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ABSTRACT

ROBUST AND COMPUTATIONALLY EFFICIENT METHODS FOR FITTING
LOSS MODELS AND PRICING INSURANCE RISKS

by

Qian Zhao

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Vytaras Brazauskas and Professor Jugal Ghorai

Robustness and efficiency of estimators are two critical factors for any parametric model.

The former is concerned with the model risk and stability and the latter is used to assess

the predictive power and model accuracy. It is well known that, under certain regular-

ity conditions, the maximum likelihood estimator (MLE) is the most efficient method

for estimating unknown parameters, but it generally lacks robustness and is sensitive to

outliers. To balance the robustness and efficiency, Brazauskas et al. (2009) introduced

a new general approach that is based on the L-statistics, Method of Trimmed Moments

(MTM), and demonstrated its effectiveness in actuarial analysis. A primary objective of

this dissertation is to improve the MTM approach by replacing data trimming with data

Winsorizing, which we call the Method of Winsorized Moments (MWM), and to compare

the performance of these two approaches in different actuarial models. For applications,

we specifically consider log-location-scale families because they are frequently used for

measuring and pricing insurance risks, modeling income inequality in economics, and

in many other areas of application involving positive random variables. Specifically, we

focus on Pareto, log-logistic and log-Laplace distributions, and present robust and com-

putationally efficient methods for estimation of their parameters based on the MTM and

MWM approaches, respectively. Large-sample properties of the new MWM estimators

are established, and their small-sample performances are investigated through simula-

tions and compared to those of the MTM and MLE. Also, the effect of model choice

and parameter estimation method on risk pricing are illustrated using actual data that

represent hurricane damages in the United States from 1925 to 1995. In particular, the
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estimated pure premiums for an insurance contract are computed when the log-logistic,

log-Laplace, and lognormal models are fitted to the data using the MTM, MWM and

MLE methods.
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1 Introduction

1.1 Motivation

Financial risk management relies on models for asset prices, exchange rates and other

market variables. Insurance industry relies on models for loss variables, payments, re-

serves and so on. In practice, however, all models are inevitably dependent on simplifying

assumptions, imperfect parameter estimates and other inputs, thus creating model risk.

Model risk can be defined as the risk that a financial institution or other organization

incurs losses because its models are misspecified or because some of the assumptions un-

derlying these models are not met in practice (see McNeil et al., 2005). Take loss severity

distribution, for instance, we might work with a lognormal distribution to model losses

whereas the true underlying distribution is heavy-tailed.

1.2 Literature Review

In the financial literature, the concept of model risk has been studied by Cont (2006).

In economics, Hansen and Sargent (2008) are the leading developers of robust macroeco-

nomic models. In actuarial science, estimators’ robustness has been studied by Brazauskas

and Serfling (2000, 2003), Marceau and Rioux (2001), Serfling (2002), Kaiser and Brazauskas

(2006), Dornheim and Brazauskas (2007), and others.

To reduce the model risk and improve the stability of parameter estimates, Huber

(1964) and Hampel (1971) introduced the concept of estimator’s robustness. Robust

statistics, loosely speaking, is concerned with the fact that many assumptions commonly

made in statistics are at most approximations to reality. Robust statistical methods

have been developed for many common problems, such as estimating location, scale and

regression parameters. Primary motivation is to produce statistical methods that are

not unduly affected by outliers. Another motivation is to provide methods with good

performance when there are small departures from parametric distributions (for details,

see, Maronna et al., 2005).

In actuarial science, insurance risks usually follow highly skewed and heavy tailed
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distributions that are supposed to generate outliers (i.e., extremely large observations).

However, not all large observations are outliers and not all outliers are large. Therefore,

in this context robust statistical methods play a crucial role as they provide tools for

quantifying influence of each data point on an estimator.

Huber (1964) was the first author to study robustness formally, although many ad-

hoc robust procedures existed for centuries. Huber’s idea was to robustify the likelihood

function of the model, which had led to the introduction of a class of M -estimators.

Further, Hampel (1968, 1971, 1974) introduced the infinitesimal approach to robustness

based on influence functions, which also contained an important global robustness aspect,

namely the breakdown point. All the main findings and the theory and techniques of

robust statistics are summarized in Hampel et al. (1986), Maronna et al. (2006), and

Huber et al. (2009).

For pricing insurance risks, a more natural and computationally efficient approach

is based on L-statistics and is called the Method of Trimmed Moments (MTM). It was

introduced by Brazauskas et al. (2009) who developed its large-and small-sample proper-

ties and demonstrated its effectiveness in actuarial analysis (see also Brazauskas, 2009).

A primary objective of this dissertation is to improve the MTM approach by replacing

data trimming with data Winsorizing, which we call the Method of Winsorized Moments

(MWM), and compare the performance of these two approaches under different paramet-

ric models.

1.3 Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, we present the MTM

idea, along with the asymptotic properties of the MTM estimators. Examples of estima-

tors for location-scale families and several loss models–exponential, logistic and Laplace

are provided in details. In Chapter 3, we introduce and develop the MWM approach by

replacing data trimming with data Winsorizing, and then derive the explicit formulas of

parameter estimators and observe the trade-off between robustness and efficiency with

the same loss models. In the simulation study of Chapter 4, we compare the finite-sample
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performance of MTM and MWM estimators with those of the MLEs and demonstrate

how large the sample size should be for the estimators to achieve asymptotic unbiased-

ness. In Chapter 5, the effect of model choice and parameter estimation method on risk

pricing is illustrated using actual data that represent hurricane damages in the United

States from 1925 to 1995. In particular, the estimated pure premiums for an insurance

contract are computed when the log-logistic, log-Laplace, and lognormal models are fit-

ted to the data using the MTM, MWM and MLE methods. Finally, in Chapter 6, the

conclusions are drawn and future research is discussed.
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2 Method of Trimmed Moments

In this chapter we describe the MTM idea, along with the asymptotic properties of

the obtained estimators, and conclude with some examples of MTM estimators for loss

models. Throughout the chapter, we closely follow the MTM description presented by

Brazauskas et al. (2009).

2.1 Definition

Let X1, . . . , Xn be i.i.d. random variables with common parametric distribution F . Sup-

pose there are k unknown parameters θ1, . . . , θk. Denote the order statistics of X1, . . . , Xn

by X1:n ≤ · · · ≤ Xn:n. The MTM estimators of θ1, . . . , θk are derived in three steps:

• Compute the sample trimmed moments

T̂j =
1

n−mn(j)−m∗n(j)

n−m∗n(j)∑
i=mn(j)+1

hj(Xi:n), 1 ≤ j ≤ k, (2.1)

where hj are specially chosen functions and mn(j) and m∗n(j) are integers 0 ≤

mn(j) < n−m∗n(j) ≤ n such that mn(j)/n→ aj and m∗n(j)/n→ bj when n→∞,

where the proportions aj and bj are chosen by the researcher.

• Derive the corresponding population trimmed moments

Tj =
1

1− aj − bj

∫ 1−bj

aj

hj(F
−1(u))du, 1 ≤ j ≤ k, (2.2)

where F−1(u) = inf {x ∈ R : u ≤ F (x)} is the quantile function. (Note that when

aj = bj = 0, then Tj = E[hj(X)].)

• Match the population and sample trimmed moments and solve the system of equa-

tions 
T1(θ1, . . . , θk) = T̂1

...
...

Tk(θ1, . . . , θk) = T̂k

(2.3)
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with respect to θ1, . . . , θk. The solutions, which we denote by θ̂j = gj(T̂1, . . . , T̂k), 1 ≤

j ≤ k, are, by definition, the MTM estimators of θ1, . . . , θk. Note that the functions

gj are such that θj = gj(T1, . . . , Tk).

2.2 Asymptotic Properties

The sample trimmed moments in equation (2.1) can be viewed as special cases of trimmed

L-statistics, whose joint asymptotic normality is established by Brazauskas et al. (2007).

It follows from the latter work that the k-variate vector
(√

n(T̂1− T1), . . . ,
√
n(T̂k − Tk)

)
converges in distribution to the k-variate normal random vector with the mean 0 =

(0, . . . , 0) and the covariance-variance matrix Σ :=[σ2
ij]
k
i,j=1 with the entries

σ2
ij =

1

(1− ai − bi)(1− aj − bj)

∫ 1−bi

ai

∫ 1−bj

aj

(min{u, v} − uv) dhj(F
−1(v))dhi(F

−1(u)).

(2.4)

Following Serfling (1980, p. 20), this asymptotic normality statement can be written as

(T̂1, . . . , T̂k) ∼ AN
(
(T1, . . . , Tk), n

−1Σ
)
. (2.5)

By delta method (see, e.g., Serfling, 1980, Section 3.3), the MTM estimator (θ̂1, . . . , θ̂k)

is asymptotically normal with the mean (θ1, . . . , θk) and the covariance-variance matrix

n−1DΣD′, where D:=[dij]
k
i,j=1 is the Jacobian of the transformations g1, . . . , gk evaluated

at (T1, . . . , Tk), that is, dij = ∂gi/∂T̂j
∣∣
(T1,...,Tk)

. In summary, we have that

(θ̂1, . . . , θ̂k) ∼ AN
(
(θ1, . . . , θk), n

−1DΣD′
)
. (2.6)

Statement (2.6) can be used for testing hypotheses, constructing confidence intervals or

sets.

2.3 Examples

In this section, we analyze the robustness and efficiency for general (i.e., not necessarily

symmetric) location-scale family, and take exponential, logistic and Laplace distributions
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as three examples to illustrate. Specifically, we present how to find MTM estimators

and obtain the entries of the asymptotic covariance-variance matrix for one- and two-

parameter distributions. Later, we evaluate the asymptotic relative efficiency (ARE)

ARE(MTM, MLE) =
asymptotic variance of MLE estimator

asymptotic variance of an MTM estimator

of the MTM estimators with respect to the MLE. In the multi-parameter case, the ARE is

defined by replacing the two variances with the corresponding generalized variances, which

are the determinants of the asymptotic covariance-variance matrices of vector estimators,

and then raising the ratio to the power 1/k. For details on these issues, we refer, for

example, to Serfling (1980, Section 4.1).

2.3.1 Location-Scale Families

Let X1, . . . , Xn be i.i.d. random variables, each with the common distribution

Location-scale: F (x) = F0

(
x− µ
σ

)
, −∞ < x <∞, (2.7)

where location −∞ < µ < ∞ and scale σ > 0 are unknown parameters, and F0 is

the standard (i.e., with µ=0 and σ=1) parameter-free version of F . The corresponding

quantile function is F−1(t) = µ + σF−1
0 (t). Since F has two unknown parameters, we

employ two trimmed moments. Choosing h1(t) = t and h2(t) = t2, then following the

procedure of Section 2.1, we have

T̂1 =
1

n−mn(1)−m∗n(1)

n−m∗n(1)∑
i=mn(1)+1

Xi:n,

T̂2 =
1

n−mn(2)−m∗n(2)

n−m∗n(2)∑
i=mn(2)+1

X2
i:n

with mn(1)/n = mn(2)/n→ a and m∗n(1)/n = m∗n(2)/n→ b.

Note 2.1. For log-location-scale families, such as lognormal, log-logistic and Weilbull
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distributions, we choose h1(t) = log(t) and h2(t) = (log(t))2, because the logarithmic

transformation converts these loss models into a location-scale family (to be discussed in

Chapter 6). �

As our next step in deriving MTM estimators, we calculate the population trimmed

moments using equation (2.2) and obtain

T1 : = T1(µ, σ) =
1

1− a− b

∫ 1−b

a

F−1(u)du = µ+ σc1,

T2 : = T2(µ, σ) =
1

1− a− b

∫ 1−b

a

[F−1(u)]2du = µ2 + 2µσc1 + σ2c2.

where

ck = ck(F0, a, b) =
1

1− a− b

∫ 1−b

a

[F−1
0 (u)]kdu.

Equating T̂1 to T1 and T̂2 to T2, and then solving the resulting system of equations with

respect to µ and σ, we obtain the MTM estimators


µ̂MTM = T̂1 − c1σ̂MTM =: g1(T̂1, T̂2);

σ̂MTM =

√
(T̂2 − T̂1

2
)/(c2 − c2

1) =: g2(T̂1, T̂2).

(2.8)

The entries of the covariance-variance matrix Σ calculated using equation (2.4) are

σ2
11 =

σ2

(1− a− b)2

∫ 1−b

a

∫ 1−b

a

(min{u, v} − uv) dF−1
0 (v)dF−1

0 (u)

= σ2c∗1;

σ2
12 = σ2

21 =
2µσ2

(1− a− b)2

∫ 1−b

a

∫ 1−b

a

(min{u, v} − uv) dF−1
0 (v)dF−1

0 (u)

+
2σ3

(1− a− b)2

∫ 1−b

a

∫ 1−b

a

(min{u, v} − uv)F−1
0 (u) dF−1

0 (v)dF−1
0 (u)

= 2µσ2c∗1 + 2σ2c∗2;

(2.9)
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σ2
22 =

4µ2σ2

(1− a− b)2

∫ 1−b

a

∫ 1−b

a

(min{u, v} − uv) dF−1
0 (v)dF−1

0 (u)

+
8µσ3

(1− a− b)2

∫ 1−b

a

∫ 1−b

a

(min{u, v} − uv)F−1
0 (u) dF−1

0 (v)dF−1
0 (u)

+
4σ4

(1− a− b)2

∫ 1−b

a

∫ 1−b

a

(min{u, v} − uv)F−1
0 (u)F−1

0 (v) dF−1
0 (v)dF−1

0 (u)

= 4µ2σ2c∗1 + 8µσ3c∗2 + 4σ4c∗3

with c∗k = c∗k(F0, a, b), which is defined above. The entries of the matrix D are found by

differentiating the functions gi (see equations (2.8)):

d11 =
∂g1

∂T̂1

∣∣∣∣
(T1,T2)

= 1− c1
∂g2

∂T̂1

∣∣∣∣
(T1,T2)

=
c1µ+ c2σ

σ(c2 − c2
1)

d12 =
∂g1

∂T̂2

∣∣∣∣
(T1,T2)

= −c1
∂g2

∂T̂2

∣∣∣∣
(T1,T2)

=
−0.5c1

σ(c2 − c2
1)

d21 =
∂g2

∂T̂1

∣∣∣∣
(T1,T2)

=
−T̂1√

(c2 − c2
1)(T̂2 − T̂ 2

1 )

∣∣∣∣
(T1,T2)

=
−µ− c1σ

σ(c2 − c2
1)

d22 =
∂g2

∂T̂2

∣∣∣∣
(T1,T2)

=
0.5√

(c2 − c2
1)(T̂2 − T̂ 2

1 )

∣∣∣∣
(T1,T2)

=
0.5

σ(c2 − c2
1)

(2.10)

Consequently,

DΣD′ =

d11 d12

d21 d22


 σ2c∗1 2µσ2c∗1 + 2σ3c∗2

2µσ2c∗1 + 2σ3c∗2 4µ2σ2c∗1 + 8µσ3c∗2 + 4σ4c∗3


d11 d21

d12 d22



=
σ2

(c2 − c2
1)2

 c∗1c
2
2 − 2c1c2c

∗
2 + c2

1c
∗
3 −c∗1c1c2 + c2c

∗
2 + c2

1c
∗
2 − c1c

∗
3

−c∗1c1c2 + c2c
∗
2 + c2

1c
∗
2 − c1c

∗
3 c∗1c

2
1 − 2c1c

∗
2 + c∗3

 .
(2.11)
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We summarize the above findings by saying that

(µ̂MTM, σ̂MTM) ∼ AN
(

(µ, σ),
σ2

n
S

)
with S = σ−2DΣD′. (2.12)

Note that the matrix S does not depend on any unknown parameters and can be

expressed in terms of F0, a and b, which are specified by the researcher.

2.3.2 Exponential and Pareto Models

Let X1, . . . , Xn be i.i.d. random variables, each with the common exponential distribution

Exponential(λ) : F (x) = 1− e−λx, x ≥ 0, (2.13)

where location λ > 0 is unknown parameter. Obviously, it is a member of the location-

scale family. The corresponding quantile function is

F−1(u) = − log(1− u)

λ
.

Since F has only one unknown parameter, we need only one trimmed moment. Choos-

ing h1(t) = t and following the procedure of Section 2.3.1, we have

T̂1 =
1

n−mn(1)−m∗n(1)

n−m∗n(1)∑
i=mn(1)+1

Xi:n

with mn(1)/n → a and m∗n(1)/n → b. The corresponding population trimmed moment

is

T1 : = T1(λ) =
1

1− a− b

∫ 1−b

a

− log(1− u)

λ
du

=
−1/λ

1− a− b

∫ 1−b

a

log(1− u) du

=
−1/λ

1− a− b
I(a, 1− b),

9



with the obvious notation for the function I. Equating T̂1 with T1 and solving the equation

with respect to λ yields the MTM estimator

λ̂MTM =
−I(a, 1− b)

1− a− b
1

T̂1

=: g1(T̂1). (2.14)

The entries of matrix Σ, which is one-dimensional, follow from equation (2.4):

σ2
11 :=

1/λ2

(1− a− b)2

∫ 1−b

a

∫ 1−b

a

min{u, v} − uv
(1− u)(1− v)

du dv

=
1/λ2

(1− a− b)2
J((a, 1− b), (a, 1− b)),

with the obvious notation for the function J . The Jacobian D is found by differentiating

the function g1 in equation (2.14) and then evaluating its derivative at T1:

∂g1

∂T̂1

∣∣∣∣
T1

=
I(a, 1− b)
1− a− b

1

T̂ 2
1

∣∣∣∣
T1

=
1− a− b
I(a, 1− b)

λ2.

