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ABSTRACT

Local Connectedness of Bowditch Boundary
of Relatively Hyperbolic Groups

by

Ashani Dasgupta

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Chris Hruska

If the Bowditch boundary of a finitely generated relatively hyperbolic group is

connected, then, we show that it is locally connected. Bowditch showed that this is true

provided the peripheral subgroups obey certain tameness condition. In this paper, we show

that these tameness conditions are not necessary.
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1. Introduction

1.1 Background

One of the central themes of geometric group theory is to understand algebraic structures

of a group by analyzing the group’s action on suitable topological spaces. In that spirit, one

often constructs a topological space called ‘boundary’ of the group on which the group acts by

homeomorphisms. We must caution the reader that there are multiple ways of constructing

spaces which are referred to as ‘boundary’ in literature. These boundary spaces can be very

different from each other, with different utilities.

In [Gro87], Mikhail Gromov introduced the idea of hyperbolic groups and defined the Gro-

mov boundary of hyperbolic groups. Several group theoretic properties of hyperbolic groups

are encoded in the topological information of their boundary. Gromov also introduced rela-

tively hyperbolic groups, a generalization of the notion of hyperbolic groups. Brian Bowditch

defined the boundary of relatively hyperbolic groups. In this paper, we are interested in the

boundary of relatively hyperbolic groups. For a detailed account of relatively hyperbolic

groups and Bowditch boundary, refer to [Bow12] and [Gro87].

The algebraic content of a word-hyperbolic group G has deep connections with the topol-

ogy of its Gromov boundary ∂G. For example, in [BM91], Bestvina–Mess shows that, if a

word hyperbolic group G has one end then ∂G is connected. Furthermore, if ∂G contains

no cut points, then ∂G is locally connected. Subsequent investigations by Levitt in [Lev98],

Bowditch in [Bow99b] and Swarup in [Swa96] shows that ∂G indeed contains no cut points,
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thereby proving ∂G is locally connected. In this paper, we generalize Bowditch and Swarup’s

argument and prove that the Bowditch boundary of a relatively one-ended, finitely generated

relatively hyperbolic group is locally connected. This result was proved earlier by Bowditch

in [Bow99b], under more restrictive hypothesis.

Local connectedness is a strong characterization of a topological space. For example,

Hahn–Mazurkiewicz theorem shows that a necessary and sufficient condition for a compact,

connected, locally connected metric space P is that P is the image of the unit interval

under a continuous mapping into a Hausdorff space [HY88, Theorem 3-30]. Apart from

topological significance, the property of local connectedness is also important from a group

theoretic point of view. For example in [Bow98b], Bowditch constructs a JSJ tree of two

ended splittings for hyperbolic groups using only the topology of the boundary assuming

local connectedness of the boundary. In [HH19], Haulmark and Hruska prove an analogous

theorem in the setting of elementary splitting of relatively hyperbolic groups.

Next we will briefly describe Bowditch and Swarup’s argument to show the local connect-

edness of Gromov boundary of one-ended word hyperbolic groups. In [Bow99c], assuming

one endedness of the group G and existence of a cut point in ∂G, Bowditch obtains a two

ended splitting of G. He uses the technology of R–tree and a construction similar to [Lev98]

due to Levitt, in the argument. In [Swa96], Swarup uses the Rips machine due to [BF91] to

obtain a splitting of G over a finite subgroup. This leads to a contradiction, as G is assumed

to be one-ended in the first place. Hence the Bowditch and Swarup’s argument shows that

∂G has no cut points, implying ∂G is locally connected.

In [Bow99b], Bowditch extends the investigation on local connectedness of boundary

of hyperbolic groups to the local connectedness of the boundary of relatively hyperbolic

groups. The notion of relatively hyperbolic group is a generalization of fundamental groups

of complete noncompact hyperbolic manifolds of finite volume. There are several equivalent

definitions of relatively hyperbolic groups. For our purposes, we use the following charac-

terization due to Yaman [Yam04]. A relatively hyperbolic group is a group that admits a
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geometrically finite convergence group action on a compact metrizable space M (see Defi-

nition 2.0.10 for details). To every relatively hyperbolic group G and a given collection of

its subgroups P, one can associate a compact metrizable space M , on which G acts as a

convergence group (as in Definition 2.0.4) such that each member of P fixes a point inM . In

fact M is uniquely determined by the choice of the pair (G,P). We say M is the Bowditch

Boundary of (G,P).

Bowditch, in [Bow99b], shows that, if (G,P) is a finitely generated group and one-ended

relative to P then every global cut point in the Bowditch boundary is a parabolic fixed point

provided the peripheral subgroups are finitely presented, one- or two-ended and without

infinite torsion subgroups (these three properties are collectively referred to as tame from now

on). Under these tameness assumptions on peripheral subgroups, in [Bow99b] the Bowditch

boundary is proved to be locally connected. In this paper, we show that the tameness

conditions on the peripheral subgroups, are not necessary to obtain local connectedness of

the boundary.

Subsequent work of Guirardel–Levitt and Osin improved some of the tools used by Bow-

ditch and Swarup. In [GL15], Guirardel–Levitt, created a relative version of the Rips machine

which is a tool similar to Bass Serre Theory used to analyze splittings of a group using the

group’s action on R–tree. The work of Guirardel–Levitt helps us to analyze the action of

finitely generated relatively hyperbolic groups on R–trees (relative to the peripheral sub-

grups). In [Osi06], Osin prescribes a presentation complex on which a relatively hyperbolic

group acts in a suitable manner. In [GL17], Guirardal–Levitt, further extends the accessi-

bility theorems and examines the JSJ decomposition of relatively hyperbolic groups.

1.2 Main Theorem

In this paper we adapt the Bowditch - Swarup argument and also use the later developments

due to Guirardel, Levitt and Osin, to prove the following theorem:
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Theorem 1.2.1. Let (G,P) be a finitely generated relatively hyperbolic group. Suppose the

Bowditch boundary M = ∂(G,P) is connected. Then M is locally connected.

Bowditch shows in [Bow99a, Corollary 0.2] that if every global cut point of the connected

Bowditch Boundary of a relatively hyperbolic group, is a parabolic fixed point, then the

boundary is also locally connected. Hence to prove Theorem 1.2.1 it is sufficient to show the

following:

Theorem 1.2.2. Let (G,P) be a finitely generated relatively hyperbolic group. Suppose the

Bowditch boundaryM = ∂(G,P) is connected. Then every global cut point ofM is a parabolic

fixed point.

Recall that Bowditch has proved a restricted version of Theorem 1.2.2, under the addi-

tional assumption of peripheral subgroups being tame. We adopt a similar strategy of proof,

though in our case, the particular steps require additional tools as the peripheral subgroups

are no longer assumed to be tame.

1.3 Original Results

In this paper, we have relativized several theorems that are known to be true for hyperbolic

groups. ‘Relativization’ is, informally speaking, the act of generalization of a theorem that

is known to be true for hyperbolic case, to the relatively hyperbolic case.

In Chapter 3, we begin by relativizing the proof of [Bow99c, Theorem 6.1]. Bowditch

proves this theorem for finitely generated groups that are one ended. We modify the proof

to obtain a similar theorem that is true for relatively one ended groups.

Theorem 1.3.1. Suppose that (G,P) is a finitely generated group, finitely presented relative

to P and one-ended relative to P, that admits a minimal convergence action on a continuum,

M relative to P. If M has a cut point that is not a parabolic fixed point, then there exists

a G–equivariant quotient D(M) that is a dendrite. Moreover each member of P fixes some
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point in D(M), the induced action of G on D(M) is a convergence action and without global

fixed point.

Next, in Chapter 4, we generalize [Lev98, Theorem 1]. Levitt’s theorem is true for the

finitely presented groups. We improve it to work for relatively finitely presented groups.

Theorem 1.3.2. If a finitely generated, relatively finitely presented group (G,P) admits

a non-trivial non-nesting action by homeomorphisms on a real tree T ′ relative to P, then

it admits a non-trivial isometric action on some R–tree T0 relative to P. Every subgroup

fixing an arc in T0 fixes an arc in T ′. Moreover given a finite collection of finitely generated

subgroups Gj ⊂ G , each fixing a point of T , one may require that each Gj fixes a point of

T0.

Finally, we consider a particular JSJ decomposition TCAN of a finitely generated relatively

hyperbolic group (G,P). We construct an R–tree T0, on which (G,P) acts by isometries,

without global fixed point and such that each of the peripheral subgroups fix some point in

T0. In Chapter 6 we show that each of the vertex groups of TCAN fixes some point in T0.

We also use the following theorem which is the same as [GL15, Corollary 9.10] to obtain

a splitting of a particular variety of vertex groups of the JSJ decomposition of G (in Chapter

4).

Theorem 1.3.3. Let G be hyperbolic relative to finitely generated subgroups P = {P1, ..., Pn},

with Pi 6= G. Let H = {H1, ..., Hq} be another family of finitely generated subgroups. If G

acts non-trivially on an R-tree T relative to P ∪ H with elementary arc stabilizers, then G

splits over an elementary subgroup relative to P ∪H.
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2. Preliminaries

In this chapter we will provide some definitions. We begin by defining the notion of relatively

hyperbolic groups. There are several equivalent definitions of relatively hyperbolic groups

(see [Hru10] for a detailed account). We will use a definition that suits our purpose. First

we need the definition of convergence group to state this definition of relatively hyperbolic

group.

Definition 2.0.4 (Convergence group). Let G be a group acting by homeomorphisms on

a compact metrizable space M . The group G is called a convergence group if for every

sequence of distinct group elements (gk) there exist points a, b ∈M (not necessarily distinct)

and a subsequence (gki) ⊂ (gk) such that gki(x) → a locally uniformly on M − {b}, and

gki
−1(x)→ b converges locally uniformly on M −{a} . By locally uniformly we mean, if C is

a compact subset of M − {b} and U is any open neighborhood of a, then there is an N ∈ N

such that gkiC ⊂ U for all i > N .

Next, we will classify the elements of a convergence group.

Definition 2.0.5. Suppose G acts as a convergence group on the compact hausdorff space

M . Given g ∈ G let fix(g) be the set of fixed points of g in M . An element g ∈ G is elliptic

if it has finite order. It is parabolic if it has infinite order and fix(g) consists of a single point.

