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ABSTRACT

Extensions of Enveloping Algebras
via Anti-Cocommutative Elements

by

Daniel Yee

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Allen D. Bell

We know that given a connected Hopf algebra H, the universal enveloping algebra

U(P (H)) embeds in H as a Hopf subalgebra. Depending on P (H), we show that there may

be another enveloping algebra (not as a Hopf subalgebra) within H by using

anti-cocommutative elements. Thus, this is an extension of enveloping algebras with

regards to the Hopf structure. We also use these discoveries to apply to global dimension,

and finish with antipode behavior and future research projects.
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Chapter 1

Introduction

1.1 Preview

Connected Hopf algebras are a generalization of universal enveloping algebras. There has

been a significant amount of research in universal enveloping aglebras in both past and

present. We ask the same questions of connected Hopf algebras, and attempt to answer

some of these questions under specific conditions.

Chapter 1 is introductory. We cover filtered algebras, Lie algebras along with their

enveloping algebras, and the Gelfand-Kirillov Dimension. We provide definitions and state

results that will be used throughout Chapters 2 and 3. More importantly, we introduce

examples that will gain additional algebraic structure within Chapter 2 and will be used

extensively in Chapter 3.

Chapter 2 introduces coalgebras and Hopf algebras. Due to the amount of research into

these algebraic structures, we will focus on results that define connectedness in Hopf algebras,

as well as certain properties. One important result is the connected version of the Taft-

Wilson Theorem, which states that a cocommutative connected Hopf algebra is an universal

enveloping algebra. Lastly, we present newer elements, namely the anti-cocommutative

elements which were covered in the Wang, Zhang, Zhuang 2015 paper [29]. These elements
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are pivotal for the next chapter, and provide an extension of universal enveloping algebras

with respect to the Hopf structure.

Chapter 3 and 4 covers the new results. We use the tools and definitions mentioned in

Chapters 1 and 2 to prove some results concerning connected Hopf algebras. In particular,

we will be focusing on a particular class of connected Hopf algebras, precisely those which

are generated by anti-cocommutative elements. A motivation for this research is finding the

elusive Noetherian condition within said algebras. One way to find a Noetherian subalgebra

is to search for a subalgebra that is algebra-isomorphic to a universal enveloping algebra of

some Lie algebra. A more general technique is to measure the growth of the algebra via

GK-dimension. Simultaneously, we take a look at the properties of these connected Hopf

algebras that are analogous to properties of universal enveloping algebras. And finally, we

ask questions for future research.

In recent discovery there has been a few overlapping results between this thesis and the

paper [3] written by Brown, Gilmartin, Zhang.

1.2 Description of Results

As the reader will see, the class of algebras we focus on, connected Hopf algebras, are

generalizations of universal enveloping algebras via with respect to their Hopf structure.

Since there has been many results concerning universal enveloping algebras, we try to search

for universal enveloping algebras embedded in connected Hopf algebras.

Given a connected Hopf algebra H, we know g = P (H) is a Lie subalgebra of H, we show

that there could be (or not) a Lie algebra extension containing P (H). When this happens,

we say P (H) satisfying the ALE property.

Proposition 1.2.1. If g is a finite dimensional completely solvable Lie algebra, then g

satisfies the ALE property.

Corollary 1.2.2. If g is a finite dimensional simple Lie algebra, then g does not satisfy the

2



ALE property.

Furthermore, given g satisfying the ALE property, what is the structure of the Lie algebra

extension?

Proposition 1.2.3. If g is a finite dimensional nilportent Lie algebra, then g satisfies the

ALE property and any ALE of g is a completely solvable Lie algebera.

ALE are extensions of g obtained by adding an anti-cocommutative element to g. How-

ever, if one wants more anti-cocommutative elements but wants to have similar properties

to enveloping algebras, one can check normality.

Theorem 1.2.4. Suppose g is a finite dimensional Lie algebra and A ∈ A(g). If U(g) is a

normal Hopf subalgebra of A, then GK.dim(A) = dimF P2(A).

The notation A(g) will be givin in section 4.1.

The universal enveloping algebras satisfies the property that global dimension is exactly

the dimension of the Lie algebra generating it. We ask if the global dimension matches, then

do we have a universal enveloping algebra?

Theorem 1.2.5. If H is any connected Hopf algebra such that

r.gl.dim(H) = dimF P (H) <∞,

and P (H) is completely solvable, then H = U(P (H)).

Theorem 1.2.6. Suppose H is a connected Hopf algebra with

r.gl.dim(H) = dimF P (H) <∞,

and U(P (H)) is a normal Hopf subalgebra of H, then H = U(P (H)).

