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ABSTRACT

SPLITTINGS OF RELATIVELY HYPERBOLIC GROUPS AND
CLASSIFICATIONS OF 1-DIMENSIONAL BOUNDARIES

by

Matthew Haulmark

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Christopher Hruska

In the �rst part of this dissertation, we show that the existence of non-parabolic local

cut point in the relative (or Bowditch) boundary, ∂(Γ,P), of a relatively hyperbolic group

(Γ,P) implies that Γ splits over a 2-ended subgroup. As a consequence we classify the

homeomorphism type of the Bowditch boundary for the special case when the Bowditch

boundary ∂(Γ,P) is one-dimensional and has no global cut points.

In the second part of this dissertation, We study local cut points in the boundary of

CAT(0) groups with isolated �ats. In particular the relationship between local cut points

in ∂X and splittings of Γ over 2-ended subgroups. We generalize a theorem of Bowditch

by showing that the existence of a local point in ∂X implies that Γ splits over a 2-ended

subgroup. The �rst chapter can be thought of as an key step in the proof of this result.

Additionally, we provide a classi�cation theorem for 1-dimensional boundaries of groups

with isolated �ats. Namely, given a group Γ acting geometrically on a CAT(0) space X with

isolated �ats and 1-dimensional boundary, we show that if Γ does not split over a virtually

cyclic subgroup, then ∂X is homeomorphic to a circle, a Sierpinski carpet, or a Menger

curve. This theorem generalizes a theorem of Kapovich-Kleiner, and resolves a question due

to Kim Ruane.
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Introduction

As a �eld, geometric group theory studies the interplay between the algebraic properties of

�nitely generated groups and the geometric and topological properties of spaces on which

they act. When a group G acts discretely on a geometric space we can often compactify

that space by attaching a �boundary at in�nity.� Topological classi�cations of this boundary

can prove useful in classifying groups upto quasi-isometry, which is one of the major goals

of geometric group theory. Directly determining topological properties of the boundary can

often prove di�cult; however, there are strong connections between the topological properties

of the boundary and the algebra of G. In this chapter we investigate the relationship between

local cut points in the boundary and 2-ended splittings of the group.

There are many types of boundaries that one may associate to a group. In Chapter

1 we will be interested in the Bowditch boundary of a relatively hyperbolic group and in

Chapter 2 we study the visual boundary of a CAT(0) group. As mentioned above, in both

settings we study the connection between local cut points in the boundary and 2-ended

splittings of the group. These splitting results are then applied to prove a pair of classi�cation

theorems, which under certain hypotheses classify the homeomorphism type of the Bowditch

and CAT(0) boundaries. Each of these classi�cation theorems generalizes a well known result

of Kapovich and Kleiner [KK00] to a di�erent setting.
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Chapter 1

Local cut points and splittings of

relatively hyperbolic groups

1.1 Introduction

The notion of a relatively hyperbolic group was introduced by Gromov [Gro87] to general-

ize both word hyperbolic and geometrically �nite Kleinian groups. Introduced by Bowditch

[Bow12] there is a boundary for relatively hyperbolic groups. The Bowditch boundary gener-

alizes the Gromov boundary of a word hyperbolic group and the limit set of a geometrically

�nite Kleinian group. The homeomorphism type of the Bowditch boundary is known to to be

a quasi-isometry invariant of the group [Gro13] under modest hypotheses on the peripheral

subgroups. Consequently, it is desirable to describe the topological features of the Bowditch

boundary. Topological features of the boundary are closely related to algebraic properties of

the group; in particular they are often related to as splittings of the group as a fundamental

group of a graph of groups [Ser03].

For hyperbolic groups Bowditch [Bow98a] shows that the existence of a splitting over a 2-

ended subgroup is equivalent to the existence of a local cut point in the Bowditch boundary.

As evidenced by the work of Kapovich and Kleiner [KK00], this result has proved useful
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in classifying the homeomorphism type of 1-dimensional boundaries of hyperbolic groups.

Because the existence or non-existence of 2-ended splittings can be veri�ed directly in many

natural settings, Kapovich and Kleiner's results provide techniques for constructing examples

of hyperbolic groups with Menger curve or Sierpinski carpet boundary. Obstructions to

2-ended splittings are well understood for hyperbolic 3-manifold groups [Mye93], Coxeter

groups [MT09], and random groups [DGP11].

Papasoglu-Swenson [PS06, PS09], and Gro� [Gro13] have extended Bowditch's results

[Bow98a] from hyperbolic groups to CAT(0) and relatively hyperbolic groups respectively.

Their results describe the relationship between 2-ended splittings and cut pairs in the bound-

ary. In particular, their results make no mention of local cut points. Guralnik [Gur05] and

Groves-Manning [GM] have observed that many of Bowditch's local cut point results extend

to relatively hyperbolic groups, provided that the Bowditch boundary has no global cut

points and the peripheral subgroups are 1-ended. However, the former assumption is quite

restrictive. Bowditch has shown [Bow01] that the Bowditch boundary often has many global

cut points. Thus a general theorem relating local cut points in the Bowditch boundary to

2-ended splittings was still missing from the literature. The primary result of this chapter

addresses the general setting with the following theorem that makes no assumption about

the existence or non-existence of global cut points in the Bowditch boundary.

Theorem 1.1.1. (Splitting Theorem) Let (G,P) be a relatively hyperbolic group with tame

peripherals. Assume that ∂(G,P) is connected and not homeomorphic to a circle. If G does

not split over a 2-ended subgroup, then ∂(G,P) does not contain a non-parabolic local cut

point. Moreover, if G splits over a non-parabolic 2-ended subgroup, then ∂(G,P) contains a

non-parabolic local cut point.

A relatively hyperbolic group (G,P) has tame peripherals, if every P ∈ P is �nitely

presented, one- or two-ended, and contains no in�nite torsion subgroup. Bowditch has

shown [Bow01] that if (G,P) has tame peripherals and the Bowditch boundary ∂(G,P) is

connected, then ∂(G,P) is locally connected. In this chapter we will always assume that
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∂(G,P) is connected and that (G,P) has tame peripherals.

Theorem 1.1.1 is used by the author in Chapter 2 to determine the homeomorphism type

of 1-dimensional visual boundaries of CAT(0) groups with isolated �ats which do not split

over 2-ended subgroups. (Note that visual boundary and the Bowditch boundary are not

the same in general [Tra13].) The application of Theorem 1.1.1 in Chapter 2 requires an

understanding of the general case where the Bowditch boundary has global cut points, which

is a case not addressed by the earlier result of Groves-Manning [GM].

The other major result of this chapter, Theorem 1.1.2, is a boundary classi�cation result

that generalizes a well known classi�cation result of Kapovich and Kleiner [KK00] for bound-

aries of hyperbolic groups. In the hyperbolic setting ∂(G,P) has no global cut points and

no parabolic points. In the general relatively hyperbolic case ∂(G,P) contains many global

cut points and parabolic points. However, the spaces in the conclusion of Theorem 1.1.2

have no global cut points. So, we are necessarily in the restricted case previously studied by

Guralnik [Gur05] and Groves-Manning [GM]. The Sierpinski carpet and Menger curve also

have no local cut points. Thus we need to understand local cut points in ∂(G,P) and �nd

group theoretic conditions to rule out their existence (see Section 1.1.1 for more discussion).

Theorem 1.1.2. (Classi�cation Theorem) Let (G,P) be a 1-ended relatively hyperbolic group

with tame peripherals and let P be the set of all subgroups of elements of P. Assume that G

does not split over a virtually cyclic subgroup and does not split over any subgroup in P. If

every P ∈ P is one-ended and ∂(G,P) is 1-dimensional, then one of the following holds:

1. ∂(G,P) is a circle

2. ∂(G,P) is a Sierpinski carpet

3. ∂(G,P) is a Menger curve.

4



1.1.1 Method of Proof

The proof of Theorem 1.1.1 utilizes results of Bowditch [Bow98a] for hyperbolic groups;

however, because we are interested in the relatively hyperbolic setting and Bowditch's results

depend on hperbolicity in an essential way additional techniques are required. In particular,

the existence of global cut points in the Bowditch boundary ∂(G,P) needs to be delt with.

For hyperbolic groups the Bowditch boundary ∂(G,P) is known to be a Peano continuum

(i.e. a compact connected and locally connected metric space) without global cut points. As

previously mentioned, for a relatively hyperbolic group (G,P) with tame peripherals ∂(G,P)

is locally connected if it is connected [Bow01]. Thus ∂(G,P) is Peano continuum, but in

general it may have many global cut points [Bow01]. Our strategy involves demonstrating

that it su�ces to consider only the case when ∂(G,P) has no global cut points. In particular,

using the theory of peripheral splittings [Bow01] and basic decomposition theory we are able

to restrict our attention to �blocks� of ∂(G,P), where a block of ∂(G,P) is a subcontinuum

consisting of points which cannot be separated from each other by global cut points. Blocks

have two key features. The �rst is that a block of ∂(G,P) is the limit set of a relatively

hyperbolic subgroup (H,Q) of (G,P) (see Theorem 1.3.1). The second is that there is a

retraction of ∂(G,P) onto a given block; moreover, the retraction map has nice decomposition

theoretic properties. This combination of Bowditch's theory of peripheral splittings with

decomposition theory techniques is one of the major contributions of this paper, and it is

the focus of Section 1.3. Using these techniques allows us to reduce the proof of Theorem

1.1.1 to proving Theorem 1.4.5, which describes non-parabolic local cut points in a boundary

without global cut points.

One would like to obtain Theorem 1.4.5 directly from the results of Bowditch [Bow98a].

However, there is one key step where Bowditch uses techniques which do not apply to the

relatively hyperbolic setting (see Lemma 5.1 and Lemma 5.2 of [Bow98a]). Guralnik [Gur05]

observed that when the Bowditch boundary has no local cut points Bowditch's results carry

over to the relatively hyperbolic setting if you have a key technical result, which may be

5



found as Lemma 1.4.1 in this exposition. Guralnik proved Lemma 1.4.1 using the work of

Tukia [Tuk98]. For completeness, in Section 1.4 we include a new self-contained proof of

Lemma 1.4.1. The short proof uses techniques di�erent than those of [Gur05] that my prove

useful in other settings.

The other main result of the paper is Theorem 1.1.2. Two key tools used in the proof of

Theorem 1.1.2 are the topological characterization of the Menger curve due to R.D. Ander-

son [And58a,And58b], and the topological characterization of the Sierpinksi carpet due to

Whyburn [Why58]. Anderson's theorem states that a compact metric space M is a Menger

curve provided M is 1-dimensional, M is connected, M is locally connected, M has no local

cut points, and no non-empty open subset of M is planar. We note that if the last condition

is replaced with �M is planar,� then we have the topological characterization of the Sierpinski

carpet (see Whyburn [Why58]).

In order to apply Anderson and Whyburn's theorems we must rule out the existence of

local cut points. Theorem 1.1.1 can be used to rule out non-parabolic local cut points, but

we also need to rule out the existence of parabolic local cut points. A point p in ∂(G,P) is a

local cut point if ∂(G,P) \{p} is disconnected, or ∂(G,P) \{p} connected and has more than

one end. In Theorem 1.1.2 we are in a setting where ∂(G,P) contains no global cut points, so

∂(G,P) \ {p} is connected. Thus we need only know that ∂(G,P) \ {p} is 1-ended. Because

the group P = Stab(p) is 1-ended, and Bowditch [Bow12] has shown that P acts properly

and cocompactly on ∂(G,P) \ {p}, a reader familiar with geometric group theory may think

that we are done. However, the author was unable to �nd su�ciently general results in the

literature. It would appear that known results stating that ends of a group is independent

of the space on which the group acts are only found for groups acting on less general spaces,

such as CW-complexes [Geo08, Gui16]. In this paper we require an understanding of the

ends of a group acting on a connected open subset of Peano continuum. The study of

ends occurs naturally in the setting of connected, locally compact, locally path connected,

Hausdor� spaces (see [Gui16]). The natural question to ask is, what happens when a group

6



acts proper and cocompactly on such spaces? If G acts properly and cocompactly on two

connected, locally compact, locally path connected, Hausdor� spaces X and Y , is Ends(X)

homeomorphic to Ends(Y )?

Theorem 1.1.3, which may be considered a folk theorem, extends known ends results to

this larger class of spaces where the study of ends occurs naturally. It is worth noting that

this general class of spaces includes open connected subspaces of Peano continua. Theorem

1.1.3 has already proved useful outside of this paper, as this fact is used by Groves and

Manning in their proof of a special case of Theorem 1.1.1 (see Section 7 of [GM]).

Theorem 1.1.3. Let X be a connected, locally compact, and locally path connected, Haus-

dor� space, and assume that G is a with �nite generating set S acting properly and cocom-

pactly on X. Then Ends
(
Υ(G,S)

)
is homeomorphic to Ends(X).

Here Υ(G,S) is the Cayley graph of G with respect to S. Again, our interest in spaces

which meet the hypotheses of Theorem 1.1.3 lies in the fact that if (G,P) is a relatively

hyperbolic group with tame peripherals, then ∂(G,P) minus a parabolic point satis�es these

hypotheses.

1.2 Preliminaries

1.2.1 Relatively Hyperbolic Groups and Their Boundaries

Let G be a group and P a collection of in�nite subgroups that is closed under conjugation,

called peripheral subgroups.

De�nition: We say that G is hyperbolic relative to P and write (G,P) if G admits a proper

isometric action on a proper δ-hyperbolic space X such that:

1. P is the set of all maximal parabolic subgroups of G

2. There exists a G-invariant system of disjoint open horoballs based at the parabolic

7



points of G, such that if B is the union of these horoballs, then G acts cocompactly on

X \ B.

In [Bow12] Bowditch shows:

Theorem 1.2.1. If G is hyperbolic relative to P, then P consists of only �nitely many

conjugacy classes.

The Bowditch boundary ∂(G,P) is de�ned to be the visual boundary of X, i.e the set

of equivalence classes of geodesic rays of X, where two geodesic rays are equivalent if their

Hausdor� distance is bounded. It is a result of Bowditch [Bow12] that ∂(G,P) is well de�ned

for (G,P).

We say that a relatively hyperbolic group (G,P) has tame peripherals if every P ∈ P is

�nitely presented, one- or two-ended, and contains no in�nite torsion subgroup. Under the

assumption of tame peripherals Bowditch has shown the following two results in [Bow99b]

and [Bow01], respectively.

Theorem 1.2.2. Suppose that (G,P) is relatively hyperbolic with tame peripherals and that

∂(G,P) is connected, then every global cut point of ∂(G,P) is a parabolic point.

A global cut point is a point whose removal disconnects ∂(G,P) and a parabolic point is

point which is stabilized by a parabolic subgroup (see Section 1.2.2).

Theorem 1.2.3. If (G,P) is relatively hyperbolic with tame peripherals and ∂(G,P) is con-

nected, then ∂(G,P) is locally connected.

In this paper we are interested in the case where ∂(G,P) is locally connected, so we will

generally assume that (G,P) has tame peripherals and that ∂(G,P) is connected.

1.2.2 Convergence Group Actions

Let M be a compact metrizable space. Let G be a group acting by homeomorphisms on M .

A group G is called a convergence group if for every sequence of distinct group elements (gk)

8



there exist points α, β ∈ M (not necessarily distinct) and a subsequence (gn) ⊂ (gk) such

that gn(x) → α locally uniformly on M \ {β}, and g−1
n (x) → β converges locally uniformly

on M \ {α}. By locally uniformly we mean, if C is a compact subset of M \ {β} and U is

any open neighborhood of α, then there is an N ∈ N such that gnC ⊂ U for all n > N .