It is loxodromic if it has infinite order and fix(g) consists of a pair of points.

Definition 2.0.6. Suppose G acts as a convergence group on the compact hausdorff space

M . A subgroup P of G is parabolic if it is infinite and contains no loxodromic element.
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A subgroup Q of G is loxodromic if its a maximal virtually cyclic subgroup of G, and not

parabolic.

The following result provides a classification of the elements of G.

Theorem 2.0.7 ( [GM87], [Tuk94]). Suppose that G acts as a convergence group on a

compact hausdorff space, M , with at least three points. Then every element of G is elliptic,

parabolic or loxodromic.

Definition 2.0.8 (Cut point). A point a ∈M is a cut point if M − {a} is not connected.

Definition 2.0.9 (Parabolic point and Parabolic subgroup). A parabolic point (inM) is one

whose stabilizer is infinite and contains no loxodromic elements. The stabilizer of a parabolic

point is a parabolic subgroup. [Bow99c]

Definition 2.0.10 (Relatively Hyperbolic Group and Bowditch Boundary). Suppose a group

G acts on a compact metrizable space M as a convergence group. Also suppose that P is the

collection of representatives of conjugacy classes of stabilizers of the parabolic fixed points.

Then we say G is hyperbolic relative to P and M is the Bowditch Boundary of (G,P)

Definition 2.0.11 (Relative group action, Relative splitting). A group G is said to act

relative to a class of subgroups P on a topological space T if each member of P fixes a point

in T . A group G is said to split relative to a class of subgroups P, if G has a graph of groups

splitting and each member of P is a conjugate into one of the vertex groups.

Bowditch characterizes the connectedness property of the Bowditch boundary of rela-

tively hyperbolic groups in the following result analogous to Stallings theorem for hyperbolic

groups.

Theorem 2.0.12 ( [Bow12]). The boundary M = ∂(G,P) of a relatively hyperbolic group

(G,P) is connected if and only if (G,P) does not split nontrivially over any finite subgroup

relative to the peripheral subgroups.
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We will define the terms real tree, R–tree and dendrite next. A detailed account of these

concepts can be found in [Bow99c].

Definition 2.0.13. An arc is a subset (of a topological space) homeomorphic to a closed

real interval. A uniquely arc-connected space, T , is a Hausdorff topological space in which

every pair of distinct points are joined by a unique arc.

Definition 2.0.14 (real tree). A real tree is a locally connected, uniquely arc-connected

Hausdorff space T .

Definition 2.0.15 (dendrite). A dendrite is a compact separable real tree.

Definition 2.0.16. Suppose T is a real tree. Given x ∈ T , the degree of x = deg(x) is the

cardinality of the set of components of T − {x}. A point x ∈ T is terminal if deg(x) = 1.

Definition 2.0.17. Suppose a group G acts as a convergence group on a compact, metrizable

space M . A subgroup of G is elementary if it is parabolic, finite or loxodromic.
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3. Construction of a nontrivial dendrite

In this chapter we prove Theorem 3.0.18 in which we construct a nontrivial dendrite D(M)

assuming the existence of a non parabolic cut point in the Bowditch boundaryM of a finitely

generated, relatively one ended, relatively hyperbolic group (G,P). Bowditch proves a similar

result in [Bow99c, Theorem 6.1] with a more restrictive hypothesis that G is one-ended. We

on the other hand assume G to be one-ended relative to P.

Suppose M has a cut point p that is not a parabolic fixed point. Let T be the set of all

G-translates of p. We will adapt the argument of [Bow99c, Proposition 6.1] to obtain the

following relative version of Theorem [Bow99c, Proposition 6.1].

Theorem 3.0.18. Suppose that (G,P) is a finitely generated group, finitely presented relative

to P and one-ended relative to P, that admits a minimal convergence action on a continuum,

M relative to P. If M has a cut point that is not a parabolic fixed point, then there exists

a G–equivariant quotient D(M) that is a dendrite. Moreover each member of P fixes some

point in D(M), the induced action of G on D(M) is a convergence action and without global

fixed point.

We will need the following definitions from [Bow99c]

Definition 3.0.19 (pretree). The set T with a ternary relation of ‘betweenness’ is a pretree

if the following axioms are satisfied:

• (T0) For all (x, y)(¬xyx)

• (T1) xzy ⇐⇒ yzx
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• (T2) For all x, y, z then we cannot have xyz and xzy simulataneously.

• (T3) If xzy and z 6= w then we either have xzw or yzw

Definition 3.0.20 (interval in pretree). Given distinct points x, y in a pretree T , we shall

write

• (x, y) = {z ∈ T |xzy} is an open interval

• [x, y) = (y, x] = (x, y) ∪ {x} is a half open interval

• [x, y] = (x, y) ∪ {x, y} is a closed interval

• Without reference to the points x, y, open, half-open, closed might be ambiguous.

• (x, x) = [x, x) = ∅

• [x, x] = {x}

Definition 3.0.21 (adjacent point). Suppose T is a pretree. Two distinct points x, y ∈ T

are adjacent if (x, y) = ∅.

Definition 3.0.22 (full subset of pretree). A subset A of a pretree T is full if [x, y] ⊆ A for

all x, y ∈ A.

Definition 3.0.23 (linear subset of pretree). A subset A of a pretree T is linear if for all

distinct x, y, z ∈ A, we have xyz or yzx or zxy.

Definition 3.0.24 (arc of pretree). An arc of a pretree is a non empty full linear subset.

Definition 3.0.25 (direction in pretree). If A is a linear subset of a pretree T , a direction

on A is a linear (i.e. total) order < on A such that xyz implies either (x < y < z) or

(z < x < y). We refer to (A,<) as a directed linear set.

If (A,<) is a directed linear set, then so also is (A,>) where x > y implies y < x

10



Remark 3.0.26. Bowditch observes in the remark after [Bow99c, Lemma 2.7] that every

interval in a pretree is an arc and hence every interval is by definition a linear set.

Lemma 3.0.27. [Bow99c, Lemma 2.7] A linear set with at least two elements admits

precisely two directions.

Definition 3.0.28 (median of pretree). Suppose T is a pretree. Given x, y, z ∈ T , we shall

say that c ∈ T is a median of x, y, z if c ∈ [x, y] ∩ [y, z] ∩ [z, x]. Applying Lemma 3.0.27,

Bowditch observes that if a median exists, then it must be unique. In this case we write

c = med(x, y, z).

Definition 3.0.29 (median pretree). A median pretree is a pretree in which every set of

three points has median.

Definition 3.0.30 (complete pretree). A pretree is complete if every arc is an interval.

3.1 Betweenness and embedding of the cut point set

Let M be a connected Hausdorff topological space. A point a ∈M is a cut point if M −{a}

is not connected. Thus we can write M − {a} = U t V , where U and V are nonempty open

subsets of M . We shall write UaV to represent this situation. Given x, y, z ∈ M we shall

write xzy to mean that there are open sets U and V of M with UzV , x ∈ U and y ∈ V . We

say z is between x, y.

By [Bow99c, Lemma 5.3], with the ternary relation of ‘betweenness’ thus defined M

is a pretree. Suppose T is a set of cut points in M . Notice that T is also a pretree.

In [Bow99c, Section 3] Bowditch uses the concept of ‘flows’ to embed any pretree, T in a

complete median pretree Φ. This embedding will have the property that for any distinct

pair of points x, y ∈ Φ−T , there is some z ∈ T with xzy. Also for any pair of distinct points

x, y ∈ T there is some z ∈ Φ with xzy.
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Definition 3.1.1 (full relation). A full relation on a pretree is an equivalence relations for

which every equivalence class is full.

Suppose ∼ is a full equivalence relation on a pretree Φ. Let Φ/ ∼ be the quotient. For all

x ∈ Φ we write the ∼ equivalence class containing x as [x]∼ ∈ Φ/ ∼. If X, Y, Z ∈ Φ/ ∼ write

XY Z to means that there is some y ∈ Y such that XyZ. This is a ternary ‘betweenness’

relation on Φ/ ∼. In fact Bowditch shows that, with the betweenness relation thus defined,

Φ/ ∼ is a pretree. Moreover if Φ is a median pretree then so is Φ/ ∼. Also if Φ is a complete

pretree, then so is Φ/ ∼ [Bow99c, Lemma 4.2].

Definition 3.1.2 (dense pretree). A pretree Φ is dense if for all distinct x, y ∈ Φ there

exists z ∈ Φ with xzy. In other words, no two points in Φ are adjacent.

Definition 3.1.3 (codense relation). A codense relation on Φ is a full relation, ∼, such that

Φ/ ∼ is dense.

Suppose ∼,∼′ are two binary relations on Φ. We define a partial order ≤ on the set of

relations as follows: ∼≤∼′ means x ∼ y implies x ∼′ y.

Let R be the set of all codense relations on Φ. Then there exists unique minimal codense

relation in R [Bow99c, Section 4]. Bowditch shows that this minimal codense relation can

be obtained in an inductive manner as described in Section 3.2. In the proof of Theorem

3.0.18, we modify the steps of this induction process.

Definition 3.1.4 (Finite Interval Relation). Let Φ be a pretree. Two points x, y ∈ Φ are

said to be equivalent by finite interval relation (x ∼ y), if and only if [x, y] is finite.

3.2 Obtaining a minimal codense relation

In this section we generalize Bowditch’s construction of a dendrite from the convergence

group action of a finitely generated group (G,P) on a compact, metrizable space M , rela-

tive to P. We also prove a few lemmas to keep track of the parabolic fixed points in the

construction of the dendrite from the boundary M .
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Suppose M is a compact, metrizable space on which a finitely generated relatively hy-

perbolic group (G,P) acts as a convergence group. Let T be a set of cut points of M that

are not parabolic fixed points and invariant under the action of G. Finally suppose Φ is a

complete median pretree in which T embeds as in Section 3.1. For an ordinal α, we associate

a full relation ∼α on Φ by a process of transfinite induction as follows. Suppose ∼0 is the

trivial relation on Φ (equality). Suppose now that ∼ is any full relation on Φ. Let ≈ be the

finite interval relation on Φ/ ∼. Define a relation ∼′ on Φ by x ∼′ y if and only if [x]∼ ≈ [y]∼.

