k|L

∼ 〈k〉
2Lα
1−α

(
〈k〉

2α
1−α |ξ + k|2

)Lαo−2L
2 |ξ + k|L

� 〈k〉
Lαoα
1−α |ξ + k|Lαo−L.
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This completes the proof.

Proposition 3.4.2. (Trulen) For αo >
1

2
and |k| = 0, we have the following esti-

mate: ∣∣∣∣∣∣eit(I−∆)
αo
2 ηα0 (ξ)

∣∣∣∣∣∣
L1
� t

n
2 .

Proof. Let L =
n+ 1

2
if n is odd and L =

n+ 2

2
if n is even. First note that

∣∣∣∣∣∣eit(I−∆)
αo
2 ηα0 (ξ)

∣∣∣∣∣∣
L1
�
∫
|x|≤t

∣∣∣∣∫
Rn
ηα0 (ξ)eit(ξ)

αo
eixξdξ

∣∣∣∣ dx
+

∫
|x|>t

∣∣∣∣∫
Rn
ηα0 (ξ)eit(ξ)

αo
eixξdξ

∣∣∣∣ dx.
For the first norm by Schwartz’s inequality, Proposition 3.2.1 and Plancherel’s The-

orem, Proposition 1.2.1, we have∫
|x|≤t

∣∣∣∣∫
Rn
ηα0 (ξ)eit(ξ)

αo
eixξdξ

∣∣∣∣ dx
�
(∫
|x|≤t

dx

) 1
2
(∫

Rn

(
ηk0(ξ)eit(ξ)

αo
eixξ
)2
dξ

) 1
2

� t
n
2

∣∣∣∣ηk0(ξ)
∣∣∣∣
L2

� t
n
2 .

For the second norm define Et by

Et = {x ∈ Rn : |x| > t} .

For i, j ∈ {1, 2, · · · , n} define Et,i by

Et,i = {x ∈ Et : |xi| ≥ |xj| for all j 6= i} .
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Now by integration-by-parts and Lemma 3.4.1 we have∫
|x|>t

∣∣∣∣∫
Rn
ηα0 (ξ)eit(ξ)

αo
eixξdξ

∣∣∣∣ dx
�

n∑
i=1

∫
Et,i

∣∣∣∣∫
Rn
ηα0 (ξ)eit(ξ)

αo
eixξdξ

∣∣∣∣ dx
�

n∑
i=1

∫
Et,i

1

|x|L

∣∣∣∣∫
Rn
∂Lξi
(
ηα0 (ξ)eit(ξ)

αo)
eixξdξ

∣∣∣∣ dx
� tL

∫
Rn

1

|x|L

∣∣∣∣∣
∫
Rn

L∑
δ=1

∂L−δξi
ηα0 (ξ)|ξ|βαo−βeit(ξ)αoeixξdξ

∣∣∣∣∣ dx
� tL

∫
Rn

1

|x|L

∣∣∣∣∫
Rn
ηα0 (ξ)|ξ|Lαo−Leit(ξ)αoeixξdξ

∣∣∣∣ dx.
In either case of n being odd or even, it follows that

2L(1− αo) = (n+ 1)(1− αo) <
n+ 1

2
<
n

2
+ 1.

Thus by Schwartz’s inequality, Proposition 3.2.1, and noting that ηα0 has compact

support |ξ| < C and |ξ| > 1 it follows that

tL
∫
Rn

1

|x|L

∣∣∣∣∫
Rn
ηα0 (ξ)|ξ|Lαo−Leit(ξ)αoeixξdξ

∣∣∣∣ dx
� tL

(∫
|x|>t

dx

|x|2L

) 1
2
(∫

Rn
|ηα0 (ξ)|2|ξ|2L(αo−1)dξ

) 1
2

� t
n
2 .

This completes the proof.

Proposition 3.4.3. (Trulen) For |k| 6= 0 and t > 1. If αo ≥ 1, then we have the

following estimate: ∣∣∣∣∣∣eit(I−∆)
αo
2 ηαk (ξ)

∣∣∣∣∣∣
L1
� t

n
2 〈k〉

n(αo−2+2α)
2(1−α) .

Proof. Suppose k 6= 0. Like Proposition 3.3.3, first make the substitution of ξ =
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〈k〉
α

1−α (ξ′ + k) followed by the substitution x =
x′

〈k〉
α

1−α)

to get

∣∣∣∣∣∣�α
ke

it(I−∆)
αo
2

∣∣∣∣∣∣
L1

=
∣∣∣∣∣∣F−1

(
ηαk (ξ)eit(1+|ξ|2)

αo
2

)∣∣∣∣∣∣
L1

=

∫
Rn

∣∣∣∣∫
Rn
ηαk (ξαk ) eit(ξ)

α,αo
k eix(ξ+k)dξ

∣∣∣∣ dx
=

∫
Rn

∣∣∣∣∫
Rn
ηαk (ξαk ) ei(t(ξ)

α,αo
k +xξ)dξ

∣∣∣∣ dx.
Define Φ as

Φ = t(ξ)α,αok + xξ

= 〈k〉
αoα
1−α t

(
〈k〉−

2α
1−α + |ξ + k|2

)αo
2

+ xξ.

Now we have

∂Φ

∂ξi
= αot 〈k〉

αoα
1−α (ξi + ki)

(
〈k〉−

2α
1−α + |ξ + k|2

)αo−2
2

+ xi,

and we have
∂2Φ

∂ξi∂ξj
equal to

αo(αo − 2)t 〈k〉
αoα
1−α (ξi + ki)(ξj + kj)

(
〈k〉−

2α
1−α + |ξ + k|2

)αo−4
2
,

if i 6= j and

αo(αo − 2)t 〈k〉
αoα
1−α (ξi + ki)

2
(
〈k〉−

2αo
1−α + |ξ + k|2

)αo−4
2

+ αot 〈k〉
αoα
1−α

(
〈k〉

−2α
1−α + |ξ + k|2

)αo−2
2
,

if i = j. Also note
∂Φ

∂ξi
= 0 when

xi = −αot 〈k〉
αoα
1−α (ξi + ki)

(
〈k〉−

2α
1−α + |ξ + k|2

)αo−2
2
,

or equivalently

x = −αot 〈k〉
αoα
1−α (ξ + k)

(
〈k〉−

2α
1−α + |ξ + k|2

)αo−2
2
.
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Now for the case of n = 2 we have∣∣det(DξiDξjΦ)2
i,j=1

∣∣
=

∣∣∣∣(αo(αo − 2)t 〈k〉
αoα
1−α (ξ1 + k1)2

(
〈k〉−

2αo
1−α + |ξ + k|2

)αo−4
2

+αot 〈k〉
αoα
1−α

(
〈k〉

−2α
1−α + |ξ + k|2

)αo−2
2

)
×
(
αo(αo − 2)t 〈k〉

αoα
1−α (ξ2 + k2)2

(
〈k〉−

2αo
1−α + |ξ + k|2

)αo−4
2

+αot 〈k〉
αoα
1−α

(
〈k〉

−2α
1−α + |ξ + k|2

)αo−2
2

)
−α2

o(αo − 2)2t2 〈k〉
2αoα
1−α (ξ1 + k1)2(ξ2 − k2)2

(
〈k〉−

2α
1−α − |ξ + k|2

)αo−4
∣∣∣∣

= α2
0t

2 〈k〉
2αoα
1−α

∣∣∣〈k〉− 2α
1−α + |ξ + k|2

∣∣∣ 2αo−4
2

×
(

(αo − 2)
(
〈k〉−

2α
1−α + |ξ + k|2

)−1

|ξ + k|2 + 1

)
.