Elements of convergence groups can be classi�ed into three types: elliptic, loxodromic,

and parabolic. A group element is elliptic if it has �nite order. An element g of G is

loxodromic if has in�nite order and �xes exactly two points of M . If g ∈ G has in�nite

order and �xes a single point of M then g is parabolic. A subgroup P of G is parabolic if it

contains no loxodromic elements and stabilizes a single point p ofM . The point p is uniquely

determined by P , and the point p is called a parabolic point. We call p a bounded parabolic

point if P acts cocompactly on M \ {p}.

For the purpose of this chapter we are interested in the case whereM = ∂(G,P). A point

x ∈ ∂(G,P) is a conical limit point if there exists a sequence of group elements (gn) ∈ G and

distinct points α, β ∈M such that gnx→ α and gny → β for every y ∈M \ {x}. Tukia has

shown (see [Tuk98]) that:

Proposition 1.2.4. A conical limit point cannot be a parabolic point

A convergence group G acting on M is called uniform if every point of M is a conical

limit point, and G is called geometrically �nite if every point of M is a conical limit point

or a bounded parabolic point. Bowditch has shown [Bow98b] G is a uniform convergence

group if and only if it is hyperbolic. A generalization of this result was completed by

Bowditch [Bow12] and Yaman [Yam04]. Bowdtich [Bow12] shows that a relatively hyperbolic

group with �nitely generated peripheral subgroups acts on it's Bowditch boundary as a

geometrically �nite convergence group, and Yaman [Yam04] proves a strong converse. We

remark that in general geometrically �nite convergence group actions are not uniform.
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1.2.3 Splittings

A splitting of a group G over a given class of subgroups is a �nite graph of groups represen-

tation of G, where each edge group belongs to the given class. The group G is said to split

relative to another class of subgroups, P, if each element of P is conjugate into one of the ver-

tex groups. A splitting is called trivial if there exists a vertex group equal to G. Assume that

G is hyperbolic relative to a collection P. A peripheral splitting of (G,P) is a �nite bipartite

graph of groups representation of G, where P is the set of conjugacy classes of vertex groups

of one color of the partition called peripheral vertices. Non-peripheral vertex groups will be

referred to as components. This terminology stems from the correspondence between the cut

point tree of ∂(G,P) and the peripheral splitting of (G,P), where elements of P correspond

to stabilizers of cut point vertices and the components correspond to stabilizers of blocks in

the boundary (see Theorem 1.3.1).

A peripheral splitting G is a re�nement of another peripheral splitting G ′ if G ′ can be

obtained from G via a �nite sequence of foldings that preserve the vertex coloring. In [Bow01]

Bowditch proves the following accessibility result:

Theorem 1.2.5. Suppose that (G,P) is relatively hyperbolic with tame peripherals and con-

nected boundary. Then (G,P) admits a (possibly trivial) peripheral splitting which is maximal

in the sense that it is not a re�nement of any other peripheral splitting.

Combining Proposition 5.1 and Theorem 1.2 of [Bow99a] Bowditch also shows:

Theorem 1.2.6. If (G,P) is a relatively hyperbolic with tame peripherals, ∂(G,P) is con-

nected, and ∂(G,P) has a global cut point, then there exists a non-trivial peripheral splitting

of (G,P).

The following theorem was communicated to the author by Chris Hruska and relies on

Theorem 1.3.1 (4) and known results about the action of the G on ∂(G,P). In particular,

Bowditch has shown [Bow12] that the action of G on ∂(G,P) is minimal, i.e. ∂(G,P) does
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not properly contain a closed G-invariant subset. Because it will be of use in Section 1.7, it

is worth noting that the action of G on ∂(G,P) is minimal if and only if OrbG(m) is dense

for every m ∈ ∂(G,P).

Theorem 1.2.7. If (G,P) is relatively hyperbolic with tame peripherals, ∂(G,P) is connected,

and ∂(G,P) contains a global cut point. Then (G,P) splits non-trivially over every edge

group in the maximal peripheral splitting of (G,P) that corresponds to an edge connecting a

component vertex to a peripheral cut point vertex.

Proof. Assume that T is the Bass-Serre tree for the maximal peripheral splitting of G.

Assume there exists an edge e in T such that G does not split over the edge group Ge non-

trivially. Then there is a G-invariant subtree B in T which does not contain e (see [HR]

Lemma 12.8). Thus, B 6= T . By Theorem 1.3.1 (4) there is a closed G-invariant proper

subspace of ∂(G,P). Thus the action of G on ∂(G,P) is not minimal, a contradiction.

The immediate corollary is:

Corollary 1.2.8. If (G,P) is relatively hyperbolic with tame peripherals, ∂(G,P) is con-

nected, and ∂(G,P) contains a global cut point p. Then G splits non-trivially over a subgroup

of the maximal parabolic group stabilizing p.

1.2.4 Cut Point Structures In Metric Spaces

Recall that a continuum is a compact connected metric space and that a Peano continuum

is a locally connected continuum. Though many of the following de�nitions are valid for

general continua we are only interested in the locally connected case. Let M be a Peano

continuum. A global cut point of M is a point x ∈M such that M \ {x} is disconnected. A

cut pair is a set of two distinct points {a, b} ⊂ M which contains no global cut points, and

such that M \ {a, b} is disconnected. The set of components of M \ {a, b} will be denoted

by U(a, b) and N (a, b) will denote the cardinality of U(a, b) We leave it as an exercise to
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show if x is a global cut point and {a, b} is a cut pair, then a and b cannot lay in di�erent

components of M \ {x}. Two cut pairs {a, b} and {c, d} are said to mutually separate M if c

and d lie in di�erent components ofM \{a, b} and vice versa. A cut pair is called inseparable

if it does not mutually separate with any other cut pair. If M = ∂(G,P) then a cut pair

{a, b} will be called loxodromic if it is stabilized by a loxodromic element g ∈ G.

Let ∆ be a subset of M . We say that ∆ is cyclically separating if for every �nite

subset F of ∆ with |F | > 3 there is an embedding of i : F → S1 such that given any

four a, b, c, d ∈ F the set
{
i(a), i(b), i(c), i(d)

}
can be partitioned into pairs which mutu-

ally separate S1, and i induces a map from the components of M \ {a, b, c, d} onto the

components of S1 \
{
i(a), i(b), i(c), i(d)

}
, where a component C of M \ {a, b, c, d} with

Fr(C) = {x, y} ⊂ {a, b, c, d} is mapped to the component of S1 \
{
i(a), i(b), i(c), i(d)

}
with frontier {i(x), i(y)}. Two points a and b in a cyclically separating set ∆ are called

adjacent if
{
i(a), i(b)

}
cannot be mutually separated by

{
i(c), i(d)

}
for any c, d ∈ ∆. An

unordered pair of adjacent points in cyclically separating set will be referred to as a jump.

A point x ∈M is a local cut point if M \ {x} is disconnected or has more than one end.

If M \ {x} is connected the valence, val(x), of a local cut point is the number of ends of

M \{x}. A detailed discussion of ends of spaces can be found in Section 1.2.5, but we remark

that saying a point x ∈ M is a local cut point is equivalent to saying that there exists a

neighborhood U of x such that for every neighborhood V of x with V ⊂ U , there exist points

z, y ∈ V \ {x} such that there does not exist a connected subset of U \ {x} containing z

and y. Alternatively, to check that x is not a local cut point it su�ces to show that given a

neighborhood U of x there exists a neighborhood V 3 x with V ⊂ U and V \{x} connected.

We wish to �collect� all the local cut points and that end we introduce notation similar to

that of Bowditch [Bow98a] to describe the various �local cut point structures� in M . Let

M(n) =
{
x ∈M

∣∣ val(x) = n
}
and M(n+) =

{
x ∈M

∣∣ val(x) ≥ n
}
.

Now assume that a group G acts on M with a geometrically �nite convergence group ac-

tion. Then G is relatively hyperbolic and M is homeomorphic to ∂(G,P) [Bow98b] [Yam04].
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If M = ∂(G,P), then M consists entirely of conical limit points and parabolic points; more-

over, global cut points in M correspond to parabolic points (See Section 1.2.2). Because

parabolic points cannot be conical limit points (Proposition 1.2.4), the goal is to understand

local cut points which are conical limit points to ensure that the points we are consider-

ing do not separate M globally. De�ne C to be the collection of conical limit points in

M . We will denote by M∗(n) and M∗(n+) the intersections of M(n) and M(n+) with C.

We de�ne relations on M∗(2) and M∗(3+). Let x, y ∈ M∗(2). We write x ∼ y if and

only if x = y or N (x, y) = 2. For two elements a, b ∈ M∗(3+) we write a ≈ b if a 6= b

and N (a, b) = val(a) = val(b) ≥ 3. From the de�nitions above we immediately obtain a

partition of the set of conical limit points which are local cut points. In other words:

Lemma 1.2.9. Let x ∈ M be a conical limit point which is a local cut point. Then x ∈

M∗(2) ∪M∗(3+)

The following results are proved using the same arguments as those of Bowditch in

[Bow98a]:

Lemma 1.2.10. The collection of ≈-classes in M∗(3+) is partitioned into pairs, which do

not mutually separate.

Lemma 1.2.11. The relation ∼ is an equivalence relation on M∗(2).

We say that a cut pair {c, d} in M separates a subset C ⊂M if C is contained in at least

two distinct components of M \ {c, d}.

Lemma 1.2.12. Let a, b, c, d ∈ M∗(2). If a ∼ b and {c, d} separates {a, b}, then c ∼ d ∼

a ∼ b, and the pairs {a, b} and {c, d} mutually separate.

In the case M = ∂(G,P) an argument similar to that of Bowditch [Bow98a] shows that

there are no singleton ∼-classes inM∗(2); consequently, a ∼-class inM∗(2) consists of either

a cut pair or a cyclically separating collection of cut pairs. The closure of a ∼-class ν
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containing at least three elements will be called a necklace. Notice that if ν is in�nite, then

ν may contain parabolic points. Lastly remark that, because cut pairs cannot be separated

by global cut points neither can ∼-classes or their closure.

1.2.5 Ends of Spaces

In this section we review ends of spaces. Roughly speaking the number of ends of a connected

space X counts the number of components at in�nity in X. A more detailed discussion about

ends of spaces may be found in Section 3 of [Gui16].

A nested sequence C1 ⊆ C2 ⊆ C3 ⊆ ... of compact sets in X is called an exhaustion

of X if X = ∪∞i=1Ci. An exhaustion is said to be e�cient if for every i ∈ {0, 1, 2, ..} Ci

is connected with Ci ⊆ int(Ci+1), and Ui = X \ Ci consists entirely of components with

non-compact closure. A connected, locally compact, and locally path connected, Hausdor�

space will be called a fatigued space. It is an exercise to show that a fatigued space has an

e�cient exhaustion. We remark that it follows from the de�nition that any connected open

subset of a fatigued space is fatigued. Moreover, the context of this chapter makes it worth

noting that a connected open subset of a Peano continuum is fatigued.

In the remainder of this section we shall assume that X is fatigued. Let C0 ⊆ C1 ⊆ C2 ⊆

. . . be an e�cient exhaustion of X, and let Ui = X \ Ci for every i. The set Ends(X) of

ends of X is the set of all sequences (E1, E2, E3, ...) where Ei is a component of Ui and such

that for each i, Ei ⊇ Ei+1. We shall see later that Ends(X) is independent of the choice

of e�cient exhaustion. The cardinality of Ends(X) is the number of ends of the space X.

Let G be a �nitely generated group with generating set S. When we speak of the ends of

G we are referring to Ends(X), where X is an fatigued space on which G acts properly and

cocompactly. We show in Theorem 1.1.3 that Ends(G) is well de�ned.

The Freudenthal Compacti�cation of X is X ∪ Ends(X) with the topology generated by
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the basis consisting of all open subsets of X and all sets Ei where

Ei = Ei ∪
{

(F1, F2, F3, ...) ∈ Ends(X)
∣∣ Fi = Ei

}
.

It is well known that the Freudenthal compacti�cation is compact, separable and metrizable.

The space Ends(X) is given the subspace topology.

Recall that a map between two spaces f : X → Y is called proper if for every compact

subset C of Y we have f−1(C) is compact. The following well known result can be found

in [Gui16] as an exercise. We include the proof for completeness.

Proposition 1.2.13. Let f : X → Y be a proper map between fatigued spaces, then f can

be uniquely extended to a continuous map f ∗ from X ∪ Ends(X) and Y ∪ Ends(Y ).

Proof. Let {Ci}∞i=1 and {Di}∞i=1 be e�cient exhaustions of X and Y respectively. As f is

proper we have that f−1(Di) is compact and thus for each i there exists an ni such that

f−1(Di) ⊆ Cni
, which implies that f(X\Cni

) ⊆ f
(
X \ f−1(Di)

)
⊆ Y \Di.

Let E = (E1, E2, E3, ...) be an end of X. The continuous image of a connected set

is connected. Since Eni
is a connected component of X \ Cni

it must be mapped into a

connected component Fi of Y \Di. Let f ∗ be equal to f on X and de�ne f ∗(Eni
) = Fi for

all i. If j ≥ i we have that Eni
⊇ Enj

, which implies that Fi ⊇ Fj. Thus we have found a

compatible sequence {Fi} which represents an end F of Y . Continuity of f ∗ follows, because

for any neighborhood F i of F there is a neighborhood Eni
of E such that f ∗(Eni

) ⊂ Fi.

Corollary 1.2.14. Ends(X) is independent of choice of e�cient exhaustion.

A useful and more geometric way to describe the ends of a fatigued space X is by proper

rays. By proper ray we mean any proper map α : [0,∞) → X. Two rays α and β are

equivalent if there is a proper map h of the in�nite ladder (or simply ladder)

L[0,∞) =
(
[0,∞)× {0, 1}

)
∪
(
N× [0, 1]

)
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such that α and β are the sides, i.e. α = h|[0,∞)×{0} and β = h|[0,∞)×{1}. The image under

h of n × [0, 1] is called a rung. The set of ends can be identi�ed with the collection of

equivalence classes of proper rays.

1.3 Reduction

Let (G,P) be a relatively hyperbolic group with tame peripherals. The results in this section

can be considered the �rst step in the proof of Theorem 1.1.1. In particular, we show that

the proof of Theorem 1.1.1 can be reduced to the case where the Bowditch ∂(G,P) has no

global cut points.

1.3.1 Blocks and Branches

In this subsection we look at cut point decompositions of ∂(G,P). For a more in depth

overview see [Bow99c] and [Swe00].

Let M be a Peano continuum, and let Π be the set of global cut points of M . We de�ne

a relation R on M by xRy if x and y cannot be separated by an element of Π. In other

words, xRy means x and y lie in the same component of M \ {z} for every z in Π \ {x, y}.

Assume x is not a global cut point, then the block containing x is the collection of points

y ∈M such that xRy, and will be denoted [x]. If two blocks [u] and [v] intersect, then they

intersect in an element of P or [u] = [v] (see [Swe00]).

If M is the boundary of a relatively hyperbolic group with tame peripherals, then M

is a Peano continuum and the relation R naturally associates to M a simplicial bipartite

tree T [Bow01]. The vertices of T correspond to elements of Π and the set of blocks B.

Additionally, two vertices b ∈ B and p ∈ Π are adjacent if p ⊂ b.