Suppose α, β, are ordinals. If α is successor ordinal and α = β + 1, define ∼α= (∼β)′. If

α is a limit ordinal, define ∼α= ∨{∼β |β < α}, that is x ∼α y if x ∼β y for some β < α. This

gives us a full relation, since, by transfinite induction, all the relations ∼β for β < α are full

relations. Moreover, if γ ≤ β ≤ α, then ∼γ≤∼β, so that {∼β |β < α} is a chain. Bowditch

proves that these relations must eventually stabilise, i.e. for some α, we have ∼α+1=∼α, so

that, in fact, ∼α=∼β for all β ≥ α . [Bow99c, Lemma 4.4]

All through the rest of this chapter the following notation is assumed. We use M to

denote a compact, metrizable space on which a finitely generated relatively hyperbolic group

(G,P) acts as a convergence group. Let T be the G translates of p, where p is a cut point of

M that is not a parabolic fixed point. Finally, suppose Φ is a complete median pretree that

is a completion of T as in Section 3.1.

Remark 3.2.1. In [Bow99c, Section 5], Bowditch defines a G-equivariant map φ : M → Φ.

Since Φ is a completion of T , we regard T as a subset of both M and Φ. By Bowditch’s

definition, the map φ restricts to identity on T . Moreover in [Bow99c, Lemma 5.14], Bowditch

shows that if p ∈ Φ then either p ∈ φ(M), or else p is adjacent (in Φ) to some element of T .

Definition 3.2.2. Let Φ′ be the set of those elements of Φ−T which are adjacent of precisely

one element of T . Define Φ0 = Φ− Φ′.

The following lemma is similar to [Bow99c, Lemma 6.10] which has a single parabolic

element in its hypothesis instead of an entire parabolic subgroup.
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Lemma 3.2.3. Suppose P is an infinite parabolic subgroup whose fixed point, a ∈ M , does

not lie in T . Let F (P ) be the collection of points fixed by P in Φ. Then F (P ) consists of a

single point of Φ0 − T .

Proof. We know that F (P ) ∩ T is empty. By Remark 3.2.1, there is a G-equivariant map

φ : M → Φ. As a ∈M is fixed by P , hence φ(a) ∈ Φ is also fixed by P . If φ(a) 6∈ Φ0 then it

must be adjacent to a single point of T which is also fixed by P . But no point in T is fixed

by P by hypothesis. Hence φ(a) ∈ Φ0. Thus F (P ) ∩ Φ0 is non empty.

Suppose r, s ∈ F (P ) are distinct. Then [r, s] is infinite. For, if [r, s] is finite, consider the

element z, adjacent to r in [r, s]. It must be fixed by P as under the action of P nothing

should come in between γ(r) = r, γ(z) for all γ ∈ P . But that implies F (P )∩T is non empty

which is not true by hypothesis. Hence [r, s] is infinite.

By the observation in the proof of [Bow99c, Lemma 6.9], there exists disjoint closed P -

invariant sets RM(r) and RM(s) as defined in [Bow99c, Section 3]. But closed subsets of

compact space M are compact. The convergence action of P on M is locally uniform and

P is a parabolic subgroup. Let p be the unique fixed point of P in M . Without loss of

generality suppose p 6∈ RM(s). Hence there is g ∈ P such that g · RM(s) is contained in

the open neighborhood M − RM(s) of p. But that means g · RM(s) and RM(s) are disjoint

giving us a contradiction. Therefore F (P ) contains just one point.

Notice that by Remark 3.2.1 there is an action of G on Φ induced by the action of G on

M . We now show that each infinite torsion subgroup P of G fixes some point in a P–invariant

full subset S of Φ. First we need a lemma about finite order elements.

Lemma 3.2.4. Suppose Φ is any pretree and g is an action on Φ by pretree automorphisms.

Suppose g is finite order and there is an element x ∈ Φ such that gx = x. Let y be different

from x. Then gy 6∈ (x, y)

Proof. Assume by way of contradiction gy ∈ (x, y). As gy is in between x and y, then, g2y

is in between x and gy. In fact gny is in between x and gy for all n ∈ N. But that implies
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that gny 6= y for all n ∈ N. This contradicts the fact that g is finite order.

Lemma 3.2.5. Suppose Φ is a pretree and g is a finite order automorphism of Φ. Then the

fixed point set of g in Φ is full.

Proof. Suppose x, y ∈ Φ are fixed by g. If x, y are adjacent then we are done. Otherwise

assume that there exists z ∈ [x, y] implying gz is in between x and y. Hence gz ∈ [gx, gy] =

[x, y]. If gz 6= z, then gz ∈ [x, z) or gz ∈ (z, y]. Without loss of generality, assume gz ∈ [x, z).

But by Lemma 3.2.4 this is a contradiction as g is finite order.

Definition 3.2.6. Let fixΦ(g) be the fixed point set of g in Φ.

Lemma 3.2.7. Suppose Φ is a median pretree and a group G is acting on Φ by pretree

automorphisms. Let g be a torsion element of G such that g fixes a point x in Φ. If y ∈ Φ

and m = med(x, y, gy), then gm = m.

Proof. Since g maps [x, y] to [x, gy], if gm 6= m then we have gm ∈ (m, gy) or gm ∈ (x,m).

Replacing g with g−1 if necessary, we assume that gm ∈ (x,m). But by Lemma 3.2.4 this is

not possible as g is finite order. Hence gm = m.

Lemma 3.2.8. Suppose Φ is a median pretree and a group G is acting on Φ by pretree

automorphisms. Let g be a torsion element of G such that g fixes a point in Φ. If S is a g–

invariant full subset of Φ, then g fixes some point in S and fixΦ(g) ∩ S is full.

Proof. Suppose x ∈ fixΦ(g). Consider m = med(x, y, gy). Clearly m ∈ S as S is full.

By Lemma 3.2.7 Therefore fixΦ(g)∩S is nonempty. Moreover as by Lemma 3.2.5, fixΦ(g)

is full, and by hypothesis S is full, hence fixΦ(g) ∩ S is full.

Lemma 3.2.9 (Helly’s Theorem for Median Pretree). [Rol98, Theorem 2.2] Suppose S =

S1, ..., Sn is a finite collection of full subsets of a median pretree S, such that Si ∩ Sj is

nonempty for all 1 ≤ i, j ≤ n. Then S1 ∩ S2 ∩ ... ∩ Sn is nonempty.
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Lemma 3.2.10. Suppose a finitely generated infinite torsion group P is acting on a compact,

connected, metrizable space M as a convergence group relative to P. Suppose Φ be a complete

median pretree obtained from M as in Section 3.1. If S is a P– invariant full subset of Φ,

and if every element of P fix some point in S, then P will fix some point in S.

Proof. Choose a finite generating set SP of P . Suppose x, y ∈ Φ are fixed by gx, gy ∈ SP

respectively. We show that fixΦ(gx) ∩ fixΦ(gy) is nonempty.

If y is not a fixed point of gx, let mx be the med(x, y, gxy). By [Bow99c, Lemma 2.5], mx

is unique. By Lemma 3.2.7, we have gxmx = mx.

Note that mx 6= y as we assumed that y is not fixed by gx. Therefore gx fixes mx and

sends (mx, y] to (mx, gxy]. In fact gxgy sends y to gxgyy = gxy.

The following section of the proof is inspired by Serre’s argument in [Ser77, Prop. I.26].

Suppose mxy is a fixed point of gxgy. By Lemma 3.2.7, m′ = med(mxy, y, gxgyy) is fixed

by gxgy. Therefore we have m′ between y and gxy = gxgyy. If mx = m′ then mx = m′ =

gxgym
′ = gxgymx implying gymx = g−1

x mx = mx implying mx is a fixed point of gy. Hence

we have mx ∈ fix(gx) ∩ fix(gy) and we will be done.

Hence assume by way of contradiction that mx 6= m′.

Choose one of the two possible directions possible in the interval [gxy, y] which by Remark

3.0.26 is a linear set. Denote the chosen direction by <. Without loss of generality we can

assume gxgyy < m′ < y. In this convention gxgyy = gxy is the ‘least’ element of [gxy, y].

Since mx 6= m′, by (T3) axiom of pretree, we have the following cases.

Case 1: mx is in between m′ and y.

Since m′ is between gxgyy and mx. hence Hence (gx)
−1(m′) is between (gx)

−1(gxgy)(y) =

gyy = y and (gx)
−1(mx) = mx. Therefore gy(m′) = (gx)

−1(gxgy)(m
′) = (gx)

−1(m′) lies

between y and mx. Then gy(m′) is between m′ and y but this contradicts Lemma 3.2.4.

Case 2: m′ is in between mx and y is similar

Hence mx = m′ that is mx = gxgymx or mx ∈ fix(gy). Moreover mx ∈ S as S is full.

Hence the fixed point sets of every pair of members in SP (and also in P ) has nonempty
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intersection.

Since the fixed point sets in S are full and nonemepty by Lemma 3.2.8, hence by Lemma

3.2.9, intersection of all the (finitely many) fixed point sets of members of SP has a nonempty

intersection with S. Hence we found point in S fixed by all elements of P .

Definition 3.2.11. Suppose T̄ is any pretree. x, y ∈ T̄ and Q is a full subset of T̄ . Then

xyQ means that for all q ∈ Q, we have xyq.

Definition 3.2.12 (Preclosed subset of a pretree). Suppose T̄ is a general pretree. A full

subset Q ⊆ T̄ is preclosed if for all x ∈ T̄ −Q there exists y ∈ T̄ such that xyQ.

The following lemma is proved by Bowditch.

Lemma 3.2.13. [Bow99c, Lemma 5.19] If Q ⊆ Φ is preclosed, then φ−1(Q) ⊆M is closed

and connected.

Lemma 3.2.14. Suppose finitely generated group (G,P) is acting on a compact, connected,

metrizable space M as a convergence group, relative to P. Let P ∈ P be a parabolic subgroup

of G. Suppose Φ be a complete median pretree obtained as in Section 3.1. Let g ∈ P is

infinite order and x′,m be points in Φ such that (x′,m] = ∪∞i=0[gim,m] is an interval in Φ

and x′ < ... < gnm < ... < gm < m for all n ∈ N. Then gx′ = x′.

