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ABSTRACT

DISTANCE DENSITY ANALYSIS AND

MULTIVARIATE MODE DETECTION

by

Immanuel T. Lampe

The University of Wisconsin-Milwaukee, 2016
Under the supervision of Professor Daniel Gervini

Finding the mode of the distribution for a sample of points is a very interest-

ing task. In one dimensional problems this can easily be done by estimating

the kernel density. Unfortunately this method does not work well in higher

dimensions. This thesis presents a new approach to solve this problem.

A method is presented which �nds the mode by analyzing the distribution

of the distances between each point and the rest of the sample. The idea is

that if the i-th sample point, xi, is in a high-density region, most of these

distances should be small, whereas if xi is an outlier, most of these distances

should be large. By running simulations for di�erent distributions this thesis

shows that the new method works better than the existing ones in higher

dimensions.
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1 Introduction

Given a sample of points in Rp with p ≥ 1, one important problem is to

�nd the mode of the distribution, or more generally, regions of the space

where points tend to accumulate (if there is more than one mode). In one-

dimensional problems one can simply estimate the density function nonpara-

metrically (using for example kernel smoothers), but in high dimensions ker-

nel smoothers tend not to work well. Another problem when p > 3 is that

the data cannot be visualized that easily, therefore it is hard to get a �rst

intuition about the location of the mode.

In this thesis we propose the following way to detect accumulation points

in Rp: Given a sample x1, ..., xn, for each point xi, consider the distances

between that point and the other points in the sample, {||xi − xj|| : i 6= j}.

The idea is that if xi is in a high-density region, most of these distances

should be small, whereas if xi is an outlier, most of these distances should

be large. For all other points the distances should be somewhere in between.

So a kernel-density estimator f̂i of these distances is computable for each xi.

If xi is in a high-density region one would expect the mode of f̂i(t), ti, to be

small, but the peak f̂i(ti) to be large, since most distance values would be

concentrated around ti.
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The goal of this thesis is to explore, by simulation, how well this works

as a mode-detection method. Concretely, for a given sample x1, ..., xn with

density f0(x), we estimate the mode θ = argmaxf0(x) as the point xi with

smallest ti. The existing method consists of �rst obtaining a multivariate

kernel density estimator of f0(x), f̂0(x), and then estimating θ as the point

xi with largest f̂0(xi).

In this thesis we run simulations with a number of distributions, normal and

non-normal (skewed, like Gammas, where the mode is not the mean), and

for di�erent dimensions p ≥ 1 to see which of the two estimators is closer to

the true mode in each case.

The thesis begins with the introduction of the densities used, then it is ex-

plained how the kernel density works and how the optimal bandwidth is

chosen. Next the new method is introduced and the simulation results are

presented. Finally, concluding remarks about the two mode detection meth-

ods are made.
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2 Important Density functions

As discussed in the introduction, the two di�erent mode �nding methods

implemented in this thesis will be tried out for di�erent density functions.

In the following the notation x = (x1, ..., xd)
T is used.

The �rst important density is the d-variate standard normal one:

f(x) = (2π)−d/2 exp

(
−1

2
xTx

)

The normal distribution is radially syymetric around 0. Setting a counter-

point to this, we also consider a fairly skewed distribution: The independent

d-variate gamma distribution with parameters α = 3 and β = 1. The density

is given by

f(x) =

(
1

2

)d d∏
i=1

x2i exp (−xi)

3



The following �gure displays these density functions for the case d = 2.

Figure 1: Standard normal and gamma distribution

Finally, in order to verify how the two di�erent methods work for a d-

dimensional distribution where the marginal densities are not equal, the d-

variate normal distribution with idenpendent but not identically distributed

marginals is used:

f(x) = (2π)−d/2 |Σd|−1/2 exp

(
−1

2
xTΣ−1x

)
,
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where

Σd =


1 + 0 · 5−1

d−1 = 1 0 . . . 0

0 1 + 1 · 5−1
d−1

...
...