Now, let T be the Bass-Serre tree for the maximal peripheral splitting G of G (see

Theorem 1.2.5), and assume that R and P are the collections of component and peripheral

vertices respectively. Then Bowditch [Bow01] has shown the following:
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Theorem 1.3.1. Let (G,P) be relatively hyperbolic with tame peripherals and connected

Bowditch boundary. Assume that T , R, and P are as above. There exists an injective map

β : P ∪ ∂T → ∂(G,P) and for every v ∈ R there exists a set B(v) ⊂ ∂(G,P) satisfying the

following:

1. B(v) is closed for every v ∈ R

2. If x ∈ P then β(x) is a parabolic point.

3. If (xn) ⊂ P is a sequence of points converging to i ∈ ∂T , then the sequence β(xn)

converges to a point ι = β(i) in ∂(G,P). Such a point will be referred to as an ideal

point.

4. If v is a vertex in R, then β(v) is a block in ∂(G,P) stabilized by a relatively hy-

perbolic group (H,Q) where Q =
{
Q
∣∣ Q = stabG(v) ∩ P with Q infinite and P ∈ P

}
.

Moreover, B(v) is homeomorphic to ∂(H,Q) and has no global cut points.

5. Given a subtree S in T and let P(S) and R(S) be P ∩ S and R ∩ S, respectively.

Then the set Ψ0(S) = β(P(S)) ∪
⋃
v∈R(S) B(v) is connected and its closure is the set

Ψ(S) = β(P(S) ∪ ∂S) ∪
⋃
v∈R(S) B(v). If S is a branch in T then Ψ(S) is called a

branch of ∂(G,P).

6. Ψ(T ) = ∂(G,P)

7. If v is a vertex in R, then B(v) does not contain any ideal points.

8. Every ideal point ι has a neighborhood base consisting of branches, and any branch

containing ι is a neighborhood of ι.

Corollary 1.3.2. A local cut point in ∂(G,P) must be in a block, i.e. ideal points are not

local cut points.
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Proof. We �rst show that a branch in ∂(G,P) minus an ideal point is connected. Let ι be an

ideal point in ∂(G,P). Then ι is contained in some branch, Ψ(B). As Ψ0(B) ⊂ Ψ(B)\{ι} ⊂

Ψ(B), Ψ0(B) is connected, and Ψ(B) is the closure of Ψ0(B), we have that Ψ(B) \ {ι} is

connected. Thus ∂(G,P) \ {ι} is connected.

Now if U is any neighborhood of ι, we have from Theorem 1.3.1 (7) that there is branch

B ⊂ U containing ι. By the argument in the preceding paragraph B \ {ι} is connected and

ι cannot be a local cut point (see Section 1.2.4).

1.3.2 Decompositions and Reduction

A decomposition D of a topological space X is a partition of X. Associated to D is the

decomposition space whose underlying point set is D, but denoted X/D. The topology of

X/D is given by the decomposition map π : X → X/D, with x 7→ D, and where D ∈ D is

the unique element of the decomposition containing x. A set U in X/D is deemed open if

and only if π−1(U) is open in X. A subset A of X is called saturated (or D-saturated) if

π−1
(
π(A)

)
= A. The saturation of A, Sat(A), is the union of A with all D ∈ D that intersect

A. The decomposition D is said to be upper semi-continuous if every D ∈ D is closed and

for every open set U containing D there exists and open set V ⊂ U such that D ⊂ V and

sat(V ) is contained in U . An upper semi-continuous decomposition D is called monotone if

the elements of D are compact and connected.

A collection of subsets S of a metric space is called a null family if for every ε > 0

there are only �nitely S ∈ S with diam(S) > ε. The following proposition can be found as

Propositions I.2.3 in [Dav07].

Proposition 1.3.3. Let S be a null family of closed disjoint subsets of a compact metric

space X. Then the associated decomposition of X is upper semi-continuous.

Lemma 1.3.4. If D is an upper semi-continuous decomposition of a space X, then the

saturation of a closed set is closed.
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Now suppose that X is fatigued (see 1.2.5).

Lemma 1.3.5. If D be an upper semi-continuous monotone decomposition of a fatigued

space X, then X/D is fatigued.

Lemma 1.3.4 can be found in [Dav07] and 1.3.5 follows from standard point set topology

results [Wil04] and Section 2 Proposition 1 of [Dav07].

Proposition 1.3.6. Assume that D is an upper semi-continuous decomposition, and let

f : X → X/D be the decomposition map. If x ∈ X is a local cut point and {x} ∈ D then

f(x) is a local cut point.

Proof. Assume the hypothesis. There exists an open neighborhood U of x such that for

every V ⊂ U with x ∈ V , there exist w, v ∈ V \ {x} such that w and v are not contained in

any connected subset of U \ {x}. De�ne U∗ = X \ Sat(X \U). Notice that U∗ is open in X

by Lemma 1.3.4, U∗ ⊂ U , Sat(U∗) = U∗, and f(U∗) is open in X/D. Notice that {x} ∈ D,

and let A ⊂ f(U∗) be an open neighborhood of x = f(x). The claim is that there exist two

points in A which are not in the same connected subset of f(U∗) \ {x}.

The preimage f−1(A) is an open subset of U∗ ⊂ U and must contain two points a′ and

b′ which are not contained in the same connected subset of U \ {x} and thus not contained

in the same connected subset of U∗ \ {x}. So, f−1(A) \ {x} is disconnected in U∗ \ {x} and

meets at least two components of f−1(A) \ {x} call them C1 and C2. Since U∗ is saturated

and the elements of the decomposition D are connected, we know that there does not exist

an element of the decomposition inside of U∗ which intersects both C1 and C2. Thus f(C1)

and f(C2) are disjoint in f(U∗) \ {x}. Choose a ∈ C1 and b ∈ C2, then f(a) and f(b) are

not both contained in any connected subset of X/D.

Returning to the setting of Bowditch boundaries we will use the notation introduced

in Section 1.3.1. Bowditch has shown in section 8 of [Bow01] that the set of all branches
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attached to a component of ∂(G,P) forms a null family. Consequently, we have the following

lemma:

Lemma 1.3.7. Let R = β(v) for some v ∈ R, and de�ne f : ∂(G,P)→ R to be the quotient

map obtained by identifying all branches rooted in R with their roots. Then f is upper

semi-continuous monotone retraction onto R.

Corollary 1.3.8. If a cut pair {a, b} separates R, then is separates ∂(G,P).

Proof. Let R be a block of ∂(G,P). The decomposition of ∂(G,P) associated the quotient

map f : ∂(G,P) → R given in Lemma 1.3.7 is upper semi-continuous and monotone. If C1

and C2 are two components of R \ {a, b} then their preimages under f must be connected

and disjoint. Otherwise, there would exist a branch with root in C1 and C2.

Lastly if R is a block and f : ∂(G,P)→ R is as in Lemma 1.3.7, then we have:

Lemma 1.3.9. Let x be a point contained in a block R. If x is a local cut point and a conical

limit point, then f(x) is a local cut point of R.

Proof. This follows immediately from Proposition 1.3.6 and Lemma 1.3.7.

1.4 Local Cut Points in ∂(G,P)

The goal of this section is to prove Theorem 1.4.7. In the hyperbolic setting Bowditch

[Bow98a] showed that a local cut point must be contained in an inseparable loxodromic cut

pair or a necklace. As �rst observed by Guralnik [Gur05], a careful examination of [Bow98a]

reveals that many of Bowditch's argument could directly translate to ∂(G,P) if one restricts

their attention only to local cut points which are conical limit points. However, there is on

key step where Bowditch uses hyperbolicity. Namely, in section 5 of [Bow98a] his argument

requires that G act as a uniform convergence group on its boundary, i.e that the action

on the triple space is proper and cocompact. As mentioned in section 1.2 in the relatively
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hyperbolic setting the action of G on ∂(G,P) is not uniform. The following lemma generalizes

Lemma 5.2 of [Bow98a] to the relatively hyperbolic setting and allows us to plug directly in

to Bowditch's results. Lemma 1.4.1 can also be found in [Gur05], but for completeness we

include an alternate more self-contained proof, which uses di�erent techniques.

Lemma 1.4.1. There exist �nite collections (Ui)
p
i=1 and (Vi)

p
i=1 of open connected sets of

∂(G,P) with disjoint closures, U i ∩ V i = ∅, such that if K ⊆ ∂(G,P) is closed and x ∈

∂(G,P)\K is a conical limit point then there exists g ∈ G and i ∈ {1, ..., p} such that

gx ∈ Ui and gK ⊆ Vi.

We postpone the proof of 1.4.1, as it will require a few lemmas. Let X be the proper

δ− hyperbolic space on which G acts as given by the de�nition of relatively hyperbolic. We

know from Theorem 1.2.1 that there �nitely many orbits of horoballs in B. Let B1, B2, ..., Bn

be representatives from each orbit and p1, p2, ..., pn the associated parabolic points for each

representative horoball. In [Bow12] it is shown that Ci = fr(Bi)/StabG(pi) is compact for

every i ∈ {1, 2, ..., n} and from the de�nition of relatively hyperbolic we know (X \ B)/G is

compact. De�ne

C =
(
(X \ B)/G

)
∪ C1 ∪ C2 ∪ ... ∪ Cn.

Then C is a compact subset of X and OrbG(C) ⊇ X.

Let Θ2∂(G,P) the space of distinct pairs in ∂(G,P) and de�ne E(C) ⊆ Θ2∂X to be the

collection of pairs (x, y) such that x = c(∞) and y = c(−∞) for some line c : R → X with

im(c) ∩ C 6= ∅.

Lemma 1.4.2. The set E(C) is compact in Θ2∂(G,P).

The proof of Lemma 1.4.2 follows from sequential compactness using a standard diagonal

argument to see that a sequence of lines each meeting C converges to a line meeting C. We

leave the details as an exercise.

21



For any pair (x, y) ∈ Θ2∂(G,P) we may �nd a line whose ends are x and y(see Chapter

III ). Such a line must be a translate of a line which passes through C; consequently we

obtain:

Corollary 1.4.3. G acts cocompactly on Θ2∂(G,P).

Lemma 1.4.4. There exist �nite collections (Ui)
p
i=1 and (Vi)

p
i=1 such that U i ∩ V i = ∅

for every i ∈ {1, ..., p}, and such that if x, y ∈ ∂(G,P) are then there exists g ∈ G and

i ∈ {1, ..., p} such that gx ∈ Ui and gy ∈ Vi.

Proof. Let d be the visual metric on ∂(G,P). Let K be a compact set whose G translates

cover Θ2(∂(G,P)). Clearly, K ∩ D = ∅, where D is the diagonal. For every (x, y) ∈

K de�ne r(x, y) = 1
4
d(x, y) and de�ne Ux = B(x, r(x, y)) and Vy = B(y, r(x, y)). Then⋃

(x,y)∈C(Ux×Uy) covers K. By compactness there exist �nitely many (xi, yi) ∈ K such that

Uxi × Vxi cover K. Notice that by construction Uxi ∩ V yi = ∅. Thus by the cocompactness

of the action we are done.

Proof of 1.4.1. Let x be a conical limit point. By the de�nition of conical limit point there

exists (gn) ∈ G and distinct points α, β ∈ ∂(G,P) such that gnx→ α and gnx→ β for every

y ∈ ∂(G,P) \ {x}; moreover, by passing to a subsequence we may assume that the (gn) are

distinct.

G acts on ∂(G,P) as a convergence group implies that every sequence (gn) of distinct

group elements has a subsequence (gi) such that if K ⊂ ∂(G,P) \ {x} then for any neigh-

borhood V 3 β there exists gi0 ∈ (gi) such that gi0 ∈ V .

Let (U ′i)
p
i=1 and (V ′i )

p
i=1 be the neighborhoods found in Lemma 1.4.4. As (α, β) ∈

Θ2∂(G,P) there exists g ∈ G and i ∈ {1, ..., p} such that gα ∈ U ′i and gβ ∈ V ′i . Set

Ui = g−1U ′i and Vi = g−1V ′i . Then for large enough n we have gnx ∈ Ui and gnK ⊆ Vi.
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1.4.1 Collection Theorem

As we mentioned at the beginning of this section, now that we have proved Theorem 1.4.1 we

may plug into the arguments of Bowditch [Bow98a] in the case when ∂(G,P) has no global

cut points. In particular we refer the reader to section 5 of [Bow98a] to obtain:

Theorem 1.4.5. Let (G,P) and M = ∂(G,P). If the ∂(G,P) is connected and locally

connected, without global cut points, and not homeomorphic to S1, then we have the following:

1. A point m ∈M∗(2) is either in a necklace or an inseparable loxodromic cut pair.

2. M∗(3+) consists of equivalences classes of inseparable loxodromic cut pairs.

3. A necklace ν in ∂(G,P) is cyclically separating and homeomorphic to a S1 or a Cantor

set. Moreover, if ν is a Cantor set the jumps are inseparable loxodromic cut pairs.

As an immediate corollary we have:

Corollary 1.4.6. Assume ∂(G,P) is connected with no global cut points and not homeomor-

phic to S1. If ∂(G,P) has a non-parabolic local cut point, then ∂(G,P) contains a loxodromic

cut pair.

We remark that Lemma 1.4.5 (iii) may also be obtained from the work of Gro� (see

Proposition 7.2 and the de�nition of relatively-QH in [Gro13]). Also note that cut pairs

are not separated by global cut points, hence a necklace ν will be contained in contained in

some block of the form ∂(H,Q). This means we may now invoke the results of Section 1.3

to remove the hypothesis the ∂(G,P) has global cut points.

Theorem 1.4.7. Let (G,P) be a relatively hyperbolic group with tame peripherals and assume

∂(G,P) is connected. If p ∈ ∂(G,P) is a local cut point, then one of the following holds:

1. p is parabolic point

2. p is contained in a loxodromic cut pair
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3. p is in a necklace

Proof. Let p be a local cut point. By Lemma 1.3.2 we have p must be either a parabolic

point or a conical limit point contained in a block. By Theorem 1.3.1 the block is stabilized

by some (H,Q). Theorem 1.3.1 also implies that ∂(H,Q) has no global cut points, so we may

apply 1.4.5 to ∂(H,Q). Thus if p is not a parabolic point, then ∂(H,Q) contains a necklace

or a loxodromic cut pair which contains p. Now, Corollary 1.3.8 implies that loxodromic cut

pairs and necklaces in ∂(H,Q) also separate ∂(G,P), so we are done.

1.5 Splitting Theorem

Having developed the appropriate tools, we now wish to prove Theorem 1.1.1. We start with

a few lemmas.

Lemma 1.5.1. Assume that ∂(G,P) is not homeomorphic to a circle. If ∂(H,Q) homeomor-

phic to a circle, then there exists a non-trivial peripheral splitting over a 2-ended subgroup.

Proof. If ∂(H,Q) is a circle, then a result of Tukia ( [Tuk88] Theorem 6B) implies that H

is virtually a surface group, and the peripheral subgroups are boundaries of that surface.

Because the ∂(G,P) is not a circle, there must be a global cut point in ∂(H,Q) stabilized by

a 2-ended subgroup. By Corollary 1.2.8 we are done.

Lemma 1.5.2. Let {a, b} be an inseparable cut pair in ∂(G,P) and Q the quotient space

obtained by identifying ga to gb for every g ∈ G. Then Q contains a cut point for each pair

in OrbG
(
{a, b}

)
.

Proof. Let M = ∂(G,P) and assume {a, b} is an inseparable cut pair. We �rst need to know

that any two pairs in OrbG
(
{a, b}

)
do not mutually separate. Now, if {a, b} is an ≈-class

in M∗(3+), then we are done by Lemma 1.2.10. If a, b ∈M∗(2) and there existed some pair

{ga, gb} which is separated by {a, b}, then Lemma 1.2.12 implies that the pairs {a, b} and

{ga, gb} mutually separate, a contradiction.
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De�ne q : ∂(G,P)→ Q to be the quotient map described in the statement of the lemma.