Proof. Consider the map φ : M → Φ as in Remark 3.2.1. Clearly each closed interval of Φ

is preclosed. Then by Lemma 3.2.13 φ−1([x′,m]) is closed and connected in the continuum

M . Suppose t ∈ φ−1(m). Since φ is G-equivariant, we have g(φ(t)) = φ(gt) = gm implying

gt ∈ φ−1(gm). Similarly gnt ∈ φ−1(gnm) for all n ∈ N.

Notice that gnt ∈ φ−1([gnm,m]) and gnt 6∈ φ−1([gn−1m,m]). Clearly ∪∞i=1φ
−1([gnm,m])

is a compact exhaustion of φ−1((x′,m]).

Since M is compact and metrizable, M is sequentially compact. Hence the sequence

(gnt) has a convergent subsequence (gkn). Suppose the limn→∞ g
knt = t′. Notice that

t′ 6∈ φ−1([gnm,m]) for all n ∈ N. Hence t′ 6∈ φ−1{(x′,m]}.
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Now consider the infinite sequence of group elements gk1 , gk2 , ... They are all contained

in the parabolic subgroup P by hypothesis. Hence all of them have a unique common fixed

point t′′ in M , which is also a fixed point of g. Moreover by the property of convergence

group we have limn→∞ g
knt = t′′, therefore t′ = t′′. Hence gt′ = t′

Case 1: x′ ∈ φ(M)

Note that φ−1([x′,m]) is closed and connected. Moreover φ−1([x′,m]) = φ−1((x′,m]) ∪

φ−1{x′} ⊃ cl(φ−1((x′,m])). Hence t′ ∈ φ−1{x′} as we observed t′ 6∈ φ−1{(x′,m]}. By the

above discussion gt′ = t′.

Now by equivariance we have gx′ = gφ(t′) = φ(gt′) = φ(t′) = x′.

Case 2: x′ 6∈ φ(M)

By Remark 3.2.1, x′ is adjacent to x′′ ∈ T . Clearly x′′ 6∈ (x′,m], otherwise we have

∪∞i=1φ
−1([gnm,m]) = (x′′,m] = (x′,m] which implies x′ = x′′. Hence x′′ ∈ [x, x′). Again note

that φ−1([x′′,m]) = φ−1([x′,m]) ∪ φ−1{x′′} = cl(φ−1((x′,m])) is closed and connected. As in

the first case t′ ∈ φ−1(x′′). By the above discussion gt′ = t′. Now by equivariance we have

gx′′ = gφ(t′) = φ(gt′) = φ(t′) = x′′. But x′′ ∈ T , hence it cannot be fixed by g (as T is the

collection of cut points in M that are not parabolic.)

Hence Case 2 cannot happen. Therefore x′ ∈ φ(M) and gx′ = x′.

Lemma 3.2.15. Suppose finitely generated group (G,P) is acting on a compact, connected,

metrizable space M as a convergence group, relative to P. Let P ∈ P be a parabolic subgroup

of G. Suppose Φ be a complete median pretree obtained as in Section 3.1. If S is a P

invariant full subset of Φ, then P fixes some point in S.

Proof. By Lemma 3.2.3 P fixes a unique point x in Φ0. If x is in S then we are done. Hence

assume x 6∈ S.

Choose g ∈ P, s ∈ S. There exists m = med(x, s, gs) ∈ S as Φ is median pretree and S

is full. Moreover this m is unique by Lemma 2.5 of [Bow99c].

Clearly g sends [x, s]→ [x, gs]. Hence if gm 6= m, then gm ∈ [x,m) or gm ∈ (m, gs].

Case 1: gm ∈ [x,m).
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Clearly, gm is in between x and m (and not equal to x or m). We write x < gm < m to

mean gm is in between x and m in the linear set [x,m]∩S. As g is acting by median pretree

automorphism, it preserves the betweenness property. Hence we have gx < g2m < gm which

implies x < g2m < gm < m as gx = x.

Notice that gnm 6= gn−1m as that would imply gm = m and we are assuming otherwise.

Thus we have x < ... < gnm < gn−1m < ... < m in the arc [x,m]∩S. Since Φ is complete,

every arc is an interval. Hence there exists x′ ∈ [x,m] such that [x′,m] = ∪∞i=0[gim,m].

Hence by Lemma 3.2.14, x′ is a fixed point of g. Since x < gnm < gm < m hence

gnm 6= m for all n ∈ N. Hence g is not torsion. Therefore g must be a parabolic element.

But by Lemma 6.10 of [Bow99c] the fixed point set of g contains only one element. Hence

we have x = x′.

Now, consider the sequence of points g−1m, g−2m.... These are distinct points inside S

as we have assumed gm 6= m. We next show that set ∪∞i=1[m, g−im] is also an arc. Notice

that gim < gi−1m < ... < gm < m are contained in the arc [x,m] ∩ S in that linear order.

Therefore g−i translate of this linear set of points is also linear hence m < g−1m < ... <

g−(i−1)m < g−im is a linear set of points in S. Hence by induction m < g−1m < ... <

g−(i−1)m < g−im < ... is linear. Finally as S is full, so is ∪∞i=1[m, g−im].

As Φ is complete, the arc ∪∞i=1[m, g−im] is an interval. Therefore there exists x′′ such

that g−1m < g−2m < ...g−nm < ... < x′′ for all n > 0 and ∪∞i=0[m, g−im] = [m,x′′]. The

point x′′ must be fixed point of g by Lemma 3.2.14. Again applying Lemma 6.10 (uniqueness

of fixed point) we see x = x′ = x′′

Notice that we have x < m < x contradicting the first pretree axiom (T0) in [Bow99c]

Case 2: gm ∈ (m, gs].

Notice that g−1 maps [x, gs]→ [x, s]. This implies g−1(m) ∈ [x, s]. Since m < gm < gs,

hence g−1(m) < m < s implying x < g−1(m) < m. Therefore for all n ∈ N, we have

x < g−nm < g−1(m) < m implying g−1 is not finite order implying g is not finite order.

Now we can apply the same argument as in Case 1.
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Notice that if g is a torsion element, then gm = m where m = med(x, s, gs) and x is a

fixed point of g, possibly x 6∈ S.

We have now established that all elements of P has fixed points inside S.

Suppose P contains at least one parabolic element g. By [Bow99c, Lemma 6.10] each

parabolic element has a unique fixed point in Φ. Suppose xg is the fixed point of g. By the

above discussion xg ∈ S. By Lemma 3.2.3, the group P has a unique fixed point in Φ. Note

that fix(P ) ⊂ fix(g). Hence fix(P ) = xg. But xg ∈ S. Hence P fixes a point xg ∈ S.

Suppose P is infinite torsion, then by Lemma 3.2.10 we are done.

Theorem 3.2.16. Suppose P is a group that acts on a pretree T via pretree automorphism.

Let ∼ be a finite interval relation on T . If P fixes a point x ∈ T , then P fixes set-wise, the

∼ equivalence class of T containing x.

Proof. If y and z are adjacent in T , and γ ∈ P , then γ(y) and γ(z) are also adjacent.

Otherwise, by way of contradiction, assume that r is between γ(y) and γ(z). Then γ−1(r)

is in between y and z. As y and z are adjacent, this gives a contradiction.

In particular if there are finitely many points between y and z, then there are finitely

many points between γ(y) and γ(z).

By hypothesis P fixes x ∈ T . Suppose y ∼ x. If γ ∈ P , we show that γ(y) ∼ x. By

definition of finite interval relation, there are finitely many points between x and y. Hence

there are finitely many points between γ(x) and γ(y). But γ(x) = x. Hence there are finitely

many points between x and γ(y) thus implying γ(y) ∼ x.

Therefore P fixes the equivalence class containing x setwise.

Corollary 3.2.17. Suppose G is a group, P is a subgroup of G, β is an ordinal, α = β + 1,

and ∼ is a finite interval relation on a pretree. Let ∼α=∼ for α = 1. Also suppose, whenever

∼β is a full relation on Φ, we have a full relation ∼α on Φ such that Φ/ ∼α= (Φ/ ∼β)/ ∼.

If a group G acts on Φβ = Φ/ ∼β relative to P then it acts on Φ/ ∼α relative to P .

Definition 3.2.18. (relatively one-ended group) Suppose G is a finitely generated group
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and P is a collection of subgroups of G. Then we say G is relatively one-ended if, whenever G

acts without edge inversions on a simplicial tree relative to P such that all the edge stabilisers

are finite, G fixes some vertex of the tree.

Lemma 3.2.19. P fixes a point of Φ/ ∼1.

Proof. Let F (P ) denote the set of fixed points of P in Φ. By Lemma 3.2.3, F (P ) consists

of a single point of Φ0 − T . Also by the remark after [Bow99c, Lemma 6.8], Φ/ ∼ can be

identified with Φ0/ ∼, where ∼=∼1 is the finite interval relation.

Suppose P fixes an equivalence class X of Φ0/ ∼ setwise. Then X is a maximal full

discrete subset of Φ. By Lemma 3.2.15, if P fixes X setwise, then it must fix some point

x ∈ X.

Clearly, if another equivalence class X1 is fixed setwise by P , then some x1 ∈ X1 is fixed

P by Lemma 3.2.15. Then x1 ∈ F (P ).

But by Lemma 3.2.3, F (P ) consists of a single point of Φ0 − T . Hence x = x1 implying

X = X1 by maximality.

Hence P fixes a unique equivalence class in Φ/ ∼1.

Lemma 3.2.20. P ∈ P fixes an equivalence class of Φ/ ∼α for all ordinal α.

Proof. We proceed by induction. By Lemma 3.2.19 Φ/ ∼1 has a unique fixed point for P .

Suppose α is a successor ordinal, and α = β + 1. By inductive hypothesis, assume that

Φ/ ∼β has a unique fixed point of P . Since each equivalence class of Φ/ ∼α is a maximal

discrete full subset of Φ/ ∼β there fore the argument of Lemma 3.2.19 works.

Suppose α is a limit ordinal. By inductive hypothesis, assume that Φ/ ∼β has a fixed

point of P for all β < α. The fixed point (equivalence class) in each Φ/ ∼β is a nested

sequence of subsets of points in Φ as each fixed equivalence class must contain a fixed point

which is a fixed equivalence class of the previous ordinal and so on. Consider the union

of this nested sequence of subsets of Φ. This is the equivalence class that is fixed by P in

Φ/ ∼α.

21



Lemma 3.2.21. G does not fix any point of Φ/ ∼, where ∼ is the finite interval relation on

Φ.