Hence,

DΣD′ =
J((a, 1− b), (a, 1− b))

[I(a, 1− b)]2
λ2.

Summarizing the above findings, we have

λ̂MTM ∼ AN
(
λ,
λ2

n
C

)
with C =

J((a, 1− b), (a, 1− b))
[I(a, 1− b)]2

.

Now we investigate how much efficiency we lose because of using MTM approach in-

stead of the MLE when estimating λ. Since the λ̂MLE = n/
∑n

i=1 Xi, which isAN
(
λ, λ

2

n

)
,

(see, e.g, Brazauskas and Serfling, 2000a), we have that ARE(λ̂MTM, λ̂MLE) = 1/C.

Numerical values of these AREs are provided in Table 2.1 for several trimming pro-

portions a and b. We find that when a is fixed, the ARE decreases as b increases except

for the extreme case (i.e., a = 0.85). And when b is fixed, the MTM estimator with

no lower trimming (i.e., a = 0) and with symmetric trimming (i.e., a = b) are almost

equivalent. The efficiency decreases slowly when there is no upper trimming (i.e., b = 0).

10



Table 2.1: Exponential distribution–ARE(λ̂MTM, λ̂MLE) for selected a and b, with the
boxed numbers highlighting the case a = b.

a
b

0 0.05 0.10 0.15 0.25 0.49 0.70 0.85

0 1.000 0.917 0.847 0.783 0.666 0.423 0.238 0.115

0.05 1.000 0.918 0.848 0.783 0.667 0.425 0.241 0.122

0.10 1.000 0.918 0.848 0.785 0.669 0.430 0.250 0.135

0.15 0.999 0.918 0.849 0.787 0.672 0.437 0.260 -

0.25 0.995 0.918 0.851 0.790 0.679 0.452 0.284 -

0.49 0.958 0.897 0.839 0.786 0.688 0.487 - -
0.70 0.857 0.824 0.781 0.738 0.659 - - -
0.85 0.681 0.688 0.663 - - - - -

Moreover, the MTM allows some very extreme scenarios yielding valid though inefficient

estimators. For example, the MTM based on the middle 2% (i.e., a = b = 0.49) of ac-

tual data leads to about 49% efficiency when estimating the parameter λ. Interestingly,

λ̂MTM, with (a, b) = (0.10, 0.85) and (a, b) = (0.85, 0.10) are both based on 5% of actual

observations but have dramatically different efficiencies: 0.135 and 0.663, respectively.

This implies that the accuracy of estimators depends not only on the fraction of the used

actual data but also where the data are located in the sample. Certainly, this note just

confirms the fact that most information about the parameter λ is contained in the upper

tail of Exponential(λ).

The single-parameter Pareto distribution

Pareto(x0, α) : F (x) = 1−
(
x

x0

)−α
, x > x0,

shares the common AREs with exponential distribution in Table 2.1 because the log-

Pareto distribution is shifted exponential (see equation (2.13)) with a known location

x0 > 0. As mentioned in Section 2.3.1, we can switch the chosen function to h1(t) =

log(t/x0) in this case and obtain the identical MTM formula from equation (2.14) for

parameter α (to be discussed in Chapter 6).
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2.3.3 Logistic and Log-Logistic Models

Let X1, . . . , Xn be i.i.d. random variables, each with the common logistic distribution

Logistic(µ, σ) : F (x) =
1

1 + e−
x−µ
σ

, −∞ < x <∞, (2.15)

where location −∞ < µ <∞ and scale σ > 0 are unknown parameters. Obviously, it is

a member of the location-scale family and the standard parameter-free version of (2.15)

is

F0(x) =
1

1 + e−x
. (2.16)

The corresponding quantile function is

F−1
0 (u) = −log(1/u− 1),

and the derivative

d

dt

[
F−1

0 (u)
]

= 1/(u− u2).

Applying all the steps of Section 2.3.1, the MTM estimators are obtained as the same

form as equation (2.8) and following from statement (2.12),

(µ̂MTM, σ̂MTM) ∼ AN
(

(µ, σ),
σ2

n
S

)
with S = σ−2DΣD′,

where DΣD′ is given by equation (2.11) but now with the standard logistic F0 in equation

(2.16) instead of the therein used standardized location-scale distribution.

We next examine how much efficiency is lost because of using (µ̂MTM, σ̂MTM) instead

of the MLE. The MLE of the logistic distribution here is in implicit form and it is derived

from the log-likelihood:

l = log
n∏
i=1

f(xi) = −
n∑
i=1

xi − µ
σ
− n logσ − 2

n∑
i=1

log

(
1 + e−

xi−µ
σ

)
.

12



Take derivative with respect to µ and σ, respectively, and set each derivative to 0, then

the MLE estimators are the solution(s) of the non-linear equations:


p1(µ, σ) =

∑n
i=1

1
e∆i+1

− n
2

= 0

p2(µ, σ) =
∑n

i=1 ∆i − 2
∑n

i=1
∆i

e∆i+1
− n = 0

(2.17)

where ∆i = xi−µ
σ

.

The Newton method is used to solve this system. The (i + 1)th Newton iteration is

given by µ̂i+1

σ̂i+1

 =

µ̂i
σ̂i

− J−1
i

p1(µ̂i, σ̂i)

p2(µ̂i, σ̂i)

 , (2.18)

where Ji is the Jacobian matrix for the functions p1 and p2 and i = 1, 2, . . . . Define the

error of ith iteration by
√

(p1(µ̂i, σ̂i))2 + (p2(µ̂i, σ̂i))2 and the error tolerance can be set

by the researcher.

When estimating (µ̂MLE, σ̂MLE), we know (see e.g., deCani and Stine, 1986) that

(µ̂MLE, σ̂MLE) ∼ AN
(

(µ, σ),
σ2

n
S0

)
with S0 =

3 0

0 9/(3 + π2)

 . (2.19)

Hence, it follows that ARE((µ̂MTM, σ̂MTM), (µ̂MLE, σ̂MLE)) is equivalent to (det(S0)/det(S))1/2.

Numerical values of the AREs are provided in Table 2.2 for selected values of a and

b. Note from Table 2.2 that since logistic distribution is symmetric, we can expect similar

performance of the MTM estimators with similar trimming schemes. For example, the

AREs are identical for the MTM estimators with reversed trimming proportions: e.g.,

(a, b) = (0.05, 0.25) has ARE = 0.768 and (a, b) = (0.25, 0.05) also has ARE = 0.768.

The trimming schemes that focus exclusively on data in the center (i.e., when a = b)

are known to be efficient for estimating the location (center) but not necessarily for es-

timating the scale. For the joint estimation of µ and σ, we observe that inefficiency

of σ estimators dominates the overall ARE: a = b = 0.05 has ARE = 0.936 (good);
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Table 2.2: Log-logistic distribution–ARE((µ̂MTM, σ̂MTM), (µ̂MLE, σ̂MLE)) for selected a and
b, with the boxed numbers highlighting the case a = b.

a
b

0 0.05 0.10 0.15 0.25 0.49 0.70 0.85

0 0.893 0.884 0.834 0.782 0.681 0.449 0.258 0.127

0.05 0.884 0.936 0.903 0.861 0.768 0.529 0.311 0.146

0.10 0.834 0.903 0.874 0.835 0.745 0.507 0.283 0.106

0.15 0.782 0.861 0.835 0.797 0.709 0.473 0.245 -

0.25 0.681 0.768 0.745 0.709 0.625 0.391 0.138 -

0.49 0.449 0.529 0.507 0.473 0.391 0.095 - -
0.70 0.258 0.311 0.283 0.245 0.138 - - -
0.85 0.127 0.146 0.106 - - - - -

a = b = 0.25 has ARE = 0.625 (moderate); a = b = 0.49 has ARE = 0.095 (very poor).

In addition, instead of the case a = b = 0, the largest ARE appears at a = b = 0.05.

After the modification of estimating functions h1(t) = log(t) and h2(t) = (log(t))2,

log-logistic distribution shares the common AREs with logistic distribution in Table 2.2,

and we will use the log-logistic model for real-data illustrations of Chapter 5.

2.3.4 Laplace and Log-Laplace Models

Let X1, . . . , Xn be i.i.d. random variables, each with the same Laplace distribution

Laplace (µ, σ) : F (x) =


1
2
e
x−µ
σ , if x < µ,

1− 1
2
e−

x−µ
σ , if x ≥ µ,

−∞ < x <∞

=
1

2
+

1

2
sgn (x− µ)(1− e−

|x−µ|
σ ),

(2.20)

where location −∞ < µ < ∞ and scale σ > 0 are unknown parameters and sgn is the

sign function given by

sgn(x) =


−1, if x < 0;

0, if x = 0;

1, if x > 0.
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Laplace distribution is a location-scale family with the standard parameter-free version

of (2.20) given by

F0(x) =
1

2
+

1

2
sgn(x)(1− e−|x|). (2.21)

The corresponding quantile function is

F−1
0 (u) = −sgn

(
u− 1

2

)
log

(
1− 2

∣∣∣∣u− 1

2

∣∣∣∣),
and its derivative is

d

du

[
F−1

0 (u)
]

= −2

[
δ

(
u− 1

2

)
log

(
1− 2

∣∣∣∣u− 1

2

∣∣∣∣)− sgn2(u− 1
2
)

1− 2|u− 1
2
|

]
,

where δ represents the Dirac delta function

δ(x) =


+∞, if x = 0;

0, if x 6= 0.

Following the procedure of Section 2.3.1, the MTM estimators have the same form

as equation (2.8) and as follows from statement (2.12),

(µ̂MTM, σ̂MTM) ∼ AN
(

(µ, σ),
σ2

n
S

)
with S = σ−2DΣD′,

where DΣD′ depends only on F0 in (2.21) and the chosen proportions a and b.

The MLE of Laplace distribution parameter has explicit form (see Norton, 1984)


µ̂MLE = Median(x1, . . . , xn)

σ̂MLE = 1
n

∑n
i=1 |xi − µ̂MLE|

(2.22)

And by the central limit theorem and the information matrix (see Kotz, et al., 2001)
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(µ̂MLE, σ̂MLE) ∼ AN
(

(µ, σ),
σ2

n
S0

)
with S0 =

1 0

0 1

 . (2.23)

Hence, it follows that ARE((µ̂MTM, σ̂MTM), (µ̂MLE, σ̂MLE)), which is (det(S0)/det(S))1/2,

by definition, is equal to (1/det(S))1/2.

Table 2.3: Log-Laplace distribution–ARE((µ̂MTM, σ̂MTM), (µ̂MLE, σ̂MLE)) for selected a
and b, with the boxed numbers highlighting the case a = b.

a
b

0 0.05 0.10 0.15 0.25 0.49 0.70 0.85

0 0.633 0.644 0.621 0.595 0.539 0.363 0.194 0.092

0.05 0.644 0.723 0.718 0.706 0.671 0.490 0.256 0.112

0.10 0.621 0.718 0.714 0.702 0.669 0.495 0.243 0.083

0.15 0.595 0.706 0.702 0.689 0.653 0.486 0.218 -

0.25 0.539 0.671 0.669 0.653 0.607 0.435 0.110 -

0.49 0.363 0.490 0.495 0.486 0.435 0.128 - -
0.70 0.194 0.256 0.243 0.218 0.110 - - -
0.85 0.092 0.112 0.083 - - - - -

Numerical values of the AREs are provided in Table 2.3 for chosen a and b. Since

the Laplace distribution is symmetric as well, we can see the similar performance of the

MTM estimators with similar trimming schemes. For example, the AREs are identical

for the MTM estimators with reversed trimming proportions: (a, b) = (0.1, 0.25) has

ARE = 0.669 and (a, b) = (0.25, 0.1) also has ARE = 0.669. Additionally, the largest

ARE locates at a = b = 0.05 and the estimator that uses only 50% of the actual data

observations (a = b = 0.25) yields a 60.7% efficiency.

Like other logarithmic transformations, log-Laplace distribution has the common ARE

with Laplace distribution and it is used for illustrations in Chapter 5.
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3 Method of Winsorized Moments

A primary objective of this dissertation is to develop a Method of Winsorized Moments

(MWM) by following the MTM approach. Winsorization is the transformation of data by

limiting extreme values in the data set to reduce the effect of possibly spurious outliers.

It is named after the engineer-turned-biostatistician Charles P. Winsor (1895-1951). The

effect is the same as clipping in signal processing. The distribution of many statistics can

be heavily influenced by outliers. A typical strategy is to set all outliers to a specified

percentile of the data; for example, a 90% symmetric Winsorization would set all data

below the 5th percentile to the 5th percentile, and data above the 95th percentile to the

95th percentile. Winsorized estimators are usually more robust to outliers than their

standard counterparts and they can achieve a similar (if not better) effect as the earlier

discussed trimmed estimators.

The MTM estimator in Chapter 2 is a type of two-sided truncation, which focuses

on the data between the trimming points (dark blue area in Figure 3.1). The MWM, on

the other hand, is a censored form that takes into account the upper and lower outside

values (light blue area) as well. Figure 3.1 shows the difference between the former and

the latter by plotting a quantile function.
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Figure 3.1: MTM (left panel) and MWM (right panel).
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Like the MTM estimators, MWM estimators provide a flexible framework for achiev-

ing balance between robustness and efficiency via the AREs as well. For specific distri-

butions, we can see the trade-offs between efficiency and robustness in various MWM

estimators and then with the fixed trimming proportions, the difference of efficiency be-

tween the MWM estimators and MTM estimators will also be compared in this chapter.

3.1 Definition

Let X1, . . . , Xn be i.i.d. random variables, which follow a parametric distribution F

with k unknown parameters θ1, . . . , θk. Denote the order statistics of X1, . . . , Xn by

X1:n ≤ · · · ≤ Xn:n. Like the MTM estimators, the MWM estimators of θ1, . . . , θk are also

derived in three steps:

• Compute the sample Winsorized moments

Ŵj =
1

n

[
mn(j)hj(Xmn(j):n) +

n−m∗n(j)∑
i=mn(j)+1

hj(Xi:n)

+m∗n(j)hj(Xn−m∗n(j)−1)

]
, 1 ≤ j ≤ k,

(3.1)

where hj are specially chosen functions and mn(j) and m∗n(j) are integers 0 ≤

mn(j) < n−m∗n(j) ≤ n such that mn(j)/n→ aj and m∗n(j)/n→ bj when n→∞,

where the proportions aj and bj are chosen by the researcher.

• Derive the corresponding population Winsorized moments

Wj = Wj(θ1, ..., θk) = ajhj(F
−1(aj)) +

∫ 1−bj

aj

hj(F
−1(u)) du

+ bjhj(F
−1(1− bj)), 1 ≤ j ≤ k,

(3.2)

where F−1(u) = inf {x ∈ R : u ≤ F (x)} is the quantile function. (Note that when

aj = bj = 0, then Wj = E[hj(X)].)

• Match the population and sample Winsorized moments and solve the system of
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equations 
W1(θ1, . . . , θk) = Ŵ1

...
...

Wk(θ1, . . . , θk) = Ŵk

(3.3)

with respect to θ1, . . . , θk. The solutions, which we denote by θ̂j = gj(Ŵ1, . . . , Ŵk), 1 ≤

j ≤ k, are, by definition, the MWM estimators of θ1, . . . , θk. Note that the functions

gj are such that θj = gj(W1, . . . ,Wk).

3.2 Asymptotic Properties

The sample Winsorized moments in equation (3.1) can be viewed as the combination of

trimmed moments, defined by equation (2.1), and the trimming points censored on two

sides, which is a special case of linear combination of ordered statistics (see Serfling, 1980,

Chapter 8). Then equation (3.1) can be written as

Ŵn =
1

n

n∑
i=1

K

(
i

n+ 1

)
h(Xi:n) +

2∑
m=1

cmh(X[npm],n)

where

K(x) =


1, if np1 ≤ x ≤ np2;

0, otherwise;

(3.4)

and npm is the censored point.

Chernoff et al. (1967) prove that Ŵn is AN
(
µ, σ

2

n

)
, where the mean

µ =

∫ 1

0

K(u)H(u)du+
2∑

m=1

cmh(pm) (3.5)

and the variance

σ2 =

∫ 1

0

α2(u)du
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where H = h ◦ F−1, pm is the Winsorizing fraction a or 1− b, and

α(u) =
1

1− u

∫ 1

u

K(w)H
′
(w)(1− w)dw +

∑
pm≥u

cm(1− pm)H
′
(pm).