Let C1 and C2 be components of ∂(G,P) \ {c, d} for some pair {c, d} in OrbG
(
{a, b}

)
.

Because we are identifying inseparable pairs and every pair in OrbG
(
{a, b}

)
\
{
{c, d}

}
is

contained in C1 or C2, we have that q(C1) and q(C2) are disjoint connected components of

Q \
{
q(c) = q(d)

}
.

Lemma 1.5.3. If ∂(G,P) contains a loxodromic cut pair, then (G,P) splits over a two-ended

group.

Proof. Assume the hypothesis. Then there exists a loxodromic group element g ∈ G, and 〈g〉

is contained in a maximal 2-ended subgroup, H. By Theorem 1.1 of [Yan14] we may extend

P to a new peripheral structure P′, by adding H and all of its conjugates to P; moreover,

(G,P′) is relatively hyperbolic. By Corollary 1.5.2 there is a cut point ∂(G,P′) stabilized by

〈g〉, which by Corollary 1.2.8 implies that (G,P′) has a non-trivial peripheral splitting. As

every subgroup of 〈g〉 is 2-ended, we are done.

Proof of the Splitting Theorem 1.1.1 If G splits over a non-parabolic 2-ended sub-

group, then the proof that ∂(G,P) contains a non-parabolic local cut point is the same as in

the proof of Theorem 7.8 of [GM].

Now, assume that x ∈ ∂(G,P) is a non-parabolic local cut point. By Theorem 1.4.7 we

know that x is contained in either a loxodromic cut pair or a necklace. If x is in a loxodromic

cut pair we are done by Lemma 1.5.3.

Assume x is in a necklace ν. Then ν is either a circle or it is not. If ν is homeomorphic

to S1 we are done by Lemma 1.5.1. If ν is not a circle, then ν contains a loxodromic cut

pair by Lemma 1.4.5, and again we are done by Lemma 1.5.3.�
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1.6 Ends of Fatigued Spaces Admitting Proper and Co-

compact Group Actions

Let G be a group with �nite generating set S, and let Υ(G,S) denote the Cayley graph of

(G,S). The goal of this section is to prove Theorem 1.1.3, which is a result about the ends

of Υ(G,S) and the ends of any su�ciently nice space on which G acts in a nice way. An

analogous result is well known for CW-complexes [Geo08], and is one way of showing that

Ends(G) is well de�ned. In Theorem 1.1.3 we provide a generalization to fatigued spaces, a

classes of spaces which need not be CW-complexes. This result appears to be a folk theorem,

but it is not readily found in the literature. We remark that the techniques used to prove

Theorem 1.1.3 di�er from those found in [Geo08].

One consequence of Theorem 1.1.3 for ∂(G,P) is that if the peripherals are one-ended

then a parabolic point can only be a local cut point if it is a global cut point (see Corollary

1.6.4). This particular fact will be required for the proof of the Classi�cation Theorem 1.1.2.

LetG be a �nitely generated discrete group acting properly and cocompactly on a fatigued

space X. We want to use Proposition 1.2.13 to prove Theorem 1.1.3. To do so we must �rst

construct a proper map Φ: Υ(G,S)→ X from the Cayley graph of G to S.

Let S be a �nite generating set for G and �x a base point x0 in the fundamental domain

of the action of G on X and for every vertex vg in Υ(G,S) de�ne Φ(vg) = g.x0. For every

s ∈ S ∪ S−1 �x a path, ps, in X with ps(0) = x0 and ps(1) = s.x0. We will denote P (S)

the collection of paths found in this way, i.e. P (S) =
{
ps|s ∈ S

}
. Now, for any edge

es ∈ Υ(G,S) with end points vg and vgs de�ne Φ(es) to be g.(ps). Notice that Φ well de�ned

because g.ps is a path with end points g.x0 and gs.x0 for every g and s. Also, note that by

the pasting lemma Φ is continuous.

Lemma 1.6.1. The map Φ: Υ(G,S)→ X is proper.
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Proof. Let A ⊆ X be compact. As X is Hausdor� A is closed, therefore Φ−1(A) is closed.

We show that Φ−1(A) consists of �nitely many vertices and edges.

First, assume that Φ−1(A) meets in�nitely vertices. This implies that A contains gnx0

for in�nitely many gn ∈ G. As A is compact we have that (gnx0) → a for some a ∈ A.

By local compactness there exists a compact set C containing a neighborhood U of a. U

contains in�nitely many members of the sequence (gnx0) After passing to a subsequence if

necessary, for large enough i ∈ N and any j ≥ i we have that gjg
−1
i C ∩C 6= ∅, contradicting

properness of the action.

Now assume that in�nitely many edges meet Φ−1(A). As there are �nitely many orbits of

edges there must be in�nitely many edges with the same label, say s, meeting Φ−1(A). Thus

we may �nd an in�nite sequence of group elements, (gi)
∞
i=1 such that gips ∩ A 6= ∅ for every

i. Set C = ps∪A, then C is compact and C ∩ giC 6= ∅ for every i, again a contradiction.

De�ne Φ∗ : Ends(Υ(G,S))→ Ends(X) be the ends map induced by Φ.

Lemma 1.6.2. Then Φ∗ is a surjection.

Proof. Let K ⊂ X be a compact connected set whose G-translates cover X, let {Ci}∞i=1 be

an e�cient exhaustion of X, and let E = (E1, E2, E3, ...) ∈ Ends(X).

Let xi ∈ Ei for some i. The translates of K cover X, so there exists some gi ∈ G

such that xi ∈ giK. As giK is compact there exists some j ∈ N such that gK ⊆ Cj. Let

xj ∈ Ej ⊂ X\Cj as before there exists some gj ∈ G such that xj ∈ gjK and some Ck

containing gjK. So we may pass to a subsequence (Ei1 , Ei2 , Ei3 , ...) of E corresponding to a

sequence of distinct group elements (gi1 , gi2 , gi3 , ...) of G found in the manner just described.

The sequence (gi1 , gi2 , gi3 , ...) corresponds to an in�nite sequence, (vgij )∞j=1, of distinct

vertices in Υ(G,S). Because the map Φ is proper, compactness of Υ(G,S)∪Ends(Υ(G,S))

we have that some subsequence (vgijk
)∞k=1of (vgij )∞j=1 must converge to an end of Υ(G,S).

Thus we may �nd a proper ray, r, in Υ(G,S) containing the vertices (vgijk
)∞k=1. The ray r
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determines an end of Υ(G,S), which by construction Φ maps to the end E under Φ∗. Thus

Φ∗ is surjective.

Proof of Theorem 1.1.3. By lemma 1.6.2 we need only show that Φ∗ is injective. To do this

we will make use of the ladder de�nition of ends found in Section 1.2.5.

By hypothesis there exists a compact set K whose G translates cover X. We may assume

that K is connected. De�ne S to be
{
s ∈ G

∣∣ K ∩ sK 6= ∅}. It is a standard result that

S generates G, because Ends(G) is independent of choice of generating set it su�ces to

consider S.

Let α and β be proper rays in Υ(G,S) and (ai) and (bi) the corresponding sequences

of vertices. Note that, if necessary, α and β may be homotoped combinatorial proper rays,

so we may assume that no vertex in (ai) or (bi) occurs in�nitely many times. Assume that

Φ maps α and β to the same end in X. Then we may �nd a proper map of the in�nite

ladder into X such that Φ(α) and Φ(β) form the sides; moreover, by concatenating paths if

necessary we may assume that the rungs, ri, of the ladder have end points Φ(ai) and Φ(bi).

Call this ladder L. Note that the rungs ri of L may not pull back to paths in Υ(G,S) under

Φ−1. We show that we can �nd an alternate sequence of rungs ρi connecting Φ(ai) to Φ(bi)

and such that each ρi pulls back to an edge path in Υ(G,S).

For any rung ri we may �nd a �nite number of translates of K that cover ri. Let

{g1, g2, ...gn} be such that im(ri) ⊂
⋃n
j=1 gjK. Notice that by connectedness of the rung

ri we may assume that {g1, g2, ...gn} is enumerated in such a way that gjK ∩ gj+1K 6= ∅.

Consequently, the gjK form a chain of connected compact neighborhoods such that the

points gixo in the translates of K can be connected by paths which are translates of paths in

P (S) (see the construction of Φ); in other words, because of the speci�c choice of generating

set they are the images of edges in Υ(G,S). By concatenating paths in OrbG(P (S)) we may

�nd a path, ρi, which pulls back to an edge path in Υ(G,S) connecting (ai) and (bi).

Lastly, we need to check that some sub-ladder of the ladder L pulls back to a ladder in
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Υ(G,S) under Φ. Let C ⊂ Υ(G,S) be a compact. We �nd a ρi such that Φ−1(ρi) is in

Υ(G,S) \ C.

Set C ′ = Φ(C) and K ′ =
( ⋃
s∈S

sK) ∪ P (S)
)
. Assume that there does not exist a subse-

quence of rungs {ρi} entirely outside of C ′. Then we may �nd a compact set N =
⋃
g∈I

gK ′

where I = {g ∈ G|K ′ ∩ gK ′ 6= ∅} such that every rung, ri of L meets N . As the ladder L

was proper this is a contradiction. Thus there must exist a ρi outside of Φ(C), which implies

that Φ−1(ρi) ⊂ Υ(G,S) \C. Therefore as C was chosen to be arbitrary we have that α and

β represent the same end of Υ(G,S).

As an immediate corollary we obtain:

Corollary 1.6.3. Let G be a one-ended �nitely generated group acting properly and cocom-

pactly on a fatigued space X. Then X is 1-ended.

In particular, we have:

Corollary 1.6.4. Let (G,P) be relatively hyperbolic with tame peripherals and every P ∈ P

1-ended. If p is parabolic point in ∂(G,P) which is not a global cut point, then p cannot be

a local cut point.

Proof. Assume the hypotheses and let P be the maximal parabolic subgroup which stabilizes

p. Bowditch [Bow12] has shown that P acts properly and cocompactly on ∂(G,P) \ {p}.

Because p is not a global cut point, we know that ∂(G,P)\{p} is connected. We are assuming

that (G,P) has tame peripherals, so ∂(G,P) is locally connected. Thus, ∂(G,P) \ {p} is an

open connected subset of a Peano continuum; consequently, ∂(G,P) \ {p} is fatigued.

1.7 Classi�cation Theorem

In this section we prove Theorem 1.1.2. This theorem is a generalization of a theorem due

to Kapovich and Kleiner [KK00] concerning the boundaries of hyperbolic groups. A key
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fact used by Kapovich and Kleiner is the topological characterization of the Menger curve

due to R.D. Anderson (see [And58a,And58b]). Anderson's theorem states that a compact

metric spaceM is a Menger curve provided: M is 1-dimensional, M is connected, M is locally

connected, M has no local cut points, and no non-empty open subset of M is planar. If the

last condition is replaced with, �M is planar,� then we have the topological characterization

of the Sierpinski carpet, due to Whyburn [Why58]. The Proof provided below was inspired

by that of Kapovich and Kleiner [KK00].

Proof of Theorem 1.1.2: Assume the hypotheses and assume that ∂(G,P) is not homeomor-

phic to a circle. Then ∂(G,P) is a compact and 1-dimensional metric space. Because we are

assuming that G is one-ended, ∂(G,P) is connected. Since we are assuming the (G,P) has

tame peripherals, connectedness of ∂(G,P) implies that is must also be locally connected

(see Theorem 1.2.3).

There are two types of local cut points, those a that separate ∂(G,P) globally and those

that do not. By Theorem 1.2.6 the no peripheral splitting hypothesis implies that ∂(G,P) is

without global cut points. Additionally, the peripheral subgroups are assumed to be 1-ended,

so by Theorem 1.1.3 we have that there are no parabolic local cut points. Thus any local

cut point must be a conical limit point. If there was a conical limit local cut point, then The

Splitting Theorem 1.1.1 would imply that G splits over a 2-ended subgroup, a contradiction.

Now, ∂(G,P) is planar or it is not. If it is planar then it is a Sierpinski carpet. Assume

∂(G,P) is not planar, then by the Claytor embedding theorem it must contain a topological

embedding of a non-planar graph, K. We need to �nd a homeomorphic copy of K inside

any open neighborhood V in ∂(G,P).

As conical limit points are dense, let x be a conical limit point in ∂(G,P) \ {K}. By

de�nition of conical limit point there exists a, b ∈ ∂(G,P) and a sequence of group elements

(Gi) ⊂ G such that Gix→ a and Giz → b 6= a for every z ∈ ∂(G,P) \ {x}. Now, G acts on

∂(G,P) as a convergence group. Thus we have that Giz → b converges locally uniformly on

compact sets and we may �nd a homeomorphic copy of K inside any neighborhood U of b.
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Let V be any neighborhood in ∂(G,P). The action of G on ∂(G,P) is minimal (see

[Bow12]), so we have that there exists some group element g such that gb ∈ V . Let W be a

neighborhood of gb inside V and set U from the previous paragraph equal to g−1(W ). Then

we may �nd a homeomorphic copy of K inside of V .
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Chapter 2

Boundary classi�cation and 2-ended

splittings of groups with isolated �ats

2.1 Introduction

When a group Γ acts discretely on a geometric space X, we can often compactify X by

attaching a �boundary at in�nity� ∂X to X. In the presence of non-positive curvature, Γ

has an induced action by homeomorphisms on the boundary. There are strong connections

between the topological properties of ∂X and the algebraic properties of Γ. A natural ques-

tion posed by Kapovich and Kleiner [KK00] is: which topological spaces occur as boundaries

of groups?

In [KK00] Kapovich and Kleiner prove a classi�cation theorem for boundaries of one-

ended hyperbolic groups. They show that if the boundary is 1-dimensional and the group

does not split over a virtually cyclic subgroup then the boundary of the group is either a

circle, a Sierpinski carpet, or a Menger curve.

Problem 2.1.1 (K. Ruane). Can the Kapovich-Kleiner result be extended to some natural

family of CAT(0) groups?

Kapovich and Kleiner's result relies heavily on JSJ results due to Bowditch [Bow98a].
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Bowditch's results relate the existence of local cut points in the boundary to the existence of

cut pairs, which is further related to two-ended splittings of the group. For CAT(0) groups

Papasoglu and Swenson [PS09] extend the connection between cut pairs and two-ended

splittings, but leave the issue of local cut points completely unresolved.

In this article we resolve this issue for groups acting geometrically (i.e. properly, cocom-

pactly, and by isometries) on a CAT(0) space with isolated �ats (see [HK05]) and obtain the

following result:

Theorem 2.1.2 (Main Theorem). Let Γ be a group acting geometrically on a CAT(0) space

X with isolated �ats. Assume ∂X is one-dimensional. If Γ does not split over a virtually

cyclic subgroup then one of the following holds:

1. ∂X is a circle

2. ∂X is a Sierpinski carpet

3. ∂X is a Menger curve.

A key tool used by Kapovich and Kleiner is the topological characterization of the Menger

curve due to R.D. Anderson [And58a,And58b]. Anderson's theorem states that a compact

metric spaceM is a Menger curve provided: M is 1-dimensional, M is connected, M is locally

connected, M has no local cut points, and no non-empty open subset of M is planar. We

note that if the last condition is replaced with �M is planar,� then we have the topological

characterization of the Sierpinski carpet (see Whyburn [Why58]).