Proof. Let X =∼ equivalence class. X, is a (maximal) discrete full subset [Bow99c, Lemma

4.4]. Since X is full, it must itself be a median pretree, and so by [Bow99c, Lemma 3.34], it

can be thought of as a simplicial tree.

Assume by way of contradiction, that G preserves setwise X ⊆ Φ. Suppose Φ0 = Φ−

(the set of those elements of Φ− T which are adjacent of precisely one element of T).

Let S = X ∩ Φ0. S is a simplicial tree by [Bow99c, Lemma 3.34]. Let S0 = S ∩ T and

S1 = S − T , thus S = S0 t S1. By [Bow99c, Lemma 3.28], each edge of S has one endpoint

in each of S0 (a cut point) and S1 (not a cut point).

By Lemma 3.2.15, the action of G on S is relative to P. As (G,P) is relatively one-ended,

if all the edge stabilizers of S is finite, by Definition 3.2.18 G would fix a point in S which

contradicts [Bow99c, Lemma 6.11].

Suppose a ∈ S0 (a cut point of M) and p, q ∈ S1 adjacent to a. Let stabilizer of a be

G(a). It is either finite or loxodromic (as it is not a parabolic fixed point). Suppose the

edge stabilizers G(a) ∩G(p) and G(a) ∩G(q) are both infinite. This implies G(a) is infinite

hence loxodromic. Thus G(a) ∩ G(p) and G(a) ∩ G(q) are finite index subgroups of G(a),

implying there is an infinite order element γ ∈ G(p)∩G(q). Therefore γ is a loxodromic that

fixes p, a, q. But a ∈ T, p, q ∈ Φ0 contradicting [Bow99c, Lemma 6.9]. This shows that at

least one of G(a)∩G(p) and G(a)∩G(q) must be finite. Without loss of generality, suppose

G(p) ∩G(a) is finite.

This implies that for every point a ∈ S0, stabilizers of all but possibly one of the edges

incident at a are finite. Collapsing all edges with infinite stabilizers, we have a tree on which

G acts with finite edge stabilizers relative to P. By relative one endedness, G fixes one of the

vertices of this tree. But each vertex contains the star of at most one point in S1. Therefore

G fixes one of the points in S leading to a contradiction of [Bow99c, Lemma 6.11].
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Lemma 3.2.22. Suppose a group G acts by pretree automorphisms on a pretree Φ. If a

subpretree S of Φ is stabilized by G, then S ′ = S − {terminal points} is also stabilized by G.

Proof. Suppose x is terminal in S. Then g · x is also terminal in S. If not, suppose y, z ∈ S

such that g ·x is between y and z. Then x is between g−1y and g−1z which is a contradiction.

Similarly points which are not terminal, are sent to points which are not terminal by the

action of G. Hence G stabilizes S ′.

Corollary 3.2.23. Let Φ be a complete median pretree and S be a full subset of Φ. Let G

act on Φ by median pretree automorphism and suppose G stabilizes S as a set. If a subgroup

P (of G) fixes a point in Φ then P fixes some point in S ′ = S − {terminal points} .

Proof. It is easy to see that S is also a median pretree. By Lemma 3.2.23, S ′ is stabilized

by G. By Lemma 3.2.15, P fixes some point in S ′.

3.3 Proof of the existence of nontrivial dendrite

In this section we will generalize Bowditch’s construction of nontrivial dendrite (as in Section

3.2) and create a nontrivial dendrite in the relative case. Our construction differs from

Bowditch’s construction in one essential aspect. Bowditch assumes the group G to be one-

ended. We, on the other hand, assume G to be one-ended relative to P.

Proof of Theorem 3.0.18. By hypothesis, there is at least one cut point p ∈M that is not a

parabolic fixed point. Suppose T is the set of the G translates of p. Hence the stabilizer of

each point of T is either finite or loxodromic.

Bowditch proves in [Bow99c, Section 3], there exists a complete median pretree Φ, such

that T embeds in Φ. This embedding has the property that for any distinct pair of points

x, y ∈ Φ − T , there is some z ∈ T with xzy. Also for any pair of distinct points x, y ∈ T ,

there is some z ∈ Φ with xzy. Moreover Bowditch shows in [Bow99c, Section 3], the action

of G on M induces an action of G on Φ via median pretree automorphism.
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By Lemma 3.2.3, the induced action of G on Φ0 is relative to P and each member of P

has a unique fixed point in Φ0.

Let ∼0 be the trivial relation (equality) on Φ. Suppose ∼1=' be the finite interval

relation on Φ. If α, β are ordinals such that α is a successor ordinal and α = β + 1, then

define Φ/ ∼α= (Φ/ ∼β)/ '. If α is a limit ordinal, then define ∼α= ∨{∼β |β < α}.

Bowditch proves that these relations must eventually stabilise, i.e. for some α, we have

∼α+1=∼α, so that, in fact, ∼α=∼β for all β ≥ α [Bow99c, Lemma 4.4]. If γ is the minimal

ordinal for which these relations stabilize, then Bowditch proved that Φ/ ∼γ is a dendrite

in [Bow99c, Theorem 23]. We write Φ/ ∼γ as D(M).

We prove, by transfinite induction on the ordinal α, that G cannot fix any element

of Φ/ ∼α. Bowditch proves that G does not fix any point in Φ without assuming one-

endedness [Bow99c, Lemma 6.11]. Lemma 3.2.21 has proved that G does not fix any point

for the case '=∼1, so we can assume that α > 1.

Suppose α is a limit ordinal such that ∼α= ∨{∼β |β < α}. If G does not fix any

point in Φ/ ∼β for all β < α, then it does not fix any point in Φ/ ∼α as in the proof

of [Bow99c, Theorem 6.1]. In this part of the proof Bowditch does not use the one endedness

of G.

Suppose α is a successor ordinal such that α = β + 1. By induction hypothesis, we can

assume that G acts on Φ/ ∼β without a global fixed point, relative to P . Hence by Corollary

3.2.17, it acts on Φ/ ∼α relative to P. We will show that G does not fix any point in Φ/ ∼α.

Assume by way of contradiction, that it fixes some equivalence class Ξ ⊆ Φ in Φ/ ∼α.

Let Σ = Ξ/ ∼β. Therefore by definition, Σ is a finite interval equivalence class of Φ/ ∼β,

hence by [Bow99c, Lemma 3.34] Σ is a simplicial tree. Thus Σ admits a G-action, which

by the inductive hypotheses has no G-invariant vertex. Moreover G acts on Σ without edge

inversions as in the proof of [Bow99c, Theorem 6.1]. In this part of the proof Bowditch does

not use the one endedness of G.

We will show that if the stabiliser of an edge of Σ is infinite, then one of the incident
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vertices will be terminal in Σ.

Suppose then that X, Y ∈ Σ are adjacent. We can suppose that p = p(Y,X) ∈ Y exists

as in the definition before [Bow99c, Theorem 6.1]. Now if the edge stabilizer, G(X) ∩G(Y )

were infinite, it is either a subgroup of a parabolic subgroup or it would have to contain an

infinite order element γ that must fix p. After all, if all elements are of finite order then, the

edge stabilizer must be parabolic. But two adjacent vertices of Σ cannot be stabilized by a

parabolic group as by Lemma 3.2.20, a parabolic subsgroup fixes a unique point in Σ. Hence

we have the other case: G(X) ∩G(Y ) contains an infinite order element γ that fixes p.

Let W be the set of points x ∈ Φ such that ¬xpX. Thus X ⊆ W , and Y ∩W = φ.

Moreover if x, y ∈ W , then [x, p) and [y, p) are cofinal (since med(x, y, p) 6= p ). Since X

and p are γ- invariant, so is W . By [Bow99c, Theorem 6.1], W contains a fixed point q of

γ. Since q 6∈ Y , we have p 6∼β q and so p 6∼1 q. In other words, [p, q] is infinite. By [Bow99c,

Lemma 6.9, Lemma 6.10], we see that γ must be loxodromic. In fact, we are in case (2)

of [Bow99c, Lemma 6.9], and so, in particular, p is terminal in Φ. By [Bow99c, Theorem 6.1]

it follows that, in fact, Y = p. Hence Y must be terminal in Φ/ ∼β and so in particular, in

Σ.

In summary, we have shown that if an edge of Σ is stabilised by an infinite group, then

one its endpoints must be terminal. Now if we delete from Σ each such edge together with

its terminal endpoint, we obtain a simplicial tree S ⊆ Σ all of whose edge stabilisers are

finite. Since as in the remark after [Bow98a, Theorem 7.1], none of the parabolic fixed points

are terminal, hence G acts on Σ − {terminal points} without edge inversion, relative to P .

By definition 3.2.18 of relative one-endedness, we see that G must fix some vertex of S, i.e.

some element of Φ/ ∼β, contrary to the inductive hypothesis.

In summary, we conclude that for each ordinal α, no vertex of Φ/ ∼α is fixed by G.

In particular, Φ/ ∼α is non-trivial. Now, by [Bow99c, Lemma 4.4], the minimal codense

relation on Φ has the form Φ/ ∼α for some ordinal α. We deduce that the quotient by the

minimal codense relation is non-trivial.
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4. Construction of the R–tree

In this chapter we will prove Theorem 4.1.1 which uses the action of a relative one-ended,

relatively hyperbolic group (G,P) on its boundary M , such that (if possible) M has a cut

point that is not a parabolic fixed point, and constructs an isometric action of G on an R–

tree T0 relative to P, without a global fixed point. Earlier we constructed a dendrite D(M),

on which G acts as a convergence group, relative to P, without global fixed point. Now we

will use the action of G on D(M) to obtain the action of G on a R–tree. Toward that end,

we prove a relative version of [Lev98, Theorem 1].

Suppose T ′ = D(M)− {terminal points}. We show that T ′ is a nontrivial real tree.

Lemma 4.0.1. Suppose D(M) is a dendron. S is the collection of terminal points of D(M)

and T ′ = D(M)− S. If D(M) is not a point then T ′ is not a point.

Proof. Assume, by way of contradiction, that T ′ = {x}, is a point. Since D(M) is not a

point, hence it must have at least another point x1 6= x. Clearly x1 is terminal. But so are

all points on the arc connecting x1 and x (as all of them were removed while creating T ′).