Then
∣∣det(DξiDξjΦ)2

i,j=1

∣∣ = 0 only if

(αo − 2)
(
〈k〉−

2α
1−α + |ξ + k|2

)−1

|ξ + k|2 + 1 = 0,

which only happens when

αo = 1− 〈k〉−
2α

1−α |ξ + k|−2 < 1.

Thus when αo ≥ 1 and when k 6= 0,
∣∣det(DξiDξjΦ)2

i,j=1

∣∣ 6= 0. Also note that
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when k 6= 0 ∣∣det(DξiDξjΦ)2
i,j=1

∣∣
= α2

0t
2 〈k〉

2αoα
1−α

∣∣∣〈k〉− 2α
1−α + |ξ + k|2

∣∣∣ 2αo−4
4

×
(

(αo − 2)
(
〈k〉−

2α
1−α + |ξ + k|2

)−1

|ξ + k|2 + 1

)
∼ α2

0t
2 〈k〉

2αoα
1−α |ξ + k|2αo−4

(
α− 1 +

1

1 + 〈k〉
2α

1−α |ξ + k|2

)

≥
(
α0t 〈k〉

αoα
1−α |ξ + k|αo−2

)2
(
α− 1 +

1

1 + 〈k〉
2α

1−α |ξ + k|2

)
≥ α0t 〈k〉

αoα
1−α |k|αo−2.

Define Ci(k) and Di(k) as

Ci(k) = αot 〈k〉
αoα
1−α (|ki|+ C)

(
n∑
j=1

(|kj|+ C)2

)αo−2
2

,

Di(k) = αot 〈k〉
αoα
1−α (|ki| − C)

(
n∑
j=1

(|kj| − C)2

)αo−2
2

.

Now define the intervals Fi as the set of all xi ∈ R, such that,

Di(k)− t 〈k〉
αoα
1−α |k|αo−2 < |xi| < Ci(k) + t 〈k〉

αoα
1−α |k|αo−2,

Gi,j to be the set of all xi ∈ R such that

Ci(k) + t 〈k〉
αoα
1−α |k|αo−2 + j − 1 < |xi| ≤ Ci(k) + t 〈k〉

αoα
1−α |k|αo−2 + j,

and Hi,j to be the set of all xi ∈ R such that

Di(k)− t 〈k〉
αoα
1−α |k|αo−2 − j < |xi| ≤ Di(k) + t 〈k〉

αoα
1−α |k|αo−2 − j + 1.

Since

|x| = αot 〈k〉
αoα
1−α |ξ + k|

∣∣∣〈k〉− 2α
1−α + |ξ + k|2

∣∣∣ |αo−2
2 ,
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then it follows that

xi ∈ Fi.

Also, it follows that

length(Fi) � t 〈k〉
αoα
1−α |k|αo−2,

length(Gi,j) = length(Hi,j) = 1.

Now define Ki,j as

Ki,j = Gi,j ∪Hi,j,

then it follows that

χFi(xi) +
∞∑
j=1

χKi,j(xi) = 1.

Thus we have∣∣∣∣F−1(ηαk (ξ)eit(ξ)
αo

)
∣∣∣∣
L1 �∫

Rn

n∏
i=1

χFi(xi)

∣∣∣∣∫
Rn
ηαk (ξαk ) eit(ξ)

α,αo
k +ixξdξ

∣∣∣∣ dx+

n∑
j∗=1

∑
Il

∫
Rn

AIl(x)

∣∣∣∣∫
Rn
ηαk (ξαk ) eit(ξ)

α,αo
k +ixξdξ

∣∣∣∣ dx+

n∑
j1=1

· · ·
n∑

jn=1

∫
Rn

n∏
i=1

χKi,ji (xi)

∣∣∣∣∫
Rn
ηαk (ξαk ) eit(ξ)

α,αo
k +ixξdξ

∣∣∣∣ dx
I1 + I2 + I3,

where AIl is the product of characteristic functions χFi(xi) and χKi,j∗ (xi) where

there is at least one χFi(xi) and at least one χKi,j∗ (xi).

For I1, with ξ ∈ supp ηαk

(
〈k〉

α
1−α (ξ + k)

)
and by Lemma 3.2.4 we have

I1 �
(
t 〈k〉

αoα
1−α |k|αo−2

)−n
2

∫
Rn

n∏
i=1

χFi(xi)dx

�
(
t 〈k〉

αoα
1−α |k|αo−2

)−n
2
(
t 〈k〉

αoα
1−α |k|αo−2

)n
= t

n
2 〈k〉

nαoα
2(1−α) |k|

n(αo−2)
2

� t
n
2 〈k〉

n(αo−2+2α)
2(1−α) .
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Now note for x ∈ Ki,j and ξ ∈ suppηαk

(
〈k〉

α
1−α (ξ + k)

)
we have

∂

∂ξl

(
ηαk (ξαk )
∂
∂ξi

Φ

)

=

∂Φ
∂ξi

∂
∂ξl
ηαk (ξαk )− ηαk (ξαk ) ∂2Φ

∂ξl∂ξi(
∂Φ
∂ξi

)2

�
αot 〈k〉

αoα
1−α |ξ + k|αo−2(ξi + ki) + xi − ∂2Φ

∂ξl∂ξi(
αot 〈k〉

αoα
1−α (ξi + ki)

∣∣∣〈k〉− 2α
1−α + |ξ + k|2

∣∣∣αo−2
2

+ xi

)2

= O

 1

j +
√
t 〈k〉

αoα
2(1−α) |k|αo−2

2

+
t 〈k〉

αoα
1−α |k|αo−2(

j +
√
t 〈k〉

αoα
2(1−α) |k|αo−2

2

)2

 .

Thus, using integration-by-parts twice on each variable ξ1, · · · , ξn we have

I3 �
n∑

j1=1

· · ·
n∑

jn=1

tn 〈k〉
nαoα
1−α |k|nαo−2n∏n

i=1

(
ji +
√
t 〈k〉

αoα
2(1−α) |k|αo−2

2

)2

∫
Rn

n∏
i=1

χKi,ji (xi)dx

� t
n
2 〈k〉

nαoα
2(1−α) |k|

n(αo−2)
2

� t
n
2 〈k〉

n(αo−2+2α)
2(1−α) .

When ξ ∈ supp ηαk (ξαk ), then I2 is the sum of integrals of the form

n∑
jl+1=1

· · ·
n∑

jn=1

∫
Rn

l∏
i0=1

χFio (xi0)
n∏

i0=l+1

χKi0,ji0
(xi0)×∣∣∣∣∫

Rn
ηαk (ξαk ) eit(ξ)

α,αo
k +xξdξ

∣∣∣∣ dx.
So doing integration-by-parts twice on the variables ξl+1, · · · , ξn, the above integral
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is bounded by

n∑
jl+1=1

· · ·
n∑

jn=1

tn−l 〈k〉
(n−l)αoα

1−α |k|(n−l)αo−2n∏n
i=l+1

(
ji +
√
t 〈k〉

αoα
2(1−α) |k|αo−2

2

)2

×
∫
Rn

l∏
i0=1

χFio (xi0)
n∏

i0=l+1

χKi0,ji0
(xi0)dx

� t
n
2 〈k〉

nαoα
2(1−α) |k|

n(αo−2)
2

� t
n
2 〈k〉

n(αo−2+2α)
2(1−α) .

This completes the proof.

Applying both Proposition 3.4.2 and 3.4.3 with Proposition 3.2.6 from Section

3.2 we obtain the proof for Theorem 3.1.3

3.5 Proof for the Asymptotic Estimate for the

Fourier Multiplier Θ(t)

Now we will present the proof for Theorem 3.1.4.