Prior to Kapovich and Kleiner's theorem [KK00], results of Bestvina and Mess [BM91],

Swarup [Swa96], and Bowditch [Bow99a] had shown that the boundary of a one-ended hy-

perbolic group Γ is connected and locally connected. The planarity issue is easily dealt with

using the dynamics of the action of the group on its boundary, leaving only the local cut

point issue. However, Bowditch has shown [Bow98a] that if ∂G is not homeomorphic to a

circle, then ∂G has a local cut point if and only if Γ splits over a two-ended subgroup.
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We follow a similar outline to prove Theorem 2.1.2. The question of which groups with

isolated �ats have locally connected boundary has been completely determined by Hruska

and Ruane [HR]. So we will begin by assuming, for now, that ∂X is locally connected. In

the isolated �ats setting the planarity is again easily dealt with using an argument similar to

that of Kapovich and Kleiner, leaving only the local cut point issue. So in order to complete

the proof of Theorem 2.1.2, the remaining di�culty is understanding the connection between

local cut points in ∂X and splittings of Γ.

We prove the following splitting theorem which is independent of the dimension of ∂X

and thus more general than is required for the proof of Theorem 2.1.2:

Theorem 2.1.3. Let Γ be a group acting geometrically on a CAT(0) space X with isolated

�ats. Suppose ∂X is locally connected and not homeomorphic to S1. If Γ does not split over

a virtually cyclic subgroup, then ∂X has no local cut points.

Techniques developed by the author for the proof of Theorem 2.1.3 have already been

used by Hruska and Ruane [HR] in the proof of their local connectedness theorem. In the

special case when the boundary is one-dimensional Hruska and Ruane's [HR] theorem shows

reduces to the statement that ∂X is locally connected if Γ does not split over a two-ended

subgroup (see Theorem 2.2.3). So, we obtain a simpli�ed version of Theorem 2.1.3, which is

used in the proof of Theorem 2.1.2.

Corollary 2.1.4. Let Γ be a one-ended group acting geometrically on a CAT(0) space X

with isolated �ats and assume that ∂X is 1-dimensional and not homeomorphic to S1. If Γ

does not split over a virtually cyclic subgroup, then ∂X has no local cut points.

Theorem 2.1.3 �lls a gap in the JSJ theory literature on CAT(0) groups and most of this

chapter is spent on the proof. We mention that the signi�cance of this gap in the literature

has also been observed of observed by �wi¡tkowski [�16].

In [Bow98a] Bowditch studied local cut points in boundaries of hyperbolic groups and

their relation to so called JSJ-splittings. As mentioned above, Bowditch showed that for a
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one-ended hyperbolic group Γ which is not cocompact Fuchsian the existence of a local cut

point is equivalent to a splitting of Γ over a 2-ended subgroup. Generalizations of Bowditch's

results have been studied by Papasoglu-Swenson [PS06] [PS09], and Gro� [Gro13] for CAT(0)

and relatively hyperbolic groups, respectively.

Groups with isolated �ats have a natural relatively hyperbolic structure [HK05], and

there is a strong relationship between ∂X and the Bowditch boundary ∂(Γ,P). Analogous

to the limit set of a Kleinian group, the Bowditch boundary ∂(Γ,P) was introduced by

Bowditch [Bow12] and used to study splittings of hyperbolic groups. In general ∂(Γ,P) may

have in�ntely many global cut points. In fact, the global cut point structure of ∂(Γ,P) is

key to a general theory of splittings [Bow01].

Using cut pairs instead of local cut points Gro� [Gro13] obtains a partial extension of

Bowditch's JSJ tree construction [Bow98a] for relatively hyperbolic groups, and Guralnik

[Gur05] observed that in the special case that the relative boundary ∂(Γ,P) has no global

cut points, then many of Bowditch's results [Bow98a] about the valence of local cut points

in the boundary of a hyperbolic group translate directly to the relatively hyperbolic setting.

Their results were subsequently used by Groves and Manning [GM] to show that if ∂(Γ,P)

has no global cut points and all the peripheral subgroups are one-ended, then the existence

of a local cut point in ∂(Γ,P) is equivalent to the existence of a splitting of Γ relative to

P over a non-parabolic 2-ended subgroup. The relative boundary (or Bowditch boundary)

∂(Γ,P) is di�erent from the CAT(0) boundary mentioned above.

In Chapter 1 the author investigates local cut points in ∂(Γ,P) and provides a splitting

theorem for relatively hyperbolic groups without making any assumptions about global cut

points. Namely, he shows that under some very modest conditions on the peripheral sub-

groups, the existence of a non-parabolic local cut point in ∂(Γ,P) implies that Γ splits over

a 2-ended subgroup (see Theorem 2.2.5). Because of the close relationship between ∂X and

∂(Γ,P), this splitting theorem will be used in Section 2.6 to show that the existence of a

local cut point of ∂X which is not in the boundary of �at implies that Γ splits over a 2-ended
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subgroup.

We conclude the chapter by discussing applications of Theorem 2.1.2. In particular, in

Section 2.10 we discuss groups with Menger curve boundary and in Section 2.9 we generalize

the work of �wi¡tkowski [�16] to obtain the following result:

Theorem 2.1.5. Let (W,S) be a Coxeter system such thatW has isolated �ats. Assume that

the nerve L of the system is planar, distinct from simplex, and distinct from a triangulation

of S1. If the labeled nerve L• of (W,S) is distinct from a labeled wheel and inseparable, then

∂Σ is homeomorphic to the Sierpinski carpet.

De�nitions of the terms used in Theorem 2.1.5 can be found in Section 2.9.

In [DO01] Davis and Okun show that if W is a Coxeter group whose nerve L is planar,

then W acts properly on a 3-manifold. Consequently, Theorem 2.1.5 is in line with the

following extension of a conjecture due to Kapovich and Kleiner [KK00]:

Conjecture 2.1.6. Let Γ be a CAT(0) group with isolated �ats and Sierpinski carpet bound-

ary. Then Γ acts properly on a contractible 3-manifold.

2.1.1 Methods of Proof

The strong connection between ∂(Γ,P) and the CAT(0) boundary ∂X is given by Hung Cong

Tran [Tra13]. For spaces with isolated �ats Tran's result implies that ∂(Γ,P) is the quotient

space obtained from ∂X by identifying points which are in the boundary of the same �at.

Using basic decomposition theory (see Section 2.6.1), we are able to show that if there exists

a local cut point ξ ∈ ∂X that is not in the boundary of a �at, then it must push forward

under this quotient map to a local cut point of ∂(Γ,P). This allows us to apply Theorem

2.2.5 mentioned above, and prove that the existence of a local cut point that is not in the

boundary of a �at implies the existence of a 2-ended splitting (see Proposition 2.6.1).

Assuming that our group Γ does not split over a two ended group, we are left with the

remaining question: Can a point which lies in the boundary of a �at be a local cut point?
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Much of this chapter is spent answering that question in the negative when ∂X is locally

connected. Let X be a CAT(0) space which has isolated �ats with respect to F and let

F ∈ F be an n-dimensional �at in X, then it can be shown that StabΓ(F ) has a �nite

index subgroup H isomorphic to Zn. In Section 2.3 we show that H acts properly and

cocompactly on ∂X \ ∂F . This is done by means of a relation on F × (∂X \ ∂F ), which uses

orthogonal rays to associate points in F with points in the boundary. In Sections 2.4 and 2.5

we assume that ∂X is locally connected and show that we may put an H-equivariant metric

on ∂X \ ∂F . Then in Section 2.7 we use the properties of this action to deduce that a point

in the boundary of a �at cannot be a local cut point. This combined with Proposition 2.6.1

allow us to obtain Theorem 2.1.3.

Once we have completed the proof of Theorem 2.1.3 we are ready to prove Theorem

2.1.2. This is accomplished in Section 2.8 with an argument inspired by Kapovich and

Kleiner [KK00]. Using the dynamics of the action of Γ on the boundary we show that if ∂X

contains a non-planar graph K, then every open subset of must contain a homeomorphic

copy of K. This will be enough to complete the proof.

2.2 Preliminaries

2.2.1 The Bordi�cation of a CAT(0) Space

Throughout this chapter we will assume that X is a proper CAT(0) metric space, unless

otherwise stated. We refer the reader to [BH99] for de�nitions and basic results about

CAT(0) spaces.

The boundary of X, denoted ∂X, is the set of equivalence classes of geodesic rays. Where

two rays c1, c2 : [0,∞) → X are equivalent if there exists a constant D ≥ 0 such that

d
(
c1(t), c2(t)

)
≤ D for all t ∈ [0,∞). The bordi�cation of X is the set X = X ∪ ∂X.

The bordi�cation X comes equipped with a natural topology called the cone topology,

where one considers rays based at some �xed point. A basis for the cone topology consists
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of open balls in X together with �neighborhoods of points at in�nity.� Given a geodesic ray

c and positive numbers t > 0, ε > 0, de�ne

V (c, t, ε) =
{
x ∈ X

∣∣ t < d
(
x, c(0)

)
and d

(
πt(x), c(t)

)
< ε

}
Where πt is the orthogonal projection onto the closed ball B

(
c(0), t

)
. For �xed c and ε > 0

the sets V (c, t, ε) form a neighborhood base at in�nity about c. Intuitively, this means that

two points in ∂X will be close if they are represented by rays which are ε close at for large

values of t. We will denote by V∂(c, t, ε) the set V (c, t, ε) ∩ ∂X.

2.2.2 The Bowditch Boundary and Splittings

Let Γ be a group and P a collection of in�nite subgroups which is closed under conjugation,

called peripheral subgroups.

We say that Γ is hyperbolic relative to P if Γ admits a proper isometric action on a

proper δ-hyperbolic space Y such that:

1. P is the set of all maximal parabolic subgroups

2. There exists a Γ-invariant system of disjoint open horoballs based at the parabolic

points of Γ, such that if B is the union of these horoballs, then Γ acts cocompactly on

Y \ B.

The Bowditch boundary ∂(Γ,P) of (Γ,P) is de�ned to be the boundary of the space Y . If

(Γ,P) is relatively hyperbolic and acts geometrically on a CAT(0) space X there is a close

relationship between the ∂(Γ,P) and the visual boundary ∂X.

Theorem 2.2.1 (Tran). ∂(Γ,P) is Γ-equivariantly homeomorphic to the quotient of ∂X

obtained by identifying points which are in the boundary of the same �at.

A splitting of a group Γ over a given class of subgroups is a �nite graph of groups G of

Γ, where each edge group belongs to the given class. A splitting is called trivial if there
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exists a vertex group equal to Γ. Assume that Γ is hyperbolic relative to a collection P. A

peripheral splitting of (Γ,P) is a �nite bipartite graph of groups representation of Γ, where P

is the set of conjugacy classes of vertex groups of one color of the partition called peripheral

vertices. Nonperipheral vertex groups will be referred to as components. This terminology

stems from the correspondence between the cut point tree of ∂(Γ,P) and the peripheral

splitting of (Γ,P), where elements of P correspond to cut point vertices and the components

correspond to components of the boundary (i.e. equivalence classes of points not separated

by cut points).

A peripheral splitting G is a re�nement of another peripheral splitting G ′ if G ′ can be

obtained from G via a �nite sequence of foldings that preserve the vertex coloring. In [Bow01]

Bowditch proved the following accessibility result:

Theorem 2.2.2. Suppose that (Γ,P) is relatively hyperbolic and that ∂(Γ,P) is connected.

Then (Γ,P) admits a (possibly trivial) peripheral splitting which is maximal in the sense that

it is not a re�nement of any other peripheral splitting.

2.2.3 Isolated Flats

Here we introduce basic de�nitions and pertinent results regarding spaces with isolated �ats.

We refer the reader to [HK05] for a more detailed account. Let X be a CAT(0) space with

Γ acting geometrically on X. A k-�at in X is an isometrically embedded copy of Euclidean

space, Ek. A 1-�at will also be referred to as a line and a 2-�at may be referred to as a �at

plane.

The space X is said to have isolated �ats if there is a Γ-invariant collection of �ats, F ,

of dimension 2 or greater and such that the following hold:

1. (capturing condition) There exists a constant D < ∞ such that each �at in X lies in

the D-tubular neighborhood of some F ∈ F
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2. (isolating condition) For every ρ < ∞ there exists κ(ρ) < ∞ such that for any two

distinct F, F ′ ∈ (F ) we have diam
(
Nρ(F ) ∩Nρ(F ′)

)
< κ(ρ)

Hruska and Kleiner have shown in [HK05] that if Γ is a group acting geometrically on

a CAT(0) space with isolated �ats, then Γ is hyperbolic relative relative to a collection of

virtually abelian subgroups of rank at least 2 (Theorem 1.2.1 of [HK05]). Hruska and Kleiner

have also shown that for isolated �ats ∂X is an invariant of the group Γ up to quasi-isometry

(Theorem 1.2.2 of [HK05]). The following recent result concerning groups with isolated �ats

is due to Hruska and Ruane [HR], and is particularly relevant to this project:

Theorem 2.2.3 (Hruska-Ruane). Let Γ be a one-ended group acting geometrically on a

CAT(0) space with isolated �ats. Let G be the maximal peripheral splitting of Γ. Then each

vertex group of G acts geometrically on a CAT(0) space with locally connected boundary.

Furthermore ∂X is locally connected if and only if the following condition holds: Each

edge group of G has �nite index in the adjacent peripheral vertex group.

In the case where ∂X is 1-dimensional we have the following corollary:

Corollary 2.2.4. Assume Γ is acting geometrically on a CAT(0) space X with isolated �ats,

and assume ∂X is 1-dimensional. Then ∂X is locally connected if and only if Γ does not

have a peripheral splitting over a 2-ended subgroup.

Remark. As �no splitting over a two-ended subgroup� is a hypothesis in both Theorem

2.1.2 and Theorem 2.1.3, we may assume that ∂X is locally connected when required. Also,

notice that for the proof of Theorem 2.1.2 we are concerned with 1-dimensional boundaries,

so in that case the dimension of the �ats we are interested in is 2. However, for many of the

result we will not need to make any assumption about the dimension of �ats.

2.2.4 Local Cut Points

Recall that a continuum is a non-empty, connected, compact, metric space, and let M be

such a space. A cut point of M is a point x ∈ M such that M \ {x} is disconnected. A
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point x ∈ M is a local cut point if x is a cut point or M \ {x} has more than one end. A

detailed discussion of ends of spaces can be found in Section 3 of [Gui16]. In this chapter

we are often interested in whether a given point is a local cut point or not. Thus we remark

that saying a point x ∈ M is a local cut point is equivalent to saying that there exists a

neighborhood U of x such that for every neighborhood V of x with V ⊂ U , there exist points

z, y ∈ V \ {x} which cannot be connected inside U \ {x}, i.e. z and y are not contained in

the same connected subset of U \ {x}. In Section 2.7 we will be interested in showing that a

point cannot be a local cut point, so it is worth noting the negation of the above. In other

words, to check that x is not a local cut point it su�ces to show that given a neighborhood

U of x there exists a neighborhood V 3 x with V ⊂ U and V \ {x} connected.

In his study of JSJ splittings of hyperbolic groups Bowditch investigated the local cut

point structure of the boundary. In that setting Bowditch shows that the existence of a

local cut point implies that group splits over a 2-ended subgroup. In Chapter 1 the author

studies local cut points in the relative boundary (or Bowditch Boundary) ∂(Γ,P) and has

generalized Bowditch's result to show:

Theorem 2.2.5. Let (Γ,P) be a relatively hyperbolic group and suppose each P ∈ P is �nitely

presented, one- or two-ended, and contains no in�nite torsion subgroup. Assume that ∂(Γ,P)

is connected and not homeomorphic to a circle. If ∂(Γ,P) contains a non-parabolic local cut

point, then Γ splits over a 2-ended subgroup.

The majority of this chapter is concerned with determining the existence or non-existence

of local cut points ∂X. Theorem 2.2.5 will be used in Section 2.6 to show that the existence

of a local cut point which is not in the boundary of a �at implies the existence of a splitting

over 2-ended subgroup.