Suppose p ∈ [x1, x], p 6= x, p 6= x1. Since p is terminal in D(M) (as all points except

x are terminal), x1, x are in the connected component D(M) − {p}. As D(M) is compact,

connected, locally connected, hence by [HY88, Theorem 3.16] D(M) − {p} is arc-wise con-

nected. This implies there is an arc [x1, x] that does not contain p. But D(M) is uniquely

arc connected by definition of dendron. Hence we have a contradiction.

Next we show that the parabolic fixed points cannot be terminal.
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Lemma 4.0.2. Suppose G acts on a dendrite D(M) as a convergence group. Then the

parabolic fixed points are not terminal in D(M).

Proof. Assume by way of contradiction that p is a terminal point in D(M) and p is a fixed

point of the parabolic subgroup P ∈ P.

Clearly D(M) is a complete pretree as it is a dendrite. Notice that T ′ = D(M) −

{Terminal Points } is a non trivial full subset of D(M) that is stabilized set-wise by P (as

non terminal points map to non terminal points). Hence by Lemma 3.2.15, P fixes a point

in T ′. As parabolic fixed points must be unique, this leads to a contradiction.

Hence G acts on T ′ relative to P by homeomorphism. We show that there exists an R-tree

T0 on which G acts by isometries relative to P. Additionally we show that the arc stabilizers

of T0 stabilize arcs in T ′. Toward that end we will adapt the strategy used in [GL15, Theorem

9.9] and [Lev98].

Definition 4.0.3 (Nonnesting action). Suppose g ∈ G and I is a non-degenerate arc, then

gI ⊆ I implies gI = I.

Levitt proves the following in [Lev98]:

Theorem 4.0.4. If a finitely presented group G admits a non-trivial non-nesting action by

homeomorphisms on an R–tree T , then it admits a non-trivial isometric action on some R–

tree T0. A subgroup fixing an arc in T0 fixes an arc in T. Moreover given a finite collection

of finitely generated subgroups Gj ⊂ G , each fixing a point of T , one may require that each

Gj fixes a point of T0.

The proof of Theorem 4.0.4 in [Lev98] has two components. In order to describe these

two components, we need to make some definitions.

First, we define topological resolution of an action of G on a real tree T ′. This is very

similar to definition of (metric) resolution in [Gui98, Definition 2.2]. Guirardel defines reso-

lutions for isometric action of G on a R–tree T ′. We do not assume any metric structure on

the real tree T ′ and action of G on T ′ by homeomorphisms.
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Definition 4.0.5 (Topological Resolution). Suppose G is a group that acts by homeomor-

phisms on a real tree T ′. A topological resolution of the action of G on T ′ includes

• a finite graph K whose components are 1-connected

• a system of homeomorphisms K with domain and codomain K providing a connected

finite 2-complex Σ with a foliation F , such that K ⊂ Σ. By foliation we mean an

equivalence relation on Σ, where each equivalence class is a 1-complex. We say that

each equivalence class is a leaf.

• a base point ∗ ∈ K ⊂ Σ

• a morphism ρ from π1(Σ, ∗) onto G and a covering map π : Σ̄p → Σ such that π1(Σ̄p) =

G

• a set C of curves contained in leaves which are conjugate to loops based at ∗ that

normally generate kerρ in π1(Σ)

• a G-equivariant map fΣp : Σ̄p → T ′, constant on every leaf, which homeomorphically

embeds any connected component of π−1(K) ⊂ Σ̄p into T ′ .

The two components of the proof of Theorem 4.0.4 are as follows.

Theorem 4.0.6. If a finitely presented group G admits a non-trivial non-nesting action by

homeomorphisms on an R–tree T , then the action admits a topological resolution.

Theorem 4.0.7. If the action by homeomorphisms of group G on a real tree T ′ relative to

a finite collection of finitely generated subgroups Gj ⊂ G has a resolution, then G admits a

non-trivial isometric action on some R–tree T0. A subgroup fixing an arc in T0 fixes an arc

in T. Moreover each Gj fixes a point of T0.

We first prove a relative version of Theorem 4.0.6.
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Theorem 4.0.8. If a finitely generated, relatively finitely presented group (G,P) admits a

non-trivial non-nesting action by homeomorphisms on an real tree T ′ relative to P, then the

action admits a topological resolution.

Proof. In the proof of [GL15, Theorem 9.9], Guirardel and Levitt explains how to create

a resolution for a convergence action of a relatively finitely presented groups on a R–tree

(acting relative to the peripheral subgroups). In the construction of the resolution the

metric structure of R–tree is not used. Hence it is lends to the construction of a topological

resolution as in Definition 4.0.5.

4.1 Proof of a relative version of Theorem 4.0.4

Theorem 4.1.1. If a finitely generated, relatively finitely presented, group (G,P) admits a

non-trivial non-nesting action by homeomorphisms on a real tree T ′ relative to P, then it

admits a non-trivial isometric action on some R–tree T0 relative to P. A subgroup fixing an

arc in T0 fixes an arc in T ′. Moreover given a finite collection of finitely generated subgroups

Gj ⊂ G , each fixing a point of T , one may require that each Gj fixes a point of T0.

Proof. The action of G on T ′ satisfies the hypothesis of Theorem 4.0.4, except for the finite

present-ability, possible lack of metric structure of T ′ and relative action to P.

In particular, (G,P) may not be finitely presented but relatively finitely presented. This

issue can be remedied by the arguments presented by Guirardel and Levitt in [GL15, Theorem

9.9]. The only place finite presentation was used in the proof of Theorem 4.0.4 is in the

construction of resolution. We obtain this by Theorem 4.0.8.

The existence of the metric tree T0 and the remaining construction of [Lev98, Theorem

1] depended on the existence of the resolution of the action. Since [GL15, Theorem 9.9]

provides for such a resolution, the arguments of [Lev98, Theorem 1] goes through. For a

detailed account, please refer to [Lev98, Theorem 1] and [GL15, Theorem 9.9].

By [GL15, Theorem 9.9] and the above remark, the action G relative to P on T ′ admits
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a topological resolution. Hence by Theorem 4.0.7 it admits a non trivial isometric action on

some R–tree T0 such that a subgroup fixing an arc in T0 fixes an arc in T ′.

Moreover, the action of (G,P) on T0 is relative to P. Suppose P1 ∈ P. Let the fixed point

of P1 in T ′ be p1. The construction of the resolution, in [GL15, Theorem 9.9], includes p1 in

K as in the Definition 4.0.5. By [Lev98, Corollary 6], this ensures that P1 fixes a point in

T0. Hence the action of (G,P) on T0 is relative to P.

4.2 Isometric action of a relatively hyperbolic group

In thin section we will prove Theorem 4.2.2 which constructs a nontrivial isometric action

of a relatively one-ended, finitely generate group (G,P) on a R–tree T0 if (G,P) acts on a

compact metrizable space M as a convergence group and M has a global cut point that is

not a parabolic fixed point.

In Chapter 3, we obtained in Theorem 3.0.18 a nontrivial dendrite D(M) on which G

acts as a convergence group relative to P. Moreover in Lemma 4.0.1, the real tree T ′ =

D(M)− terminal points is not a point.

We begin by showing that the action of G on T ′ is non nesting. Bowditch indicated a

different argument to reach similar conclusion in [Bow98a].

Theorem 4.2.1. Suppose G acts as a convergence group on a compact, locally connected,

real tree, D(M). Then the restriction of the action to T ′ = D(M) − {terminal points} is

non nesting.

Proof. Suppose otherwise. Then there is a group element g and a non generate arc I = [a, b],

such that gI ( I (otherwise gI ⊆ I would imply gI = I ). Here a, b are the end points of

the arc. Clearly g is not of finite order.

Consider the infinite sequence {g, g2, g3, ..}. Since G acts on D(M) as a convergence

group, there exists is an infinite subsequence {gk1 , gk2 , gk3 , ..}, and points (possibly same), α
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and β in D(M), such that lim gkn · x = α for all x ∈ D(M) − {β} and lim g−kn · x = β for

all x ∈ D(M)− {α}. We claim α ∈ I.

Since I is non degenerate, choose x0 ∈ I that is not equal to α, β. Hence, lim gkn ·x0 = α.

But gkn · x0 ∈ I for each n as g · I ( I. Therefore the limit point of the sequence is also in

I. Therefore α ∈ I.

Note that the action of the cyclic group generated by g on I is ‘stretch-shrink’ in the

following sense: ...g2 · I ( g · I ( I ( g−1 · I ( g−2 · I....

This can be proven in the following manner. g · I ( I by given hypothesis. Chose

x ∈ I − g · I. Clearly g−1 · x 6∈ I because otherwise g(g−1 · x) ∈ gI ( I or x ∈ I. Hence

there are points in g−1 · I which are not in I. Now for the other part, we use the following

argument. Suppose x 6∈ g−1 · I. This implies gx 6∈ I This implies x 6∈ I as whenever x ∈ I

we have gx ∈ I. Therefore we have the following implication x 6∈ g−1 · I =⇒ x 6∈ I. Thus

x ∈ I =⇒ x ∈ g−1 · I. The ‘stretch-shrink’ property follows by induction.

Next we show that β 6∈ I. Recall the notation I = [a, b] where a, b are the endpoints.

Notice that we cannot have g−n · a ∈ I and g−n · b ∈ I as, g−n · I is strictly larger than I.

Without loss of generality, suppose b−kn = g−kn · b 6∈ I.

Clearly lim g−kn · b → β. Since I is homeomorphic to the closed interval, its images

g−kn · I = I−kn are also (nested) closed intervals (strictly expanding). lim b−kn = β is an

endpoint of the closure of ∪I−kn .

Also β 6= a otherwise we have an embedded circle in D(M). This is not possible as by

hypothesis, as D(M) is a real tree.

Hence β 6∈ I. Therefore β 6= α as earlier we showed α ∈ I and then we proved β 6∈ I.

Hence they cannot be the same point.

In fact α 6∈ (a, b]. Consider the following subspace of T : I∗ = ∪I−kn . This is homeomor-

phic to a line or a ray. If α ∈ (a, b], we have lim g−kna = β.

But earlier we found lim g−knb = β. This implies I is eventually sent inside a neighbor-

hood U of β. As β is outside I, hence we can arrange this neighborhood U of β to be disjoint
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from I. But, g−n · I cannot be disjoint from I (infact it contains I).