Lastly we know that the antipode of any enveloping algebra is involutive, that is S2 is

the identity map. However, that is not the case for all connected Hopf algebras.
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Proposition 1.2.7. Let g be any Lie algebra, and consider A ∈ A(g). If S is the antipode

of A, then either S2 = idA, or Sk 6= idA for any k ∈ Z − 0. In other words, either A is

involutive or S has infinite order.

1.3 Notation & Setup

Throughout this paper we will consider all vector spaces, linear maps, tensor prodcuts,

algebras, and algebra homomorphisms over an algebraically closed field F of characteristic

zero, e.g. F = C. Furthermore, we denote F{x1, ..., xn} as a vector space over F spanned

by x1, ..., xn, and dimF as the vector space dimension. We also denote =⇒ as implies.

In an algebra A, we assume that the bracket [a, b] denotes ab− ba in A. Furthermore, if

g is a Lie algebra within an algebra A, then the bracket on g is assumed to be the natural

bracket in A.

Additionally, if C is a coalgebra, we denote the maps ∆ : C → C ⊗ C and ε : C → F to

be the comultiplication and counit, respectively. Furthermore, if B is a bialgebra denoted

(B, µ, ı,∆, ε), where (B,∆, ε) is the coalgebra, and µ : B ⊗ B → B and ı : F → B denote

multiplication and unit, respectively, thus the triple (B, µ, ı) is an algebra. Lastly, H is a

Hopf algebra can be denoted by the sextuple (H,µ, ı,∆, ε, S), where (H,µ, ı) is the algebra,

(H,∆, ε) is the coalgebra, and S : H → H is the antipode of H. If necessary, we denote

SH = S to emphasize the antipode of a Hopf algebra H.

4



Chapter 2

Background

2.1 Algebra Filtrations

First we recall vector space and algebra filtrations.

Definition 2.1.1. A vector space filtration of a vector space V , is a collection of vector

subspaces {Vk ⊆ V : k ∈ Z} such that

Vk ⊆ Vk+1 for all k ∈ Z, and V =
∞⋃
k=1

Vk.

An algebra filtration of an algebra A is a vector space filtration {Ak ⊆ A : k ∈ Z} of A

such that

1 ∈ A0, and AiAj ⊆ Ai+j for all i, j ∈ Z,

where AiAj is multiplication in A. If an algebra filtration exists on A, then we say that A is

a Z-filtered algebra.

Additionally, we say that vector space or algebra filtration {Ak : k ∈ Z} is discrete if

Ak = 0 for all k < 0, and a filtration is locally finite if it is discrete and dimF Ak <∞ for

all k ≥ 0.
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Example 2.1.2. The following algebras are filtered algebras with filtration.

1. The base field F with Fk = F for all k ≥ 0.

2. The commutative polynomial ring A = F [x, y] and its discrete filtration Ak =
⊕k

i=0 Ai,

where A0 = F , A1 = F{x, y} and AiAj = Ai+j for any i, j ∈ N0. Hence A2 =

F{x2, y2, xy} = A1A1.

3. The Laurent extension L = F [x±1, y±1] and its Z-filtration Ak =
⊕k

i=−k Vi, where

V0 = F , V1 = F{x}, V−1 = F{x−1}, and ViVj = Vi+j for any i, j ∈ Z.

Extending 2 and 3, every graded algebra can be a filtered algebra.

Because we are working with discrete filtered algebras throughout the paper, we will be

assuming that filtered algebras are discrete from here on out. Every filtered algebra induces

another algebra called the associated graded algebra.

Definition 2.1.3. Suppose A = {An : n ∈ N} is an algebra filtration on an algebra A. The

associated graded algebra of A (with respect to the filtration A) is the vector space

grA :=
∞⊕
n=0

An/An−1,

with A−1 = 0 and multiplication defined by

(x+ Ai−1)(y + Aj−1) = xy + Ai+j−1.

Hence it is an (discretely graded) algebra.

We will soon see in the next section an important example of a filtered algebra and its

associated graded algebra.

Further studies have been made on filtered algebras and their associated graded algebras,

see [19]. One important result is that the associated graded algebra carries their ring theoretic

properties to the corresponding filtered algebra.
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Proposition 2.1.4. Suppose A is a filtered algebra.

1. If grA is a domain then so is A.

2. If grA is right Noetherian, then so is A.

2.2 Lie Algebras

Lie algebras have been extensively researched for the past century, see [12] for more details.