Thus, the k-variate vector
(√

n(Ŵ1 −W1), . . . ,
√
n(Ŵk −Wk)

)
in equation (3.3) con-

verges in distribution to the k-variate normal random vector with the mean 0 = (0, . . . , 0)

and the covariance-variance matrix Σ :=[σ2
ij]
k
i,j=1 with the entries

σ2
ij =

∫ 1

0

αi(u)αj(u)du

=

∫ 1

0

{
1

1− u

[ ∫ 1

u

Ki(w)H
′

i(w)(1− w)dw +
∑
pi≥u

ci(1− pi)H
′

i(pi)

]

× 1

1− u

[ ∫ 1

u

Kj(v)H
′

j(v)(1− v)dv +
∑
pj≥u

cj(1− pj)H
′

j(pj)

]}
du

=

∫ 1

0

1

(1− u)2

[ ∫ 1

u

Ki(w)H
′

i(w)(1− w)dw

∫ 1

u

Kj(v)H
′

j(v)(1− v)dv

]
du

+

∫ 1

0

1

(1− u)2

[ ∫ 1

u

Ki(w)H
′

i(w)(1− w)dw ×
∑
pj≥u

cj(1− pj)H
′

j(pj)

]
du

+

∫ 1

0

1

(1− u)2

[ ∫ 1

u

Kj(v)H
′

j(v)(1− v)dv ×
∑
pi≥u

ci(1− pi)H
′

i(pi)

]
du

+

∫ 1

0

1

(1− u)2

[∑
pi≥u

ci(1− pi)H
′

i(pi)×
∑
pj≥u

cj(1− pj)H
′

j(pj)

]
du

(3.6)

Following Chernoff et al. (1967), the asymptotic normality statement is

(Ŵ1, . . . , Ŵk) ∼ AN
(
(W1, . . . ,Wk), n

−1Σ
)
,

and the MWM estimator (θ̂1, . . . , θ̂k) is asymptotically normal with the mean (θ1, . . . , θk)

and the covariance-variance matrix n−1DΣD′, where D:=[dij]
k
i,j=1 is the Jacobian of the

transformations g1, . . . , gk evaluated at (W1, . . . ,Wk).
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3.2.1 Covariance-Variance Matrix: General Cases

From equations (3.4) and (3.5), we know that the entries of covariance-variance matrix

in equation (3.6) actually depend on the proportions (ai, bi) and (aj, bj). Since there are

six different combinations of Winsorizing fractions, we will analyze the specific entries of

equation (3.6) in six separate cases.

Equation (3.6) consists of four terms and the first term is always equivalent to equation

(2.4) (i.e., pure trimming), hence we need to figure out the second, the third and the

fourth term for each case. In the following, we present a complete solution for the first

combination of Winsorizing fractions. The remaining five combinations are provided in

Appendix A.

Case 1: 0 ≤ ai ≤ 1− bi < aj ≤ 1− bj ≤ 1 0 ai 1− bi aj 1− bj 1

Let us introduce the following notation:

Ai = ai(1− ai)H
′

i(ai), Bi = b2
iH

′

i(1− bi),

Aj = aj(1− aj)H
′

j(aj), Bj = b2
jH

′

j(1− bj),

W (w) = H
′

i(w)(1− w), V (v) = H
′

j(v)(1− v),

W∗(w) =
W (w)

(1− u)2
, V∗(v) =

V (v)

(1− u)2
.

The second term is

=

∫ 1

0

1

(1− u)2

[ ∫ 1

u

Ki(w)H
′

i(w)(1− w)dw ×
∑
pj≥u

cj(1− pj)H
′

j(pj)

]
du

=

∫ ai

0

Aj +Bj

(1− u)2

∫ 1−bi

ai

W (w) dw du+

∫ 1−bi

ai

Aj +Bj

(1− u)2

∫ 1−bi

u

W (w) dw du

=
ai

1− ai
[
Aj +Bj

] ∫ 1−bi

ai

W (w) dw +
[
Aj +Bj

] ∫ 1−bi

ai

∫ 1−bi

u

W∗(w) dw du.
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The third term is

=

∫ 1

0

1

(1− u)2

[ ∫ 1

u

Kj(v)H
′

j(v)(1− v)dv ×
∑
pi≥u

ci(1− pi)H
′

i(pi)

]
du

=

∫ ai

0

Ai +Bi

(1− u)2

∫ 1−bj

aj

V (v) dv du+

∫ 1−bi

ai

Bi

(1− u)2

∫ 1−bj

aj

V (v) dv du

=

[
ai

1− ai
Ai +

1− bi
bi

Bi

] ∫ 1−bj

aj

V (v) dv.

The fourth term is

=

∫ 1

0

1

(1− u)2

[∑
pi≥u

ci(1− pi)H
′

i(pi)×
∑
pj≥u

cj(1− pj)H
′

j(pj)

]
du

=
[
Ai +Bi

][
Aj +Bj

] ∫ ai

0

1

(1− u)2
du+

[
Bi

][
Aj +Bj

] ∫ 1−bi

ai

1

(1− u)2
du

=
ai

1− ai
[
Ai +Bi

][
Aj +Bj

]
+

1− ai − bi
(1− ai)bi

[
Bi

][
Aj +Bj

]
.

For cases 2-6, the covariance-variance entries are derived in Appendix A.

3.2.2 Covariance-Variance Matrix: Special Case

Suppose the lower and upper Winsorizing proportions are identical, then we have the spe-

cial case: 0 ≤ a = ai = aj < 1−bi = 1−bj = 1−b ≤ 1 0 a 1− b 1

Now σ2
ij is the sum of the following four terms:

The first term reduces to:

=

∫ 1−b

a

∫ 1−b

a

{min(w, v)− v w} dhj(F−1(v)) dhi(F
−1(w)).

The second term is:

=

∫ a

0

1

(1− u)2

∫ 1−b

a

H
′

i(w)(1− w)dw ×
[
a(1− a)H

′

j(a) + b2H
′

j(1− b)
]
du
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+

∫ 1−b

a

1

(1− u)2

∫ 1−b

u

H
′

i(w)(1− w)dw ×
[
b2H

′

j(1− b)
]
du

=
a

1− a
[
a(1− a)H

′

j(a) + b2H
′

j(1− b)
] ∫ 1−b

a

H
′

i(w)(1− w) dw

+ b2H
′

j(1− b)
∫ 1−b

a

∫ 1−b

u

H
′
i(w)(1− w)

(1− u)2
dw du.

The third term is:

=

∫ a

0

1

(1− u)2

∫ 1−b

a

H
′

j(w)(1− w)dw ×
[
a(1− a)H

′

i(a) + b2H
′

i(1− b)
]
du

+

∫ 1−b

a

1

(1− u)2

∫ 1−b

u

H
′

j(w)(1− w)dw ×
[
b2H

′

i(1− b)
]
du

=
a

1− a
[
a(1− a)H

′

i(a) + b2H
′

i(1− b)
] ∫ 1−b

a

H
′

j(v)(1− v) dv

+ b2H
′

i(1− b)
∫ 1−b

a

∫ 1−b

u

H
′
j(v)(1− v)

(1− u)2
dv du.

The fourth term is:

=

∫ a

0

1

(1− u)2
×
[
a(1− a)H

′

i(a) + b2H
′

i(1− b)
][
a(1− a)H

′

j(a) + b2H
′

j(1− b)
]
du

+

∫ 1−b

a

1

(1− u)2
×
[
b2H

′

i(1− b)
][
b2H

′

j(1− b)
]
du

=
a

1− a
[
a(1− a)H

′

i(a) + b2H
′

i(1− b)
][
a(1− a)H

′

j(a) + b2H
′

j(1− b)
]

+
1− a− b
(1− a)b

[
b2H

′

i(1− b) b2H
′

j(1− b)
]
.

Similar to Chapter 2, we only consider these special Winsorizing proportions in the

following examples.
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3.3 Examples

In this section, we analyze the robustness and efficiency of MWM estimators for general

location-scale family, and take exponential, logistic and Laplace distributions as three

examples to illustrate. Specifically, we present how to find MWM estimators and derive

the entries of the asymptotic covariance-variance matrix for one- and two-parameter

distributions. Later, we evaluate the AREs of the MWM estimators with respect to the

MLEs and compare the performance of MTM and MWM approaches in different cases.

3.3.1 Location-Scale Families

Let X1, . . . , Xn be i.i.d. random variables, each with the common distribution function

defined by equation (2.7). Choosing h1(t) = t and h2(t) = t2, and following the procedure

of Section 3.1, we have

Ŵ1 =
1

n

[
mn(1) ·Xmn(1):n +

n−m∗n(1)∑
i=mn(1)+1

Xi:n +m∗n(1) ·Xn−m∗n(1)+1:n

]
,

Ŵ2 =
1

n

[
mn(2) ·X2

mn(2):n +

n−m∗n(2)∑
i=mn(2)+1

X2
i:n +m∗n(2) ·X2

n−m∗n(2)+1:n

]
with mn(1)/n = mn(2)/n→ a and m∗n(1)/n = m∗n(2)/n→ b.

As our next step in deriving MWM estimators, we calculate the population Winsorized

moments using equation (3.2) and obtain

W1 := W1(µ, σ) =

∫ 1−b

a

F−1(u) du+ aF−1(a) + b F−1(1− b)

=

∫ 1−b

a

[
µ+ σ F−1

0 (u)
]
du+ a

[
µ+ σ F−1

0 (a)
]

+ b
[
µ+ σ F−1

0 (1− b)
]

= µ+ σ

[ ∫ 1−b

a

F−1
0 (u) du+ aF−1

0 (a) + b F−1
0 (1− b)

]

= µ+ σ c̃1,
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W2 := W2(µ, σ) =

∫ 1−b

a

[F−1(u)]2 du+ a
[
F−1(a)

]2
+ b
[
F−1(1− b)

]2
=

∫ 1−b

a

[
µ+ σ F−1

0 (u)
]2
du+ a

[
µ+ σ F−1

0 (a)
]2

+ b
[
µ+ σ F−1

0 (1− b)
]2

= µ2 + 2µσ

{∫ 1−b

a

F−1
0 (u) du+ aF−1

0 (a) + b F−1
0 (1− b)

}

+ σ2

{∫ 1−b

a

[
F−1

0 (u)
]2
du+ a

[
F−1

0 (a)
]2

+ b
[
F−1

0 (1− b)
]2}

= µ2 + 2µσ c̃1 + σ2 c̃2,

where

c̃k = c̃k(F0, a, b) =

∫ 1−b

a

[
F−1

0 (u)
]k
du+ a

[
F−1

0 (a)
]k

+ b
[
F−1

0 (1− b)
]k
.

Equating Ŵ1 to W1 and Ŵ2 to W2, and then solving the resulting system of equations

with respect to µ and σ, we obtain the MWM estimators


µ̂MWM = Ŵ1 − c̃1σ̂MWM =: g1(Ŵ1, Ŵ2);

σ̂MWM =

√
(Ŵ2 − Ŵ1

2
)/(c̃2 − c̃2

1) =: g2(Ŵ1, Ŵ2).

(3.7)

The entries of the covariance-variance matrix Σ are calculated using the formulas of

Section 3.2.2. We can obtain (see details in Appendix B),

σ2
11 = σ2 l∗1;

σ2
12 = σ2

21 = 2µσ2 l∗1 + 2σ3 l∗2;

σ2
22 = 4µ2σ2 l∗1 + 8µσ3 l∗2 + 4σ4 l∗3.
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Here, the entries are in the same format as (2.9), with constants c∗k replaced by l∗k. For

calculating the matrix D, we differentiate the functions gi in (3.7), and the results have

again the same structure as those in equation (2.10) except constants ck are now replaced

by c̃k. Consequently,

DΣD′ =
σ2

(c̃2 − c̃2
1)2

 l∗1 c̃
2
2 − 2c̃1c̃2l

∗
2 + c̃2

1l
∗
3 −l∗1 c̃1c̃2 + c̃2l

∗
2 + c̃2

1l
∗
2 − c̃1l

∗
3

−l∗1 c̃1c̃2 + c̃2l
∗
2 + c̃2

1l
∗
2 − c̃1l

∗
3 l∗1c

2
1 − 2c̃1l

∗
2 + l∗3

 . (3.8)

We summarize the above findings by saying that

(µ̂MWM, σ̂MWM) ∼ AN
(

(µ, σ),
σ2

n
S̃

)
with S̃ = σ−2DΣD′. (3.9)

Note that the matrix S̃ does not depend on any unknown parameters and can be

expressed in terms of F0, a and b, which are specified by the researcher.

3.3.2 Exponential and Pareto Models

Let X1, . . . , Xn be i.i.d. random variables, each with the common exponential distribution

function defined by equation (2.13). Since the distribution function F has only one

unknown parameter, we need only one Winsorized moment. Following the procedure of

Section 3.3.1 and choosing h(t) = t, we have

Ŵ1 =
1

n

[
mn(1) ·Xmn(1):n +

n−m∗n(1)∑
i=mn(1)+1

Xi:n +m∗n(1) ·Xm∗n(1):n

]

with mn(1)/n→ a and m∗n(1)/n→ b. The corresponding population Winsorized moment

is

W1 : = W1(λ) = −1

λ

[ ∫ 1−b

a

log(1− u) du+ a log(1− a) + b log(b)

]

=
−1

λ
Ĩ(a, 1− b)
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with the obvious notation for the function Ĩ. Equating Ŵ1 with W1 and solving the

equation with respect to λ yields the MWM estimator

λ̂MWM = −Ĩ(a, 1− b) 1

Ŵ1

=: g1(Ŵ1). (3.10)

The one-dimensional matrix Σ is derived from equations of Section 3.2.2. Here, the

chosen functions are:

H(u) = h ◦ F−1(u) = F−1(u) = − log(1− u)

λ
, H

′
(u) =

1

λ (1− u)
.

Hence,

σ2
11 :=

1

λ2

∫ 1−b

a

∫ 1−b

a

min{u,w} − uw
(1− u)(1− w)

dw du+ 2

{
a2(1− a) · 1/[λ(1− a)] + ab2 · 1/[λb]

1− a∫ 1−b

a

1

λ(1− w)
(1− w) dw + b2 1

λb

∫ 1−b

a

∫ 1−b

a

1/[λ(1− w)] · (1− w)

(1− u)2
dw du

}

+
a

1− a

[
a(1− a) · 1

λ(1− a)
+ b2 · 1

λb

]2

+
1− a− b
(1− a)b

[
b4 · 1

λb

]2

=
1

λ2

[ ∫ 1−b

a

∫ 1−b

a

min{u,w} − uw
(1− u)(1− w)

dw du+
2(1− a− b)

1− a
(a2 + ab− b)− 2b log

(
b

1− a

)

+
a3

1− a
+ 2a2b2 1

(1− a)b
+ b(1− b)

]

=
1

λ2
J̃((a, 1− b), (a, 1− b))

with the obvious notation for the function J̃ . The Jacobian D is found by differentiating

the function g1 in equation (3.10) and then evaluating its derivative at W1:

∂g1

∂Ŵ1

∣∣∣∣
W1

=
1

Ĩ(a, 1− b)
λ2.

Hence,

DΣD′ =
J̃((a, 1− b), (a, 1− b))

[Ĩ(a, 1− b)]2
λ2.
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Summarizing the above findings, we have

λ̂MWM ∼ AN
(
λ,
λ2

n
C̃

)
with C̃ =

J̃((a, 1− b), (a, 1− b))
[Ĩ(a, 1− b)]2

.

As mentioned in Chapter 2, we use the ARE to measure the efficiency loss when es-

timating λ via MWM instead of MLE, which is ARE(λ̂MWM, λ̂MLE) = 1/C̃.

Table 3.1: Exponential distribution–ARE(λ̂MWM, λ̂MLE) for selected a and b, with the
boxed numbers highlighting the case a = b.

a
b

0 0.05 0.10 0.15 0.25 0.49 0.70 0.85

0 1.000 0.950 0.900 0.850 0.750 0.510 0.300 0.150

0.05 1.000 0.950 0.900 0.850 0.750 0.510 0.300 0.150

0.10 1.000 0.950 0.900 0.850 0.750 0.510 0.300 0.150

0.15 0.999 0.949 0.899 0.849 0.749 0.509 0.299 -

0.25 0.994 0.944 0.894 0.844 0.745 0.506 0.297 -

0.49 0.952 0.904 0.856 0.808 0.714 0.490 - -
0.70 0.859 0.818 0.778 0.738 0.660 - - -
0.85 0.720 0.692 0.663 - - - - -

Numerical values of these AREs are provided in Table 3.1 for several Winsorizing

proportions a and b. Generally, the MWM estimator keeps the characteristics similar to

those of the MTM approach. For instance, when b is fixed, the MWM estimator with no

lower Winsorizing (i.e., a = 0) and with symmetric Winsorizing (i.e., a = b) are almost

equivalent. And the accuracy of estimators depends on both the fractions a, b and the

location of the data in the sample. Undoubtedly, MWM estimators also possess their own

specificity. The small lower Winsorizing proportions (i.e., a = 0.05, 0.10) do not decrease

the efficiency at all. At last, comparing with MTM, MWM performs better (at least not

worse) in most cases, with few exceptions when a is large.