. . . 0

0 . . . 0 1 + (d− 1) · 5−1
d−1 = 5



Using this Σd for any �xed dimension d keeps the range of the variances equal

to 4 while the step size(5−1
d−1) is adjusted according to the given dimension.
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3 The Kernel density estimator

This chapter brie�y summarizes how a kernel density estimator is de�ned.

Furthermore the importance of the bandwidth selection will be discussed.

Throughout this chapter we will let X1, ..., Xn denote a d−variate random

sample having (unknown) density f .

We will use the notation Xi = (Xi1, ..., Xid)
T to denote the components of

Xi and a generic vector x ∈ Rd will have the representation x = (x1, ..., xd)
T .

Finally the d× d identity matrix will be denoted by Id.

3.1 The Gaussian kernel

Kernel density estimator is a nonparametric approach to estimating the prob-

ability density of a random variable from a given sampleX1, ..., Xn. The most

general from is

f̂(x;H) = n−1
n∑
i=1

KH(x−Xi),

6



with

KH(x) = |H|−1/2K(H−1/2x).

In this case H is a symmetric positive de�nite d × d matrix. Usually H is

referred to as the Bandwidth matrix and KH as the kernel of the estimator.

There are several kernel choices. One of the most common and the one I

decided to use in my master thesis is the standard d−variate normal density

K(x) = (2π)−d/2 exp

(
−1

2
xTx

)
.

It is often referred to as the Gaussian Kernel. In this thesis H ∈ D is always

assumed, where D is the subclass of diagoal positive de�nite d× d matrices.

Then

f̂(x;H) = n−1

(
d∏
l=1

hl

)−1 n∑
i=1

KH(x−Xi). (1)
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3.2 Bandwidth selection

Formula (1) shows that the choice of the bandwidth has an in�uence on the

kernel density estimator f̂ . To underline the importance of the bandwidth se-

lection, a sample of size 100 from a two-dimensional standard normal variable

was created. Then two kernel density estimates with

H1 =

[
0.41352 0

0 0.41352

]
, H2 =

[
0.22 0

0 0.22

]

were computed. The following �gure compares the true density function with

the resulting kernel densities if H1 and H2 are used.

Figure 2: Importance of bandwidth choice
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Obviously bandwidth selection in�uences the quality of the calculated kernel

densities. It can be stated that the choice H1 produces an estimator closer

to the true density function.

The question motivated by this example iss: what is the optimal bandwidth

choice? Before we are able to answer this, we have to ask ourselves what

optimal bandwidth means.

The main goal of the kernel density estimator f̂ should be to minimize the

distance to the true but unknown density f . Usually (see Wand and Jones

[1995, p.19]) the mean integrated square error (MISE) is chosen as a measure

of closeness between the kernel density and the true density:

MISE(f(x;h)) =

∫
E(f(x;h)− f(x))2dx.

For simplicity the Taylor's formula is used to approximate the MISE. This

is called the asymptotic mean integrated square error (AMISE). If the same

bandwidth is used in every dimension, which means

H =


h2 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 h2

 ,
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Wand and Jones [1995, p.99] showed that the bandwidth which minimizes

the AMISE is given by

hAMISE =

(
dR(K)

µ2(K)2n
∫
{∇2f(x)}2dx

)1/(d+4)

, (2)

where

R(K) =

∫
K(x)2dx,

µ2(K) =

∫
x2iK(x)dx

and

∇2f(x) =
d∑
i=1

d2

dxi2
f(x).

As explained above, we decided to use the multivariate Gaussian-Kernel, for

which it is easy to verify that

µ2(K) = 1.

10



The calculation for R(K) is a little bit more complex:

R(K) =

∫
K(x)2dx =

∫
Rd

(2π)−d exp(−xTx)dx

=

∫
Rd

(2π)−d exp
(
−x21 − ...− x2d

)
dx

= (2π)−d
(∫

R
exp

(
−x21

)
dx1

)d
= (2π)−d

(√
π
)d

= (4π)(−1/2)d.