We will define basic necessities here.

Definition 2.2.1. A vector space g with a bilinear form [, ] : g × g → g is called a Lie

algebra if the following properties are satisfied:

1. [x, x] = 0,

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (called the Jacobi Identity),

for all x, y, z ∈ g. A vector subspace h of g is a Lie subalgebra if it is also a Lie algebra

with the same [, ].

Furthermore, we say that a subspace j of a Lie algebra g is an ideal if for any a ∈ j

implies [a, b] ∈ j for all b ∈ g. It is clear that every ideal is also a Lie subalgebra.

One important example of a Lie algebra derives from algebras: if A is an algebra, then

the vector space

{ab− ba : a, b ∈ A}

is a Lie algebra with [a, b] = ab− ba.

Definition 2.2.2. Let g be a Lie algebra.

1. If [x, y] = 0 for all x, y ∈ g, then we say that g is Abelian.
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2. The vector space

Z(g) := F{x ∈ g : [x, y] = 0 for all y ∈ g}

is called the center of g. Notice that Z(g) is an Abelian ideal of any Lie algebra g.

3. If g has no proper nonzero ideals, i.e. 0 and g are the only ideals in g, and dimF g ≥ 3,

then we say that g is simple.

4. To further 3, we say that a Lie algebra is semismple if it is a direct sum of simple Lie

subalgebras.

5. If gi+1 = [g, gi] for all i ∈ N0 with g0 = g, and gk = 0 for some k ∈ N, then we say that

g is nilpotent.

6. If gi+1 = [gi, gi] for all i ∈ N0 with g0 = g, and gk = 0 for some k ∈ N, then we say

that g is solvable.

7. If there exist ideals

g = j0 ) j1 ) · · · ) jn = 0,

such that dimF (ji/ji+1) = 1 for all i ≤ n− 1, then we say that g is completely solvable.

Since ideals are subalgebras themselves, we may use these adjectives to describe an ideal,

such as Abelian ideal.

Example 2.2.3. Let g be any Lie algebra.

1. Every Abelian Lie algebra is nilpotent.

2. Every nilpotent Lie algebra is completely solvable.

3. Every completely solvable Lie algebra is solvable.
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4. Every solvable Lie algebra over an algebraically closed field of characteristic zero is

completely solvable.

5. If g = F{x, y} with [x, y] = x, then g is completely solvable.

6. If g = F{x, y, z} with [x, y] = z and z ∈ Z(g), then g is a nilpotent Lie algebra. In

particular, this Lie algebra is called the Heisenberg algebra.

7. If g = F{e, f, h} with [e, f ] = h, [h, e] = 2e and [h, f ] = −2f , then g is a simple Lie

algebra, namely g = sl2(F ).

The examples mentioned, though low dimensional, will be the primary examples through-

out this paper.

There is one particular result that we need to consider: Levi’s Decomposition. This result

explains that semisimple and solvable parts are disjoint.

Theorem 2.2.4. Suppose g is a finite dimensional Lie algebra. Then

g = r⊕ s,

where s is a semisimple Lie subalgebra of g, and r is a solvable ideal of g, i.e. r is an ideal

that is also a solvable Lie subalgebra.

2.3 Universal Enveloping Algebras

Recall that if V is a vector space, the tensor algebra generated by V is

T (V ) =
∞⊕
n=0

V ⊗n, where V ⊗n =

n︷ ︸︸ ︷
V ⊗ · · · ⊗ V and V ⊗0 = F.

In the tensor algebra, multiplication is defined as

(v1 ⊗ · · · ⊗ vk)(w1 ⊗ · · · ⊗ wm) = v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wm,
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for any v1 ⊗ · · · ⊗ vk ∈ V ⊗kand any w1 ⊗ · · · ⊗ wm ∈ V ⊗m.

Definition 2.3.1. Let g be any Lie algebra. The universal enveloping algebra of g is

the algebra

U(g) = T (g)/I,

where I is the ideal generated by {x⊗ y − y ⊗ x− [x, y] : x, y ∈ g}.

Intuitively the adjective, “universal,” would imply that this algebra would satisfy a uni-

versal property.

Lemma 2.3.2. For any Lie algebra g with U(g) as its universal enveloping algebra, and

any algebra A with a Lie algebra homomorphism θ : g → A, there exists a unique algebra

homomorphism φ : U(g) → A such that θ = φ ◦ ı, where ı : g → U(g) is the natural Lie

algebra homomorphism.

The previous lemma also implies that given a Lie subalgebra, there is a corresponding

universal enveloping algebra contained within a universal enveloping algebra.