After the modifying the estimating function h(t) = t to h(t) = log(t), we find that sin-

gle parameter Pareto distribution shares the common AREs with those of the exponential

distribution in Table 3.1.
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3.3.3 Logistic and Log-Logistic Models

Let X1, . . . , Xn be i.i.d. random variables, each with the common logistic distribution

function defined by equation (2.15). Applying all the steps of Section 3.3.1, the MWM

estimators are obtained in the same form as in (3.7), and it follows from statement (3.9)

that

(µ̂MWM, σ̂MWM) ∼ AN
(

(µ, σ),
σ2

n
S̃

)
with S̃ = σ−2DΣD′,

where DΣD′ is given by (3.8), but now with the standard logistic F0, given by (2.16),

instead of the therein used standardized location-scale distribution. To summarize, it

follows that

ARE((µ̂MWM, σ̂MWM), (µ̂MLE, σ̂MLE)) = (det(S0)/det(S̃))1/2,

where S0 is from equation (2.19).

Numerical values of the AREs are provided in Table 3.2 for selected values of a and

b. Like in the MTM case, we observe similar performance of the MWM estimators when

similar Winsorizing schemes are used. For example, the AREs are identical with reversed

Winsorizing proportions: (a, b) = (0.05, 0.25) has ARE = 0.801 and (a, b) = (0.25, 0.05)

also has ARE = 0.801.

Table 3.2: Log-logistic distribution–ARE((µ̂MWM, σ̂MWM), (µ̂MLE, σ̂MLE)) for selected a
and b, with the boxed numbers highlighting the case a = b.

a
b

0 0.05 0.10 0.15 0.25 0.49 0.70 0.85

0 0.893 0.896 0.873 0.843 0.774 0.571 0.358 0.187

0.05 0.896 0.913 0.895 0.868 0.801 0.589 0.359 0.169

0.10 0.873 0.895 0.878 0.852 0.783 0.564 0.323 0.118

0.15 0.843 0.868 0.852 0.825 0.754 0.528 0.277 -

0.25 0.774 0.801 0.783 0.754 0.680 0.439 0.153 -

0.49 0.571 0.589 0.564 0.528 0.439 0.104 - -
0.70 0.358 0.359 0.323 0.277 0.153 - - -
0.85 0.187 0.169 0.118 - - - - -
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The Winsorizing schemes that focus exclusively on data in the center (i.e., when

a = b) are known to be efficient for estimating the location (center) but not necessarily

for estimating the scale. For the joint estimation of µ and σ, we observe that inefficiency

of σ estimators dominates the overall ARE: a = b = 0.05 has ARE = 0.913 (good);

a = b = 0.25 has ARE = 0.680 (moderate); a = b = 0.49 has ARE = 0.104 (very poor).

In addition, instead of the case a = b = 0, the largest ARE appears at a = b = 0.05. All

the findings above are similar to those of the MTM approach in Section 2.3.3.

Considering the performance of MWM and MTM approaches, MTM estimators only

achieve higher efficiency at the location around the largest ARE. As seen in Tables 2.2

and 3.2, when a = b = 0.05, MTM has ARE = 0.936 and MWM has ARE = 0.913. And

when (a, b) = (0.05, 0.10) or (0.10, 0.05), MTM has ARE = 0.903, which is slightly larger

than that of MWM with 0.895. Beyond these Winsorizing fractions, MWM estimators

dominate in any other case.

After modifying the estimating functions to h1(t) = log(t) and h2(t) = (log(t))2, we

see that the log-logistic distribution shares the common AREs with those of the logistic

distribution in Table 3.2. We will use the log-logistic model for real-data illustrations of

Chapter 5.

3.3.4 Laplace and Log-Laplace Models

Let X1, . . . , Xn be i.i.d. random variables, each with the same Laplace distribution func-

tion defined by equation (2.20). Following the procedure of Section 3.3.1, we find that

the MWM estimators have the same form as in (3.7). It follows from statement (3.9)

that

(µ̂MWM, σ̂MWM) ∼ AN
(

(µ, σ),
σ2

n
S̃

)
with S̃ = σ−2DΣD′,

where DΣD′ depends only on F0 in (2.21) and the chosen proportions a and b. It follows

that ARE((µ̂MWM, σ̂MWM), (µ̂MLE, σ̂MLE)), which is (det(S0)/det(S̃))1/2, given by equa-

tion (2.23), and is equal to (1/det(S̃))1/2.

Numerical values of the AREs are provided in Table 3.3 for chosen fractions a and b.

We see similar performances of the MWM estimators when similar Winsorizing schemes
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are used, and the largest ARE locates at a = b = 0.05, which are identical to that of the

MTM estimators in Section 2.3.4.

Table 3.3: Log-Laplace distribution–ARE((µ̂MWM, σ̂MWM), (µ̂MLE, σ̂MLE)) for selected a
and b, with the boxed numbers highlighting the case a = b.

a
b

0 0.05 0.10 0.15 0.25 0.49 0.70 0.85

0 0.633 0.638 0.625 0.612 0.588 0.549 0.304 0.143

0.05 0.638 0.663 0.657 0.648 0.631 0.605 0.314 0.131

0.10 0.625 0.657 0.653 0.644 0.624 0.594 0.287 0.094

0.15 0.612 0.648 0.644 0.633 0.610 0.569 0.251 -

0.25 0.588 0.631 0.624 0.610 0.575 0.494 0.146 -

0.49 0.549 0.605 0.594 0.569 0.494 0.140 - -
0.70 0.304 0.314 0.287 0.251 0.146 - - -
0.85 0.143 0.131 0.094 - - - - -

Interestingly, for extreme scenarios (i.e., a or b = 0.49, 0.70, 0.85), MWM estimators

always perform better than MTM. However, the latter are more appropriate around the

symmetric case (i.e., a = b). For example, when a = b = 0.05, MTM has ARE = 0.723

and MWM has ARE = 0.663. And when (a, b) = (0.05, 0.15), MTM has ARE = 0.706

and MWM has ARE = 0.648.

Based on the MWM approach, log-Laplace distribution also has the common ARE

with the Laplace distribution. The log-Laplace distribution will be used for illustrations

in Chapter 5.
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4 Simulation Study

Next we supplement our theoretical results concerning the MTM and MWM estimators

with their finite-sample performance evaluations, respectively. The objective is to see how

large the sample size n should be for the estimators to achieve (asymptotic) unbiasedness

and for their finite-sample relative efficiency (RE) to reach the corresponding ARE level.

The univariate and multivariate RE definitions are similar to those of the ARE except

that we now want to account for possible bias, which we do by replacing all entries in the

covariance-variance matrix with the corresponding mean-squared errors, that means

RE(Q, MLE) =
asymptotic variance of MLE estimator

small-sample variance of a competing estimator Q
,

where Q represents MTM or MWM. The denominator is given by

 E[(µ̂− µ)2] E[(µ̂− µ)(σ̂ − σ)]

E[(µ̂− µ)(σ̂ − σ)] E[(σ̂ − σ)2]

 .

From a specified distribution F (i.e., logistic or Laplace), we generate 10,000 samples

of a specified length n using Monte Carlo. For each sample we estimate the parameters

of F using various MTM and MWM estimators and then compute the average mean

and RE of those 10,000 estimates. This process is repeated 10 times and the 10 average

means and the 10 REs are again averaged and their standard deviations are reported.

(Such repetitions are useful for assessing standard errors of the estimated means and REs.

Hence, our findings are essentially based on 100,000 samples.) The standardized MEAN

that we report is defined as the average of 100,000 estimates divided by the true value

of the parameter that we are estimating. The standard error is standardized in a similar

manner.
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4.1 Logistic Model

We start our simulation study with the logistic distribution LG(µ = 5, σ = 2) using the

following parameters:

• Sample size: n = 50, 100, 250, 500.

• Estimators of µ, σ:

– MLE

– Q (MTM or MWM) with: a = b = 0.05; a = b = 0.10; a = b = 0.25;

a = b = 0.49; a = 0.10 and b = 0.70; a = 0.25 and b = 0.00.

Let the error tolerance be 0.00001. The MLE estimator of logistic distribution can be

obtained from equations (2.17) and (2.18) in Section 2.3.3. To guarantee the convergence

of Newton iterations as n increases, we choose (µ̂start, σ̂start) = (4.9, 2.2) as initial values,

which is sufficiently close to the root.

First, we summarize the simulation results of the MTM and MWM approaches in

Table 4.1. We see that all MTM and MWM estimators in the logistic case successfully

estimate the location µ. In most cases, MTM and MWM estimators become practically

unbiased for sample sizes as small as n = 50. Estimation of σ, however, reveals a different

story. For MTM, although most estimators have less than 1% relative bias for n ≥ 100,

the median-based estimator (i.e., a = b = 0.49) performs very poorly: it has the relative

bias of +72% for n = 50, −13% for n = 100, +24% for n = 250, +3% for n = 500. For

MWM, there is no relative bias for n = 50, 250, but it is equal to −49% for n = 100, and

−10% for n = 500 in the median-based estimator. And in the other extreme scenario

a = 0.1, b = 0.70, it still contains bias even when n = 500.

In the relative efficiency (RE) Table 4.2, the entries of the last column are included

for comparison with ARE found in Chapter 2. We notice that for both MTM and MWM

approaches, the RE remains practically unaffected by the sample size and attains its

corresponding ARE level when n ≥ 100.
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Table 4.1: Logistic model–mean values of µ̂/µ and σ̂/σ.

n=50 n=100
a b µ̂/µ σ̂/σ µ̂/µ σ̂/σ

MTM MWM MTM MWM MTM MWM MTM MWM

0 0 1.00 0.98 1.00 0.99
0.05 0.05 1.00 1.00 1.05 1.01 1.00 1.00 1.01 0.99
0.10 0.10 1.00 1.00 1.01 0.98 1.00 1.00 1.01 0.99
0.25 0.25 1.00 1.00 1.06 1.01 1.00 1.00 1.01 0.99
0.49 0.49 1.00 1.00 1.72 1.00 1.00 1.00 0.87 0.51
0.10 0.70 1.02 0.95 1.03 0.91 1.01 0.98 1.02 0.96
0.25 0.00 0.99 1.00 0.99 0.99 1.00 1.00 0.99 0.99

MLE 1.00 0.99 1.00 0.99

n=250 n=500
a b µ̂/µ σ̂/σ µ̂/µ σ̂/σ

MTM MWM MTM MWM MTM MWM MTM MWM

0 0 1.00 1.00 1.00 1.00
0.05 0.05 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00
0.10 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 0.25 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00
0.49 0.49 1.00 1.00 1.24 1.00 1.00 1.00 1.03 0.90
0.10 0.70 1.00 0.99 1.01 0.98 1.00 1.00 1.00 0.99
0.25 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MLE 1.00 1.00 1.00 1.00

The entries are mean values based on 100,000 samples. For µ, all the standard errors

are 0.000. For σ, most standard errors are ≤ 0.001 except for (i) n = 50: a = b = 0.49

(MTM = 0.005, MWM = 0.003); (ii) n = 100: a = b = 0.49 (MTM = 0.002);

(iii) n = 250: a = b = 0.49 (MTM = 0.002, MWM = 0.002).
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Table 4.2: Logistic model–RE: finite-sample efficiency of MTMs and MWMs relative to
MLEs.

n=50 n=100
a b RE SD RE SD

MTM MWM MTM MWM MTM MWM MTM MWM
0 0 0.91 0.003 0.90 0.003

0.05 0.05 0.82 0.89 0.002 0.003 0.93 0.91 0.004 0.003
0.10 0.10 0.86 0.88 0.002 0.002 0.87 0.87 0.004 0.004
0.25 0.25 0.58 0.68 0.001 0.002 0.62 0.68 0.002 0.002
0.49 0.49 0.06 0.11 0.000 0.000 0.08 0.10 0.000 0.000
0.10 0.70 0.27 0.32 0.001 0.001 0.28 0.32 0.001 0.001
0.25 0.00 0.71 0.79 0.002 0.002 0.70 0.78 0.003 0.003

MLE 0.99 0.003 1.00 0.003
n=250 n=500 ARE

a b RE SD RE SD
MTM MWM MTM MWM MTM MWM MTM MWM MTM MWM

0 0 0.90 0.002 0.89 0.003 0.893
0.05 0.05 0.91 0.91 0.003 0.003 0.93 0.91 0.003 0.004 0.936 0.913
0.10 0.10 0.87 0.88 0.003 0.003 0.87 0.88 0.003 0.002 0.874 0.878
0.25 0.25 0.62 0.68 0.001 0.002 0.62 0.68 0.002 0.002 0.625 0.680
0.49 0.49 0.08 0.10 0.000 0.000 0.09 0.10 0.000 0.000 0.095 0.104
0.10 0.70 0.28 0.32 0.001 0.001 0.28 0.32 0.001 0.001 0.283 0.323
0.25 0.00 0.69 0.78 0.002 0.002 0.68 0.78 0.003 0.003 0.681 0.774

MLE 1.00 0.004 1.00 0.003 1

The entries are relative efficiency (RE) and standard error (SD) values based on 100,000 samples.

4.2 Laplace Model

We continue our simulation study with the Laplace distribution LAP(µ = 2, σ = 5) using

the following parameters:

• Sample size: n = 50, 100, 250, 500.

• Estimators of µ, σ:

– MLE

– Q (MTM or MWM) with: a = b = 0.05; a = b = 0.10; a = b = 0.25;

a = b = 0.49; a = 0.10 and b = 0.70; a = 0.25 and b = 0.00.

Here, the MLE of Laplace distribution is derived from equation (2.22) in Section 2.3.4.

Simulation results are summarized in Tables 4.3 and 4.4. The Laplace distribution

exhibits similar findings as the logistic distribution in Section 4.1.
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Table 4.3: Laplace model–mean values of µ̂/µ and σ̂/σ.

n=50 n=100
a b µ̂/µ σ̂/σ µ̂/µ σ̂/σ

MTM MWM MTM MWM MTM MWM MTM MWM

0 0 1.00 0.98 1.00 0.99
0.05 0.05 1.00 1.00 1.08 1.02 1.00 1.00 1.01 0.99
0.10 0.10 1.00 1.00 1.02 0.99 1.00 1.00 1.01 0.99
0.25 0.25 1.00 1.00 1.09 1.02 1.00 1.00 1.02 0.99
0.49 0.49 1.00 1.00 1.90 1.10 1.00 1.00 0.93 0.54
0.10 0.70 1.04 0.79 1.03 0.91 1.03 0.89 1.02 0.96
0.25 0.00 0.97 0.99 0.98 0.98 1.01 1.01 0.98 0.99

MLE 1.00 0.99 1.00 0.99

n=250 n=500
a b µ̂/µ σ̂/σ µ̂/µ σ̂/σ

MTM MWM MTM MWM MTM MWM MTM MWM

0 0 1.00 1.00 1.00 1.00
0.05 0.05 1.00 1.00 1.02 1.00 1.00 1.00 1.00 1.00
0.10 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25 0.25 1.00 1.00 1.02 1.01 1.00 1.00 1.00 1.00
0.49 0.49 1.00 1.00 1.30 1.04 1.00 1.00 1.06 0.93
0.10 0.70 1.01 0.96 1.01 0.98 1.01 0.98 1.00 0.99
0.25 0.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00

MLE 1.00 1.00 1.00 1.00

The entries are mean values based on 100,000 samples. For µ, most standard errors are ≤
0.001 except for (i) n = 50: a = 0.10, b = 0.70 (MTM = 0.002, MWM = 0.002); a = 0.25,

b = 0.00 (MTM=0.002) (ii) n = 100: a = 0.10, b = 0.70 (MTM=0.003, MWM=0.002).