Then

hAMISE =

(
d(4π)−d/2

n
∫
{∇2f(x)}2dx

)1/(d+4)

. (3)

This expression depends on the underlying density f , so the next task is to

compute
∫
{∇2f(x)}2dx for the di�erent multivariate density functions used

in this thesis:

a) d-dimensional standard normal distribution

and

b) d-dimensional gamma distribution with parameters α = 3 and β = 1.

11



We will start o� with the calculation for case (a).

To recall the density is given by:

f(x) = (2π)−d/2 exp

(
−1

2
xTx

)
, x ∈ Rd

Therefore

d2

dxi2
f(x) =

(
1√
2π

)d
exp

(
−x2i

2

)
(x2i − 1)

d∏
j=1
j 6=i

exp

(−x2j
2

)
.

Furthermore

[
d∑
i=1

d2

dxi2
f(x)

]2
=

d∑
i=1

(
d2

dxi2
f(x)

)2

+
d∑
i=1

d∑
j=1
j 6=i

(
d2

dxi2
f(x)

)(
d2

dxj2
f(x)

)
.

For a �xed i ∈ {1, ..., d},

∫
Rd

(
d2

dxi2
f(x)

)2

dx =

(
1√
2π

)2d ∫
R

exp
(
−x2i

) (
x2i − 1

)2
dxi

[∫
R

exp
(
−x2j

)
dxj

]d−1
=

(
1√
2π

)2d(
3
√
π

4

(√
π
)d−1)

.
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For �xed j, i ∈ {1, . . . , d} with j 6= i,

∫
Rd

(
d2

dxi2
f(x)

)(
d2

dxj2
f(x)

)
dx

=

(
1√
2π

)2d [∫
R

exp

(
−x2i

2

)(
x2i − 1

)
exp

(
−x2i

2

)
dxi

]2 [∫
R

exp
(
−x2j

)
dxj

]d−2
=

(
1√
2π

)2d(√
π

2

)2 (√
π
)(d−2)

.

Both integrals are independent of i and j. Hence

∫
Rd

[
d∑
i=1

d2

dxi2
f

]2
dx = d

∫
Rd

(
d2

dxi2
f

)2

dx

+ d(d− 1)

∫
Rd

(
d2

dxi2
f

)(
d2

dxj2
f

)
dx

=

(
1√
2π

)2d [
d

(
3
√
π

4

)(√
π
)d−1

+ d(d− 1)
π

4

(√
π
)(d−2)]

=
(
2
√
π
)−d

(d/2 + d2/4).

The optimal bandwidth for the standard normal distribution then becomes

hAMISE =

(
d(4π)−d/2∫
{∇2f(x)}2dxn

)1/(d+4)

=

(
d(4π)−d/2

(2
√
π)
−d

(d/2 + d2/4)n

)1/(d+4)

=

(
4

(d+ 2)n

)1/(d+4)

.

13



To conclude, the bandwidth matrix is given by:

HAMISE = {4/(d+ 2)}2/(d+4) · Id · n−2/(d+4) (4)

Now scenario (b) will be analyzed. Here, for x ∈ (0,∞)d,

f(x) =

(
1

βαΓ(α)

)d d∏
i=1

xα−1i exp (−xi/β)

α=3
=
β=1

(
1

13Γ(3)

)d d∏
i=1

x3−1i exp (−xi/1)

=

(
1

2

)d d∏
i=1

x2i exp (−xi).

Accordingly,

d2

dxi2
f(x) =

(
1

2

)d
exp(−xi)(x2i − 4xi + 2)

d∏
j=1
j 6=i

x2j exp (−xj).

With the same argument as before,

∫
(0,∞)d

[
d∑
i=1

d2

dxi2
f(x)

]2
dx = d

∫
(0,∞)d

(
d2

dxi2
f(x)

)2

dx

+ d(d− 1)

∫
(0,∞)d

(
d2

dxi2
f(x)

)(
d2

dxj2
f(x)

)
dx.

14



We therefore have to estimate

∫
(0,∞)d

(
d2

dxi2
f(x)

)2

dx := ~

and

∫
(0,∞)d

(
d2

dxi2
f(x)

)(
d2

dxj2
f(x)

)
dx := ~~ .