Proof. First note that by Plancheral’s Theorem, Theorem 1.2.1, it follows

||�α
kΘ(t)g||L2 =

∣∣∣∣∣∣∣∣F−1

(
ηαk (ξ)

sin (t|ξ|)
|ξ|

ĝ(ξ)

)∣∣∣∣∣∣∣∣
L2

=

∣∣∣∣∣∣∣∣ηαk (ξ)
sin (t|ξ|)
|ξ|

ĝ(ξ)

∣∣∣∣∣∣∣∣
L2

� ||ĝ||L2

= ||g||L2 .

Now when k 6= 0 such that |k| > C, then |ξ + k| = 0 is not in the support of

ηαk (〈k〉
α

1−α (ξ + k)). With L defined as

L =


n+ 1

2
, if n is odd,

n+ 2

2
, if n is even.
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Taking multiple derivatives of sin
(
t 〈k〉

α
1−α |ξ + k|

)
we get lead factors of tL and

〈k〉
Lα

1−α and with k sufficiently large we have for all the factors of the form |ξ + k|−j

where j ∈ N is dominated by |ξ+ k|−1. Since |ξ+ k|−1 � 〈k〉−1 when |k| ≥ 1 we get

the following

||�α
kΘ(t)g||L1

�

∣∣∣∣∣
∣∣∣∣∣ηαk (〈k〉

α
1−α (ξ + k)

〈k〉
α

1−α |ξ + k|

∣∣∣∣∣
∣∣∣∣∣
1− n

2L

L2

×
∑
|δ|=L

∣∣∣∣∣∣
∣∣∣∣∣∣Dδ

ηαk (〈k〉
α

1−α (ξ + k)) sin
(
t 〈k〉

α
1−α |ξ + k|

)
〈k〉

α
1−α |ξ + k|

∣∣∣∣∣∣
∣∣∣∣∣∣
n
2L

L2

||g||L1

� t
n
2 〈k〉−1+ n

2L 〈k〉−
α

1−α+ nα
2L(1−α) 〈k〉−

n
2L 〈k〉

nα
2(1−α)

− nα
2L(1−α) ||g||L1

= t
n
2 〈k〉−

α
(1−α) 〈k〉

α(n−2)
2(1−α) ||g||L1

= t
n
2 〈k〉

αn−2
2(1−α) ||g||L1 .

Now by Riesz-Thorin Interpolation, proposition 3.2.5, with 1 ≤ p ≤ 2, which

will satisfy the following
1

p
=

1− θ
2

+ θ,

which implies that

θ = 2

(
1

p
− 1

2

)
,

we have the following estimate

||�α
kΘ(t)g||Lp �

(
t
n
2 〈k〉

αn−2
2(1−α)

)θ
(||g||L2)1−θ ||g||Lp

= 〈k〉t
θn
2

(αn−2)θ
2(1−α) ||g||θL2 ||g||L2

� tn(
1
p
− 1

2) 〈k〉
αn−2
1−α ( 1

p
− 1

2) ||g||Lp .

Now by a dual argument we have

||�α
kΘ(t)g||Lp � tn|

1
p
− 1

2 | 〈k〉
αn−2
1−α | 1p− 1

2 | ||g||Lp .

for 1 ≤ p ≤ ∞.
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Now by almost orthogonality it follows that

�α
kΘ(t) =

∑
|l|≤γC,k

�α
k+l�

α
kΘ(t)g,

for some constant γC,k > 0 that depends on C and k. Then by definition of �α
k it

follows

||�α
kΘ(t)g||Lp =

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|l|≤γC,k

�α
k+l�

α
kΘ(t)g

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|l|≤γC,k

�α
k+lΘ(t)�α

kg

∣∣∣∣∣∣
∣∣∣∣∣∣
Lp

� tn|
1
p
− 1

2 | 〈k〉
αn−2
1−α | 1p− 1

2 | ||g||Lp ||�
α
kg||Lp ,

when k 6= 0 and 1 ≤ p ≤ ∞.

Now for k = 0, by Lemma 3.2.8 we have

||�α
0 Θ(t)g||Lp � tn|

1
p
− 1

2 |+1 ||g||Lp ,

or

||�α
kΘ(t)g||Lp � tn|

1
p
− 1

2 |+1 ||g||Lp ,

for small k.
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Now by the definition of the α-modulation space it follows that

||Θ(t)g||Ms,α
p,q (Rn)

=

(∑
k∈Zn
〈k〉

sq
1−α ||�α

kΘ(t)g||qLp(Rn)

) 1
q

�

∑
|k|<N

〈k〉
sq

1−α ||�α
kΘ(t)g||qLp(Rn)

 1
q

+

∑
|k|≥N

〈k〉
sq

1−α ||�α
kΘ(t)g||qLp(Rn)

 1
q

tn|
1
p
− 1

2 |+1

∑
|k|<N

〈k〉
sq

1−α ||�α
kg||

q
Lp(Rn(Rn)

 1
q

+

tn|
1
p
− 1

2 |
∑
|k|≥N

〈k〉
sq

1−α 〈k〉
q(αn−2)

1−α | 1p− 1
2 | ||�α

kg||
q
Lp(Rn)

 1
q

� tn|
1
p
− 1

2 |+1

∑
|k|<N

||�α
kg||

q
Lp(Rn(Rn)

 1
q

+

tn|
1
p
− 1

2 |
∑
|k|≥N

〈k〉
q

1−α(s+(αn−2)| 1p− 1
2 |) ||�α

kg||
q
Lp(Rn(Rn)

 1
q

� tn|
1
p
− 1

2 |+1 ||g||Ms−γ,α
p,q (Rn) + tn|

1
p
− 1

2 | ||g||
M
s+β1(α),α
p,q (Rn)

,

where γ ≥ 0 and β1(α) is defined as

β1(α) = (αn− 2)

∣∣∣∣1p − 1

2

∣∣∣∣ .
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3.6 Proof for the Asymptotic Estimate for the

Fourier Multiplier ΘK(t)

Now we will present the proof for Theorem 3.1.5 but first we need two propositions:

Proposition 3.6.1. (Trulen) For 1 ≤ p, q ≤ ∞, t ≥ 1 and |k| = 0, then we have

the following estimate:

||�α
kΘK(t)g||Lp(Rn) � tn|

1
p
− 1

2 |+1 ||g||Lp(Rn) .

Proof. Suppose |k| = 0. Let L be defined by

L =


n+ 1

2
, if n is odd,

n+ 2

2
, if n is even,

then by Bernsteins Multiplier Theorem, proposition 3.2.2, we have

||�α
0 ΘK(t)g||L1(Rn)

�

∣∣∣∣∣
∣∣∣∣∣ηα0 (ξ)

sin(t(1 + |ξ|2)
1
2 )

(1 + |ξ|2)
1
2

∣∣∣∣∣
∣∣∣∣∣
1− n

2L

L2(Rn)

×
∑
|δ|=L

∣∣∣∣∣
∣∣∣∣∣Dδ

(
ηk0(ξ)

sin(t(1 + |ξ|2)
1
2 )

(1 + |ξ|2)
1
2

)∣∣∣∣∣
∣∣∣∣∣
n
2L

L2(Rn)

||g||L1(Rn) .

For the first norm we have∣∣∣∣∣
∣∣∣∣∣ηα0 (ξ)

sin(t(1 + |ξ|2)
1
2 )

(1 + |ξ|2)
1
2

∣∣∣∣∣
∣∣∣∣∣
1− n

2L

L2(Rn)

=

∣∣∣∣∣
∣∣∣∣∣t ηα0 (ξ)

sin(t(1 + |ξ|2)
1
2 )

t(1 + |ξ|2)
1
2

∣∣∣∣∣
∣∣∣∣∣
1− n

2L

L2(Rn)

� t1−
n
2L .