For σ, most standard errors are ≤ 0.001 except for (i) n = 50: a = b = 0.49 (MTM =

0.005, MWM = 0.003); (ii) n = 100: a = b = 0.49 (MTM = 0.003, MWM = 0.002).
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Table 4.4: Laplace model–RE: finite-sample efficiency of MTMs and MWMs relative to
MLEs.

n=50 n=100
a b RE SD RE SD

MTM MWM MTM MWM MTM MWM MTM MWM
0 0 0.65 0.002 0.64 0.002

0.05 0.05 0.60 0.64 0.002 0.002 0.71 0.67 0.003 0.002
0.10 0.10 0.69 0.66 0.002 0.002 0.70 0.66 0.002 0.002
0.25 0.25 0.52 0.56 0.002 0.002 0.59 0.57 0.002 0.002
0.49 0.49 0.06 0.12 0.000 0.000 0.10 0.13 0.000 0.000
0.10 0.70 0.23 0.28 0.001 0.001 0.24 0.28 0.001 0.001
0.25 0.00 0.58 0.61 0.002 0.002 0.56 0.60 0.002 0.002

MLE 0.91 0.003 0.93 0.003
n=250 n=500 ARE

a b RE SD RE SD
MTM MWM MTM MWM MTM MWM MTM MWM MTM MWM

0 0 0.63 0.001 0.63 0.002 0.633
0.05 0.05 0.69 0.65 0.002 0.002 0.72 0.66 0.002 0.002 0.723 0.663
0.10 0.10 0.71 0.65 0.002 0.002 0.71 0.65 0.002 0.002 0.714 0.653
0.25 0.25 0.58 0.57 0.001 0.001 0.60 0.58 0.001 0.002 0.607 0.575
0.49 0.49 0.09 0.13 0.000 0.000 0.12 0.14 0.000 0.000 0.128 0.140
0.10 0.70 0.24 0.28 0.001 0.001 0.24 0.29 0.001 0.001 0.243 0.287
0.25 0.00 0.55 0.59 0.001 0.001 0.54 0.59 0.002 0.002 0.539 0.588

MLE 0.95 0.001 0.97 0.002 1

The entries are relative efficiency (RE) and standard error (SD) values based on 100,000 samples.
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5 Real Data Illustrations

In this chapter we apply the MTM and MWM to analyze the normalized damage amounts

from the 30 most damaging hurricanes in the United States from 1925 to 1995, as recorded

by Pielke and Landsea (1998).

5.1 Model Fitting

The shape of the density curve (see Figure 5.1) is similar to many insurance loss distribu-

tions, for example, lognormal, log-logistic and log-Laplace distributions. We next discuss

the robustness and fit of the MTM and MWM estimators in each model.
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(b) Log transformation of the Data

Figure 5.1: The histogram of the top 30 damaging hurricanes.

5.1.1 Lognormal Model

A preliminary diagnostics, which we have based on a histogram of log-claims and the log-

normal QQ-plot, shows that the lognormal distribution provides a satisfactory, though

not perfect, overall fit to the data. We now fit the lognormal distribution to the data

using both the MTM and MWM approaches with two pairs of trimming and Winsorizing

proportions a and b. For comparison, we also fit this model using the MLE estimator

(which corresponds to a = b = 0).
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Figure 5.2: Lognormal fits to the original (left panel) and modified (right panel) hurricane
data.
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The initial fits from the MTM and MWM approaches are illustrated in the upper

and lower left panel of Figure 5.2, respectively, where T1 and W1 denote the MTM and

MWM estimator with a = b = 14
30

, respectively. Likewise, T2 and W2 correspond to the

case a = b = 1
30

. The parameter estimates, AREs and goodness-of-fit measurements (Fit)

appear in Table 5.1. The goodness-of-fit is measured using the mean absolute deviation

(1/30)
∑30

i=1 |logF̂−1((j−0.5)/30)−logXj:30| between the log-fitted and log-observed data.

It is clear that the parameter estimates and model fits are strongly dependent on the

trimming (Winsorizing) proportions a and b and thus the proportions should be chosen

carefully. In particular, the T1 and W1 estimators are highly robust but very inefficient,

with the ARE being only 13.9% for MTM and 15.5% for MWM. The MLE procedure,

being most efficient but non-robust, yields a reasonable overall fit, especially when com-

pared to that of T1. A closer examination of the QQ-plot reveals, however, that only the

smallest and the largest observations do not follow the straight line pattern. Therefore,

symmetric trimming (Winsorizing) of one observation at each tail leads to the T2 and

W2 fits which are practically identical to the MLE fit.

Moreover, in terms of accuracy, the MWM approach has obvious advantage over MTM

for high values of a and b (i.e., a = b = 14
30

): the fit error decreases from 0.660 to 0.140.

Note also that it has a slightly better ARE. For small values of a and b (i.e., a = b = 1
30

),

MWM has better ARE and comparable goodness-of-fit.

To see benefits of robust fitting, we have slightly modified the original data set by

replacing the largest observation 72.303 with 723.03. The resulting fits are illustrated in

the right panel of Figure 5.2. The new parameter estimates and goodness-of-fit measure-

ments (marked with superscript ∗) are reported in Table 5.1. As we see, for both MTM

and MWM approaches, the T1, T2 and W1, W2 parameter estimates are not affected by

the data modification whereas the new MLE fit is significantly different.
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5.1.2 Log-Logistic Model

As an alternative to the lognormal model, in this section we repeat the model-fitting ex-

ercise with the log-logistic model. T1, T2 and W1, W2 are based on the same trimming

(Winsorizing) proportions as before. The fitted models are shown in Figure 5.3 and the

results are recorded in Table 5.1.

As in Section 2.3.3, the MLE here is found by using the Newton method. To guar-

antee convergence of the iteration, initial values µ̂start and σ̂start are set as median and

normalized median absolute deviation (MAD) about the median of log-transformed data

X = (x1, . . . , x30) respectively, which are


µ̂0 = Median(log(X));

σ̂0 =
Median|log(X)−Median(log(X))|

0.6745
.

Here, the median and MAD are robust alternatives to the mean and standard deviation,

respectively. Both of them are not influenced by the presence of a large outlier. Note

that for non-robust choices of µ̂start, σ̂start the method fails to converge.

As we see in Figure 5.3 and Table 5.1, the T1, T2 and W1, W2 parameter estimates are

not affected by the data modification while the new MLE fit is slightly different. That

means, MLE in the log-logistic case, being the most efficient estimator, still has some

degree of robustness. Moreover, both the ARE and goodness-of-fit show that MWM

is more appropriate for a = b = 14
30

(i.e., W1) while MTM performs a little better for

a = b = 1
30

(i.e., T2), which matches the findings from Section 3.3.3.
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Figure 5.3: Log-logistic fits to the original (left panel) and modified (right panel) hurricane
data.
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5.1.3 Log-Laplace Model

In this section we re-fit the hurricane data with the log-Laplace model as yet another

alternative to the lognormal model. Figure 5.4 shows that, except for T1, all other

estimators, including the MLE, fit the data well. This is true for both original and

modified data. The success of MLE in this case is not surprising because µ̂MLE is the

median of data (thus the overall MLE inherits some robustness). The most notable

advantage of MWM over MTM is the goodness-of-fit criterion for a = b = 14
30

. Also,

we can see from Table 5.1 that all procedures – MTM, MWM, and MLE – yield nearly

identical estimates of µ. For the scale parameter σ, however, there are some differences.

Most importantly, MTM and MWM are completely unaffected by the data modification,

whereas the MLE of σ is significantly influenced by the single outlier.
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Figure 5.4: Log-Laplace fits to the original (left panel) and modified (right panel) hurri-
cane data.
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5.2 Actuarial Premiums

Consider now estimation of the severity component of the pure premium for an insurance

benefit (Z) that equals to the amount by which a hurricane’s damage (X) exceeds 5

(billion) with a maximum benefit of 20 (billion). That is,

Z =


0, if X ≤ 5;

X − 5, if 5 < X ≤ 25;

20, if X > 25.

(5.1)

If X follows the distribution function F , we seek

Π(F ) = E[X ∧ 25]− E[X ∧ 5]

=

∫ 25

5

(x− 5) dF (x) + 20(1− F (25))

= 20−
∫ 25

5

F (x) dx.

(5.2)

Since it is now most important that our fitted distribution captures the behavior of

the underlying damage distribution between 5 and 25, the MTM and MWM estimators

are most natural with the choices a = 8
30

(which corresponds to the proportion of obser-

vations below 5) and b = 3
30

(which corresponds to the proportion of observations above

25). We denote these MTM and MWM estimators by T3 and W3, respectively.

As we see from the left panels of Figures 5.5, 5.6 and 5.7, for each distribution, the

overall T3 (W3) fits are very similar to those of T2 (W2) and MLE, but they yield a

closer fit than the latter two procedures over the layer of interest, which is [5, 25], and

they are unaffected by the large outlier (modification). Modified data fits are shown in

the right panels of the figures.
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Figure 5.5: Lognormal fits to the original (left panel) and modified (right panel) hurricane
data, with the insurance layer [5, 25].
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Figure 5.6: Log-logistic fits to the original (left panel) and modified (right panel) hurricane
data, with the insurance layer [5, 25].
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Figure 5.7: Log-Laplace fits to the original (left panel) and modified (right panel) hurri-
cane data, with the insurance layer [5, 25].

In Table 5.2 we also provide the actuarial premiums (Pm.) calculated using equation

(5.2) for each fitted model, and we can compare these premiums with the empirical

premium Π(F̂n), where F̂n denotes the empirical distribution function. In addition, Table

5.2 also contains 95% confidence intervals (CIs) for the premium Π(F ). For parametric

CIs, we use the delta method applied to the transformation of parameter estimators given

by equation (5.2) together with the MTM, MWM and MLE asymptotic distributions. The
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resulting confidence intervals are constructed as follows:

Π̂(F )± zα
2

√
̂Var[Π(F )],

where ̂Var[Π(F )] = (Oh)′Σ1 (Oh), Oh = (∂Π
∂µ
, ∂Π
∂σ

)′|(µ̂,σ̂) , Σ1 = σ̂2

n
S or σ̂2

n
S̃, and the level

of CI is 1− α = 0.95.

For constructing the empirical interval, we use the classical central limit theorem and

have that

Π(F̂n) ∼ AN
(
Π(F ), n−1V (F )

)
,

where V (F ) is derived from equations (5.1) and (5.2), that is

V (F ) = E[Z2]− (E[Z])2

=

∫ 25

5

(x− 5)2dF (x) + 400(1− F (25))− (Π(F ))2.

Replacing 72.303 by 723.03 affects the MLE. This is evident from the results in Ta-

ble 5.2. The magnitude of premium shift under the MLE approach is model dependent.

The single outlier inflates the premium by 23% at the lognormal model, 6% at the log-

logistic, and 5% at the log-Laplace distribution. MTM and MWM, on the other hand,

maintain the stability of restricted fit (RFit), premium estimate, and confidence interval.

Moreover, we observe that the MTM and MWM procedures with appropriate cutting

proportions (i.e., the T2, T3 and W2, W3) lead to premium estimates that are closer

to the empirical estimate than those obtained with over-cutting (i.e., T1 and W1) or

under-cutting (i.e., MLE). Also, the main advantage of parametric procedures (MTM,

MWM and MLE) over the empirical approach is that in general they produce shorter

confidence intervals for the measures of interest.

In summary, the illustration we have provided in this section exemplifies the idea

that the MTM and MWM are appropriate choices for various model-fitting situations

including those when a close fit in one or both tails of the distribution is not required.
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6 Conclusion and Discussion

6.1 Summary

In this dissertation, we have presented two methods for estimating the parameters of

claim severity distributions: the method of trimmed moments (MTM) and the method of

Winsorized moments (MWM). For MTM, we closely followed the description presented

by Brazauskas et al. (2009), described the asymptotic properties of the MTM estimators

and provided examples of estimators for location-scale families and several loss models–

exponential, logistic, Laplace and their exponential transformations. The main contribu-

tion of the dissertation is introduction and development of the MWM procedure. MWM

is similar to MTM but now data trimming is replaced with data Winsorizing. Asymptotic

properties of the new procedure have been rigorously studied and small-sample properties

have been investigated using Monte Carlo Simulations.

Further, as demonstrated theoretically and via simulation, both methods can achieve

various degree of robustness, which allows a controlled and desired balance between ro-

bustness and efficiency. Simulation study supplements our theoretical results and points

out that MTM and MWM estimators are not only reliable, but also very computationally

efficient estimators. A general asymptotic theory of new estimators is derived, which can

be used to construct confidence intervals and to test hypotheses as well.

Finally, the effect of model choice and parameter estimation method on risk pricing is

illustrated using actual data that represent hurricane damages in the United States from

1925 to 1995. In particular, the estimated pure premiums for an insurance contract are

computed when the log-logistic, log-Laplace, and lognormal models are fitted to the data

using the MTM, MWM and MLE methods. The real-data study reveals that calculating

the premiums for the layers of insurance coverage is a task for which MTM and MWM

are particularly natural.

52



6.2 Future Work

The findings of this dissertation suggest several directions for future research. In this

section, we raise questions and discuss possible lines of attack for the future research

problems.

6.2.1 MTM or MWM?

The first question to be asked is which method – MTM or MWM – is better? And the

answer is “it depends”. First of all, both methods are equally straightforward computa-

tionally. Secondly, using the same aj and bj proportions in both methods, we can achieve

identical robustness properties for MTM and MWM estimators. Thirdly, in terms of

ARE, the Winsorized estimators perform better when aj and bj are extreme (or large),

but for smaller proportions there is no consistent winner as the outcome depends on

the underlying distribution. This question needs more work and better insight on what

characteristics of the model are the most influential drivers of the ARE of MTM and

MWM.

6.2.2 Optimal Choice of hj, aj and bj

The second question to be asked is how to choose functions hj and proportions aj and

bj? For the MTM procedure, this question was studied by Brazauskas (2009). It was

noted that the choices hj(t) = tj, j = 1, . . . , k, work well for the location-scale families and

hj(t) = (log(t))j, j = 1, . . . , k, for log-location-scale families. One could guess that for the

inverse type distributions hj(t) = t−j, j = 1, . . . , k, might be a natural choice. Due to the

conceptual similarities of MTM and MWM, we expect that similar choices of functions

hj should work for the MWM procedure. The question about proportions aj and bj is

more difficult, and the answers proposed by Brazauskas (2009) rely on diagnostic plots

and other qualitative assessments. To give more rigorous answers, one needs to introduce

new criteria to complement the ARE versus robustness studies. At this moment it is not

clear what criteria we should use, but it would be interesting to explore this question in

depth.
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6.2.3 Actuarial Applications

The real-data example of Chapter 5 shows that MTM and MWM are natural estimators

for pricing insurance layers. This line of work could be future explored in the context

of reinsurance where contracts have similar loss control schemes. In addition, one could

investigate a blended version of MTM and MWM because that would mimic the joint

effect of deductible and policy limit. Taking a step further, we can supplement deductible

and policy limit with the co-insurance factor and construct an estimation method that

is equivalent to insurance payment variables. Also, such methods may provide a useful

alternative in modeling operational risk data, where data truncation from below creates

well-known computational issues for the MLE based procedures.
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Appendix

Appendix A: Covariance-Variance Matrix: General Cases

For convenience, we repeat the following notation:

Ai = ai(1− ai)H
′

i(ai), Bi = b2
iH

′

i(1− bi),

Aj = aj(1− aj)H
′

j(aj), Bj = b2
jH

′

j(1− bj),

W (w) = H
′

i(w)(1− w), V (v) = H
′

j(v)(1− v),

W∗(w) =
W (w)

(1− u)2
, V∗(v) =

V (v)

(1− u)2
.

Case 2: 0 ≤ ai ≤ aj < 1− bi ≤ 1− bj ≤ 1 0 ai aj 1− bi 1− bj 1

The second term is:

=

∫ ai

0

Aj +Bj

(1− u)2

∫ 1−bi

ai

W (w) dw du+

∫ aj

ai

Aj +Bj

(1− u)2

∫ 1−bi

u

W (w) dw du

+

∫ 1−bi

aj

Bj

(1− u)2

∫ 1−bi

u

W (w) dw du

=
ai

1− ai
[
Aj +Bj

] ∫ 1−bi

ai

W (w) dw +
[
Aj +Bj

] ∫ aj

ai

∫ 1−bi

u

W∗(w) dw du

+
[
Bj

] ∫ 1−bi

aj

∫ 1−bi

u

W∗(w) dw du.

The third term is:

=

∫ ai

0

Ai +Bi

(1− u)2

∫ 1−bj

aj

V (v) dv du+

∫ aj

ai

Bi

(1− u)2

∫ 1−bj

aj

V (v) dv du

+

∫ 1−bi

aj

Bi

(1− u)2

∫ 1−bj

u

V (v) dv du
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=

[
ai

1− ai
Ai +

aj
1− aj

Bi

] ∫ 1−bj

aj

V (v) dv +
[
Bi

] ∫ 1−bi

aj

∫ 1−bj

u

V∗(v) dv du.

The fourth term is:

=
[
Ai +Bi

][
Aj +Bj

] ∫ ai

0

1

(1− u)2
du+

[
Bi

][
Aj +Bj

] ∫ aj

ai

1

(1− u)2
du

+
[
Bi

][
Bj

] ∫ 1−bi

aj

1

(1− u)2
du

=
ai

1− ai
[
Ai +Bi

][
Aj +Bj

]
+

aj − ai
(1− ai)(1− aj)

[
Bi

][
Aj +Bj

]
+

1− aj − bi
(1− aj)bi

[
Bi

][
Bj

]
.