Applying basic integration laws gives

~ =

(
1

2

)2d ∫ ∞
0

exp(−2xi)(x
2
i − 4xi + 2)2dxi

(∫ ∞
0

x4j exp (−2xj)dxj

)d−1
=

(
1

2

)2d
3

4

(
3

4

)d−1
=

(
1

2

)2d(
3

4

)d

and

~~ =

(
1

2

)2d(∫ ∞
0

exp(−2xi)
(
x2i − 4xi + 2

)
x2i dxi

)2(∫ ∞
0

x4j exp (−2xj) dxj

)d−2
=

(
1

2

)2d(−1

4

)2(
3

4

)d−2
.
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Then

∫ ∞
0

[
d∑
i=1

d2

dxi2
f(x)

]2
dx = d

(
1

2

)2d(
3

4

)d
+ d(d− 1)

(
1

2

)2d(−1

4

)2(
3

4

)d−2
=

(
1

2

)2d(
3

4

)d−2
d

((
3

4

)2

+ (d− 1)
1

16

)

=
1

16

(
1

2

)2d(
3

4

)d−2
d (9 + (d− 1))

=
1

16

(
1

2

)2d(
3

4

)d−2 (
8d+ d2

)
.

Finally the optimal bandwidth for the kernel density estimator if a gamma

distribution with α = 3 and β = 1 is used can be found by combining the

result from above and (3).

If the density of a d-dimensional variable is not the same in each dimension,

certainly at least the diagonal elements of the bandwidth matrix should di�er

from one to another.

In a similar way (4) was derived, it can be shown that for the d-variate

normal distribution with mean µ and covariance matrix Σ the bandwidth

matrix which minimizes the AMISE is

HAMISE = {4/(d+ 2)}2/(d+4)Σn−2/(d+4). (5)

16



It can easily be veri�ed that this formula is the more general case of (4).

Furthermore in this thesis the interest is always on d-dimensonal variables

whose components are indepedent of each other. Hence

Σ =


σ2
1 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 σ2
d

 .

The resulting HAMISE is a diagonal matrix and (1) can still be applied for

the implementation.
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4 Implementation

This chapter explains the basic ideas of the programs implemented in this

thesis. The Matlab code of these programs can be found in the Appendix.

The �rst two functions use the kernel density of the sample as the mode

�nding method, while the last one uses the new approach.

For the �rst function it is assumed that a sample of size n is generated from

a d-variate normal distribution with covariance matrix Σ:

Algorithm 1 mode �nding using kd for normal distributed sample

1: procedure kd1(A,Σ)

2: Step 1: Calculate optimal bandwidth according to (5)
3: Step 2: Estimate kernel density for sample points using (1)
4: Step 3: Find maximum value of kernel density

5: Step 4: Find maximizing sample point c
6: Step 5: Return c

In step two the kernel density estimator is only computed at the given sample

points. The actual maximum could be computed but it would be more time

consuming. Also, for comparision with the new method, we want to identify

the model sample point, so we do not look at points outside the sample.

18



For the second function it is assumed that a sample of size n is generated

from a d-variate gamma distribution with parameters α = 3 and β = 1. The

only part that changes compared to the �rst function is the selection of the

bandwidth:

Algorithm 2 mode �nding using kd for gamma distributed sample

1: procedure kd2(A)
2: Step 1: Calculate optimal bandwidth according to (3)
3: Step 2: Estimate kernel density for sample points using (1)
4: Step 3: Find maximum value of kernel density

5: Step 4: Find maximizing sample point c
6: Step 5: Return c

The next function is the one which uses the new approach.

The input of the next function is any sample of size n, (X1, ..., Xn), which

means that it works independently of the underlying density. As pointed out

in the introduction, the main idea behind the new approach is to compute a

kernel density estimator for each sample point Xi, representing the density

function of the distances to the other sample points. Then the maximum

of each of those kernel densities is calculated. Finally, the mode is approxi-

mated by the sample point which has its kernel density peak furthest to the

left. If this criteria does not lead to a unique choice, the sample point with

the highest peak out of those candidates is chosen.