For the second norm, define h as

h(|ξ|) =
sin((1 + |ξ|2)

1
2 )

(1 + |ξ|2)
1
2

.

By the Taylor expansion of sine we have

h(|ξ|) = 1 +
∞∑
k=1

(−1)k
(1 + |ξ|2)k

(2k + 1)!
,
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and thus h is a C∞ function.

Also, by doing copious amounts of derivatives we have

lim
|ξ|→∞

∣∣Dδh(|ξ|)
∣∣ = 0,

for all multi-indeces δ. Noticing that

th(t|ξ|) =
sin(t(1 + |ξ|2)

1
2 )

(1 + |ξ|2)
1
2

,

then when |δ| = L we have∣∣∣∣∣Dδ

(
sin(t(1 + |ξ|2)

1
2 )

(1 + |ξ|2)
1
2

)∣∣∣∣∣ � tL+1 sup
ξ∈Rn

∣∣Dδh(|ξ|)
∣∣

� tL+1.

Now it follows that

∑
|δ|=L

∣∣∣∣∣
∣∣∣∣∣Dδ

(
ηk0(ξ)

sin(t(1 + |ξ|2)
1
2 )

(1 + |ξ|2)
1
2

)∣∣∣∣∣
∣∣∣∣∣
n
2L

L2(Rn)

�
(
tL+1

) n
2L

= t
n
2 t

n
2L .

Therefore we have

||�α
0 ΘK(t)g||L1(Rn) � t

n
2 t

n
2L t1−

n
2L ||g||L1(Rn)

= t
n+2

2 ||g||L1(Rn) .
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By Plancherel’s Theorem, Theorem 1.2.1, it follows that

||�α
0 ΘK(t)g||L2(Rn) =

∣∣∣∣∣
∣∣∣∣∣F−1

(
ηα0 (ξ)

sin(t(1 + |ξ|2)
1
2 )

(1 + |ξ|2)
1
2

ĝ(ξ)

)∣∣∣∣∣
∣∣∣∣∣
L2(Rn)

=

∣∣∣∣∣
∣∣∣∣∣ηα0 (ξ)

sin(t(1 + |ξ|2)
1
2 )

(1 + |ξ|2)
1
2

ĝ

∣∣∣∣∣
∣∣∣∣∣
L2(Rn)

�

∣∣∣∣∣
∣∣∣∣∣sin(t(1 + |ξ|2)

1
2 )

(1 + |ξ|2)
1
2

ĝ

∣∣∣∣∣
∣∣∣∣∣
L2(Rn)

=

∣∣∣∣∣
∣∣∣∣∣tsin(t(1 + |ξ|2)

1
2 )

t(1 + |ξ|2)
1
2

ĝ

∣∣∣∣∣
∣∣∣∣∣
L2(Rn)

� t ||ĝ||L2(Rn)

= t ||g||L2(Rn) .

Now by Riesz-Thorin Interpolation, Proposition 3.2.5, and a duality argument

it follows that

||�α
kΘK(t)g||Lp(Rn) � tn|

1
p
− 1

2 |+1 ||g||Lp(Rn) .

This ends the proof.

Proposition 3.6.2. (Trulen) For 1 ≤ p, q ≤ ∞, t ≥ 1, and |k| 6= 0, then we have

the following estimate:

||�α
kΘK(t)g||Lp(Rn) � tn|

1
p
− 1

2 | 〈k〉
αn−2
1−α | 1p− 1

2 | ||g||Lp(Rn) .

Proof. Again define L to be

L =


L+ 1

2
, if n is odd,

L+ 2

2
, if n is even.

Then by the usual substitutions and Bernsteins Multiplier Theorem, Proposition
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3.2.2, we have

||�α
kΘK(t)g||L1(Rn) �∣∣∣∣∣

∣∣∣∣∣ ηαk (〈k〉
α

1−α (ξ + k))

(1 + 〈k〉
2α

1−α |ξ + k|2)
1
2

∣∣∣∣∣
∣∣∣∣∣
1− n

2L

L2(Rn)

×
∑
|δ|=L

∣∣∣∣∣
∣∣∣∣∣Dδ η

α
k (〈k〉

α
1−α (ξ + k)) sin(t(1 + 〈k〉

2α
1−α |ξ + k|2)

1
2 )

(1 + 〈k〉
2α

1−α |ξ + k|2)
1
2

∣∣∣∣∣
∣∣∣∣∣
n
2L

L2(Rn)

× ||g||L1(Rn) .

For the first norm, noting that for large enough k we have (〈k〉−
2α

1−α +|ξ+k|2)−
1
2 �

〈k〉−1 it follows that∣∣∣∣∣
∣∣∣∣∣ ηαk (〈k〉

α
1−α (ξ + k))

(1 + 〈k〉
2α

1−α |ξ + k|2)
1
2

∣∣∣∣∣
∣∣∣∣∣
1− n

2L

L2(Rn)

= 〈k〉−
α

1−α+ n
2L

∣∣∣∣∣
∣∣∣∣∣ ηαk (〈k〉

α
1−α (ξ + k))

(〈k〉−
2α

1−α + |ξ + k|2)
1
2

∣∣∣∣∣
∣∣∣∣∣
1− n

2L

L2(Rn)

� 〈k〉−
α

1−α+ n
2L 〈k〉−1+ n

2L .

For the second norm, Dδ sin(t(1 + 〈k〉
2α

1−α |ξ + k|2)
1
2 ) produces tL and 〈k〉

Lα
1−α

factors when |δ| = L. Also, after taking multiple derivatives we have the remaining

factors of the form (1 + 〈k〉
2α

1−α |ξ + k|2)−
j
2 for some positive integer j which again

for large enough k we have

(1 + 〈k〉
2α

1−α |ξ + k|2)−
j
2 � 〈k〉−

jα
1−α

(
〈k〉−

2α
1−α + |ξ + k|2

)− j
2

� 〈k〉−
α

1−α 〈k〉−1 .

Thus we have

∑
|δ|=L

∣∣∣∣∣
∣∣∣∣∣Dδ η

α
k (〈k〉

α
1−α (ξ + k)) sin(t(1 + 〈k〉

2α
1−α |ξ + k|2)

1
2 )

(1 + 〈k〉
2α

1−α |ξ + k|2)
1
2

∣∣∣∣∣
∣∣∣∣∣
n
2L

L2(Rn)

||g||L1(Rn)

� t
n
2 〈k〉

nα
2(1−α) 〈k〉−

nα
2L(1−α) 〈k〉−

n
2L ||g||L1(Rn) .
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Then it follows that

||�α
kΘK(t)g||L1(Rn)

� t
n
2 〈k〉−

α
1−α+ n

2L 〈k〉−1+ n
2L 〈k〉

nα
2(1−α) 〈k〉−

nα
2L(1−α) 〈k〉−

n
2L ||g||L1(Rn)

= t
n
2 〈k〉

αn−2
2(1−α) ||g||L1(Rn) .

Using Plancherel’s Theorem, Theorem 1.2.1, we have

||�α
kΘK(t)g||L2(Rn) =

∣∣∣∣∣
∣∣∣∣∣ηαk (ξ)

sin(t(1 + |ξ|2)
1
2 )

(1 + |ξ|2)
1
2

ĝ

∣∣∣∣∣
∣∣∣∣∣
L2(Rn)

� ||ĝ||L2(Rn)

= ||g||L2(Rn) .

By Riesz-Thorin and a duality argument it follows that for 1 ≤ p ≤ ∞

||�α
kΘK(t)g||Lp(Rn) � tn|

1
p
− 1

2 | 〈k〉
αn−2
1−α | 1p− 1

2 | ||g||Lp(Rn) ,

and this finishes the proof.