Case 3: 0 ≤ ai ≤ aj < 1− bj ≤ 1− bi ≤ 1 0 ai aj 1− bj 1− bi 1

The second term is:

=

∫ ai

0

Aj +Bj

(1− u)2

∫ 1−bi

ai

W (w) dw du+

∫ aj

ai

Aj +Bj

(1− u)2

∫ 1−bi

u

W (w) dw du

+

∫ 1−bj

aj

Bj

(1− u)2

∫ 1−bi

u

W (w) dw du

=
ai

1− ai
[
Aj +Bj

] ∫ 1−bi

ai

W (w) dw +
[
Aj +Bj

] ∫ aj

ai

∫ 1−bi

u

W∗(w) dw du

+
[
Bj

] ∫ 1−bj

aj

∫ 1−bi

u

W∗(w) dw du.

The third term is:

=

∫ ai

0

Ai +Bi

(1− u)2

∫ 1−bj

aj

V (v) dv du+

∫ aj

ai

Bi

(1− u)2

∫ 1−bj

aj

V (v) dv du

+

∫ 1−bj

aj

Bi

(1− u)2

∫ 1−bj

u

V (v) dv du

=

[
ai

1− ai
Ai +

aj
1− aj

Bi

] ∫ 1−bj

aj

V (v) dv +
[
Bi

] ∫ 1−bj

aj

∫ 1−bj

u

V∗(v) dv du.
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The fourth term is:

=
[
Ai +Bi

][
Aj +Bj

] ∫ ai

0

1

(1− u)2
du+

[
Bi

][
Aj +Bj

] ∫ aj

ai

1

(1− u)2
du

+
[
Bi

][
Bj

] ∫ 1−bj

aj

1

(1− u)2
du

=
ai

1− ai
[
Ai +Bi

][
Aj +Bj

]
+

aj − ai
(1− ai)(1− aj)

[
Bi

][
Aj +Bj

]
+

1− aj − bj
(1− aj)bj

[
Bi

][
Bj

]
.

Case 4: 0 ≤ aj ≤ 1− bj < ai ≤ 1− bi ≤ 1 0 aj 1− bj ai 1− bi 1

The second term is:

=

∫ aj

0

Aj +Bj

(1− u)2

∫ 1−bi

ai

W (w) dw du+

∫ 1−bj

aj

Bj

(1− u)2

∫ 1−bi

ai

W (w) dw du

=

[
aj

1− aj
Aj +

1− bj
bj

Bj

] ∫ 1−bi

ai

W (w) dw.

The third term is:

=

∫ aj

0

Ai +Bi

(1− u)2

∫ 1−bj

aj

V (v) dv du+

∫ 1−bj

aj

Ai +Bi

(1− u)2

∫ 1−bj

u

V (v) dv du

=
aj

1− aj
[
Ai +Bi

] ∫ 1−bj

aj

V (v) dv +
[
Ai +Bi

] ∫ 1−bj

aj

∫ 1−bj

u

V∗(v) dv du.

The four term is:

=
[
Ai +Bi

][
Aj +Bj

] ∫ aj

0

1

(1− u)2
du+

[
Ai +Bi

][
Bj

] ∫ 1−bj

aj

1

(1− u)2
du

=
aj

1− aj
[
Ai +Bi

][
Aj +Bj

]
+

1− aj − bj
(1− aj)bj

[
Ai +Bi

][
Bj

]
.
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Case 5: 0 ≤ aj ≤ ai < 1− bj ≤ 1− bi ≤ 1 0 aj ai 1− bj 1− bi 1

The second term is:

=

∫ aj

0

Aj +Bj

(1− u)2

∫ 1−bi

ai

W (w) dw du+

∫ ai

aj

Bj

(1− u)2

∫ 1−bi

ai

W (w) dw du

+

∫ 1−bj

ai

Bj

(1− u)2

∫ 1−bi

u

W (w) dw du

=

[
aj

1− aj
Aj +

ai
1− ai

Bj

] ∫ 1−bi

ai

W (w) dw +
[
Bj

] ∫ 1−bj

ai

∫ 1−bi

u

W∗(w) dw du.

The third term is:

=

∫ aj

0

Ai +Bi

(1− u)2

∫ 1−bj

aj

V (v) dv du+

∫ ai

aj

Ai +Bi

(1− u)2

∫ 1−bj

u

V (v) dv du

+

∫ 1−bj

ai

Bi

(1− u)2

∫ 1−bj

u

V (v) dv du

=
aj

1− aj
[
Ai +Bi

] ∫ 1−bj

aj

V (v) dv +
[
Ai +Bi

] ∫ ai

aj

∫ 1−bj

u

V∗(v) dv du

+
[
Bi

] ∫ 1−bj

ai

∫ 1−bj

u

V∗(v) dv du.

The fourth term is:

=
[
Ai +Bi

][
Aj +Bj

] ∫ aj

0

1

(1− u)2
du+

[
Ai +Bi

][
Bj

] ∫ ai

aj

1

(1− u)2
du

+
[
Bi

][
Bj

] ∫ 1−bj

ai

1

(1− u)2
du

=
aj

1− aj
[
Ai +Bi

][
Aj +Bj

]
+

ai − aj
(1− ai)(1− aj)

[
Ai +Bi

][
Bj

]
+

1− ai − bj
(1− ai)bj

[
Bi

][
Bj

]
.
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Case 6: 0 ≤ aj ≤ ai < 1− bi ≤ 1− bj ≤ 1 0 aj ai 1− bi 1− bj 1

The second term is:

=

∫ aj

0

Aj +Bj

(1− u)2

∫ 1−bi

ai

W (w) dw du+

∫ ai

aj

Bj

(1− u)2

∫ 1−bi

ai

W (w) dw du

+

∫ 1−bi

ai

Bj

(1− u)2

∫ 1−bi

u

W (w) dw du

=

[
ai

1− aj
Aj +

ai
1− ai

Bj

] ∫ 1−bi

ai

W (w) dw +
[
Bj

] ∫ 1−bi

ai

∫ 1−bi

u

W∗(w) dw du.

The third term is:

=

∫ aj

0

Ai +Bi

(1− u)2

∫ 1−bj

aj

V (v) dv du+

∫ ai

aj

Ai +Bi

(1− u)2

∫ 1−bj

u

V (v) dv du

+

∫ 1−bi

ai

Bi

(1− u)2

∫ 1−bj

u

V (v) dv du

=
aj

1− aj
[
Ai +Bi

] ∫ 1−bj

aj

V (v) dv +
[
Ai +Bi

] ∫ ai

aj

∫ 1−bj

u

V∗(v) dv du

+
[
Bi

] ∫ 1−bi

ai

∫ 1−bj

u

V∗(v) dv du.

The fourth term is:

=
[
Ai +Bi

][
Aj +Bj

] ∫ aj

0

1

(1− u)2
du+

[
Ai +Bi

][
Bj

] ∫ ai

aj

1

(1− u)2
du

+
[
Bi

][
Bj

] ∫ 1−bi

ai

1

(1− u)2
du

=
aj

1− aj
[
Ai +Bi

][
Aj +Bj

]
+

ai − aj
(1− ai)(1− aj)

[
Ai +Bi

][
Bj

]
+

1− ai − bi
(1− ai)bi

[
Bi

][
Bj

]
.
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Appendix B: Covariance-Variance Matrix: Location–Scale Fam-

ilies

We begin by defining the terms c̃∗, D∗, E∗, G∗, which only depend on the parameter-free

function F0, and the Winsorizing fractions a and/or b.

c̃∗1 =

∫ 1−b

a

∫ 1−b

a

{min(w, v)− wv} dF−1
0 (v) dF−1

0 (w);

c̃∗2 =

∫ 1−b

a

∫ 1−b

a

{min(w, v)− wv}F−1
0 (v) dF−1

0 (v) dF−1
0 (w);

c̃∗3 =

∫ 1−b

a

∫ 1−b

a

{min(w, v)− wv}F−1
0 (v)F−1

0 (w) dF−1
0 (v) dF−1

0 (w);

a(1− a)H
′

1(a) = a(1− a)σ
[
F−1

0 (a)
]′

= σ a(1− a)
[
F−1

0 (a)
]′

= σD∗1a;

b2H
′

1(1− b) = b2σ
[
F−1

0 (1− b)
]′

= σ b2
[
F−1

0 (1− b)
]′

= σD∗1b;

a(1− a)H
′

2(a) = a(1− a)

{
2µσ

[
F−1

0 (a)
]′

+ 2σ2 F−1
0 (a)

[
F−1

0 (a)
]′}

= 2µσ a(1− a)
[
F−1

0 (a)
]′

+ 2σ2a(1− a)F−1
0 (a)

[
F−1

0 (a)
]′

= 2µσD∗1a + 2σ2D∗2a;

b2H
′

2(1− b) = b2

{
2µσ

[
F−1

0 (1− b)
]′

+ 2σ2F−1
0 (1− b)

[
F−1

0 (1− b)
]′}

= 2µσ b2
[
F−1

0 (1− b)
]′

+ 2σ2 b2F−1
0 (1− b)

[
F−1

0 (1− b)
]′

= 2µσD∗1b + 2σ2D∗2b;

∫ 1−b

a

H
′

1(w)(1− w) dw = σ

∫ 1−b

a

(1− w) dF−1
0 (w) = σ E∗1 ;

∫ 1−b

a

H
′

2(v)(1− v) dv = 2µσ

∫ 1−b

a

(1− v) dF−1
0 (v) + 2σ2

∫ 1−b

a

(1− v)F−1
0 (v) dF−1

0 (v)

= 2µσ E∗1 + 2σ2E∗2 ;
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∫ 1−b

a

∫ 1−b

u

H
′
1(w)(1− w)

(1− u)2
dw du = σ

∫ 1−b

a

∫ 1−b

u

1− w
(1− u)2

dF−1
0 (w) du = σ G∗1;

∫ 1−b

a

∫ 1−b

u

H
′
2(v)(1− v)

(1− u)2
dw du = 2µσ

∫ 1−b

a

∫ 1−b

u

1− v
(1− u)2

dF−1
0 (v) du

+ 2σ2

∫ 1−b

a

∫ 1−b

u

1− v
(1− u)2

F−1
0 (v) dF−1

0 (v) du

= 2µσ G∗1 + 2σ2G∗2.

Then the entries of the covariance-variance matrix are:

σ2
11 = σ2c̃∗1 + 2

[
a

1− a
(σD∗1a + σD∗1b)σ E

∗
1 + σD∗1b σ G

∗
1

]
+

a

1− a
(
σD∗1a + σD∗1b

)2
+

1− a− b
(1− a)b

(σD∗1b)
2

= σ2

[
c̃∗1 +

2a

1− a
(D∗1a +D∗1b)E

∗
1 + 2D∗1bG

∗
1 +

a

1− a
(D∗1a +D∗1b)

2 +
1− a− b
(1− a)b

(D∗1b)
2

]

= σ2 l∗1;

σ2
12 = σ2

21 = 2µσ2 c̃∗1 + 2σ3 c̃∗2 +
a

1− a
(
2µσD∗1a + 2σ2D∗2a + 2µσD∗1b + 2σ2D∗2b

)
σ E∗1 +

(
2µσD∗1b

+ 2σ2D∗2b
)
σ G∗1 +

a

1− a
(
σD∗1a + σD∗1b

)(
2µσ E∗1 + 2σ2E∗2

)
+ σD∗1b

(
2µσ G∗1 + 2σ2G∗2

)
+

a

1− a
(
σD∗1a + σD∗1b

)(
2µσD∗1a + 2σ2D∗2a + 2µσD∗1b + 2σ2D∗2b

)
+

1− a− b
(1− a)b

(
σD∗1b

)(
2µσD∗1b + 2σ2D∗2b

)
= 2µσ2

[
c̃∗1 +

2a

1− a
(D∗1a +D∗1b)E

∗
1 + 2D∗1bG

∗
1 +

a

1− a
(D∗1a +D∗1b)

2 +
1− a− b
(1− a)b

(D∗1b)
2

]

+ 2σ3

{
c̃∗2 +

a

1− a
[(
D∗1a +D∗1b

)
E∗2 +

(
D∗2a +D∗2b

)
E∗1
]

+
(
D∗1bG

∗
2 +D∗2bG

∗
1

)
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+
a

1− a
(
D∗1a +D∗1b

)(
D∗2a +D∗2b

)
+

1− a− b
(1− a)b

D∗1bD
∗
2b

}

= 2µσ2 l∗1 + 2σ3 l∗2;

σ2
22 = 4µ2σ2 c̃∗1 + 8µσ3 c̃∗2 + 4σ4 c̃∗3 +

2a

1− a
(
2µσD∗1a + 2σ2D∗2a + 2µσD∗1b + 2σ2D∗2b

)(
2µσ E∗1 + 2σ2E∗2

)
+ 2
(
2µσD∗1b + 2σ2D∗2b

)(
2µσ G∗1 + 2σ2G∗2

)
+

a

1− a
(
2µσD∗1a + 2σ2D∗2a + 2µσD∗1b + 2σ2D∗2b

)2

+
1− a− b
(1− a)b

(
2µσD∗1b + 2σ2D∗2b

)2

= 4µ2σ2

[
c̃∗1 +

2a

1− a
(D∗1a +D∗1b)E

∗
1 + 2D∗1bG

∗
1 +

a

1− a
(D∗1a +D∗1b)

2 +
1− a− b
(1− a)b

(D∗1b)
2

]

+ 8µσ3

{
c̃∗2 +

a

1− a
[(
D∗1a +D∗1b

)
E∗2 +

(
D∗2a +D∗2b

)
E∗1
]

+
(
D∗1bG

∗
2 +D∗2bG

∗
1

)
+

a

1− a
(
D∗1a +D∗1b

)(
D∗2a +D∗2b

)
+

1− a− b
(1− a)b

D∗1bD
∗
2b

}
+ 4σ4

[
c̃∗3 +

2a

1− a
(D∗2a +D∗2b)E

∗
2

+ 2D∗2bG
∗
2 +

a

1− a
(D∗2a +D∗2b)

2 +
1− a− b
(1− a)b

(D∗2b)
2

]

= 4µ2σ2 l∗1 + 8µσ3 l∗2 + 4σ4 l∗3.
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Appendix C: Computer Code: ARE for Exponential Distribution

# Pareto ARE−− M W M approach .R f i l e

Ca l cu la t e ARE f o r one−parameter d i s t r i b u t i o n

l i b r a r y ( cubature )

f <− f unc t i on ( x ) { ( min ( x [ 1 ] , x [2 ])−x [ 1 ] ∗ x [2 ] )/(1 −x [1 ] )/(1 −x [ 2 ] ) }

g <− f unc t i on ( x ) { l og (1−x ) } # Io ( a ,1−b)

# ”x” i s vec to r J ( ( a ,1−b ) , ( a ,1−b ) )

a<−c ( 0 . 0 0 0 0 0 0 1 , 0 . 0 5 , 0 . 1 , 0 . 1 5 , 0 . 2 5 , 0 . 4 9 , 0 . 7 , 0 . 8 5 )

b<−c ( 0 . 0 0 0 0 0 0 1 , 0 . 0 5 , 0 . 1 , 0 . 1 5 , 0 . 2 5 , 0 . 4 9 , 0 . 7 , 0 . 8 5 )

ARE <− array (0 , dim=c ( l ength ( a ) , l ength (b ) ) )

mu <− array (0 , dim=c ( l ength ( a ) , l ength (b ) ) )

sigma2 <− array (0 , dim=c ( l ength ( a ) , l ength (b ) ) )

f o r ( i in 1 : l ength ( a ) )

{

f o r ( j in 1 : l ength (b ) )

{

i f ( a [ i ]+b [ j ]>=1)break

I0<− i n t e g r a t e ( g , lower=c ( a [ i ] ) , upper = c(1−b [ j ] ) )

J0<−adapt Integrate ( f , lowerLimit = c ( a [ i ] , a [ i ] ) , upperLimit=c(1−b [ j ] , 1−b [ j ] ) )

mu[ i , j ]= I0 [ [ 1 ] ] + a [ i ]∗ l og (1−a [ i ])+b [ j ]∗ l og (b [ j ] )

sigma2 [ i , j ]=J0 [ [1 ] ]+2∗ (1 − a [ i ]−b [ j ])/(1−a [ i ] ) ∗ ( a [ i ]ˆ2+a [ i ]∗b [ j ]−b [ j ])−

2∗b [ j ]∗ l og (b [ j ]/(1−a [ i ] ) )+ a [ i ]ˆ3/(1−a [ i ])+2∗a [ i ] ˆ2∗b [ j ]ˆ2/(1−a [ i ] ) / b [ j ]

+b [ j ]∗(1−b [ j ] )

ARE[ i , j ]<−mu[ i , j ] ˆ2/ sigma2 [ i , j ]

}

}

ARE
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Appendix D: Computer Code: ARE for Laplace Distribution

Calcu la te ARE−− M W M approach f o r two−parameter d i s t r i b u t i o n s

%Laplace ARE−− M W M , Matlab F i l e

%#############################################################################

% For L o g i s t i c , we change the f u n c t i o n s f , g , h , A, C and D, they depend on

the d i s t r i b u t i o n . We a l s o need to change Fi sher matrix , o the r s could keep same .