Finally we show α 6= a thus achieving contradiction. This is as follows: We show that it

is a terminal point.

If a is not a terminal point of D(M), then choose a′ ∈ D(M)− I such that a is between

a′ and b.

Therefore lim g−kn · a′ = β. This implies g−kna′ eventually goes inside a neighborhood

V that can be arranged to be disjoint from I . As g−kn is a homeomorphism, it must

preserve ’betweeness’ and hence a goes inside that neighborhood, thus carrying I inside that

neighborhood of β. This implies g−knI is disjoint from I. This is impossible.

Hence we showed α 6∈ I. Hence we find a contradiction as earlier we found α ∈ I.

Therefore the gI 6⊂ I.

Theorem 4.2.2. Suppose a relatively one-ended finitely generated group (G,P), that acts

on a compact metrizable space M relative to P also acts on a nontrivial dendrite D(M) as

a convergence group relative to P. Then there exists an R–tree T0 that admits a non-trivial

isometric action by G. A subgroup fixing an arc in T0 fixes an arc in D(M). Moreover given

a finite collection of finitely generated subgroups Gj ⊂ G , each fixing a point of D(M), one

may require that each Gj fixes a point of T0.

Proof. By Lemma 4.0.2, Theorem 3.0.18 and Theorem 4.2.1 there exists a real tree T ′, which

admits a non-trivial non-nesting action by homeomorphisms by G relative to P. Therefore

by Theorem 4.1.1 we have the group (G,P) acts on some R–tree T0 by isometries relative to

P and given a finite collection of finitely generated subgroups Gj ⊂ G , each fixing a point

of D(M), one may require that each Gj fixes a point of T0.
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5. Relative Accessibility

In this chapter we consider a JSJ decomposition of a relatively hyperbolic group (G,P). We

show in Lemma 5.0.21 and Lemma 5.0.18 that some of the vertex groups of this decomposition

fixes some point in the dendrite obtained in Chapter 3. We finally show in Lemma 5.0.23

and Lemma 5.0.14 (G,P) fixes some point in the R–tree T0 obtained in Section 4.2.

We begin by considering the elementary splittings of G relative to P. First, we give the

definition of an elementary subgroup.

Definition 5.0.3. A subgroup of a finitely generated relatively hyperbolic group (G,P) is

elementary if it is virtually cyclic (possibly finite) or parabolic (as in Definition 2.0.9).

Lemma 5.0.4. Let (G,P) be a finitely generated relatively hyperbolic group. Suppose G acts

as a convergence group on a dendrite D(M) (not necessarily relative to P). Then the arc

stabilizers of this action restricted to T ′ = D(M)− {Terminal points} are finite.

Proof. Suppose [a, b] is a non trivial arc (homeomorphic to closed interval [0, 1]) in T ′. As-

sume, by way of contradiction, there is an infinite sequence of group elements (g1, g2, ...) that

stabilizes the arc [a, b].

Since the action of (G,P) on D(M) is a convergence action, hence there exists an infinite

subsequence 〈gk1 , gk2 , ...〉 and points α, β ∈ D(M) (possibly equal), such that gkn(x) → α

for all x ∈ D(M)− {β} locally uniformly. By locally uniformly we mean, if C is a compact

subset of D(M) − {β} and U is any open neighborhood of α, then there is an N ∈ N such

that gkiC ⊂ U for all i > N .

If β 6∈ [a, b] then we have two cases:
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1. α 6∈ [a, b]: In this case, choose an open neighborhood U of α disjoint from [a, b]. By

the property of locally uniform action, gkn([a, b]) ⊂ U for all n > N0 for some N0 ∈ N,

hence contradiction.

2. α ∈ [a, b]: In this case, choose an open neighborhood U of α strictly smaller than

[a, b]. By the property of locally uniform action, gkn([a, b]) ⊂ U for all n > N0 for some

N0 ∈ N, hence contradiction (as the homeomorphisms 〈gkn〉 map [a, b] strictly inside

[a, b]).

If β ∈ [a, b] then the same argument applies with the sequence 〈g−1
k1
, g−1
k2
, ...〉

We will need the following definitions next. In the following definitions TS is any simplicial

tree.

Let G be a finitely generated group acting on a simplicial tree TS without inversions.

Suppose there is no proper G invariant subtree.

Definition 5.0.5. A subgroup H < G acts elliptically on TS if it fixes a point of TS.

We can choose a preferred collection of subgroups and study splittings of G over this

collection of subgroups. Toward that end, we have the following definition.

Definition 5.0.6. Suppose A is a collection of subgroups of G that is closed under conjuga-

tion and passing to subgroups. We say TS is an A–tree if every edge stabilizer is a member

of the collection A.

Similarly, we often specify a collection of subgroups which are elliptic in TS.

Definition 5.0.7. Suppose P is an arbitrary family of subgroups of G, an (A,P)–tree is an

A–tree TS such that every P ∈ P acts elliptically on TS.

Next we define universally elliptic trees.

Definition 5.0.8 (universally elliptic). An (A,P)–tree is universally elliptic if its edge sta-

bilizers act elliptically on every (A,P)–tree.
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Finally we need the notion of domination.

Definition 5.0.9. If G acts on trees TS and T ′S, we say TS dominates T ′S if there is a G-

equivariant map TS → T ′S. This is equivalent to saying that each vertex stabilizer of TS also

stabilizes a vertex of T ′S. Two (A,P)–trees TS and T ′S are equivalent if TS dominates T ′S and

T ′S dominates TS.

Finally, we define JSJ tree.

Definition 5.0.10 (JSJ Tree). An (A,P)–tree TS is a JSJ tree for splittings of G over A

relative to P if it satisfies the following:

1. TS is universally elliptic among all (A,P)–trees.

2. TS dominates any other universally elliptic (A,P)–tree.

We will be interested in a particular JSJ tree. We first define QH subgroup and flexible

subgroup.

Definition 5.0.11 (flexible). A vertex stabilizer Gv of a JSJ tree over A relative to P is

flexible if there is another (A,P)–tree on which Gv does not act elliptically.

Definition 5.0.12 (Quadratically hanging). A vertex stabilizer Gv of an (E,P)–tree is

quadratically hanging if it is an extension

1→ F → Gv → π1(Σ)→ 1,

where Σ is a compact hyperbolic two-orbifold and F is an arbitrary group called the fiber.

Additionally, it is required that each incident edge stabilizer and each group Gv ∩ gPg−1 for

P ∈ P has image in π1(Σ) that is either finite or contained in a boundary subgroup of π1(Σ).

We examine a JSJ splitting of (G,P) over elementary arc stabilizers relative to P. Such

a splitting exists. In [GL17, Corollary 9.20], Guirardel and Levitt proves the following:
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Theorem 5.0.13. [GL17, Corollary 9.20] Let G be hyperbolic relative to a finite family of

finitely generated subgroups P = {P1, ..., Pp}. Let A be the family of elementary subgroups of

G. If G is one-ended relative to P, there is a JSJ tree TCAN over A relative to P which is equal

to its tree of cylinders, invariant under automorphisms of G preserving P, and compatible

with every (A,P)-tree. Its non-elementary flexible vertex stabilizers are QH with finite fiber.

From this point onward, TCAN refers to the special JSJ tree in the Theorem 5.0.13. The

edge stabilizers of TCAN are not finite as G is one ended relative to P. In [GL15, Section

3.3], Guirardel and Levitt provides the following classification of the vertex groups G(v):

• rigid: Let H be the collection of stabilizers of edges incident on a vertex v. We say a

vertex group G(v) is rigid if it is non-elementary and is elliptic in every (A,P∪H)-tree.

• (flexible) QH : G(v) is non-elementary and not universally elliptic. Then v is a flexible

QH vertex with finite fiber

• maximal parabolic: G(v) is conjugate to a Pi.

• maximal loxodromic: G(v) is a maximal virtually cyclic subgroup of G, and G(v) is

not parabolic.

Notice that we have two actions of G relative to P: on TCAN and on R–tree T0. Moreover

the action on T0 is without global fixed point (in particular T0 itself is not a point).

Lemma 5.0.14. Suppose a finitely generated group G has a graph of group decomposition

TS over infinite edge stabilizers. Let G act minimally by isometries on a R–tree T0 such that

all arc stabilizers are finite. If all vertex groups of TS fix points in T0, then T0 is a point.

Proof. Assume by way of contradiction that u, v are adjacent vertices in TS with G(u), G(v)

(respective vertex stabilizers) fixing distinct points u′, v′ ∈ T0. Let e be the edge connecting

u, v ∈ TS. Let G(e) be the infinite edge stabilizer.
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Consider the arc [u′, v′] ⊂ T0. Both end points of the arc are fixed by the infinite group

G(e). Since the action is by isometry, if two end points are fixed by G(e) then the entire arc

is fixed by G(e). But that is a contradiction as all arc stabilizers of T0 are finite by Lemma

5.0.4.

Therefore the entire group G fixes a single point. By minimality, T0 is a point.

Hence, to achieve a contradiction we will show that each of the vertex groups of TCAN fixes

some point on T0. This would imply that G fixes a point of T0, but that is a contradiction.

The maximal parabolic subgroups are elliptic in T0 by Theorem 4.1.1. We will show that

maximal loxodromic, rigid and QH vertices are elliptic on T0 as well.

We need the following definition to understand the peripheral structures. More details

can be found in [GL15, Section 4.2.1].

Let T be a tree (minimal, relative to P, with edge stabilizers in A). Let v be a vertex,

with stabilizer Gv.

Definition 5.0.15 (Incident edge groups Incv). Given a vertex v of a tree T , there are

finitely many Gv-orbits of edges with origin v. We choose representatives ei and we define

Incv (or IncGv ) as the family of stabilizers Gei . We call Incv the set of incident edge

groups. It is a finite family of subgroups of Gv, each well-defined up to conjugacy.

Definition 5.0.16 (Restriction P|Gv). Given v, consider the family of conjugates of groups

in P that fix v and no other vertex of T . We define the restriction P|Gv by choosing a

representative for each Gv-conjugacy class in this family.

Definition 5.0.17. The collection of subgroups Qv = IncPv is defined as the union of Incv

and P|Gv .