To obtain Theorem 3.1.5 we need a simple almost orthogonality argument and

the definition of α-modulation space M s,α
p,q (Rn).

Proof. By almost orthogonality we have

�α
kΘK(t)g =

∑
|l|≤γC,k

�α
k+l�

α
kΘK(t)g

=
∑
|l|≤γC,k

�α
k+lΘK(t)�α

kg.

Then by the Proposition 3.6.1 and when k = 0 we have

||�α
kΘK(t)g||Lp(Rn) � tn|

1
p
− 1

2 |+1 ||�α
kg||Lp(Rn) ,

and by the Proposition 3.6.2 and when k 6= 0 we have

||�α
kΘK(t)g||Lp(Rn) � tn|

1
p
− 1

2 | 〈k〉
αn−2
1−α | 1p− 1

2 | ||�α
kg||Lp(Rn) .
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By definition of the α-modulation norm we have

||ΘK(t)g||Ms,α
p,q (Rn) =

(∑
k∈Zn
〈k〉

sq
1−α ||�α

kΘK(t)g||qLp(Rn)

) 1
q

�

∑
|k|<N

〈k〉
sq

1−α ||�α
kΘK(t)g||qLp(Rn)

 1
q

+

∑
|k|≥N

〈k〉
sq

1−α ||�α
kΘK(t)g||qLp(Rn)

 1
q

� tn|
1
p
− 1

2 |+1

∑
|k|<N

〈k〉
sq

1−α ||�α
kg||

q
Lp(Rn)

 1
q

+

tn|
1
p
− 1

2 |
∑
|k|≥N

〈k〉
sq

1−α+
q(nα−2)

1−α | 1p− 1
2 | ||�α

kg||
q
Lp(Rn)

 1
q

� tn|
1
p
− 1

2 |+1

∑
|k|<N

||�α
kg||

q
Lp(Rn)

 1
q

+

tn|
1
p
− 1

2 |
∑
|k|≥N

〈k〉
q

1−α(s+(nα−2)| 1p− 1
2 |) ||�α

kg||
q
Lp(Rn)

 1
q

� tn|
1
p
− 1

2 |+1 ||g||Ms−γ,α
p,q (Rn) + tn|

1
p
− 1

2 | ||g||
M
s+β1(α),α
p,q (Rn)

.

This completes the proof.

3.7 Asymptotic Estimates for Homogeneous So-

lutions

Now we will state the asymptotic behavior of the Schrödinger, Airy, wave, and

Klein-Gordon equations. The first statement deals with the Schrödinger equation.

Corollary 3.7.1. (Trulen) Let 1 ≤ p, q ≤ ∞, t ≥ 1, and u(t, x) be the solution
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Cauchy problem for the Schrödinger equation
∂tu = i∆xu, for (t, x) ∈ R+ × Rn,

u(0, x) = f(x), for x ∈ Rn,

then ∣∣∣∣eit|∆|f ∣∣∣∣
Ms,α
p,q (Rn)

� ||f ||Ms,α
p,q (Rn) + tn|

1
p
− 1

2 | ||f ||
M
s+β2(α),α
p,q (Rn)

,

where β2(α) is

β2(α) = 2nα

∣∣∣∣1p − 1

2

∣∣∣∣ .
Proof. The formal solution to this equation is given by

u(t, x) =
1

(2π)n

∫
Rn
eit|ξ|

2

f̂(ξ)eixξ = (e−it∆f)(x).

Then by Theorem 3.1.2, we achieve the desired result.

Corollary 3.7.2. (Trulen) Let 1 ≤ p, q ≤ ∞, t ≥ 1 and u(t, x) be the solution of

Cauchy problem for the wave equation
∂ttu(t, x) = ∆u(t, x), for (t, x) ∈ R+ × Rn,
u(0, x) = f(x), for x ∈ Rn,
∂tu(0, x) = g(x), for x ∈ Rn,

then we have the following estimate:

||u(t, x)||Ms,α
p,q (Rn) � tn|

1
p
− 1

2 | ||f ||
M
s−γ1,α
p,q (Rn)

+ tn|
1
p
− 1

2 | ||f ||
M
s+β(α),α
p,q (Rn)

+

tn|
1
p
− 1

2 |+1 ||g||
M
s−γ2,α
p,q (Rn)

+ tn|
1
p
− 1

2 | ||g||
M
s+β1(α),α
p,q (Rn)

,

where γ1, γ2 ≥ 0, β(α) is defined by equation (3.1), and β1(α) is defined by equation

(3.3).

Proof. The formal solution to the wave equation is given by

u(t, x) = cos(t(−∆))f(x) +
sin(t(−∆))

(−∆)
g(x).

Then from Theorems 3.1.1 and 3.1.4 the result follows.
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Next we state a similar estimate for the Airy equation.

Corollary 3.7.3. (Trulen) Let 1 ≤ p, q ≤ ∞, t ≥ 1 and u(t, x) be the solution to

the Cauchy problem for the Airy equation
∂u

∂t
= |∆x|

3
2u, for (t, x) ∈ R+ × Rn,

u(0, x) = f(x), for x ∈ Rn,

then ∣∣∣∣∣∣(eit|∆| 32 f)(x)
∣∣∣∣∣∣
Ms,α
p,q (Rn)

� ||f ||Ms,α
p,q (Rn) + tn|

1
p
− 1

2 | ||f ||
M
s+β3(α),α
p,q (Rn)

,

where γ ≥ 0 and β3(α) is defined as

β3(α) = n(2α + 1)

∣∣∣∣1p − 1

2

∣∣∣∣ .
Proof. The formal solution to the above equation is given by

u(t, x) =
1

(2π)n

∫
Rn
eit|ξ|

3

f̂(ξ)eixξdξ

= (eit|∆|
3
2 f)(x).

Again, by theorem 3.1.2 we achieve the desired result.

Corollary 3.7.4. (Trulen) Let 1 ≤ p, q ≤ ∞, t ≥ 1, and u(t, x) be the solution to

the Cauchy Problem for the Klein-Gordon Equation
∂ttu(t, x) + u(t, x)−∆u(t, x) = 0, for (t, x) ∈ R+ × Rn,
u(0, x) = f(x), for x ∈ Rn,
∂tu(0, x) = g(x), for x ∈ Rn,

then we have the followings estimate

||u||Ms,α
p,q (Rn) � tn|

1
p
− 1

2 | ||f ||
M
s−γ1,α
p,q (Rn)

+ tn|
1
p
− 1

2 | ||f ||
M
s+β(1,α),α
p,q (Rn)

+ tn|
1
p
− 1

2 |+1 ||g||
M
s−γ2,α
p,q (Rn)

+ tn|
1
p
− 1

2 | ||g||
M
s+β1(α),α
p,q (Rn)

,

where γ1 and γ2 are positive real numbers, β(1, α) and β1(α) are defined by

β(1, α) = n(2α− 1)

∣∣∣∣1p − 1

2

∣∣∣∣ , and β1(α) = (nα− 2)

∣∣∣∣1p − 1

2

∣∣∣∣ .
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Proof. The formal solution to the Klein-Gordon equation is given by

u(t, x) = cos(t(I −∆)
1
2 )f(x) +

sin(t(I −∆)
1
2 )

(I −∆)
g(x).