Lemma 2.3.3. If h is a Lie subalgebra of a Lie algebra g, then U(h) is a subalgebra of U(g).

We will take a look at a few examples, given that the reader is familiar with Ore exten-

sions.

Example 2.3.4. Let g be a finite dimensional Lie algebra and U(g) be its universal envelop-

ing algebra.

1. If g = F{x1, ..., xm} is Abelian, then U(g) = F [x1, ..., xm] the commutative polynomial

algebra in m variables.

2. If g = F{x, y} with [x, y] = x, then U(g) = F [x][y;α] the Ore extension with α(x) =

x+ 1.
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3. If g = sl2(F ) then U(g) = F [e][h; δ1][f ; δ2] the iterated Ore extension, where δ1(e) = 2e,

δ2(h) = 2f , and δ2(e) = h.

4. If g is a free Lie algebra on two variables X, Y , then U(g) = F 〈X, Y 〉, the free algebra

in two variables ([12, Theorem 5.4.7]).

We will need to state the obligatory basis theorem for universal enveloping algebras.

Theorem 2.3.5. [13, Theorem 6.8][Poincaré-Birkhoff-Witt Theorem] Let g be any Lie al-

gebra and B be an ordered basis for g. Define the following vector subspaces of U(g)

Ud = F

{
t∏
i=1

xeii : ei ∈ N0,
t∑
i=1

ei = d, and xi ∈ B with x1 < x2 < · · · < xt

}

with U0 = F , for all d ∈ N. Then
⋃∞
i=0 Ui is a basis for U(g).

Moreover, grU(g) ∼= S(g) as algebras, where S(g) is the symmetric algebra (commutative

polynomial) on g.

Corollary 2.3.6. For any finite dimensional Lie algebra, its universal enveloping algebra is

a Noetherian domain.

A consequence of the PBW-Theorem is the fact that the natural Lie algebra homomor-

phism is a monomorphism.

Corollary 2.3.7. If g is any Lie algebra then the natural Lie algebra homomorphism ı : g→

U(g) is injective.

[12] has mentioned many properties about the universal enveloping algebra.

Theorem 2.3.8. [12, Theorem 5.1.1] Let g be any Lie algebra and U := U(g) be its universal

enveloping algebra. Then

1. There is a unique algebra homomorphism ∆ : U → U⊗U such that ∆(x) = x⊗1+1⊗x

for all x ∈ g.
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2. There is a unique algebra anti-automorphism S : U → U , i.e. S(ab) = S(b)S(a), such

that S(x) = −x for all x ∈ g.

Additionally, ∆ is a monomorphism ([12, Corollary 5.2.5]).

Lastly we would like to restate a result about the global dimension, denoted gl.dim of

universal enveloping algebras.

Theorem 2.3.9. [8] If g is a finite dimensional Lie algebra, then

gl.dim(U(g)) = dimF g.

2.4 Gelfand-Kirillov Dimension

The Gelfand-Kirillov Dimension measures the growth of an algebra. In this section we will

be briefly mentioning such concepts. We can find many definitions, examples, and results

from [13] and [16].

Definition 2.4.1. Let V be a vector subspace of an algebra A. We say that V is a gen-

erating space if A =
⋃∞
n=1

∑n
k=0 V

k, where V 0 = F and V k =
∏k

i=1 V is multiplication of

vector spaces in A.

Now let A be an affine algebra and V be a finite dimensional generating space. The

Gelfand-Kirillov dimension of A, denoted GK.dim(A), is

GK.dim(A) = lim sup
n→∞

logn(dimF

n∑
i=1

V i).

In general, if A is any algebra, then we define its GK dimension by

GK.dim(A) = sup{GK.dim(B) : B is an affine subalgebra of A}.

We must check that the definition for GK dimension is well-defined, in other words,
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regardless of choice of generating space, GK dimension is the same.

Lemma 2.4.2. [13, Lemma 1.1] Suppose A is an algebra and V and W are generating spaces

of A. Then

lim sup
n→∞

logn(dimF

n∑
i=1

V i) = lim sup
n→∞

logn(dimF

n∑
j=1

W j).

The following properties of GK dimension can be left as a straightforward exercise:

Lemma 2.4.3. [13, Lemma 3.1] Suppose A is an algebra.

1. If B is a subalgebra, then GK.dim(B) ≤ GK.dim(A).

2. If B is an algebra and f : A → B is a surjective algebra homomorphism, then

GK.dim(B) ≤ GK.dim(A).