%#############################################################################

f1=@(x , y ) (0.5+min (x , y)−(x +0 .5 ) .∗ ( y +0.5)) ./(1−2.∗ abs ( x ) ) ./ (1 −2 .∗ abs ( y ) ) ;

f 2=@(x , y ) −(0.5+min (x , y)−(x +0 .5 ) .∗ ( y +0.5)) ./(1−2.∗ abs ( x ) ) ./ (1 −2 .∗ abs ( y ) )

.∗ s i gn ( x ) . ∗ l og (1−2.∗ abs ( x ) ) ;

f 3=@(x , y ) (0.5+min (x , y)−(x +0 .5 ) .∗ ( y +0.5)) ./(1−2.∗ abs ( x ) ) ./ (1 −2 .∗ abs ( y ) )

.∗ s i gn ( x ) . ∗ l og (1−2.∗ abs ( x ) ) . ∗ s i gn ( y ) . ∗ l og (1−2.∗ abs ( y ) ) ;

g1=@(x , y ) −s i gn ( x ) . ∗ l og (1−2.∗ abs ( x ) ) ;

g2=@(x , y ) ( s i gn ( x ) . ∗ l og (1−2.∗ abs ( x ) ) ) . ˆ 2 ;

g3=@(x , y ) 2.∗(1−x ) ./(1 −2 .∗ abs (x−0 . 5 ) ) ;

g4=@(x , y ) −2.∗(1−x ) ./(1 −2 .∗ abs (x−0 .5 ) ) .∗ s i gn (x−0 .5) .∗ l og (1−2.∗ abs (x−0 . 5 ) ) ;

h1=@(x , y ) (x>y ) .∗2 .∗ (1 −x ) ./(1 −2 .∗ abs (x−0.5))./(1−y ) . ˆ 2 ;

h2=@(x , y ) −2.∗(x>y).∗(1−x ) ./(1 −2 .∗ abs (x−0 .5 ) ) .∗ s i gn (x−0 .5) .∗ l og (1−2.∗ abs (x−0.5))

./(1−y ) . ˆ 2 ;

a = [ 0 . 0 0 0 0 0 1 , 0 . 0 5 , 0 . 1 , 0 . 1 5 , 0 . 2 5 , 0 . 4 9 , 0 . 7 , 0 . 8 5 ] ;

b = [ 0 . 0 0 0 0 0 1 , 0 . 0 5 , 0 . 1 , 0 . 1 5 , 0 . 2 5 , 0 . 4 9 , 0 . 7 , 0 . 8 5 ] ;

Mu 1=ze ro s ( l ength ( a ) , l ength (b ) ) ;

Mu 2=ze ro s ( l ength ( a ) , l ength (b ) ) ;

ARE=ze ro s ( l ength ( a ) , l ength (b ) ) ;

Theta=ze ro s ( l ength ( a ) , l ength (b ) ) ;

Sigma=ze ro s ( l ength ( a ) , l ength (b ) ) ;

I =[1 , 0 ; 0 , 1 ] ; %Fisher 1/ sigma ˆ2∗ [ 1 , 0 ; 0 , 1 ]

%#########################################################################

For L o g i s t i c I =[1/3 , 0 ; 0 , (3+ pi ˆ 2 ) / 9 ] ; %Fisher 1/ sigma ˆ2∗ [ 1/3 , 0 ; 0 ; (3+ pi ˆ2 )/9 ]

%#########################################################################

Fisher=inv ( I ) ;

f o r i =1: l ength ( a )

f o r j =1: l ength (b)

i f a ( i )+b( j )>=1,

break ;
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end

A1=4.∗dblquad ( f1 , a ( i )−0.5 ,1−b( j )−0.5 , a ( i )−0.5 ,1−b( j ) −0 .5) ;

A2=4.∗dblquad ( f2 , a ( i )−0.5 ,1−b( j )−0.5 , a ( i )−0.5 ,1−b( j ) −0 .5) ;

A3=4.∗dblquad ( f3 , a ( i )−0.5 ,1−b( j )−0.5 , a ( i )−0.5 ,1−b( j ) −0 .5) ;

C1=quad ( g1 , a ( i )−0.5 ,1−b( j )−0.5)−a ( i ) . ∗ s i gn ( a ( i ) −0 .5) .∗ l og (1−2.∗ abs ( a ( i )−0.5))

−b( j ) . ∗ s i gn (1−b( j ) −0 .5) .∗ l og (1−2.∗ abs(1−b( j ) −0 .5 ) ) ;

C2=quad ( g2 , a ( i )−0.5 ,1−b( j )−0.5)+a ( i ) . ∗ ( s i gn ( a ( i ) −0 .5) .∗ l og (1−2.∗ abs ( a ( i ) −0 .5 ) ) ) . ˆ2

+b( j ) . ∗ ( s i gn (1−b( j ) −0 .5) .∗ l og (1−2.∗ abs(1−b( j ) −0 . 5 ) ) ) . ˆ 2 ;

D 1a=2.∗a ( i ).∗(1−a ( i ) ) . / (1 −2 .∗ abs ( a ( i ) −0 .5 ) ) ;

D 1b=2.∗(b( j ) ) . ˆ2 . / (1 −2 .∗ abs(1−b( j ) −0 .5 ) ) ;

D 2a=−2.∗a ( i ).∗(1−a ( i ) ) . / (1 −2 .∗ abs ( a ( i ) −0 .5 ) ) .∗ s i gn ( a ( i ) −0 .5) .∗ l og (1−2.∗ abs ( a ( i ) −0 .5 ) ) ;

D 2b=−2.∗(b( j ) ) . ˆ2 . / (1 −2 .∗ abs(1−b( j ) −0 .5 ) ) .∗ s i gn (1−b( j ) −0 .5) .∗ l og (1−2.∗ abs(1−b( j ) −0 .5 ) ) ;

E1=quad ( g3 , a ( i ) ,1−b( j ) ) ;

E2=quad ( g4 , a ( i ) ,1−b( j ) ) ;

F1=dblquad ( h1 , a ( i ) ,1−b( j ) , a ( i ) ,1−b( j ) ) ;

F2=dblquad ( h2 , a ( i ) ,1−b( j ) , a ( i ) ,1−b( j ) ) ;

C1 star=A1+2.∗a ( i )./(1−a ( i ) ) . ∗ ( D 1a+D 1b ) . ∗E1+2.∗D 1b .∗F1+a ( i )./(1−a ( i ) )

. ∗ ( D 1a+D 1b).ˆ2+(1−a ( i )−b( j )) ./(1− a ( i ) ) . / b( j ) . ∗ ( D 1b ) . ˆ 2 ;

C2 star=A2+a ( i )./(1−a ( i ) ) . ∗ ( ( D 1a+D 1b ) . ∗E2+(D 2a+D 2b ) . ∗E1)+(D 1b .∗F2

+D 2b .∗F1)+a ( i )./(1−a ( i ) ) . ∗ ( D 1a+D 1b ) . ∗ ( D 2a+D 2b)+(1−a ( i )−b( j )) ./(1− a ( i ) )

. / b( j ) . ∗D 1b .∗D 2b ;

C3 star=A3+2.∗a ( i )./(1−a ( i ) ) . ∗ ( D 2a+D 2b ) . ∗E2+2.∗D 2b .∗F2+a ( i )./(1−a ( i ) )

. ∗ ( D 2a+D 2b).ˆ2+(1−a ( i )−b( j )) ./(1− a ( i ) ) . / b( j ) . ∗ ( D 2b ) . ˆ 2 ;

s1 ( i , j )=C1 star .∗C2.ˆ2−2.∗C1.∗C2.∗ C2 star+C1 . ˆ 2 . ∗ C3 star ;

s2 ( i , j )=−C1 star .∗C1.∗C2+C2 .∗ C2 star+C1 . ˆ 2 . ∗ C2 star−C1.∗ C3 star ;

s3=s2 ;

s4 ( i , j )=C1 star .∗C1.ˆ2−2.∗C1.∗ C2 star+C3 star ;

D( i , j )=(C2−C1 . ˆ 2 ) . ˆ 2 ;

S=1./D( i , j ) . ∗ [ s1 ( i , j ) , s2 ( i , j ) ; s3 ( i , j ) , s4 ( i , j ) ] ;

ARE( i , j )=( det ( F i sher )/ det (S ) ) . ˆ 0 . 5 ;

end

end

ARE
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Appendix E: Computer Code: Simulation Study

% L o g i s t i c s imulat ion− f o r both M T M and M W M Matlab f i l e

%####################################################################

For Laplace s imulat ion , we change g , C Win , they depend on the d i s t r i b u t i o n ,

and we a l s o change the f i s h e r matrix

%####################################################################

c l c ; c l e a r ;

x0=1; Theta0=5; Sigma0=2;

g1=@(x , y ) −l og ( 1 . / x−1) ;

g2=@(x , y ) ( l og ( 1 . / x−1) ) . ˆ2 ;

N repeat =10; N sample =10000; N s i z e =50;

a = [ 0 . 0 0 0 0 0 0 1 , 0 . 0 5 , 0 . 1 , 0 . 2 5 , 0 . 4 9 , 0 . 1 , 0 . 2 5 ] ;

b = [ 0 . 0 0 0 0 0 0 1 , 0 . 0 5 , 0 . 1 , 0 . 2 5 , 0 . 4 9 , 0 . 7 , 0 . 0 0 0 0 0 0 1 ] ;

Mean Sigma=ze ro s ( N repeat , l ength ( a ) ) ; Mean Theta=ze ro s ( N repeat , l ength ( a ) ) ;

Mean RE=ze ro s ( N repeat , l ength ( a ) ) ;

Mean Sigma Win=ze ro s ( N repeat , l ength ( a ) ) ; Mean Theta Win=ze ro s ( N repeat , l ength ( a ) ) ;

Mean RE Win=ze ro s ( N repeat , l ength ( a ) ) ;

RE1=ze ro s ( N repeat , l ength ( a ) ) ; RE Win=ze ro s ( N repeat , l ength ( a ) ) ;

I =1./Sigma0 . ˆ 2 . ∗ [ 1 / 3 , 0 ; 0 , (3+ pi ˆ 2 ) / 9 ] ; %Fisher 1/ sigma ˆ2∗ [ 1/3 , 0 ; 0 ; (3+ pi ˆ2 )/9 ]

F i sher=inv ( I ) . / N s i z e ; %

f o r N=1: N repeat

N

Mu 1=ze ro s ( l ength ( a ) , N sample ) ; Mu 2=ze ro s ( l ength ( a ) , N sample ) ;

Mu 1 Win=ze ro s ( l ength ( a ) , N sample ) ; Mu 2 Win=ze ro s ( l ength ( a ) , N sample ) ;

Theta MTM=zero s ( l ength ( a ) , N sample ) ; Sigma MTM=zero s ( l ength ( a ) , N sample ) ;

Theta MTM Win=ze ro s ( l ength ( a ) , N sample ) ; Sigma MTM Win=ze ro s ( l ength ( a ) , N sample ) ;

f o r j =1:N sample

U=rand ( N size , 1 ) ;

x=Theta0−Sigma0∗ l og ( 1 . /U−1);

#####################################################################

Laplace x=Theta0−Sigma0∗ s i gn (U−0 .5) .∗ l og (1−2.∗ abs (U−0 . 5 ) ) ;

#####################################################################

X=s o r t ( x ) ;

f o r i =1: l ength ( a )

mu 1=0;
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mu 2=0;

C1=1./(1−a ( i )−b( i ) ) . ∗ quad ( g1 , a ( i ) ,1−b( i ) ) ;

C2=1./(1−a ( i )−b( i ) ) . ∗ quad ( g2 , a ( i ) ,1−b( i ) ) ;

C1 Win=C1.∗(1−a ( i )−b( i ))−a ( i ) . ∗ l og ( 1 . / a ( i )−1)

−b( i ) . ∗ l og (1./(1−b( i ))−1) ;

C2 Win=C2.∗(1−a ( i )−b( i ))+a ( i ) . ∗ ( l og ( 1 . / a ( i )−1).ˆ2)

+b( i ) . ∗ ( l og (1./(1−b( i ) ) −1 ) . ˆ2 ) ;

f o r n=f l o o r ( a ( i ) . ∗ N s i z e )+1 :1 : c e i l ( N s ize−b( i ) . ∗ N s i z e )

mu 1=mu 1+X(n ) ;

mu 2=mu 2+(X(n ) ) . ˆ 2 ;

end

Mu 1( i , j )=mu 1 . / ( c e i l ( N s ize−b( i ) . ∗ N s i z e )− f l o o r ( a ( i ) . ∗ N s i z e ) ) ;

Mu 2( i , j )=mu 2 . / ( c e i l ( N s ize−b( i ) . ∗ N s i z e )− f l o o r ( a ( i ) . ∗ N s i z e ) ) ;

Mu 1 Win( i , j )=1./ N s i z e . ∗ ( mu 1+X( f l o o r ( a ( i ) . ∗ N s i z e )+1)

.∗ f l o o r ( a ( i ) . ∗ N s i z e )+X( c e i l ( N s ize−b( i ) . ∗ N s i z e ) ) . ∗ f l o o r (b( i ) . ∗ N s i z e ) ) ;

Mu 2 Win( i , j )=1./ N s i z e . ∗ ( mu 2+X( f l o o r ( a ( i ) . ∗ N s i z e )+1) .ˆ2 .∗ f l o o r ( a ( i )

.∗ N s i z e )+X( c e i l ( N s ize−b( i ) . ∗ N s i z e ) ) . ˆ 2 . ∗ f l o o r (b( i ) . ∗ N s i z e ) ) ;

Sigma MTM( i , j )= s q r t ( ( Mu 2( i , j )−Mu 1( i , j ) . ˆ 2 ) . / ( C2−C1 . ˆ 2 ) ) ;

Theta MTM( i , j )=Mu 1( i , j )−C1.∗Sigma MTM( i , j ) ;

Sigma MTM Win( i , j )= s q r t ( ( Mu 2 Win( i , j )−Mu 1 Win( i , j ) . ˆ 2 ) . / ( C2 Win−C1 Win . ˆ 2 ) ) ;

Theta MTM Win( i , j )=(Mu 1 Win( i , j )−C1 Win .∗Sigma MTM Win( i , j ) ) ;

end

end

MSE Theta=ze ro s ( l ength ( a ) , 1 ) ; MSE Sigma=ze ro s ( l ength ( a ) , 1 ) ;

COV T S=ze ro s ( l ength ( a ) , 1 ) ; MSE Theta Win=ze ro s ( l ength ( a ) , 1 ) ;

MSE Sigma Win=ze ro s ( l ength ( a ) , 1 ) ; COV T S Win=ze ro s ( l ength ( a ) , 1 ) ;

f o r i =1: l ength ( a )

f o r j =1:N sample

MSE Sigma( i )=MSE Sigma( i )+(Sigma MTM( i , j )−Sigma0 ) . ˆ 2 ;

%Mean squared e r r o r MTM

MSE Theta ( i )=MSE Theta ( i )+(Theta MTM( i , j )−Theta0 ) . ˆ 2 ;

COV T S( i )=COV T S( i )+(Theta MTM( i , j )−Theta0 ) . ∗ ( Sigma MTM( i , j )−Sigma0 ) ;

MSE Sigma Win( i )=MSE Sigma Win( i )+(Sigma MTM Win( i , j )−Sigma0 ) . ˆ 2 ;

%Mean squared e r r o r MTM

MSE Theta Win( i )=MSE Theta Win( i )+(Theta MTM Win( i , j )−Theta0 ) . ˆ 2 ;
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COV T S Win( i )=COV T S Win( i )+(Theta MTM Win( i , j )

−Theta0 ) . ∗ ( Sigma MTM Win( i , j )−Sigma0 ) ;

end

S MTM=MSE Theta ( i ) . ∗MSE Sigma( i )−COV T S( i ) . ˆ 2 ;

% determinant o f covar iance matrix MTM

S MTM=vpa (S MTM, 3 0 ) ;

S MTM Win=MSE Theta Win( i ) . ∗MSE Sigma Win( i )−COV T S Win( i ) . ˆ 2 ;

% determinant o f covar iance matrix MTM

S MTM Win=vpa (S MTM Win, 3 0 ) ;

RE1(N, i )=(N sample . ˆ 2 . ∗ det ( F i sher ) . /S MTM) . ˆ 0 . 5 ; % RE

RE Win(N, i )=(N sample . ˆ 2 . ∗ det ( F i sher ) . /S MTM Win) . ˆ 0 . 5 ; % RE

end

Mean Sigma (N, : )= mean(Sigma MTM ’ ) . / Sigma0 ;

Mean Theta (N, : )= mean(Theta MTM ’ ) . / Theta0 ;

Mean Sigma Win (N, : )= mean(Sigma MTM Win ’ ) . / Sigma0 ;

Mean Theta Win (N, : )= mean(Theta MTM Win ’ ) . / Theta0 ;

end

MEAN final Theta=mean( Mean Theta ) %mean o f the 10 r epea t s

MEAN final Sigma=mean( Mean Sigma )

Var Theta=std ( Mean Theta ) . / s q r t ( N repeat )

Var Sigma=std ( Mean Sigma ) . / s q r t ( N repeat )

RE1 f ina l=mean(RE1)

Var R1=std (RE1) . / s q r t ( N repeat )

MEAN final Theta Win=mean( Mean Theta Win )

MEAN final Sigma Win=mean( Mean Sigma Win )

Var Theta Win=std ( Mean Theta Win ) . / s q r t ( N repeat )

Var Sigma Win=std ( Mean Sigma Win ) . / s q r t ( N repeat )

RE Win final=mean(RE Win)

Var R Win=std (RE Win ) . / s q r t ( N repeat )
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Appendix F: Computer Code: Real Data Illustrations

% Winsorized lognormal−r e a l data model . Matlab f i l e

%####################################################################

For L o g i s t i c and Laplace Real Data I l l u s t r a t i o n s , we change f , g , h , C ,D,

they depend on the d i s t r i b u t i o n , o the r s keep same .