19



The pseudo code which would implement those ideas is given by:

Algorithm 3 mode �nding using distance density estimator

1: procedure dda(x)
2: Step 1: for i = 1 : n do

3: Calculate euclidean distances ||Xi −Xj ||2 for any j 6= i
4: Step 2: for i = 1 : n do

5: �nd max and min of ||Xi −Xj ||2
6: Step 3: �nd total max(t+) and min(t−) of distances

7: Step 4: create vector t of 100 evenly spaced points between t− and t+
8: Step 5: for i = 1 : n do

9: calculate distances as in step 1

10: �t kernel density to those distances and t

11: Step 6: Find maximum of each kernel density

12: Step 7: Find sample point with maximum furthest to the left

13: Step 7: If more than one candidate, choose the one with highest peak

14: Step 8: Return sample point

20



5 Simulation Results

In this chapter we present the results of the di�erent simulations, carried out

in Matlab.

The simulated models were the following: For the three distributions men-

tioned in the �rst sections, we use the dimension parameter d ∈ {2, 5, 10, 20, 40, 80}.

For each of those dimensions, the sample sizes used were n ∈ {10, 50, 100, 300}.

Finally, for any �xed d and n, 500 simulations were performed.

To estimate the error of the two mode detection methods the Euclidean dis-

tance between the estimated and the true mode was used. The results were

summarized by boxplots,where the new method was labeled as Method 1 and

the old method was labeled as Method 2. Furthermore the di�erent scenarios

represent the di�erent sample sizes, where the labels {1, 2, 3, 4} correspond

to {10, 50, 100, 300}.

The computation time of the two methodsis also compared at the end.
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5.1 Normal distribution

This section summarizes the results for the simulations for the normal dis-

tribution is used. First the standard normal distribution will be analyzed.

The following �gure compares the results for d = 2, d = 5, d = 10 and d = 20:

(a) mode detection for d=2 (b) mode detection for d=5

(c) mode detection for d=10 (d) mode detection for d=20

Figure 3: Simulation results standard normal distribution(i)
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First of all it can be veri�ed that a higher dimension leads to a higher esti-

mation error for both methods. Furthermore there is only one case in which

the old method works better. This is the scnerario where d = 2 and n = 10.

Both methods show an improvement for increasing n. It can be recognized

that the new method improves quicker in any dimension. The rate of im-

provement of the old method is in�uenced by the dimension. With increasing

dimensions (d = 10, d = 20) the improvement �attens. In contrast to this,

the rate of improvement of the new mode estimation method is independent

of the dimension.
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The results for d = 40 are fairly similar to the interpretations already men-

tioned, therefore it will just be referred to the �gure in the Appendix. The

following graphic displays the results for d = 80:

(a) mode detection for d=80

Figure 4: Simulation results standard normal distribution(ii)

This �gure is very interesting, because it shows that in a high dimension the

old approach does not work well at all anymore. For increasing n there is

no improvement in estimation error. In contrast, the new method leads to a

smaller mean error and variation of the error if a larger sample size is used.
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The next simulations use the normal distribution with di�erent variances in

each dimension. The following �gure shows the summarizing boxplots for

d = 5 and d = 20:

(a) mode detection for d=5 (b) mode detection for d=20

Figure 5: Simulation results normal distribution(i)

We see that the error patterns are very similar to those observed in the

standard normal case. Those results holf for the other dimensions (see Ap-

pendix).