Due to the definition, there is a possibility that the GK-dimension of some algebra is a

non-integer real number that is greater than 2.

Theorem 2.4.4. [13, Theorem 2.5][Bergman’s Gap Theorem] If A is any algebra with 1 ≤

GK.dim(A) ≤ 2, then GK.dim(A) = 1 or GK.dim(A) = 2.

Proposition 2.4.5. [16, Proposition 8.1.18] For any r ∈ R with r ≥ 2, there exists an

algebra A such that GK.dim(A) = r.

Fortunately, under the right circumstances the GK-dimension will be an integer.

Theorem 2.4.6. [13, Theorem 4.5] If A is a commutative algebra, then GK.dim(A) is an

integer or GK.dim(A) =∞.

Let’s consider several examples:

Example 2.4.7. Assume that A is an algebra.

1. If A is finite dimensional, then GK.dim(A) = 0.
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2. If A = F [x1, ..., xm] a commutative polynomial algebra, then GK.dim(A) = m.

3. More generally, if A = U(g) and g is any Lie algebra, then GK.dim(A) = dimF g.

4. Also if A is any algebra, then GK.dim(A[x1, ..., xm]) = GK.dim(A) +m.

5. If A = F [x±1
1 , ..., x±1

m ] a commutative Laurent extension, then GK.dim(A) = m.

6. Combining 1 and 5, we see that if G is a finitely generated Abelian group and A = FG,

then GK.dim(A) = m, where m is the number of copies of the group Z in G.

7. Let A = F [x][y; d
dx

] the Weyl algebra. Then GK.dim(A) = 2

8. Expanding on 7, if An(F ) is the n-th Weyl algebra with 2n variables, then we have

GK.dim(An(F )) = 2n.

9. If A = F 〈X, Y 〉 a free algebra, then GK.dim(A) =∞.

In the examples above, we see that many are iterative Ore or Laurent extensions and that

for each extension we increase the GK dimension by one. However, this is generally not the

case, especially with derivations.

Proposition 2.4.8. [13, Proposition 3.9] Let n ∈ N. Then there exists algebras A and B

with GK.dim(A) = GK.dim(B) = 0 and F -derivations δA and δB such that

1. GK.dim(A[t; δA]) = n.

2. GK.dim(B[t; δB]) =∞.

Since almost all of the algebras we will be working with will be filtered, there is a result

regarding the GK dimension associated graded algebra of a filtered algebra.

Proposition 2.4.9. [13, Lemma 6.5] If A is a filtered algebra, then

GK.dim(grA) ≤ GK.dim(A).
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For algebras that are finitely generated as a module over a subalgebra, the GK dimension

does not change.

Proposition 2.4.10. [13, Proposition 5.5] Suppose B ⊆ A are algebras and A is a finitely

generated right (or left) B-module. Then

GK.dim(A) = GK.dim(B).

Additionally, there is an effect on domains when asssuming finite GK-dimension.

Corollary 2.4.11. [16, Corollary 8.1.21] If R is a domain that is also an algebra, and

GK.dim(R) <∞, then R is an Ore domain.
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Chapter 3

Coalgebras & Hopf Structures

3.1 Coalgebras

In an algebra (A, µ), µ satisfies the associative property

A⊗ A⊗ AidA⊗µ //

µ⊗idA

��

A⊗ A
µ

��
A⊗ A µ

// A

If we reverse the arrows, we achieve a new algebraic structure.

Definition 3.1.1. A vector space C is called a coalgebra if there are linear maps ε : C → F

a counit, and ∆ : C → C ⊗ C a comultiplication such that the following diagrams

commute:

C
∆ //

∆
��

C ⊗ C
idC⊗ε
��

C ⊗ C
ε⊗idC

// F ⊗ C ∼= C ⊗ F ∼= C

Coassociativity:

C
∆ //

∆
��

C ⊗ C
idH⊗∆
��

C ⊗ C
∆⊗idH

// C ⊗ C ⊗ C
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Naturally, we say that a subspace V of a coalgebra (C,∆, ε) is a subcoalgebra if the

restrictions ∆|V and ε|V are comultiplication and counit on V . Additionally we say that a

coalgebra is simple if it has no proper subcoalgebra except the trivial coalgebra F .

Example 3.1.2. 1. The base field F is a coalgebra with ∆(1) = 1⊗ 1 and ε(1) = 1. In

fact, F is a simple coalgebra.

2. Given any group G, the group algebra FG is a coalgebra with ∆(g) = g ⊗ g and

ε(g) = 1 for all g ∈ G.