%####################################################################

c l c ; c l e a r ;

c l c ; c l e a r ;

Data0 =[72 . 3030 , 33 . 0940 , 26 . 6190 , 22 . 6020 , 16 . 8640 , 16 . 6290 , 13 . 7950 , 12 . 4340 , 12 . 0480 , 10 . 9650 ,

1 0 . 7 0 5 0 , 1 0 . 2 3 2 0 , 9 . 3 8 0 0 , 9 . 0 6 6 0 , 8 . 3 0 8 0 , 7 . 0 6 9 0 , 7 . 0 3 9 0 , 6 . 5 3 6 0 , 6 . 3 1 3 0 , 6 . 2 9 3 0 , 5 . 8 3 8 0 , 5 . 3 6 8 0 ,

4 . 0 5 6 0 , 3 . 3 3 8 0 , 3 . 1 0 8 0 , 3 . 0 0 0 0 , 2 . 4 3 5 0 , 2 . 3 9 9 0 , 2 . 3 9 6 0 , 2 . 2 6 6 ] ;

Data=s o r t ( Data0 ) ; N=length ( Data ) ;

x0=0; X=log ( Data−x0 ) ;

f 1=@(x , y ) ( min (x , y)−x .∗ y ) . ∗ exp ( . 5 . ∗ ( norminv (x , 0 , 1 ) ) . ˆ 2 + . 5 . ∗ ( norminv (y , 0 , 1 ) ) . ˆ 2 ) ;

f 2=@(x , y ) ( min (x , y)−x .∗ y ) . ∗ exp ( . 5 . ∗ ( norminv (x , 0 , 1 ) ) . ˆ 2

+.5 .∗ ( norminv (y , 0 , 1 ) ) . ˆ 2 ) . ∗ norminv (x , 0 , 1 ) ;

f 3=@(x , y ) ( min (x , y)−x .∗ y ) . ∗ exp ( . 5 . ∗ ( norminv (x , 0 , 1 ) ) . ˆ 2

+.5 .∗ ( norminv (y , 0 , 1 ) ) . ˆ 2 ) . ∗ norminv (x , 0 , 1 ) . ∗ norminv (y , 0 , 1 ) ;

g1=@(x , y ) norminv (x , 0 , 1 ) ;

g2=@(x , y ) ( norminv (x , 0 , 1 ) ) . ˆ 2 ;

g3=@(x , y ) (1−x ) . ∗ exp ( 0 . 5 . ∗ ( norminv (x , 0 , 1 ) ) . ˆ 2 ) ;

g4=@(x , y ) (1−x ) . ∗ norminv (x , 0 , 1 ) . ∗ exp ( 0 . 5 . ∗ ( norminv (x , 0 , 1 ) ) . ˆ 2 ) ;

h1=@(x , y ) (x>y).∗(1−x ) . ∗ exp ( 0 . 5 . ∗ ( norminv (x , 0 , 1 ) ) . ˆ 2 ) . / ( 1 − y ) . ˆ 2 ;

h2=@(x , y ) (x>y).∗(1−x ) . ∗ norminv (x , 0 , 1 ) . ∗ exp ( 0 . 5 . ∗ ( norminv (x , 0 , 1 ) ) . ˆ 2 ) . / ( 1 − y ) . ˆ 2 ;

a =[0 .0000001 ,14/30 , 1/30 , 8 / 3 0 ] ;

b=[0 .0000001 ,14/30 , 1/30 , 3 / 3 0 ] ;

A=length ( a ) ;

Data Sim=ze ro s (A,N) ;

ARE=ze ro s (A, 1 ) ;

x0=0;

Mu 1=ze ro s (A, 1 ) ; Mu 2=ze ro s (A, 1 ) ;

Theta=ze ro s (A, 1 ) ; Sigma=ze ro s (A, 1 ) ;

F i t=ze ro s (A, 1 ) ; F i t R e s t r i t=ze ro s (A, 1 ) ;

F 25=ze ro s (A, 1 ) ;
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Premium=ze ro s (A, 1 ) ;

G prime Theta=ze ro s (A, 1 ) ; G prime Sigma=ze ro s (A, 1 ) ;

CI Low=ze ro s (A, 1 ) ; CI Up=ze ro s (A, 1 ) ;

f o r i =1:A

A1=2∗pi .∗ dblquad ( f1 , a ( i ) ,1−b( i ) , a ( i ) ,1−b( i ) ) ;

A2=2∗pi .∗ dblquad ( f2 , a ( i ) ,1−b( i ) , a ( i ) ,1−b( i ) ) ;

A3=2∗pi .∗ dblquad ( f3 , a ( i ) ,1−b( i ) , a ( i ) ,1−b( i ) ) ;

C1=quad ( g1 , a ( i ) ,1−b( i ))+a ( i ) . ∗ norminv ( a ( i ))+b( i ) . ∗ norminv(1−b( i ) ) ;

C2=quad ( g2 , a ( i ) ,1−b( i ))+a ( i ) . ∗ ( norminv ( a ( i ) ) ) .ˆ2+ b( i ) . ∗ ( norminv(1−b( i ) ) ) . ˆ 2 ;

D 1a=s q r t (2∗ pi ) . ∗ a ( i ).∗(1−a ( i ) ) . ∗ exp ( 0 . 5 . ∗ ( norminv ( a ( i ) ) ) . ˆ 2 ) ;

D 1b=s q r t (2∗ pi ) . ∗ ( b( i ) ) . ˆ 2 . ∗ exp ( 0 . 5 . ∗ ( norminv(1−b( i ) ) ) . ˆ 2 ) ;

D 2a=s q r t (2∗ pi ) . ∗ a ( i ).∗(1−a ( i ) ) . ∗ norminv ( a ( i ) ) . ∗ exp ( 0 . 5 . ∗ ( norminv ( a ( i ) ) ) . ˆ 2 ) ;

D 2b=s q r t (2∗ pi ) . ∗ ( b( i ) ) . ˆ 2 . ∗ norminv(1−b( i ) ) . ∗ exp ( 0 . 5 . ∗ ( norminv(1−b( i ) ) ) . ˆ 2 ) ;

E1=s q r t (2∗ pi ) . ∗ quad ( g3 , a ( i ) ,1−b( i ) ) ;

E2=s q r t (2∗ pi ) . ∗ quad ( g4 , a ( i ) ,1−b( i ) ) ;

F1=s q r t (2∗ pi ) . ∗ dblquad ( h1 , a ( i ) ,1−b( i ) , a ( i ) ,1−b( i ) ) ;

F2=s q r t (2∗ pi ) . ∗ dblquad ( h2 , a ( i ) ,1−b( i ) , a ( i ) ,1−b( i ) ) ;

C1 star=A1+2.∗a ( i )./(1−a ( i ) ) . ∗ ( D 1a+D 1b ) . ∗E1+2.∗D 1b .∗F1

+a ( i )./(1−a ( i ) ) . ∗ ( D 1a+D 1b).ˆ2+(1−a ( i )−b( i )) ./(1− a ( i ) ) . / b( i ) . ∗ ( D 1b ) . ˆ 2 ;

C2 star=A2+a ( i )./(1−a ( i ) ) . ∗ ( ( D 1a+D 1b ) . ∗E2+(D 2a+D 2b ) . ∗E1)

+(D 1b .∗F2+D 2b .∗F1)+a ( i )./(1−a ( i ) ) . ∗ ( D 1a+D 1b ) . ∗ ( D 2a+D 2b )

+(1−a ( i )−b( i )) ./(1− a ( i ) ) . / b( i ) . ∗D 1b .∗D 2b ;

C3 star=A3+2.∗a ( i )./(1−a ( i ) ) . ∗ ( D 2a+D 2b ) . ∗E2+2.∗D 2b .∗F2

+a ( i )./(1−a ( i ) ) . ∗ ( D 2a+D 2b).ˆ2+(1−a ( i )−b( i )) ./(1− a ( i ) ) . / b( i ) . ∗ ( D 2b ) . ˆ 2 ;

s1 ( i )=C1 star .∗C2.ˆ2−2.∗C1.∗C2.∗ C2 star+C1 . ˆ 2 . ∗ C3 star ;

s2 ( i )=−C1 star .∗C1.∗C2+C2 .∗ C2 star+C1 . ˆ 2 . ∗ C2 star−C1.∗ C3 star ;

s3 ( i )=s2 ( i ) ;

s4 ( i )=C1 star .∗C1.ˆ2−2.∗C1.∗ C2 star+C3 star ; % asymptotic var i ance matrix

D( i )=(C2−C1 . ˆ 2 ) . ˆ 2 ;

S=1./D( i ) . ∗ [ s1 ( i ) , s2 ( i ) ; s3 ( i ) , s4 ( i ) ] ;

ARE( i )=(0 .5 . / det (S ) ) . ˆ 0 . 5 ; % ARE

mu 1=0; mu 2=0;

f o r n=f l o o r ( a ( i ) . ∗N)+1:1 : c e i l (N−b( i ) . ∗N) % Mu
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mu 1=mu 1+log ( Data (n)−x0 ) ;

mu 2=mu 2+log ( Data (n)−x0 ) . ˆ 2 ;

end

Mu 1( i )=1./N. ∗ ( mu 1+X( f l o o r ( a ( i ) . ∗N)+1).∗ f l o o r ( a ( i ) . ∗N)+X( c e i l (N−b( i ) . ∗N) )

.∗ f l o o r (b( i ) . ∗N) ) ;

Mu 2( i )=1./N. ∗ ( mu 2+X( f l o o r ( a ( i ) . ∗N)+1) .ˆ2 .∗ f l o o r ( a ( i ) . ∗N)

+X( c e i l (N−b( i ) . ∗N) ) . ˆ 2 . ∗ f l o o r (b( i ) . ∗N) ) ;

Sigma ( i )= s q r t ( ( Mu 2( i )−Mu 1( i ) . ˆ 2 ) . / ( C2−C1 . ˆ 2 ) ) ;

% Parameter est imat ion−−Sigma and Theta

Theta ( i )=Mu 1( i )−C1.∗ Sigma ( i )

h11=@(x , y ) (x−5).∗ l ognpdf (x , Theta ( i ) , Sigma ( i ) ) ;

F 25 ( i )=normcdf ( ( l og (25)−Theta ( i ) ) . / Sigma ( i ) ) ;

Premium( i )= quad ( h11 ,5 ,25)+20.∗(1−F 25 ( i ) ) ; %Premium

%−−−−−−−−−o r i g i n a l form

%h12=@(x , y ) (x−5).∗ l ognpdf (x , Theta ( i ) , Sigma ( i ) ) . ∗ ( ( l og ( x)−Theta ( i ) ) . / Sigma ( i ) . ˆ 2 ) ;

%G prime Theta ( i )= quad ( h12 ,5 ,25)+20 ./ Sigma ( i ) . ∗ normpdf ( ( l og (25)−Theta ( i ) ) . / Sigma ( i ) ) ;

%grad i en t o f Theta

%h13=@(x , y)−(x−5)./ Sigma ( i ) . ∗ l ognpdf (x , Theta ( i ) , Sigma ( i ) ) .∗ (1 − ( l og ( x)−Theta ( i ) ) . ˆ 2

. / Sigma ( i ) . ˆ 2 ) ;

%G prime Sigma ( i )= quad ( h13 ,5 ,25)+20 ./ Sigma ( i ) . ˆ 2 . ∗ normpdf ( ( l og (25)

−Theta ( i ) ) . / Sigma ( i ) ) . ∗ ( l og (25)−Theta ( i ) ) ; % grad i en t o f Sigma

%−−−−−−−−−s m i p l i f i e d form

h14=@(x , y ) normpdf ( ( l og ( x)−Theta ( i ) ) . / Sigma ( i ) , 0 , 1 ) ;

G prime Theta ( i )= quad ( h14 , 5 , 2 5 ) . / Sigma ( i ) ; % grad i en t o f Theta

h15=@(x , y ) normpdf ( ( l og ( x)−Theta ( i ) ) . / Sigma ( i ) , 0 , 1 ) . ∗ ( l og ( x)−Theta ( i ) ) ;

G prime Sigma ( i )= quad ( h15 , 5 , 2 5 ) . / Sigma ( i ) . ˆ 2 ; % grad i ent o f Sigma

Cov=Sigma ( i ) . ˆ 2 . ∗ S . /N ; % covar iance matrix

Var F=[G prime Theta ( i ) , G prime Sigma ( i ) ] ∗ [ Cov ] ∗ [ G prime Theta ( i ) ; G prime Sigma ( i ) ] ;

% Delta method , var iance

CI Low ( i )=Premium( i )−1.96∗ s q r t ( Var F ) ; % con f idence i n t e r v a l

CI Up ( i )=Premium( i )+1.96∗ s q r t ( Var F ) ;

f o r j =1:N

XX( j )=norminv ( ( j −0 .5) ./N) ;
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Data Sim ( i , j )=Theta ( i )+Sigma ( i ) . ∗XX( j ) ;

F i t ( i )=Fit ( i )+1./N.∗ abs ( Data Sim ( i , j )− l og ( Data ( j ) ) ) ;

end

f o r k=9:27

F i t R e s t r i t ( i )= F i t R e s t r i t ( i )+1/19.∗ abs ( Data Sim ( i , k)− l og ( Data ( k ) ) ) ;

end

end

Sigma

Theta

Fit

F i t R e s t r i t

ARE

Premium

CI Low

CI Up

f i g u r e (2 )

s c a t t e r (XX, log ( Data ) , ’ ∗ ’ ) ; hold on ;

l i n e (XX, Data Sim ( 1 , : ) , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 ) ; hold on ;

l i n e (XX, Data Sim ( 2 , : ) , ’ Color ’ , ’ g ’ , ’ L ineSty le ’ , ’ − . ’ , ’ LineWidth ’ , 2 ) ; hold on ;

l i n e (XX, Data Sim ( 3 , : ) , ’ Color ’ , ’ r ’ , ’ L ineSty le ’ , ’ − . ’ , ’ LineWidth ’ , 2 ) ; hold on ;

l i n e (XX, Data Sim ( 4 , : ) , ’ Color ’ , ’ c ’ , ’ L ineSty le ’ , ’ − . ’ , ’ LineWidth ’ , 2 ) ; hold on ;

Line1=log ( 5 ) . ∗ ones ( l ength (XX) , 1 ) ;

l i n e (XX, Line1 , ’ Color ’ , ’ k ’ , ’ L ineSty le ’ , ’ − . ’ )

t ex t (−2 ,1 .9 , ’ l og ( 5 ) ’ ) ; hold on ;

Line2=log ( 2 5 ) .∗ ones ( l ength (XX) , 1 ) ;

l i n e (XX, Line2 , ’ Color ’ , ’ k ’ , ’ L ineSty le ’ , ’ − . ’ )

t ex t (−2 ,3 .5 , ’ l og ( 2 5 ) ’ ) ; hold on ;

legend ( ’ Observed ’ , ’MLE’ , ’ T1 ’ , ’ T2 ’ , ’ T3 ’ , 4 )

gtext ( ’MLE’ )

gtext ( ’T1 ’ )

gtext ( ’T2 ’ )

gtext ( ’T3 ’ )

t i t l e ( ’ Or i g i na l data−Winsorized ’ ) ;
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x l a b e l ( ’ Standard Normal Quant i t l e s ’ ) ;

y l a b e l ( ’ Log ( Observed Data ) ’ ) ;

C=0; C1=0; Cu=0; Vu=0;

f o r n=1: l ength ( Data ) % Emperical d i s t r i b u t i o n

i f Data (n)<=25

C=C+1;

i f 5<=Data (n)

Cu=Cu+(Data (n ) −5) ./30 ;

Vu=Vu+(Data (n ) −5) .ˆ2 ./30 ;

C1=C1+1;

end

end

end

Premium Empirical=Cu+20∗(1−C/30)

Var Empir ica l=(Vu+400∗(1−C/30)−( Premium Empirical ) . ˆ 2 ) / 3 0 ;

Empirical CI Low=Premium Empirical −1.96∗ s q r t ( Var Empir i ca l )

Empirical CI Up=Premium Empirical +1.96∗ s q r t ( Var Empir i ca l )
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