Appart from that, the main di�erence is that compared to the standard nor-

mal case the error is higher in any dimension, independently of the method

chosen. For example, if d = 5 and n = 10, the mean error for the old method

was approximately 1.5 for the standard normal distribution and approxi-

mately 2.5 now. For the new method the values are 1.4 and 2.4 respectively.
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As before for d = 80 the old method does not work well at all:

(a) mode detection for d=80

Figure 6: Simulation results normal distribution(ii)
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5.2 Gamma distribution

This section summarizes the results of the two mode detection method using

a skewed distribution, the gamma distribution with parameters α = 3 and

β = 1. The following boxplots show the results for d ∈ {2, 5, 10, 20}:

(a) mode detection for d=2 (b) mode detection for d=5

(c) mode detection for d=10 (d) mode detection for d=20

Figure 7: Simulation results gamma distribution(i)
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First of all, it can be observed that for the low dimensions (d ∈ {2, 5}) the old

approach shows better results. Next to that it is very interesting to see that

an increasing number of observations still leads to a better performance of

both methods, but there is a signi�cant di�erence in this development. While

for the normal distribution the new method showed some large improvement

for increasing n, this is now not the case anymore. The improvement is a

lot more �at. For example if the case d = 5 is analyzed, the mean error

decreases from 2.5 (n = 10) to 2 (n = 50), this is a change of 20%. For

the standard normal distribution it decreased from 1.4 to 1. This decrease is

equal to 35%. The same observation can be made for any other dimension.

As in the normal case the rate of decrease �attens for d > 5 if the old method

is used. Now the cases d = 40 and d = 80 are analyzed:

(a) mode detection for d=40 (b) mode detection for d=80

Figure 8: Simulation results gamma distribution(ii)
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It can be recognized that for d = 80, the old approach does not show any

improvement if the sample size is increased, whereas using the new approach

there still is an improvement. But as for the lower dimension scenarios, a

higher number of observations does not in�uence the performance of the new

method in the same way as for the normal distribution.

To summarize there is de�nitely a di�erence in the performance of the two

methods. Especially if the sample size and the dimension increase the new

approach shows better results for all distributions although less remarkable

for the skewed density.
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5.3 Computational time

The following plots show the computational times for d ∈ {10, 80}.

(a) Computation time for d=10 (b) Computation time for d=80

Figure 9: Computational times

First of all it is observable that both methods work e�ciently. Even in the

most advanced type of calculation (d = 80, n = 300), the computational time

is less than 3 seconds for the new approach and less than 0.25 seconds for

the old approach. Furthermore it can be seen that the new approach needs

more calculation time. The reason is that a kernel density is performed

for each sample point separately. This explains why an increasing number of

observations has a larger impact on the computational time than the increase

of dimension from d = 10 to d = 80.
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6 Summary

In this thesis a new mode �nding method was proposed. In contrast to the

existing method, the new function does not �nd the mode by calculating the

kernel density of a given sample. Instead, the distances between the sample

points are used.

There were two main expectations on this new method: accuracy and time

e�ectiveness. Both of those aspects were analyzed in the previous chapters.

Simulation results for the gamma distribution with parameters α = 3 and

β = 1 and the normal distribution were presented.

For the standard normal distribution the new method showed a noticeable

accuracy increase for larger sample sizes independently of the dimension. For

higher dimensions (d > 5) this is not true for the old method. The reason for

those results is that a kernel density does not approximate a density nicely

in high dimensions anymore, therefore the calculated maximum of the kernel

density does not have to be close to the true maximum of the density func-

tion.

For the normal distribution with di�erent variances in each dimension, the

same results are observable. For the normal distribution it can be concluded

that the new method de�nitely outperforms the old one.
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Then the gamma distribution was analyzed. The new approach still works

better than the old one in dimensions larger than 5. But there is an important

di�erence. While for the normal densities the accuracy of the new function

increased quickly with an increasing sample size, now this trend decelerates.

One possible reason is that the written program (dda.m) uses the Matlab

function ksdensity to estimate the kernel density of the distances between

the sample points. ksdensity does not use cross-validation or any other ef-

�cient bandwidth selection methods, instead it uses the optimal bandwidth

for normal densities, and the distances between sample points are not dis-

tributed normally. This problem may be worse for the gamma data than for

the normal data.

Resulting from this observation, one improvement for the function dda.m

would be not to use ksdensity. Instead a kernel density approach which

calculates the bandwidth without assuming any density should be included

in the program.