3. Additionally, for any g ∈ G, the vector space F{g} is a simple coalgebra.

4. Given any Lie algebra g, the vector space F ⊕ g is a coalgebra with ∆(1) = 1 ⊗ 1,

ε(1) = 1, and ∆(x) = x⊗ 1 + 1⊗ x, ε(x) = 0, for all x ∈ g.

5. Let T2 = F{1, g, x, gx} and define the following

∆(1) = 1⊗ 1 ε(1) = 1,

∆(g) = g ⊗ g ε(g) = 1,

∆(x) = x⊗ 1 + g ⊗ x ε(x) = 0,

∆(gx) = gx⊗ g + 1⊗ gx ε(gx) = 0.

Then T2 is a coalgebra called the Taft algebra. (It’s also a Hopf algebra with the

relations g2 = 1, x2 = 0, xg = −gx.)

We will start with the finiteness theorem for coalgebras.

Theorem 3.1.3. [18, 5.1.1] Let C be any coalgebra. Given any c ∈ C there exists a finite

dimensional subcoalgebra D of C such that c ∈ D.

Corollary 3.1.4. [18, 5.1.2] Every simple coalgebra is finite dimensional.

Definition 3.1.5. Suppose C is a coalgebra.

17



1. We say that g ∈ C is group-like if ∆(g) = g ⊗ g and ε(g) = 1. Denote the set of all

group-like elements of C by G(C).

2. Assuming 1 ∈ G(C), we say that x ∈ C is primitive if ∆(x) = x⊗ 1 + 1⊗ x. Denote

the set of all primitive elements of C by P (C).

3. Assuming g, h ∈ G(C), we say that v ∈ C is skew-primitive if ∆(v) = v⊗ g+ h⊗ x,

where g, h ∈ C are group-like. Denote the set of all g, h-skew primitive elements of C

by Pg,h(C).

4. We say that c ∈ C is cocommutative whenever ∆(c) = τ ◦∆(c), where τ : a ⊗ b 7→

b ⊗ a. Furthermore we say that the coalgebra is cocommutative if every element is

cocommutative.

Example 3.1.6. Recall the previous collection of examples.

1. Every g ∈ G is a group-like element in the group algebra FG.

2. Every x ∈ g is a primitive element in the universal enveloping algebra U(g).

3. Moreover, all elements in both FG and U(g) are cocommutative, since every group-like

and primitive element is cocommutative.

4. The elements x, gx ∈ T2 are skew primitive elements.

3.2 Coradical Filtration

With a coalgebra, there exists a vector space filtration which is unique. But first, we must

define the zero-th filter.

Definition 3.2.1. Let C be a coalgebra. We call the sum of simple subcoalgebras of C the

coradical, denoted C0. Additionally if every simple subcoalgebra of C is one dimensional,

then we say that C is pointed. If C0 is one dimensional, i.e. C0 = F , then we say that C

is connected.

18



Example 3.2.2. 1. The base field F is a connected coalgebra. In fact F is a simple

connected coalgebra.

2. For any group G, FG is a pointed coalgebra, i.e. (FG)0 = FG.

3. Moreover, for any g ∈ G, the vector space F{g} is a simple connected coalgebra.

4. The polynomial ring R = F [x] is a connected coalgebra with R0 = F and ∆(x) =

x⊗ 1 + 1⊗ x.

It follows by definition, that the coradical of any nonzero coalgebra is a subcoalgebra.

Definition 3.2.3. Given a coalgebra C with coradical C0, we define the following:

Cn+1 = ∆−1(Cn ⊗ C + C ⊗ C0) for all n ∈ N0.

We call the sequence of vector spaces Cn the coradical filtration of C.

As the name states, a coradical filtration of any coalgebra is a filtration of vector spaces

similar to an algebra filtration. Since coalgebras are not algebras, their coradical filtrations

are typically not algebra filtrations. However, this filtration satisfies, “coalgebra,” properties

dual to algebra properties.

Theorem 3.2.4. [18, Theorem 5.2.2] Given the coalgebra C with coradical filtration Cn, the

following conditions holds:

1. Ci ⊆ Ci+1 for all i ∈ N0.

2. C =
⋃
i∈N0

Ci.

3. ∆(Cn) ⊆
∑n

i=0Ci ⊗ Cn−i.

Moreover each Ci is a subcoalgebra of C.

Definition 3.2.5. A sequence of vector subspaces of a coalgebra that satisfy the previous

proposition is called a coalgebra filtration.
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We will compare the zero-th filter of any coradical filtration on a coalgebra and its

coradical with the next lemma.