2.2.5 Limit Sets

We will need a few basic results about limit sets sporadically through this chapter, conse-

quently, we conclude the preliminary section with a terse discussion of limit sets. In this
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section X will be a CAT(0) space and Γ some group of isometries of X.

Recall, that a for a sequence (γn) ⊂ G we write γn → ξ ∈ ∂X if γnx→ ξ for some x ∈ X.

It is clear that if γnx→ ξ for some x, then γnx′ → ξ for any x′ ∈ X. The limit set, Λ(Γ), of

Γ is the subset of ∂X consisting of all such limits. The set Λ(Γ) is a closed and Γ-invariant.

Given that the action of Γ is geometric we have the following:

Lemma 2.2.6. Λ(Γ) = ∂X

We leave the proof of this result as an exercise.

A subset M of Λ(Γ) is said to be minimal if M is closed, non-empty, Γ-invariant, and

does not properly contain a closed Γ-invariant subset. A useful fact about minimal sets is

that M ⊂ Λ(Γ) is minimal if and only if OrbΓ(m) is dense in M for every m ∈ M . The

action of Γ on Λ(Γ) is called minimal if Λ(Γ) is minimal.

2.3 A Proper and Cocompact Action on ∂X\∂F

Let X be a CAT(0) space with isolated �ats and let F ∈ F be a �at in X. Set Y = ∂X \∂F .

In this section we a follow a strategy similar to that of Bowditch in Lemma 6.3 of [Bow12]

to show that StabΓ(F ) acts properly and cocompactly on Y . The key observation made by

Bowditch is as follows:

Lemma 2.3.1. Let G be a group acting on topological spaces A and B. De�ne the action

of G on A × B to be the diagonal action and let R ⊂ A × B. If R is G-invariant and the

projections prA and prB from R onto the factors are both proper and surjective, then the

following are equivalent:

1. G acts properly and cocompactly on A

2. G acts properly and cocompactly on R

3. G acts properly and cocompactly on B
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Set G = StabΓ(F ). De�ne ⊥ (F ) be the set of all geodesic rays orthogonal to F . Recall

that a geodsic ray r : [0,∞) → X is orthogonal to a convex set C ⊂ X if for every t > 0

and for any y ∈ C the Alexandrov angle, ∠r(0)

(
r(t), y

)
, is greater than or equal to π/2. It

is well known that G acts cocompactly on F (see [HK05] Lemma 3.1.2). Let A > 0 be the

diameter of the fundamental domain of this action. We de�ne R =
{

(x, q)
∣∣there exists q ∈⊥

(F ) with d
(
x, q(0)

)
≤ A

}
. Unless otherwise stated, we will assume that our base point is in

the �at F .

We want that R satis�es the hypotheses of Lemma 2.3.1, with the roles of A and B

played by F and Y = ∂X \ F . We begin with the following observation:

Lemma 2.3.2. R is G-invariant.

Proof. G ≤ Γ acts on X by isometries, so if (x, q) ∈ R and h ∈ G then d
(
h.x, h.q(0)

)
< A.

If πF is the orthogonal projection onto F , then by d
(
h.q(t), h.q(0)

)
= d

(
q(t), q(0)

)
and the

uniqueness of the projection point πF (see [BH99] Proposition II.2.4) we must have that

πF
(
h.q(t)

)
= h.πF

(
q(t)

)
for every t ∈ [0,∞).

To continue our study of R, we require the following useful lemma, which allows one to

construct a new orthogonal ray from a sequence of orthogonal rays with convergent base

points. The proof relies on a standard diagonal argument and will not be presented here;

however, it is not dissimilar to the proof presented in Lemma 5.31 of [BH99].

Lemma 2.3.3. If (Y, ρ) is a separable metric space, (X, d) is proper metric space, y0 ∈ Y ,

and K a compact subset of X, then any sequence of isometric embeddings, cn : Y → X,

with cn(y0) ∈ K has a subsequence which converges point-wise to an isometric embedding

c : Y → X.

Next, we check that R projects surjectively onto the factors Y and F .

Lemma 2.3.4. Let ξ ∈ Y . If r is a ray representing ξ, then there exists a geodesic ray

q ∈⊥ (F ) asymptotic r.
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Proof. Let xn = r(n) and yn = prF (xn) for all n ∈ N. Our �rst claim is that the sequence (yn)

is bounded as n→∞. Assume not, then yn → η ∈ ∂F . By Corollary 7 of [HK09] there exists

some constantM > 0 such that d
(
x0, [xn, yn]

)
< M for all n. Then by the triangle inequality

and the de�nition of yn as the orthogonal projection we have that d(x0, yn) ≤ 2M . Then

(yn) converges in B(x0, 2M) and we may apply Lemma 2.3.3 to construct the orthogonal ray

q.

Corollary 2.3.5. The projections prY (R) and prF (R) are surjective.

Proof. The surjectivity of prY is immediate. For prF we need only that each point in the �at

is within a bounded distance of an element of ⊥ (F ). Let A > 0 be the constant used in the

de�nition of R above. We know from the previous lemma that there exists some q ∈⊥ (F ).

The result follows as OrbG(q) ⊂⊥ (F ) and OrbG(q) ∩ F is A-dense.

In order to check the properness of the projections, we need to know that as a sequence

(rn) of orthogonal rays moves the corresponding sequence of asymptotic rays based at x0

travel within a bounded distance of the points
(
rn(0)

)
. We provide a quasiconvexity result

below, which is a corollary of the following theorem presented by Hruska and Ruane in 4.14

of Theorem [HR].

Theorem 2.3.6. Let X be a CAT(0) space with isolated �ats with respect to F . There exists

a constant L > 0 such that the following hold:

1. Given two �ats F1, F2 ∈ F with c the shortest length geodesic from F1 to F2, we have

that F1 ∪ F2 ∪ c is L-quasiconvex in X.

2. Given a point p and a �at F ∈ F , with c the shortest path from F to p, then F ∪ c is

L-quasiconvex in X.

Lemma 2.3.7. Let F ∈ F and q ∈⊥ (F ) then there exists a constant L such that q ∪ F is

L-quasiconvex in X.
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Proof. The proof follows from the Theorem 2.3.6 by passing to the limit as n → ∞ of the

geodesic segments
[
q(n), q(0)

]
.

To prove properness we will also need to know that convergence of orthogonal rays in the

space X corresponds to convergence of points in Y .

Lemma 2.3.8. If (rn) is a sequence of rays in ⊥ (F ) which converge to an element of ⊥ (F ),

then the corresponding points at in�nity converge in topology on ∂X.

Proof. Let x0 be the base point for the cone topology on ∂X and let r ∈⊥ (F ) be limit ray.

For each ray rn there exists a an asymptotic ray cn based at x0 (see [BH99] Chapter II.8

Proposition 8.2). De�ne D = d
(
x0, r(0)

)
, then d

(
rn(t), cn(t)

)
≤ D for every t ∈ R. Thus we

may apply Lemma 2.3.3 with K = B(r(0), D) to �nd the limiting based ray c. Then c is

asymptotic to r. The claim is that cn(∞) → c(∞) in the cone topology. Fix ε > 0 and let

s > 0. Then U(c, s, ε) =
{
c′ ∈ ∂x0X

∣∣ d(c′(s), c(s)) < ε
}
is a basic neighborhood of c. As

cn → c pointwise we have that there exists N ∈ N d
(
cm(s), c(s)

)
< ε for every m > N . Thus

we have the claim.

We now wish to prove that the projections prY and prF are proper. In order to do so

we will need several lemmas concerning the relationship between base points of orthogonal

rays and the based rays which represent them in the boundary (See Figure 1 for an intuitive

picture).

Lemma 2.3.9. Let ω ∈⊥ (F ) and c the ray based at x0 representing ω(∞). Assume that

d
(
x0, ω(0)

)
= t. Then there exists a constant M > 0 such that d

(
ω(0), c(t)

)
< M .

Proof. Let β : [0, t]→ F be the geodesic with β(0) = x0 and β(t) = ω(0). By Corollary 2.3.7

there exists a constant L such that r is contained within the L-tubular neighborhood of ω∪F .

This implies that there exists an s ∈ [0,∞), x ∈ im(ω), and y ∈ F with d
(
c(s), x

)
≤ L

and d
(
c(s), y

)
≤ L. By orthogonal projection we know that d

(
x, ω(0)

)
≤ 2L, which implies
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Figure 2.1: This �gure illustrates the relationship between an orthogonal ray ω, its based represen-

tative c, and the neighborhood U(η, t, ε).

that d
(
c(s), ω(0)

)
≤ 3L. Because, β and c are geodesics the triangle inequality gives us that

t ∈
[
s− 3L, s+ 3L

]
. Thus setting M = 6L we are done.

Lemma 2.3.10. Let ω ∈⊥ (F ) and c the ray based at x0 representing ω(∞). Assume that

ω(0) ∈ U(η, t, ε, ) for some ε and some η ∈ ∂F . Then there exists some δ such that c(t) ∈

U(η, t, δ).

Proof. Let β : [0, a] → F be the geodesic with β(0) = x0 and β(a) = ω(0). If M is the

constant from Lemma 2.3.9, then we know that d
(
β(a), (�a)

)
≤M . So, if a = t we are done.

Assume that t < a. Then by convexity d
(
c(t), β(t)

)
≤ M and d

(
β(t), η(t)

)
≤ ε, which

implies that d
(
c(t), η(t)

)
≤M + ε.

If a < t, then β(a) = β(t). By hypothesis β(a) ∈ U(η, t, ε, ), which implies that

d
(
β(a), η(t)

)
< ε. So, d

(
c(a), η(t)

)
≤ M + ε, but c and η are geodesics so we have that

d
(
c(t), η(t)

)
≤ 2(M + ε). Set δ = M + ε.

Lemma 2.3.11. Let W ⊂ Y be compact. The C set of all points x ∈ F with d(x,w) ≤ A

for some w ∈ W is bounded.

Proof. Assume not, then there exists a sequence (cn) in ⊥ (F ) with cn(0) ∈ C for every

n ∈ N such that cn(0)→ η as n→∞ for some η ∈ ∂F . For every n let rn be the ray based

at the base point x0 ∈ F and asymptotic to cn.

Recall that for any D the sets U(η, t,D) form a neighborhood base at η. Fix ε > 0. Then

cn(0) → η implies that for any t ∈ [0,∞) we have cn(0) lies in U(η, t, ε) for all but �nitely
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many n. Lemma 2.3.10 then gives us that for any t ∈ [0,∞) we have rn(0) lies in U(η, t, δ) for

all but �nitely many n, which by Lemma 2.3.8 implies that rn(∞)→ η, a contradiction.

Lemma 2.3.12. The projections prY (R) and prF (R) are proper.

Proof. Let K ⊂ F be compact. We want that pr−1
F (K) is compact. Let (rn) be a sequence

of rays in ⊥ (F ) with base points in K. As K is compact using Lemma 2.3.3 we know that

the sequence (rn) has a subsequence which converges to a ray r based in F . Set xn = rn(1),

pn = rn(0), and let y be some �xed point in F . We know that ∠pn(y, xn) ≥ π/2 and that

the function (p, x, y) 7→ ∠p(x, y) is upper semi-continuous for all p, x, y ∈ X (see [BH99]

Proposition II.3.3(1)), thus r must be a ray orthogonal to K. By the previous lemma we

have that the sequence of points at in�nity converges, which implies that pr−1
F (K) is compact.

Now, let W be a compact subset of Y and C the set of all points x ∈ F with d(x,w) ≤ A

for some w ∈ W is compact. We need that C is compact. By Lemma 2.3.11 the set C is

bounded. We only need that C is closed.

Assume that c is a limit point of C. Then there exists a sequence (ci)
∞
i=0 of points in C

which converge to C, and there exists a sequence of rays (wi)
∞
i=0 in ⊥ (F ) with d

(
ci, wi(0)

)
≤

A and wi(∞) ∈ W for every i. The sequence
(
wi(0)

)∞
i=0

converges inNA(C), so by a diagonal

argument we have that (wi) converges to a ray w ∈⊥ (F ). Lemma 2.3.8 and compactness of

W give that w(∞) ∈ W . It is now easy to see that d(c, w) ≤ A.

Combining the previous results we may apply Lemma 2.3.1 to conclude:

Theorem 2.3.13. Let G = StabΓ(F ). Then G acts properly and cocompactly on ∂X\∂F .

As mentioned above in Lemma 3.1.2 of [HK05] Hruska and Kleiner showed that G =

StabΓ(F ) acts cocompactly on F . The Beiberbach theorem then gives that G contains a

subgroup of �nite index H isomorphic to Zn, where n is the rank of the �at F .

We then obtain the following corollary:

Corollary 2.3.14. The subgroup H acts properly and cocompactly on ∂X\∂F .
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2.4 Additional Properties of ∂X \ ∂F

Throughout this section we will assume that ∂X is locally connected. Let C be the collection

of connected components of Y = ∂X\∂F . The goal of this section is to show that C has

�nitely many orbits and that each C ∈ C has stabilizer isomorphic to Zn, where n is the

dimension of the �at. This fact will play a crucial role in Sections 2.5 and 2.7.

Let Z be a closed convex subset of a metric space M , and let G be any subgroup of

Isom(M). We say Z is G-periodic if StabG(Z) acts cocompactly on Z. As in the previous

section let H ≤ StabΓ(F ) be a �nite index subgroup isomorphic to Zn, where n is the

dimension of F . We begin with two results concerning the H-periodicity of elements of C

that will be needed to prove the main result of this section.

2.4.1 H-periodicity

Lemma 2.4.1. The collection C is locally �nite, i.e only �nitely many C ∈ C intersect any

compact set K ⊂ Y.

Proof. This simply follows from the local connectedness of Y . Assume that C is not locally

�nite. Then there exists K ⊂ Y such that K meets in�nitely elements of C. We may then

�nd a sequence (xC)C∈C of points from distinct elements of C which meet K. This sequence

must converge to a point x inK. Thus any neighborhood of xmeets in�nitely many members

of C. Y is an open subset of a locally connected space and thus must be locally connected,

a contradiction.

Lemma 2.4.2. Let C be as above. Then we have the following:

1. The elements of C lie in only �nitely many H-orbits.

2. Each C ∈ C is H-periodic, i.e StabH(C) acts cocompactly on C.
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Proof. From Lemma 2.4.1 we know that C is locally �nite, and we saw in Corollary 2.3.14

that H acts properly and cocompactly on on Y . We may now follow word for word the proof

of Lemma 3.1.2 of [HK05].

2.4.2 Full Rank Components

Lemma 2.4.3. Assume we have a sequence of rays in (ri) ⊂⊥ (F ) with base points, ri(0),

converging to a point ξ in ∂F , then the sequence
(
ri(∞)

)
converges to ξ in ∂F .

Proof. By Corollary 2.3.7 each point ri(∞) is represented by based rays ci that stay within

the L-neighborhood of F∪im(ri). Thus if ri(0)→ ξ ∈ ∂F , then for any n ∈ N all but �nitely

many members of the sequence
(
ri(0)

)
are inside U(ξ, n, ε), which implies that for any n all

but �nitely many ci lie in U(ξ, n, ε+ L).

Corollary 2.4.4. Every point in ∂F is a limit point of points in ∂X\∂F .

Proof. Let ξ be in the boundary of a F and c : [0,∞)→ X a based ray representing ξ. Then

by Corollary 2.3.5 for each c(n) there is an rn ∈⊥ (F ) such that d
(
c(n), rn(0)

)
< A. So, the

sequence rn(0) converges to ξ and we may apply the proceeding lemma.

The proof of the following lemma essentially amounts to checking Bestvina's nullity

condition [Bes96] for the action of H on ∂X \ ∂F .