Next to the accuracy, the simulations done make a statement about the time

e�ectiveness possible. Even though the old approach uses less computation

time the new one still works very fast. Even with d = 80 and n = 300 the

computation time is less than three seconds.
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Summarizing this thesis, it can be stated that a new mode �nding method was

successfully created and implemented. Even when compared to the optimal-

bandwidth kernel density estimator, the new method was superior. Specially

if the number of dimension is high (d > 5) the new method outperforms the

old one. It should still be recognized that there is room for improvement, as

noted before in the density estimation method used by the new approach,

especially in the bandwidth choice.
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Appendices

A Matlab Functions

A.1 kd1.m

function [c,f,t] = kd1(A,Sigma)

% Kernel Density Estimator 1

%

% Input

% A (n x d) Data vectors

& Sigma (d * d) Covariane Matrix

% Output

% c (d x 1) Estimated mode

% f (n x 100) kernel densities (evaluated on t)

% t (1 x 100) Grid of points where f is evaluated

(here points are sample points)

[n,d] = size(A);

% Estimation of optimal bandwidth

D = transpose(sqrt((diag((4/(d+2)) ^(2/(d+4)) * Sigma * n^(-2/(d+4))))));

t = A;

f = zeros(1,n);

for i = 1:n

C = bsxfun(@minus,A,t(i,:));

L = bsxfun(@rdivide,C,D);

f(i) = sum(exp(-1/2*sum((L.^2),2)));

end

f = f./(n*prod(D)) * (1/sqrt(2*pi))^d

[M,I] = max(f);

c = t(I,:)
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A.2 kd2.m

function [c,f,t] = kd2(A)

% Kernel Density Estimator 2

%

% Input

% A (n x d) Data vectors

% Output

% c (d x 1) Estimated mode

% f (n x 100) kernel densities (evaluated on t)

% t (1 x 100) Grid of points where f is evaluated

(here points are sample points)

[n,d] = size(A);

% Estimation of optimal bandwidth

temp = (1/16) * (1/2)^(2*d) * (3/4)^(d-2) * (8*d+d^2)

h = ((d * (4*pi)^(-d/2))/(n * temp))^(1/(d+4))

t = A;

f = zeros(1,n);

for i = 1:n

C = bsxfun(@minus,A,t(i,:));

L = C / h;

f(i) = sum(exp(-1/2*sum((L.^2),2)));

end

f = f/(n*h^d) * (1/sqrt(2*pi))^d;

[M,I] = max(f);

c = t(I,:)
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A.3 dda.m

function [c,f,t] = dda(x)

% Distance Density Analysis

%

% Input

% x (n x d) Data vectors

% Output

% c (d x 1) Estimated mode

% f (n x 100) Distance densities (evaluated on t)

% t (1 x 100) Grid of equispace points where f is evaluated

(endpoints are min and max of sample interdistances)

n = size(x,1);

mini = zeros(n,1);

maxi = zeros(n,1);

for i = 1:n

di = sum((x(1:n~=i,:)-ones(n-1,1)*x(i,:)).^2,2);

mini(i) = min(di);

maxi(i) = max(di);

end

a = min(mini);

b = max(maxi);

t = linspace(a,b,100);

f = zeros(n,100);

for i = 1:n

di = sum((x(1:n~=i,:)-ones(n-1,1)*x(i,:)).^2,2);

f(i,:) = ksdensity(di,t);

end

[C,rowmaxarray]=max(transpose(f));

mini = min(rowmaxarray);

index = rowmaxarray(1,:)==mini;

q = find(index);

[o,p]=max(C(q)); % if more than one find highest peak

c = x(q(p),:);
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B Boxplots

B.1 Standard Normal distribution

d = 2

d = 5
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d = 10

d = 20
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d = 40

d = 80

40



B.2 Normal distribution

d = 2

d = 5
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d = 10

d = 20
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d = 40

d = 80
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B.3 Gamma distribution

d = 2

d = 5
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d = 10

d = 20
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d = 40

d = 80
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