Lemma 3.2.6. [18, Lemma 5.3.4] If C is any coalgebra and {Bn} is a coalgebra filtration

on C, then B0 ⊇ C0, where C0 is the coradical of C.

In addition, we would say that the coradical filtration of any coalgebra is a unique filtra-

tion. Next, we want to compare the coradical filtration of subcoalgebra of any coalgebra.

Corollary 3.2.7. [18, Lemma 5.2.12] If D is a subcoalgebra of a coalgebra C, and Dn and

Cn are the coradical filtrations of D and C respectively, then Dn = D ∩ Cn, for all n ∈ N0.

For coalgebra homomorphisms, we gain a stronger morphism when assuming connected-

ness. But to prove this, we need the result known as the Taft-Wilson Theorem.

Theorem 3.2.8. [18, Theorem 5.4.1] Let C be a pointed coalgebra. Then

1. C1 = FG(C)⊕ (
⊕

g,h∈G(C) P
′
g,h(C)), and

2. for any n ≥ 1 and c ∈ Cn,

c =
∑
g,h∈G

cg,h where ∆(cg,h) = cg,h ⊗ g + h⊗ cg,h + w,

for some w ∈ Cn−1 ⊗ Cn−1,

where P ′g,h(C) is the vector space Pg,h(C)/F (g − h).

The Taft-Wilson Theorem tells us how the elements of any pointed coalgebra can be

written.

Corollary 3.2.9. [18, Lemma 5.3.2] Suppose C is a connected coalgebra with G(C) = {1}.

Then

1. C1 = F1⊕ P (C), and
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2. for any n ∈ N and c ∈ Cn

∆(c) = c⊗ 1 + 1⊗ c+ w

where w ∈ Cn−1 ⊗ Cn−1.

Corollary 3.2.10. If C is a connected coalgebra with G(C) = {1}, and D is a subcoalgebra,

then P (D) = D ∩ P (C).

Now we can state the result that we would be applying in the next section.

Theorem 3.2.11. [1, Theorem 2.4.11] Let C,D be coalgebras and f : C → D be a coalgebra

homomorphism. Then f is a monomorphism if and only if f |P (C) is injective; namely ker f ∩

P (C) = 0.

3.3 Bialgebras & Hopf Algebras

Since algebras and coalgebras are mostly mutually exclusive, we focus on the algebras (or

coalgebras) that have a compatible coalgebra structure (respectively algebra structure).

Definition 3.3.1. Let A be an algebra with multiplication µ and a coalgebra structure

(A,∆, ε). We say that A is a bialgebra if both ∆ and ε are algebra homomorphisms, or

equivalently µ is a coalgebra homomorphism.

Now let H be a bialgebra. An antipode on H is a linear map S : H → H such that the

following diagram commutes:

H ⊗H S⊗idH// H ⊗H
µ

##
H

∆

OO

∆
��

ε // F �
� // H

H ⊗H
idH⊗S

// H ⊗H
µ

;;
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A bialgebra with an antipode is called a Hopf algebra.

Example 3.3.2. The following are Hopf algebras:

1. The field F since ∆(1) = 1⊗ 1.

2. The group algebra FG for any group G.

3. Any commutative polynomial ring F [X] where X is either finite or infinite.

4. A universal enveloping algebra U(g) for any Lie algebra g.

As one would expect, not every algebra can be a bialgebra, and therefore a Hopf algebra.

However, if the algebra is embedded into a bialgebra or Hopf algebra, we can test whether

that algebra can be a bialgebra.

Lemma 3.3.3. Let H be a Hopf algebra and A be a subalgebra of H. Set K = A ∩ ker ε.

Then A is a Hopf subaglebra if and only if ∆(K) ⊆ K ⊗ A+ A⊗K and S(K) ⊆ K.

Proof. One direction is obvious. Suppose that ∆(K) ⊆ K⊗A+A⊗K and S(K) ⊆ K. Note

that ∆(K) ⊆ A ⊗ A. For any a ∈ A we have ε(a − ε(a)) = 0 whence a − ε(a) ∈ K. Since

∆(a−ε(a)) ∈ A⊗A, and ∆(a−ε(a)) = ∆(a)−ε(a)(1⊗1), then ∆(a−ε(a)) +ε(a)(1⊗1) =

∆(a) ∈ A ⊗ A. Additonally, as S(a − ε(a)) = S(a) − ε(a), we have S(a − ε(a)) + ε(a) =

S(a) ∈ A. Therefore A is a Hopf subalgebra of H.