Lemma 2.4.5. Let C ∈ C then elements of OrbH(C) are asymptotic in the sense that two

components meet in Λ
(

StabH(C)
)
⊂ ∂F .

Proof. Let C ′ ∈ OrbH(C) and let c′n a sequence of points in C ′ converging to a point of ∂F .

We show that there is a sequence of points in C which converge to the same point of ∂F .

Each c′n is a translate of some point some point cn in C. Notice that StabH(C ′) =

StabH(C) and by Lemma 2.4.2 exists a compacts set K ′ and K whose Stabh(C)-translates

cover C ′ and C, respectively. So there exists a sequence of group elements (hn) in StabH(C)

such that c′n is contained in hnK ′ and cn ∈ hnK for every n.
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Now, as in Section 2.3 consider the projection of K and K ′ to the the �at F and choose

two points k′ ∈ K ′ and k ∈ K. For every n the point hnk′ is within a bounded distance

of the base of an orthogonal representative for c′n. Similarly, each hnk is within a bounded

distance of an orthogonal representative of cn; moreover, the distance d(k, k′) is bounded.

So, (hnk) and (hnk
′) converge to the same point ξ in ∂F , which implies that the bases of the

orthogonal representatives of the (cn) and (c′n) also converge to ξ. We may apply Lemma

2.4.3 to complete the proof.

Proposition 2.4.6. Let C ∈ C, then C is connected with stabilizer isomorphic to Zn.

Proof. By way of contradiction suppose C ∈ C and assume that H ′ = StabH(C) ∼= Zk for

some k < n. As k < n we may �nd an h ∈ H \H ′ and an axis ` : R → F passing through

x0 ∈ F for h with `(+∞) and `(−∞) not in the limit set Λ(H ′). Let ξ be the point of

∂F represented by the ray `|[0,∞). As Λ(H ′) is a closed subsphere of ∂F , we may �nd a

U = U(ξ, n, ε) neighborhood of ξ in ∂X \ Λ(H ′).

Fix η ∈ C and let r be an orthogonal representative of η. Then hn(r) is an orthogonal

ray for every n and the sequence hn
(
r(0)

)
converges to ξ, which by Lemma 2.4.3 implies

hn(η) → ξ. As each hn(η) lies in a di�erent element of Orb〈h〉(C) we have that in�nitely

members of Orb〈h〉(C) intersect U . As 〈h〉 stabilizes ∂F and the orbit under H ′ of points

in C converges to points in Λ(H ′), Lemma 2.4.5 implies that no element of Orb〈h〉(C) is

contained in U . Thus ∂X is not locally connected, a contradiction.

Combining this result with the H-periodicity result Lemma 2.4.2 we obtain:

Corollary 2.4.7. There are only �nitely many components of ∂X \ ∂F .

2.5 An Equivariant Metric on ∂X\∂F

In this section we assume that Y = ∂X \ ∂F is locally connected. Let H be the maximal

free abelian subgroup of StabΓ(F ). We will put an H-equivariant metric on Y . First, we
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remind the reader of a standard result about covering spaces that will be used several times

throughout this section:

Lemma 2.5.1. Let G be a torsion free group acting properly on a locally compact Hausdor�

space X, then X together with the quotient map q : X → X/G form a normal covering space

of X/G.

We begin with a review of how one de�nes the pull-back length metric of a length space.

We refer the reader to [Pap14] for a more detailed account. Recall that a length metric is

one where the distance between two points is given by taking the in�mum of the lengths of

all recti�able curves between x and y. Suppose that X is a length space and X̃ is topological

space, and p : X̃ → X is a surjective local homeomorphism. De�ne a pseudometric on X̃ by:

d̃(x̃, ỹ) = inf
{
L(p ◦ γ̃)

∣∣ γ̃ : [0, 1]→ X̃ a curve from x̃ to ỹ
}

Where L(p ◦ γ̃) is the length of the path p ◦ γ̃. If X̃ is Hausdor� then d̃ is a length metric

(see [Pap14] Proposition 3.4.7). Also, it is easy to show that:

Lemma 2.5.2. If X is obtained as the quotient of a free and proper action by a group G

then the metric d̃ is G-equivariant.

Proof. Let P (x̃, ỹ) be the set of all paths between x̃ and ỹ ∈ X̃ and Q(x′, y′) =
{
p ◦ σ

∣∣
σ ∈ P (x′, y′)

}
. To prove that d̃(x̃, ỹ) = d̃(gx̃, gx̃) it su�ces to show that Q(x̃, ỹ) = Q(gx̃, gỹ).

But this is clear, as X is obtained as the quotient of the group action, i.e. if γ is a path in

X̃, then γ and gγ are identi�ed.

Let G be a torsion free group, acting, properly and cocompactly on a connected com-

ponent C of ∂X\∂F , set Q = C/G, and de�ne q : C → C/G to be the associated quotient

map. In order to apply the above construction to our setting we need that Q is a length

space. I would like to thank Ric Ancel for pointing out the following theorem due to R.H.

Bing (see [Bin52]), which we will use to show that Q is a length space:
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Theorem 2.5.3 (Bing). Every Peano continuum admits a convex metric.

Recall that that a Peano continuum is a compact, connected, locally connected metriz-

able space. The notion of convexity used by Bing is that of Menger convexity. For proper

metric spaces Menger convexity is known to be equivalent to being geodesic [Pap14]. Recall

that a geodesic, between two points x and y in a metric space X is an isometric embedding

of an interval γ : [0, D]→ X such that γ(0) = x, γ(D) = y, and D = dX(x, y). By a geodesic

metric space we mean that there is a geodesic joining any two points of the space. Compact

metric spaces are proper, so we may replace the word �convex� with �geodesic� in Bing's

result. Note that by default a geodesic metric space a length space. Therefore, we need only

show that Q is a Peano continuum to obtain that Q is a length space.

To show that Q is metrizable we use Urysohn's metrization theorem:

Theorem 2.5.4. Let X be a T1 space. If X is regular and second countable, then X is

separable and metrizable.

This theorem and all general topology results used in this section can be found in [Wil04].

Lemma 2.5.5. Q is second countable.

Proof. First note that ∂X is a compact metric space, which implies that ∂X is separable.

Subspaces of separable metric spaces are separable. So, C is separable. For pseudometric

spaces separability and second countability are equivalent (see [Wil04] Theorem 16.11), so C

is second countable. Q is the continuous open image of a second countable space, therefore

Q is second countable (see [Wil04] Theorem 16.2(a)).

Lemma 2.5.6. Q is T1.

Proof. A topological space is T1 i� each one point set is closed [Wil04]. Let [x] ∈ Q. As Q

is the quotient of a proper group action q−1
(
[x]
)
is a discrete set of points, this implies that

q−1
(
[x]
)
is closed in C. Quotients by group actions are open maps, so q is a surjective open

map. Therefore q(C \ q−1
(
[x]
)

= Q \ {[x]} is open, which implies that [x] is closed.
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Lemma 2.5.7. Q is regular.

Proof. It su�ces to show that for each open set U ∈ Q and x ∈ U that there exists an

open set V ⊂ U such that x ∈ V and V ⊂ U (see [Wil04] Theorem 14.3). As Y is locally

compact and C is a component of Y , C must be locally compact. The continuous open

image of locally compact is locally compact, so we have that Q is locally compact. Let U

be a neighborhood of x in Q. Then by local compactness for any U neighborhood of x in Q

there exists an open set V ⊂ U such that x ∈ V and V ⊂ U .

Theorem 2.5.8. Q is a Peano continuum.

Proof. We have shown that Q is metrizable and Q is compact by de�nition. C is connected.

So, by continuity of q, we have that Q is connected. C locally connected and q is a local

homeomorphism, so Q is locally connected.

Thus, by Bing's theorem we have that Q is a geodesic metric space. De�ning H as in

the previous two sections we may use the construction mentioned at the beginning of this

section to obtain:

Proposition 2.5.9. There exists an H-equivariant metric on C.

From Corollary 2.4.7 we know that C consists of only �nitely many components each

stabilized by H. Thus by de�ning distance to be the same in each component and the

distance between points in di�erent components to be in�nite we may prove the following

corollary:

Corollary 2.5.10. There exists an H-equivariant metric on Y .

We conclude this section with an important corollary that will prove very useful in Section

2.7. Let R be the relation de�ned in Section 2.3.
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Corollary 2.5.11. The relation R is a quasi-isometry relation, i.e. if (x1, y1), (x2, y2) ∈ R

then there exists constants L > 0 and C ≥ 0 such that

1

L
d(x1, x2)− C ≤ d(y1, y2) ≤ Ld(x1, x2) + C

.

Proof. We have H acting geometrically on F and Y . So we may �nd a quasi-isometry

Φ: F → Y . If (x1, y1), (x2, y2) ∈ R, then we know that there exists L > 0 and C ≥ 0 such

that:

1

L
d(x1, x2)− C ≤ d

(
Φ(x1),Φ(x2)

)
≤ Ld(x1, x2) + C

.

If we can �nd a constant D ≥ 0 such that d
(
Φ(x1), y1

)
< D and d(Φ(x2), y2) < D, the we

will be done. Let K ⊂ F be a compact set whose H-translates cover F . We saw in Section

3 that the projection prF and prY are proper and equivariant. So, if hi ∈ K is such that

xi ∈ hiK, then yi ∈ hiK∞ for i ∈ {1, 2}, where K∞ = prY (pr−1
F )(K). We need only that

Φ(xi) ∈ hiK∞ for i ∈ {1, 2}. But, this follows from the fact that Φ is the composition of an

orbit map and the inverse of an orbit map.

2.6 Local cut points which are not in the boundary of a

�at

In this section we wish to prove the following:

Proposition 2.6.1. Let Γ be a one-ended group acting geometrically on a CAT(0) space X

with isolated �ats. Suppose ∂X is not homeomorphic to S1 and let ξ ∈ ∂X be such that ξ is

not in ∂F for any F ∈ F . If ξ is a local cut point, then Γ splits over a 2-ended subgroup.
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The proof of this proposition relies on Theorem 2.2.5 and a result of Hung Cong Tran

(Theorem 2.2.1), which provides a strong connection between ∂X and ∂(Γ,P) via a quotient

map. Let f : ∂X → ∂(Γ,P) be this quotient map. To prove Proposition 2.6.1 we need more

information about the behavior of the map f . The particular question that needs to be

addressed is as follows: Let ξ ∈ ∂X which is not in the boundary of a �at. If ξ is a local cut

point can its image, f(ξ), fail to be a local cut point in ∂(Γ,P)?

To answer this question in the negative we will �rst need to recall some basic decompo-

sition theory. We refer the reader to [Dav07] for more information on decomposition theory.

2.6.1 Decompositions

A decomposition, D, of a topological space X is a partition of X. Associated to D is the

decomposition space whose underlying point set is D, but denoted X/D. The topology of

X/D is given by the decomposition map π : X → X/D, x 7→ D, where D ∈ D is the

unique element of the decomposition containing x. A set U in X/D is deemed open if

and only if π−1(U) is open in X. A subset A of X is called saturated (or D-saturated) if

π−1
(
π(A)

)
= A. The saturation of A, Sat(A), is the union of A with all D ∈ D that intersect

A. The decomposition D is said to be upper semi-continuous if every D ∈ D is closed and

for every open set U containing D there exists and open set V ⊂ U such that Sat(V ) is

contained in U . D is called monotone if the elements of D are compact and connected.

A collection of subsets S of a metric space is called a null family if for every ε > 0 there

are only �nitely many S ∈ S with diam(S) > ε. The following proposition can be found as

Proposition I.2.3 in [Dav07].

Proposition 2.6.2. Let S be a null family of closed disjoint subsets of a compact metric

space X. Then the associated decomposition of X is upper semi-continuous.

In the isolated �ats setting a theorem of Hruska and Ruane [HR] shows:

Proposition 2.6.3. The collection ∂F F∈F forms a null family in ∂X
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Let f : ∂X → ∂(Γ,P) be as above. Note that f is the decomposition map of the monotone

and upper semi-continuous decomposition D of ∂X where D =
{
∂F

∣∣ F ∈ F } ∪ { {x} ∣∣
x /∈ ∂F for all F ∈ F

}
. By Proposition 1.3.6 of Chapter 1 we have:

Lemma 2.6.4. Let ξ ∈ ∂X and assume that ξ /∈ ∂F for any F ∈ F . If ξ is a local cut

point, then f(ξ) is a local cut point.

Now that we know that non-parabolic local cut points in ∂X get mapped to non-parabolic

local cut points in ∂(Γ,P), the proof of Proposition 2.6.1 follows almost immediately from

Theorem 2.2.5.

Proof of Proposition 6.1. Let ξ be a point in ∂X which is a local cut point which is not

in that boundary of a �at. As CAT(0) groups with isolated �ats are relatively hyperbolic,

Proposition 2.6.4 implies that there is a non-parabolic local cut point in ∂(Γ,P). Therefore

we are done by Theorem 2.2.5.

2.7 Local Cut Points in the Boundary of a Flat

The goal of this section is to complete the proof of Theorem 2.1.3 by showing that a point ξ

in the boundary of a �at cannot be a local cut point. We begin this section by de�ning basic

neighborhoods �of in�nity� in Y = ∂X \ ∂F and provide a useful lemma. Then in Section

2.7.2 we develop machinery required to prove that ξ cannot be a local cut point. Throughout

this section we will assume that ∂X is locally connected.

2.7.1 Basic Neighborhoods in Y

Let ξ be an element of ∂F . Given a neighborhood V (ξ, n, ε) in the bordi�cation of X, recall

that V∂(ξ, n, ε) is the restriction of V (ξ, n, ε) to points of ∂X. Given a boundary neighborhood

V∂(ξ, n, ε) we de�ne VY (ξ, n, ε) to be the subset V∂(ξ, n, ε)\∂F . Then VY (ξ, n, ε) is open in

Y with the subspace topology. Although it is somewhat of a misnomer VY (ξ, n, ε), will refer
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to VY (ξ, n, ε) as a basic neighborhood of ξ in Y . Notice that these sets VY (ξ, n, ε) form a

basis in the sense that given any open set A consisting of an open neighborhood of ξ in ∂X

intersected with Y we may �nd a k > 0 large enough so that VY (ξ, k, ε) ⊂ A. Lastly, the set

V (ξ, n, ε) ∩ F will be referred to as a �at neighborhood of ξ and denoted VF (ξ, n, ε). When

there is no ambiguity about the parameters n we will simply write V∂, VY , and VF . The

following is a consequence of Lemmas 2.3.9 and 2.3.10:

Lemma 2.7.1. Let η ∈ VY (ξ, n, ε) and r ∈⊥ (F ) the orthogonal representative of η. Then

there exists a δ such that δ > ε and r(0) ∈ VF (ξ, n, δ).

2.7.2 ξ ∈ ∂F cannot be a local cut point

Recall that a point ξ ∈ ∂X is a local cut point if X \{ξ} is not one-ended. A path connected

metric space is one-ended if for each compact K there exists a compact K ′ such that points

outside of K ′ can be connected by paths outside of K. In other words, to show that ξ is

not a local cut point we need to show that for any neighborhood U∂ of ξ, there exists a

neighborhood V∂ of ξ such that all points of V \{ξ} can be connected by paths in U∂\{ξ}.

Intuitively the idea is to show that we may connect two points close to ξ up by a path which

does not travel �too far� into Y .

In Section 2.5 we saw that Y admits a geometric action by H = Zn; moreover, by

Proposition 2.4.6 and 2.4.2 we know that Y consists of �nitely many components whose

stabilizers are Zn subgroups of full rank. So the components of Y coarsely look like Zn and

this particularly nice structure will help us control the length of paths in ∂X near ξ.