Then from theorems 3.1.3 and 3.1.5 the result follows.
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Chapter 4

Nonlinear Dispersive Equations

4.1 Solution to the Nonlinear Cauchy Problem

for Dispersive Equations

Han and Wang [18] or Chapter 2 Section 2.3, Proposition 2.3.13, state conditions

on p, q, and s that makes M s,α
p,q a multiplication algebra; i.e. for any f, g ∈M s,α

p,q

||fg||Ms,α
p,q (Rn) � ||f ||Ms,α

p,q (Rn) ||g||Ms,α
p,q (Rn) .

Since Theorems 3.1.1 and 3.1.2 are for values of 1 ≤ p, q ≤ ∞ this changes the

region D1 to

D1 =

{(
1

p
,
1

q

)
∈ R2

+ :
2

p
≤ 1

q
≤ 1

}
,

and D2 changes to

D2 =

{(
1

p
,
1

q

)
∈ R2

+\D1 :
1

p
,
1

q
≤ 1

}
.

See figure 4.1 for the new distribution of s0. This changes the restriction on s0 to

equal

s0 =
nα

p
+ n(1− α)

(
1− 1

q

)
+
nα(1− α)

2− α

(
1

q
− 2

p

)
,

when

(
1

p
,
1

q

)
∈ D1, and

s0 =
nα

p
+ n(1− α)

(
1− 1

q

)
,
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1

q

1

p

(0, 0)

(
1

2
, 1

)

D1

D2

(1, 1)(0, 1)

(1, 0)

Figure 4.1: Distribution of s0 when p ≥ 1 and q ≥ 1.

when

(
1

p
,
1

q

)
∈ D2.

Define the function space C
(
[0, T ],M s,α

p,q

)
by

C
(
[0, T ],M s,α

p,q

)
=
{
u(t, x) : ||u||

C([0,T ],Ms,α
p,q ) <∞

}
,

where ||u||
C([0,T ],Ms,α

p,q ) is defined as

||u||
C([0,T ],Ms,α

p,q ) = sup
0≤t≤T

||u(t, ·)||Ms,α
p,q (Rn) .

Before we can prove our result we need the following lemma obtained from Fan,

Chen, and Sun [5].
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Lemma 4.1.1. ([5]) The following estimate holds:∣∣|u(τ, ·)|2ku(τ, ·)− |v(τ, ·)|2kv(τ, ·)
∣∣

≤
(
|u− v||u(τ, ·)|2k

)
+

{
k−1∑
j=0

|u|j|v|k−j(|u(τ, ·)|k) + |v(τ, ·)|k)

}
.

Now we are able to state our result.

Theorem 4.1.2. (Trulen) For 1 ≤ p, q ≤ ∞, s > s0, and T ≥ 1. Suppose k is a

positive integer and there is positive constant ck dependent only on k such that

||u0||Ms,α
p,q (Rn) ≤

ck

T n|
1
p
− 1

2 |(1+ 1
2k)T

1
2k

.

Suppose
1

2
< αo ≤ 2(1 − α) with αo 6= 1, then the nonlinear Cauchy problem for

dispersive equation{
i∂tu− |∆|

αo
2 u+ F (u) = 0, for (t, x) ∈ R+ × Rn,

u(0, x) = u0(x), for x ∈ Rn,

when F (u) = |u|2ku has a unique solution u ∈ C([0, T ],M s,α
p,q ).

Proof. The Nonlinear Cauchy problem for disperive equation has an equivalent form

u(t, ·) = eit|∆|
αo
2 u0 − i

∫ t

0

ei(t−τ)|∆|
αo
2 F (u(τ, ·))dτ.

Consider the mapping

T u = eit|∆|
αo
2 u0 − i

∫ t

0

ei(t−τ)|∆|
αo
2 F (u(τ, ·))dτ.

Let Cj where j = 1, 2, 3 denote some positive constants that are independent of

all essential variables. By Theorems 3.1.1 and 3.1.2 we have∣∣∣∣∣∣eit|∆|αo2 u0

∣∣∣∣∣∣
Ms,α
p,q (Rn)

≤ C1(1 + t)n|
1
p
− 1

2 | ||u0||Ms,α
p,q (Rn) .

By Proposition 2.3.13 there is a constant A2k+1 > 0 for s > s0 such that∣∣∣∣|u(t, ·)|2k+1
∣∣∣∣
Ms,α
p,q (Rn)

≤ A2k+1 ||u(t, ·)||2k+1
Ms,α
p,q (Rn) .
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Let Mk be defined as

Mk = max {A2k, A2k+1} .

Now for any T ≥ 1 and t ≤ T∣∣∣∣∣∣∣∣∫ t

0

ei(t−τ)|∆|
αo
2 F (u(τ, ·))dτ

∣∣∣∣∣∣∣∣
Ms,α
p,q (Rn)

≤ C1

∫ t

0

(1 + (t− τ))n|
1
p
− 1

2 | ∣∣∣∣|u(τ, ·)|2ku
∣∣∣∣
Ms,α
p,q (Rn)

dτ

≤ C2MkT
n| 1p− 1

2 |+1 sup
0≤t≤T

||u(t, ·)||2k+1
Ms,α
p,q (Rn) .

Thus it follows that

||T u||C([0,T ],Ms,α
p,q ) = sup

0≤t≤T
||T u(t, ·)||Ms,α

p,q (Rn)

� C3T
n| 1p− 1

2 |
(
||u0||Ms,α

p,q (Rn) + T sup
0≤t≤T

||u(t, ·)||2k+1
Ms,α
p,q (Rn)

)
.

Now let L be defined as

L =
1(

2C3T
n| 1p− 1

2 |+1
) 1

2k
(2k + 1)

1
2k

,

and let BL be the closed ball of radius L centered at the origin in the space of

C([0, T ],M s,α
p,q ). Suppose that

||uo||Ms,α
p,q (Rn) ≤

1

(2k + 1)
1
2k (2C3)1+ 1

2kT n|
1
p
− 1

2 |(1+ 1
2k)T

1
2k

.

Thus it follows that

||T u||C([0,T ],Ms,α
p,q ) ≤ C3T

n| 1p− 1
2 |
(
||u0||Ms,α

p,q (Rn) + TL2k+1
)

≤ L,

and so T is a mapping from BL into BL.
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Now it follows that

T u−T v

= eit|∆|
αo
2 u0 −

∫ t

0

ei(t−τ)|∆|
αo
2 F (u(τ, ·))dτ

− eit|∆|
αo
2 v0 +

∫ t

0

ei(t−τ)|∆|
αo
2 F (v(τ, ·))dτ

= eit|∆|
αo
2 (u0 − v0)−

∫ t

0

ei(t−τ)|∆|
αo
2
(
|u|2ku− |v|2kv

)
dτ.

With the above and Lemma 4.1.1 we have that

||T u−T v||C([0,T ],Ms,α
p,q )

= sup
0≤t≤T

||T u−T v||Ms,α
p,q

≤ C3T
n| 1p− 1

2 |+1

(
||u0 − v0||Ms,α

p,q (Rn) + sup
0≤t≤T

||u− v||2k+1
Ms,α
p,q (Rn)

)
= C3T

n| 1p− 1
2 |+1 sup

0≤t≤T

(
||u− v||Ms,α

p,q (Rn) + ||u− v||2k+1
Ms,α
p,q (Rn)

)
≤ C3T

n| 1p− 1
2 |+1 sup

0≤t≤T
||u− v||Ms,α

p,q (Rn) (2k + 1)L2k

≤ 1

2
sup

0≤t≤T
||u− v||Ms,α

p,q (Rn)

=
1

2
||u− v||C([0,T ],Ms,α

p,q ) .

This show that T is a contraction map on BL. Thus, by the fixed point theorem

we have a unique solution in BL.

4.2 Solution to the Nonlinear Generalized Half

Klein Gordon Equation

Using the same ideas as in Section 4.1 we have a similar theorem for the generalized

half Klein-Gordon equation.