We begin by analyzing the maximal loxodromic vertex groups. The proof of the following

lemma is largely inspired by [Bow99b, Theorem 0.1]. It differs from [Bow99b, Theorem 0.1]

in that we assume splitting of G relative to P.
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Lemma 5.0.18. Let G(v)′ be a maximal loxodromic vertex group in TCAN . Then G(v)′ fixes

some point in T ′.

Proof. Let G(v) be an edge group that is subgroup of G(v)′. Note that G(v) cannot be finite

as G is relatively one ended. Hence G(v) is an infinite subgroup of G(v)′. Therefore G(v)

must be a two-ended edge group. Moreover as G(v) is a finite index two ended subgroup of

the two ended group G(v)′, hence the limit set of G(v) is same as the limit set of G(v)′ in

M . We show that limit set of G(v) collapses to a point in D(M) implying that the limit set

of G(v)′ collapses to a point in D(M)

In fact, we claim that G(v) is parabolic on T ′ (= D(M)− {terminal points}) and hence

on T0. If G(v) is parabolic on M , then it is certainly parabolic on T ′ as by Lemma 4.0.2. So

we can assume that it is loxodromic on M .

Thus the limit set of ΛG(v) consists of precisely two points, say a and b. By [HH19,

Proposition 5.6] we have a separation of M −{a, b} into two disjoint, nonempty open sets of

M and this partition is G(v)-equivariant. Moreover (M − ΛG(v))/G is compact Hausdorff.

By hypothesis (M − ΛG(v))/G is disconnected, so we can write it as a disjoint union,

A1 tA2, of nonempty closed subsets. Now, the preimage, Ui, of Ai in M −ΛG(v) is open in

M−ΛG(v) and hence in M. Thus Bi = Ui∪ΛG ⊆M is closed and G(v)-invariant. Moreover

M = B1 ∪B2 and ΛG(v) = B1 ∩B2.

We claim that Bi is connected. To see that, let K be a connected component of Bi. If

K∩ΛG were empty, then we could find a closed and open subset, L, of Bi containing K, and

which does not meet ΛG(v). We see that L must be closed and open inM , contradicting the

fact M is connected. This shows that K ∩ ΛG(v) 6= ∅. Suppose that a ∈ K ∩ ΛG(v). Let

H 6= G(v) be the subgroup (of index at most 2) of G(v) which fixes a. Now K is H-invariant,

so either ΛG(v) ⊆ K or K = {a}. In the former case, we see that Bi = K is connected as

required. In the latter case, we deduce similarly, that {b} is a component of Bi, giving the

contradiction that Bi = ΛG(v).

It now follows that no point of M separates the two points of ΛG(v) collapses to a point
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in D(M) implying that two points of ΛG(v) collapses to a point in D(M). So G(v)′ is

parabolic in D(M) therefore by Lemma 4.0.2, G(v)′ fixes some point in T ′.

Next we show that each flexible vertex group also fixes some point in D(M). We need

the following lemmas toward that end.

Lemma 5.0.19. Suppose v1, v2 ∈ M are fixed points of some loxodromic element g (not

conjugated in any boundary subgroup) and there is a separation of M −{v1, v2} into two dis-

joint nonempty open sets of M . Similarly u1, u2 ∈M are fixed points of another loxodromic

element h and there is a separation of M −{u1, u2} into two disjoint nonempty open sets of

M . Then v1, v2, u1, u2 are identified in the dendrite D(M).

Proof. Clearly v1 ∼ v2 and u1 ∼ u2 by Lemma 5.0.18. Suppose v1 6∼ u1. Therefore they

are separated by a set of cut points of M order-isomorphic to the rationals (by definition).

Suppose c is one such cut point. Hence M = UcV . Without loss of generality, assume

u1, u2 ∈ U and v1, v2 ∈ V . In the boundary the pair (v1, v2) separates (u1, u2). Suppose

W1,W2 be the two connected components of the separation. Without loss of generality we

can assume u1 ∈ W1, u2 ∈ W2. But that is in contradiction with our previous finding that

u1, u2 are in the same connected open set U.

Definition 5.0.20. Let Σ be a compact hyperbolic 2-orbifold, and let C be a non-empty

collection of (non-disjoint) essential simple closed geodesics in Σ. We say that C fills Σ if the

following equivalent conditions hold:

• For every essential simple closed geodesic α in Σ, there exists γ ∈ C that intersects α

non-trivially (with α 6= γ).

• For every element g ∈ π1(Σ) of infinite order that is not conjugate into a boundary

subgroup, there exists γ ∈ C such that g acts hyperbolically in the splitting of π1(Σ)

dual to γ.

• The full preimage C̃ of C in the universal covering Σ̃ is connected.
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Lemma 5.0.21. QH vertex group G(v) fixes a point in T ′.

Proof. G(v) is hyperbolic relative to the finite family of finitely genrated subgroups Qv

by [GL15, Lemma 3.8]. By definition G(v) is a finite extension of a fundamental group of a

two dimensional hyperbolic orbifold Σ.

1→ F → G(v)→ π1(Σ)→ 1

Since F is a finite normal subgroup and G(v)/F = π1(Σ), hence G(v) is quasi isometric to

π1(Σ) and their boundaries are homeomorphic.

As G(v) is flexible, (and F being finite, fixes some point in every tree), by [GL17, Propo-

sition 5.20], Σ contains an essential simple closed geodesic. Hence by [GL17, Corollary 5.10]

Σ has a filling set of geodesics C. Let C̃ be the full preimage of C in the universal covering

Σ̃. As C is filling, C̃ is connected.

Lifts of each essential simple closed geodesic in Σ are, by definition, a disjoint collection

of bi-infinite geodesics in Σ̃ (not contained in ∂Σ̃). Whenever two such bi-infinite geodesics

in H2 intersect each other non-trivially, their endpoints are identified in D(M) by Lemma

5.0.19. Hence all the endpoints of the filling set of geodesics are identified in D(M) by the

remark after [GL17, Lemma 5.28]. Note that G(v) is hyperbolic relative to Qv, hence action

of G(v) on its boundary is minimal. Therefore the closure of collection of endpoints of the

filling set of geodesics is the entire boundary. Since the quotient map from M → D(M)

is upper semicontinuous by [Bow99c, Lemma 6.5], hence the equivalence classes are closed.

Therefore the entire boundary of G(v) is mapped to a point in D(M). Since the infinite

subgroup G(v) fixes a unique point in D(M), this fixed point is not terminal by Lemma

4.0.2. Hence G(v) fixes a point in T ′

Next we analyze the rigid vertex groups. First we need a lemma.

Lemma 5.0.22. Suppose G(v) is a vertex group in TCAN . If it acts on T0 without a global

fixed point such that each loxodromic (maximal, virtually cyclic) subgroup fixes some point
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in T0. Then G(v) splits over an elementary subgroup relative to Qv.

Proof. By [GL15, Lemma 3.8] G(v) is hyperbolic relative to the finite family of finitely

genrated subgroups Qv. We show that G(v) acts on the R–tree T0 relative to Qv. By [GL15,

Lemma 3.8]) each member of Qv = Incv∪P|Gv is either G(v)∩gPig−1, loxodromic (maximal

virtually cyclic) or finite. Observe that,

1. G(v) ∩ gPig−1 fixes some point in T0 as Pi’s fix points in T0

2. Loxodromic maximal virtually cyclic subgroups of G(v) fixes some point in T0 by

hypothesis

3. Finite subgroups fixes some point in T0 as finite subgroups have global fixed points

Note that G(v) acts as a convergence group on D(M), hence all arc stabilizers of the

action of G(v) on T ′ are elementary (in fact finite) by Lemma 5.0.4. By Theorem 4.1.1, each

arc stabilizer of G(v) in T0, stabilizes an arc in T ′. Therefore all arc stabilizers of G(v) on

T0 are elementary (in fact finite).

We apply Theorem 1.3.3 with G = G(v), P = Qv and H = Φ. If G(v) does not fix a

point in T0, then it must split over an elementary subgroup relative to Qv.

Lemma 5.0.23. Rigid vertex group G(v) fixes a point in T0.

Proof. Assume by way of contradiction that G(v) does not fix a point in T0. Then by Lemma

5.0.22, G(v) splits over an elementary subgroup relative to Qv. But that is not possible as

by definition, rigid vertex groups have no such splitting.

Therefore rigid vertex groups fix some point in T0.
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6. Proof of Theorem 1.2.2

We now give a proof of Theorem 1.2.2 using results obtained in the previous chapters.

Proof. Assume by way of contradiction that there is a global cut point p that is not a

parabolic fixed point. By Theorem 3.0.18, M has an equivariant quotient D(M) that is a

nontrivial dendrite such that the induced action of (G,P) on D(M) is a minimal convergence

action, relative to P.

Remove the terminal points of D(M) to produce a separable real tree T ′. By Lemma

4.0.1 T ′ is not a point as D(M) is not a point. Moreover none of the parabolic points of

D(M) are terminal by Lemma 4.0.2. So restriction of the action of G to T ′ is relative to P.

Let TCAN be a JSJ decomposition of (G,P) over elementary arc stabilizers relative to

P. This JSJ tree exists by [GL17, Corollary 9.20]. The vertex stabilizers G(v) of the JSJ

tree are of four types by [GL15, Section 3.3]: rigid, flexible, maximal parabolic and maximal

loxodromic. Each maximal parabolic subgroup fixes some point in T ′ as the action on T ′

is relative to P. By Lemma 5.0.18, Lemma 5.0.21, each maximal loxodromic subgroup and

each QH subgroup fixes some point in T ′. Suppose F = {G1, ..., Gj} be the collection of

maximal parabolic, maximal loxodromic and QH vertex groups in TCAN .

By Theorem 4.2.1 the restriction of the action of G to T ′ is non-nesting and without

global fixed point. Therefore the action of (G,P) on T ′ satisfies the hypothesis of Theorem

4.1.1. By Theorem 4.1.1, G acts on a non-trivial R–tree T0 by isometries such that each

member of F fixes a point in T0. Moreover this action is non-trivial.

By Lemma 5.0.23, each rigid vertex group of TCAN fixes some point in T0. Hence all four
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types of vertex groups fix some point in T0. By Lemma 5.0.14, this implies that G fixes a

point in T0. This is a contradiction as earlier we found that G acts on T0 without global

fixed point.

Hence there is no cut point in M that is not a parabolic fixed point.
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