The majority of the arguments in this section only concern the action of Zn on a single

connected component; therefore, we may assume for now that Y consists of a single connected

component. A reader only interested in the proof of Theorem 2.1.2 may wish to focus on

the simple case when n = 2, as this is an intuitively simpler case.

Also, recall that our main concern is 1-dimensional boundaries so the reader may wish
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to think of n as being equal to 2 for intuitive purposes; however, the following arguments do

not require that assumption.

Lemma 2.7.2. Let D > 0 and y ∈ Y . Then there exists an M > 0 such that points of the

ball B(y,D) may be connected by paths in B(y,M).

If B(y,D) is connected, then D = D′ and we are done. So, assume B(y,D) is not

connected. Then B(y,D) must contain only �nitely many path components, contradicting

local connectedness of ∂X. Let A be the set of components of B(y,D) and assume |A| = n.

Then for any pair of components A1, A2 ∈ A with A1 6= A2 we may �nd a path γ in Y with

γ(0) ∈ A1 and γ(1) ∈ A2. Let P be the collection of all such paths. Then |P | =
(
n
2

)
< ∞.

For every γ ∈ P we have that diam(γ) < ∞, so set N = max
{

diam(p)
∣∣ p ∈ P }. Then

B(y,D) ∪ P is connected and has diameter ≤ D +N .

Corollary 2.7.3. Let D > 0, and y0 ∈ Y . Then there is a M > 0 such that for any

y ∈ OrbH(y0) B(y,D) is path connected inside of B(y,M).

Proof. This follows immediately from the lemma and the geometric action of H on Y .

Lemma 2.7.4. Let VY = VY (ξ, n, ε) be a basic neighborhood of ξ in Y . Then There exists

a metric neighborhood N (VY ) of VY in Y such that points in VY can be connected by paths

inside N (VY ).

Proof. Let µ, ν ∈ V∂ and u(0), v(0) be the base points of elements u and v of ⊥ (F ) repre-

senting µ and ν respectively. By Lemma 2.7.1 there exists a δ > 0 such that u(0) and v(0)

are in VF (ξ, n, δ). As VF (ξ, n, δ) is a sector of an embedded Euclidean plane, there exists a

path γ in VF (ξ, n, δ) connecting u(0) and v(0). De�ne A > 0 to be the constant from the

de�nition of the relation R in Section 2.3. We may �nd a �nite sequence of points (ai)
n
i=0

contained in the image of γ with a0 = u(0), an = v(0), and such that γ is contained in⋃n
i=0B(ai, A). By choice of A, for each ai we may �nd ci ∈⊥ (F ) with c0 = a0 and cn = an,

and such that dX
(
ci(0), ai

)
< A. This implies that dX

(
ci(0), ci+1(0)

)
< 4A.
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The boundary points ci(∞) need not be in VY , but using an argument similar to that of

Lemma 2.3.10 one sees that they are in V ′Y = VY (ξ, n, δ+A+K) for some K. From Lemma

2.7.1 we have that δ > ε, so we see that VY ⊂ V ′Y .

Recall that Corollary 2.5.11 gives an (L,C)-quasi-isometry associated toR, which implies

that dY
(
ci(∞), ci+1(∞)

)
< L(4A)+C. Fixing a point a base point y0 in Y we know that H ∼=

Zn acts cocompactly on Y , so there exists a constant J and points {y1, ..., y2} ⊂ OrbH(y0)

such that for every i we have dY
(
yi, ci(∞)

)
≤ J . Setting D = L(4A) + C + J , we see that

the neighborhoods B(yi, D) form a chain from µ = c1(∞) to ν = cn(∞). Corollary 2.7.3

tells us that we may �nd a constant M > 0 such that
⋃
B(yi, D) is connected by paths in

NM

(⋃
B(yi, D)

)
. Therefore, µ and ν are connected by a path in N (VY ) = NM(V ′Y ).

Figure 2.2: This �gure depicts the neighborhood N (VY ) = NM (V ′Y ).

Although it is not truly a neighborhood (in the sense that it is not open in ∂X), we will

use N (V∂) to denote N (VY ) ∪ V∂. In other words, N (V∂) is N(VY ) with V∂ ∩ ∂F attached.

Corollary 2.7.5. Let VY be a basic neighborhood of ξ in Y . Then any two points in V∂ \{ξ}

can be connected by paths in N (V∂) \ {ξ}.

Proof. We have three 3 cases to check. First assume that µ, ν ∈ VY . Then by 2.7.4 we have

that µ and ν can be connected by a path in N (VY ).

Second, suppose that µ,∈ VY and ν ∈ ∂(F ∩ V∂) \ {ξ}. We know that ∂X is locally path

connected. As V∂ is a basic neighborhood of ξ in ∂X, we may �nd a path connected basic

∂X-neighborhood U of ν in V∂ \{ξ}. By Corollary 2.4.4 and choice of U we have that U ∩V
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is non-empty, we may �nd a point ρ ∈ U ∩VY which is connected to ν by a path in U . Thus

we may apply the �rst case to connect µ to ρ by a path in N (VY ). By concatenating these

paths we complete case two.

Lastly, if µ and ν are both in ∂(F ∩ V∂) \ {ξ} we may pick a point in VY and apply the

second case twice.

Figure 2.3: The �gure on the left illustrates depicts the M -neighborhood of the compact set K and

a path contained in the compliment of its closure connecting two points of VY . The �gure on the

right depicts two points near ξ in di�erent components connected by a path in ∂X.

We now disregard the hypothesis that Y = ∂X \ ∂F consists of a single connected

component and prove the main result of this section.

Theorem 2.7.6. A point ξ in the boundary of a �at cannot be a local cut point.

Proof. Let K be a compact subset of ∂X \ {ξ}. Recalling the discussion at the beginning

of this subsection, we need to �nd a compact set L such that points outside of L can

be connected by paths outside of K. Let ε, δ, A and K be as in Lemma 2.7.4 and set

κ = δ+A+K. The sets V∂(ξ, n, κ) form a neighborhood base so we may �nd an n > 0 large

enough so that

VY (ξ, n, κ) ⊂ V∂(ξ, n, κ) ⊂ Y \NM(K),

where M > 0 is the constant found in 2.7.4. Let V ′∂ = V∂(ξ, n, κ). Notice that ε < κ implies

that V∂ = V∂(ξ, n, ε) is contained in V ′∂ and consequently Y \NM(K) (see Figure 2.3). De�ne

L = ∂X \ V∂.
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We need that that points in V∂ \ {ξ} can be connected by paths outside of K. Let

µ, ν ∈ V∂ \ {ξ}.

If µ and ν are in (∂F ∩ V∂) \ {ξ} or in the same component of VY = VY (ξ, n, ε), then

Corollary 2.7.5 tells us that they can be connected a path which misses K. So, if µ and

ν are in di�erent components of VY we may connect them by passing through a point of

(∂F ∩ V∂) \ {ξ} (see Figure 2.3). Thus, µ and ν can be connected by path outside of K.

Combining this theorem with Proposition 2.6.1 we have completed the proof of Theorem

2.1.3.

2.8 Proof of the Main Theorem

The goal of this section is to prove Theorem 2.1.2, but �rst we review a few facts about the

dynamics of the action of Γ on ∂X.

2.8.1 Tits Distance and the Dynamical Properties of Γ y ∂X

Recall that a line in X is a 1-�at. A �at half plane is a subspace of X isometric to the

Euclidean half-plane, i.e {y ≥ 0} in the (x, y)-plane. A line, L, is called rank one if it does

not bound a �at half-plane. By L(ξ, η) we denoted the line with endpoints ξ and η in ∂X. L

is said to be Γ-periodic if there is an arc-length parametrization of σ of L, an element γ ∈ Γ,

and a constant α > 0 such that γσ(t) = σ(t+ α) for all t ∈ R.

We will need the following two results regarding rank one geodesics and dynamics of the

action on the boundary. The �rst can be found in Section III.3 of [Bal95] and the second

may be found as Proposition 1.10 of [BB08].

Lemma 2.8.1. Suppose L is an oriented rank one line shifted by an axial isometry g. Let

ξ and η be the end points of L. Then for all neighborhoods U of ξ and V of η in X there

exists n ≥ 0 such that gk(X\V ) ⊂ U and g−k(X\U) ⊂ V for every k ≥ n.
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Proposition 2.8.2. Suppose that the limit set Λ ⊂ ∂X is non-empty. Then the following

are equivalent:

1. X contains a Γ-periodic rank one line.

2. For each ξ ∈ Λ there is a η ∈ Λ with dT (ξ, η) > π, where dT is the Tits metric.

3. There are points ξ, η ∈ Λ with dT (ξ, η) > π, where η is contained in some minimal

subset of ∂X.

Recall that the Tits metric is the length metric associated to the angular metric on ∂X.

We refer the reader to [BH99] Chapter II.9 for the required background. Though not stated

in Proposition 2.8.2, it is clear from the proof provided Ballmann and Buyalo [BB08] that

the end points of the Γ-periodic rank one line can be found arbitrarily close to the points ξ

and η. This is precisely the way in which Proposition 2.8.2 will be used below. We will also

need the following:

Lemma 2.8.3. Let Γ be a one-ended group acting geometrically on a CAT(0) space with

isolated �ats. The action of Γ on ∂X is minimal.

Proof. Assume not, then ∂X contains a closed Γ-invariant set M . If f : ∂X → ∂(Γ,P) is the

equivariant quotient map de�ned in Theorem 2.2.1, then f is a closed map by Proposition

1 of [Dav07]. Thus f(M) is closed and Γ-invariant. From [Bow12] we have that the action

of Γ on ∂(Γ,P) is minimal. Thus, if f(M) is a proper subset of ∂(Γ,P) we will obtain a

contradiction.

AsM is properly contained in ∂X we may �nd a neighborhood U ofM which is properly

contained in ∂X. By upper semi-continuity of the decomposition (see Proposition 2.6.2)

we have the Sat(M) ⊆ U . Thus ∂X \ Sat(M) 6= ∅, which implies that f(M) is properly

contained in ∂(Γ,P).

Proposition 2.8.4. Let K be a proper closed subset of ∂X, then for any U open set in ∂X

we may �nd a homeomorphic copy K ′ of K such that K ′ ⊂ U .
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Proof. Let U be and open subset of the boundary and let ρ ∈ ∂X\K be a conical limit point.

In Theorem 5.2.5 of [HK05] Hruska and Kleiner show that components of ∂TX are boundary

spheres ∂F F∈F and isolated points. So let η be another point in ∂X \K, then dT (ρ, η) > π.

Choose any neighborhoods V of ρ and W of η in ∂X \K. Then Proposition 2.8.2 implies

that we may �nd a periodic rank one line L such that the ends L(∞) and L(−∞) are in V

and W respectively. We may then apply Lemma 2.8.1 to �nd a homeomorphic copy of K in

W (or V ).

By Lemma 2.8.3 we have that the action of Γ on the boundary is minimal, which implies

we have that OrbΓ(η) is dense in ∂X. Thus there exists a γ ∈ Γ such that γη ∈ U . Choosing

W small enough we have that γ(W ) ⊂ U . As γ is a homeomorphism U contains a copy of

K.

We now prove the main theorem.

Proof of Theorem 2.1.2: Using the toplogical characterizations of the Menger curve and

Sierpinski carpet we provide a proof similar to that of Kapovich and Kleiner in Section

3 of [KK00].

By hypothesis and Corollary 2.2.4, we have that ∂X is connected, locally connected, and

1-dimensional. Theorem 2.1.3 gives that if ∂X has a local cut point, then ∂X is homeomor-

phic to S1 or Γ splits over a 2-ended subgroup. Assume that ∂X does not have a local cut

point.

The boundary of X is planar, or it is not. If ∂X is planar, then it is a Sierpinski carpet

by the characterization of Whyburn [Why58]. So, assume that ∂X is non-planar. Claytor's

embedding theorem [Cla34] then implies that ∂X contains a non-planar graph. We may now

use Proposition 2.8.4 to show that no non-empty open subset of ∂X is planar. Thus ∂X

must be a Menger curve.
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2.9 Non-hyperbolic Coxeter groups with Sierpinski car-

pet boundary

In this section we give su�cient conditions for the boundary of a Coxeter group with isolated

�ats to have a Sierpinski carpet boundary. This result is an easy consequence of Theorem

2.1.2 and results of �wi¡tkowski [�16].

A Coxeter system is a pair (W,S) such that W is a �nitely presented group with presen-

tation 〈S | R 〉 with

R =
{
s2
∣∣ s ∈ S } ∪ { (s, t)mst

∣∣ s, t ∈ S, mst ∈ {2, 3, ...∞} andmst = mts

}
,

and mst =∞ means that there is no relation between s and t.

The nerve L = L(W,S) of the Coxeter system (W,S) is a simplicial complex whose

0-skeleton is S and a simplex is spanned by a subset T ⊂ S if and only if the subgroup

generated by T is �nite. The labeled nerve L• of (W,S) is the nerve L with edges (s, t) in the

1-skeleton of L labeled by the number mst. A labeled suspension in L• is a full subcomplex

K of L isomorphic to the simplicial suspension of a simplex, K = {s, t} ∗ σ, such that any

edge in K adjacent to t or s has edge label 2. The labeled nerve is called inseparable if it is

connected, has no separating simplex, no separating vertex pair, and no separating labeled

suspension. The labeled nerve L• is called a labeled wheel if L is the cone over a triangulation

of S1 with cone edges labeled by 2.

Associated to any Coxeter system (W,S) is a piecewise Euclidean CAT(0) space called

the Davis complex Σ = Σ(W,S). The group W acts geometrically on Σ by re�ections.

Caprace [Cap09] has completely determined when the Davis complex has isolated �ats.

Proof of Theorem 2.1.5: Assume the hypotheses. In Lemmas 2.3, 2.4, and 2.5 of [�16]

�wi¡tkowski shows that ∂Σ is connected, planar, and 1-dimensional. Lastly inseparabil-

ity of L• implies that W does not split over a virtually cyclic subgroup [MT09, �16], thus
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Theorem 2.1.2 implies that ∂Σ must be a circle or a Sierpinski carpet.

If W is hyperbolic, then �wi¡tkowski [�16] shows that ∂Σ cannot be homeomorphic to

S1. Assume that ∂Σ is homeomorphic to S1 and W is not hyperbolic. Then Σ contains

a �at F ; moreover, F must be the only �at. Thus W is a 2-dimensional Euclidean group.

Because the nerve L is planar, L must be a wheel or a triangulation of S1, a contradiction.

2.10 Non-hyperbolic Groups with Menger Curve Bound-

ary

In the hyperbolic setting groups with Menger curve boundary are quite ubiquitous. It is a

well known result of Gromov [Gro87] that with overwhelming probability random groups are

hypeberbolic; subsequently, Dhamani, Guirardel, and Przytycki [DGP11] have shown that

with overwhelming probability random groups also have Menger curve boundary. In stark

contrast no example of a non-hyperbolic group with Menger curve boundary can presently

be found in the literature, leading Kim Ruane to pose the challenge of �nding �nding a

non-hyperbolic group with Menger curve boundary.

Prior to Theorem 2.1.2 there were no known techniques for developing examples of such a

group. The author claims that one example is the fundamental group of the space obtained

by gluing three copies of a �nite volume hyperbolic 3-manifold with totally geodesic boundary

together along a torus corresponding to a cusp. This particular example was suggested to

the author by Jason Mannning, and a detailed proof is to be provided in [HG]. The author

believes that many examples of non-hyperbolic groups with Menger curve boundary may

now be constructed in a similar fashion.
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