Theorem 4.2.1. (Trulen) Let 1 ≤ p, q ≤ ∞, s > s0, and T ≥ 1. Suppose k is a
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positive integer and there is positive constant ck dependent only on k such that

||u0||Ms,α
p,q (Rn) ≤

ck

T n|
1
p
− 1

2 |(1+ 1
2k)T

1
2k

.

Suppose 1 ≤ αo ≤ 2(1− α), then the nonlinear generalized half Klein-Gordon equa-

tion {
i∂tu− (I −∆)

αo
2 u+ F (u) = 0, for (t, x) ∈ R+ × Rn,

u(0, x) = u0(x), for x ∈ Rn,

when F (u) = |u|2ku has a unique solution u ∈ C([0, T ],M s,α
p,q ).

Proof. The the nonlinear generalized half Klein-Gordon equation has an equivalent

form

u(t, ·) = eit(I−|∆|)
αo
2 u0 −

∫ t

0

ei(t−τ)(I−∆)
αo
2 F (u(τ, ·))dτ.

Consider the mapping

TKu = eit(I−∆)
αo
2 u0 −

∫ t

0

ei(t−τ)(I−∆)
αo
2 F (u(τ, ·))dτ.

Let Cj where j = 1, 2, 3 denote some positive constants that are independent of

all essential variables. By Theorem 3.1.3 and by the same argument as in Theorem

4.1.2 the result follows.

4.3 Solution to the Nonlinear Wave Equation

Theorem 4.3.1. (Trulen) Let p = 2, 1 ≤ q ≤ ∞, s > sw where sw is defined as

sw =


nα

2
, when p = 2 and q = 1,

n(2q + 2α− αq − 2)

2q
, when p = 2,

T ≥ 2, k be a positive integer, and there is positive constant ck depended only on k

such that

||fu||Ms,α
p,q (Rn) ≤

ck

T
1
k

,

and

||gu||Ms,α
p,q (Rn) ≤

ck

T
1
k

+1
,
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then nonlinear wave equation
∂ttu−∆u+ F (u) = 0, for (t, x) ∈ R+ × Rn,
u(0, x) = fu(x), for x ∈ Rn,
∂tu(0, x) = gu(x), for x ∈ Rn,

where F (u) = |u|2ku has a unique solution u ∈ C([0, T ],M s,α
2,q (Rn).

Proof. Note that M s,α
2,q (Rn) is a multiplication algebra when s > sw.

Then the wave equation has a formal solution of the form

u(t, x) = cos(t(−∆)
1
2 )fu(x) + Θ(t)gu(x)−

∫ t

0

Θ(t− τ)F (u(τ, x))dτ.

Consider the map

Twu(t, x) = cos(t(−∆)
1
2 )fu(x) + Θ(t)gu(x)−

∫ t

0

Θ(t− τ)F (u(τ, x))dτ.

Let Cj where j = 1, 2, 3 denote constants that are independent of all essential

variables. Then it follows from Theorems 3.1.1 and 3.1.4 that∣∣∣∣∣∣cos(t(−∆)
1
2 )fu + Θ(t)gu

∣∣∣∣∣∣
Ms,α

2,q (Rn)

≤ C1

(
||fu||Ms,α

2,q (Rn) + (1 + t) ||gu||Ms,α
2,q (Rn)

)
.

Also, by multiplication algebra property of α-modulation space M s,α
2,q (Rn) we have∣∣∣∣|u(t, ·)|2k+1

∣∣∣∣
Ms,α

2,q (Rn)
≤ A2k+1 ||u(t, ·)||2k+1

Ms,α
2,q (Rn) .

Then it follows that∣∣∣∣∣∣
∣∣∣∣∣∣
∫ T

0

sin
(

(t− τ)(−∆)
1
2

)
−∆)

1
2

F (u(τ, ·))dτ

∣∣∣∣∣∣
∣∣∣∣∣∣
Ms,α

2,q (Rn)

≤ C2

∫ T

0

(1 + (t− τ))
∣∣∣∣|u(τ, ·)|2ku(τ, ·)

∣∣∣∣
Ms,α

2,q (Rn)
dτ

≤ C2MkT
2 ||u(τ, ·)||2k+1

Ms,α
2,q (Rn) ,
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where Mk = max {A2k, A2k+1}. Thus it follows that

||Twu||C([0,T ],Ms,α
2,q (Rn))

= sup
0≤t≤T

||Twu||Ms,α
2,q (Rn)

≤ C3

(
||fu||Ms,α

2,q (Rn) + T ||gu||Ms,α
2,q (Rn) + T 2 sup

0≤t≤T
||u(t, ·)||2k+1

Ms,α
2,q (Rn)

)
.

Now define Lw by

Lw =
1

(2k + 1)
1
2k (3C3)

1
2kT

1
k

,

and let BLw be the closed ball of radius Lw centered at the origin in the space

C([0, T ],M s,α
2,q (Rn).

Now suppose that

||fu||Ms,α
2,q (Rn) ≤

1

(2k + 1)
1
2k (3C3)1+ 1

2kT
1
k

,

and

||gu||Ms,α
2,q (Rn) ≤

1

(2k + 1)
1
2k (3C3)1+ 1

2kT
1
k

+1
.
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Now it follows that

||Twu||C([0,T ],Ms,α
2,q (Rn))

= sup
0≤t≤T

||Twu||Ms,α
2,q (Rn)

≤ C3

(
||fu||Ms,α

2,q (Rn) + T ||gu||Ms,α
2,q (Rn) + T 2 sup

0≤t≤T
||u(t, ·)||2k+1

Ms,α
2,q (Rn)

)
≤ C3

(
1

(2k + 1)
1
2k (3C3)1+ 1

2kT
1
k

+
T

(2k + 1)
1
2k (3C3)1+ 1

2kT
1
k

+1

+T 2

(
1

(2k + 1)
1
2k (3C3)

1
2kT

1
k

)2k+1


= C3

(
2

(2k + 1)
1
2k (3C3)1+ 1

2kT
1
k

+
T 2

(2k + 1)1+ 1
2k (3C3)1+ 1

2kT 2+ 1
k

)
≤ 3C3

(2k + 1)
1
2k (3C3)1+ 1

2kT
1
k

=
1

(2k + 1)
1
2k (3C3)

1
2kT

1
k

,

therefore Tw : Lw → Lw. Furthermore, it follows that

Twu−Twv = cos(t(−∆)
1
2 )(fu − fv) + Θ(t)(gu − gv)

−
∫ t

0

Θ(t− τ)(F (u(τ, ·))− F (u(τ, ·)))dτ.

Again by Lemma 4.1.1 and the fact that we have the hypothesis

||g||Ms,α
2,q (Rn) ≤

1

(2k + 1)
1
2k (3C3)1+ 1

2kT
1
k

+1
,

which implies that

||g||Ms,α
2,q (Rn) ≤ ||f ||Ms,α

2,q (Rn) ,
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it follows that

||Twu−Twv||Ma,α
2,q (Rn)

≤ C3

(
||fu − fv||Ms,α

2,q (Rn) + (1 + t) ||gu − gv||Ms,α
2,q (Rn)

+T 2 sup
0≤t≤T

||u− v||2k+1
Ms,α

2,q (Rn)

)
≤ C3

(
(2 + t) ||fu − fv||Ms,α

2,q (Rn) + T 2 sup
0≤t≤T

||u− v||2k+1
Ms,α

2,q (Rn)

)
≤ C3T

2 sup
0≤t≤T

(
||u− v||Ms,α

2,q (Rn) + ||u− v||2k+1
Ms,α

2,q (Rn)

)
≤ C3T

2 sup
0≤t≤T

||u− v||Ms,α
2,q (Rn) (2k + 1)L2k

w

≤ C3T
2 2k + 1

(2k + 1)(3C3)T 2
sup

0≤t≤T
||u− v||Ms,α

2,q (Rn)

≤ 1

3
sup

0≤t≤T
||u− v||Ms,α

2,q (Rn)

=
1

3
||u− v||.C([0,T ],Ms,α

2,q (Rn)

Thus Tw is a contraction mapp and by the fixed point theorem we have a unique

solution in the space C([0, T ],M s,α
2,q (Rn)).

4.4 Solution to the Nonlinear Klein Gordon Equa-

tion

Using the same idea as in Section 4.3 we have a similar theorem for the Klein Gordon

equation.

Theorem 4.4.1. (Trulen) Let 1 ≤ p, q ≤ ∞, t ≥ 1, α ≤ min

{
1

2
,

2

n

}
, s > s0 where

s0 has been defined early. Suppose k is a positive integer and there exists a constant

ck that is depended on k only such that

||fu||Ms,α
p,q (Rn) ≤

ck

T n|
1
p
− 1

2 |(1+ 1
2k)T

1
2k

,

and

||gu||Ms,α
p,q (Rn) ≤

ck

T n|
1
p
− 1

2 |(1+ 1
2k)T 1+ 1

2k

,
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then the Nonlinear Klein-Gordon equation
∂ttu(t, x) + u(t, x)−∆u(t, x) + F (u(t, x)) = 0, for (t, x) ∈ R+ × Rn,
u(0, x) = fu(x), for x ∈ Rn,
∂tu(0, x) = gu(x), for x ∈ Rn,

where F (u(t, x)) = |u(t, x)|2ku(t, x) has a unique solution u ∈ C([0, T ],M s,α
p,q (Rn)).

Proof. Let Cj where n = 1, 2, 3 are all essential constants that are independent of all

essential variables. The nonlinear Klein-Gordon Equation has the following formal

solution

u(t, x) = cos(t(I −∆)
1
2 )fu(x) + ΘK(t)gu(x)

−
∫ t

0

ΘK(t− τ)F (u(τ, x))dτ.

Thus define the map TKG by

TKGu = cos(t(I −∆)
1
2 )fu(x) + ΘK(t)gu(x)

−
∫ t

0

ΘK(t− τ)F (u(τ, x))dτ.

By the previous theorems and hypothesis we have∣∣∣∣∣∣cos(t(I −∆)
1
2 )fu + ΘK(t)gu

∣∣∣∣∣∣
Ms,α
p,q (Rn)

≤ C1

(
tn|

1
p
− 1

2 | ||fu||Ms,α
p,q (Rn) + tn|

1
p
− 1

2 |(1 + t) ||gu||Ms,α
p,q (Rn)

)
.

Furthermore, we have∣∣∣∣∣∣∣∣∫ t

0

ΘK(t− τ)F (u(τ, x))dτ

∣∣∣∣∣∣∣∣
Ms,α
p,q (Rn)

≤ C2

∫ T

0

(
(1 + (t− τ))n|

1
p
− 1

2 | + (1 + (t− τ))n|
1
p
− 1

2 |+1
) ∣∣∣∣|u|2ku∣∣∣∣

Ms,α
p,q (Rn)

dτ

≤ C2Mk

(
T n|

1
p
− 1

2 |+1 + T n|
1
p
− 1

2 |+2
) ∣∣∣∣|u|2ku∣∣∣∣

Ms,α
p,q (Rn)

≤ C2MkT
n| 1p− 1

2 |+1(1 + T ) sup
0≤t≤T

||u||2k+1
Ms,α
p,q (Rn)

≤ C2M
′
kT

n| 1p− 1
2 |+2 sup

0≤t≤T
||u||2k+1

Ms,α
p,q (Rn) ,
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where M ′
k is defined by

M ′
k = 2 max {A2k, A2k+1} .

Thus we have

||TKGu||C([0,T ],Ms,α
p,q (Rn))

≤ C3T
n| 1p− 1

2 |
(
||fu||Ms,α

p,q (Rn) + T ||gu||Ms,α
p,q (Rn) + T 2 sup

0≤t≤T
||u(t, ·)||2k+1

Ms,α
p,q (Rn)

)
.

Now define LKG by

LKG =
1

(3C3)
1
2k (2k + 1)

1
2k

(
T n|

1
p
− 1

2 |+2
) 1

2k

,

and define BLKG be an open ball centered at the origin in C([0, T ],M s,α
p,q (Rn)) with

radius LKG. Suppose that the following estimates hold

||fu||Ms,α
p,q (Rn) ≤

1

(3C3)1+ 1
2k (2k + 1)

1
2kT n|

1
p
− 1

2 |(1+ 1
2k)T

1
k

,

and

||gu||Ms,α
p,q (Rn) ≤

1

(3C3)1+ 1
2k (2k + 1)

1
2kT n|

1
p
− 1

2 |(1+ 1
2k)T

1
k

+1
.

So it follows that

||TKGu||C([0,T ],Ms,α
p,q (Rn))

≤ C3T
n| 1p− 1

2 |
(
||fu||Ms,α

p,q (Rn) + T ||gu||Ms,α
p,q (Rn) + T 2 sup

0≤t≤T
||u(t, ·)||2k+1

Ms,α
p,q (Rn)

)
≤ C3T

n| 1p− 1
2 | 3

(3C3)1+ 1
2k (2k + 1)

1
2kT n|

1
p
− 1

2 |(1+ 1
2k)T

1
k

=
1

(3C3)
1
2k (2k + 1)

1
2k

(
T n|

1
p
− 1

2 |+2
) 1

2k

.

Therefore, TKG : BLKG → BLKG . Furthermore, we have

TKGu−TKGv = cos(t(I −∆)
1
2 )(fu(x)− fv(x)) + ΘK(t)(gu(x)− gv(x))

−
∫ t

0

ΘK(t− τ)(F (u(τ, x))− F (v(τ, x)))dτ.
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Now using the hypothesis we have

||gu||Ms,α
p,q (Rn) ≤ ||fu||Ms,α

p,q (Rn) ,

we have

||TKGu−TKG||C([0,T ],Ms,α
p,q (Rn))

≤ C3T
n| 1p− 1

2 |
(
||fu − fv||Ms,α

p,q (Rn) + T ||gu − gv||Ms,α
p,q (Rn)

+T 2 sup
0≤t≤T

||u− v||2k+1
Ms,α
p,q (Rn)

)
≤ C3T

n| 1p− 1
2 |
(

(2 + t) ||fu − fv||Ms,α
p,q (Rn) + T 2 sup

0≤t≤T
||u− v||2k+1

Ms,α
p,q (Rn)

)
≤ C3T

n| 1p− 1
2 |+2 sup

0≤t≤T

(
||u− v||Ms,α

p,q (Rn) + ||u− v||2k+1
Ms,α
p,q (Rn)

)
≤ C3T

n| 1p− 1
2 |+2 sup

0≤t≤T
||u− v||Ms,α

p,q (Rn) (2k + 1)L2k
KG

≤ C3T
n| 1p− 1

2 |+2 2k + 1

3c3(2k + 1)T n|
1
p
− 1

2 |+2
sup

0≤t≤T
||u− v||Ms,α

p,q (Rn)

≤ 1

3
sup

0≤t≤T
||u− v||Ms,α

p,q (Rn)

=
1

3
||u− v||C([0,T ],Ms,α

p,q (Rn)) ,

therefore TKG is a contraction map and by the fixed point theorem there exists a

unique solution u ∈ C([0, T ],M s,α
p,q (Rn)).
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