With a bialgebra B the collection of primitive elements in B has an additional structure.

Lemma 3.3.4. [1, Theorem 2.1.3] If B is a bialgebra, then P (B) is a Lie algebra with

ε(P (B)) = 0.

If we recall, when N is a normal subgroup of a group G, then G/N is a group. In the

language of Hopf algebras, we have that FG/(FN ∩ ker ε) is a Hopf algebra. However, not

every Hopf subalgebra can be modded out, which is analogous to not every subgroup of a

group having the ability to be modded out.
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Definition 3.3.5. Let H be any Hopf algebra and K be any Hopf subalgebra.

1. We say that K is left normal if adl[H](K) ⊆ K, where

adl[h](k) =
∑
h

h1kS(h2),

for all k ∈ K and all h ∈ H.

2. We say that K is right normal if adr[H](K) ⊆ K, where

adr[h](k) =
∑
h

S(h1)kh2,

for all k ∈ K and all h ∈ H.

3. We say that K is a normal Hopf subalgebra if K is both left normal and right

normal.

A simple example of a normal Hopf subalgebra is a Hopf subalgebra in the center of the

Hopf algebra. A trivial example is that the base field is a normal Hopf subalgebra of any

Hopf algebra.

We ask does a normal Hopf subalgebra of an universal enveloping algebra look like? The

question was answered in [17] but will be restated here.

Lemma 3.3.6. Let g be any Lie algebra. If B is a normal Hopf subalgebra of U(g), then

P (B) is an ideal of g.

Proof. Let B be a normal Hopf subalgebra of U(g), hence P (B) ⊆ g. Let b ∈ P (B), then

for any g ∈ g we have adr[g](b) = −gb + bg = [b, g]. Since adr[g](b) ∈ B and [b, g] ∈ g, then

[b, g] ∈ B ∩ P (U(g)) = P (B), whence P (B) is an ideal of g.

Proposition 3.3.7. If g is any Lie algebra and j is an ideal of g, then U(j) is a normal

Hopf subalgebra of U(g).
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Proof. Set T = U(j). Since adr satisfies adr[a+b] = adr[a]+adr[b] and adr[ab] = adr[b]◦adr[a]

for all a, b ∈ U(g), then without loss of generality, we only need to show that adr[g](T ) ⊆ T .

Since adr[g] acts as a derivation on T for any g ∈ g, thus for any t1, ..., tk ∈ j and any k ∈ N,

adr[g](t1 · · · tk) = adr[g](t1)(t2 · · · tk) + · · ·+ (t1t2 · · · tk−1)adr[g](tk).

Since j is an ideal of g, hence adr[g](tj) ∈ j, then adr[g](t1 · · · tk) ∈ T . Since adl[g] = −adr[g]

for all g ∈ g, then T is a normal Hopf subalgebra.

3.4 Connected Hopf Algebras

From here on out, we focus on a certain family of Hopf algebras: connected. The adjective

stems from the coalgebra structure and not any vector space filtration.

Definition 3.4.1. We say that a Hopf algebra is connected if the underlying coalgebra is

connected.

As previously stated, not every bialgebra is a Hopf algebra. However, if we define a

connected bialgebra as a bialgebra with a connected coalgebra, the bialgebra will gain an

antipode.

Lemma 3.4.2. [18, Lemma 5.2.10] Every connected bialgebra is a connected Hopf algebra.

Example 3.4.3. 1. Clearly F is a connected Hopf algebra.

2. For any Lie algebra g, the enveloping algebra U(g) is a connected Hopf algebra.

3. A group algebra FG is not connected unless G is the trivial group.

In fact, the only Artinian connected Hopf algebra over a field of characteristic zero is the

trivial Hopf algebra.

Theorem 3.4.4. [14] If H is an Artinian connected Hopf algebra, then H = F .
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Since Hopf algebras are coalgebras, every Hopf algebra will have a filtration of vector

spaces, namely the coradical filtration. However, not every coradical filtration is an algebra

filtration. The following proposition tells us when such a condition is satisfied.

Proposition 3.4.5. [18] Let Hn be the coradical filtration of a Hopf algebra H. Then H0 is

a Hopf subalgebra of H if and only if Hn is an algebra filtration, i.e. HmHn ⊆ Hm+n.

It easily follows that the coradical filtration of a connected Hopf algebra is an algebra

filtration, since F is the trivial Hopf algebra.

Since P (H) is a Lie algebra, then there exists a corresponding universal enveloping algebra

U(P (H)). We can place the enveloping algebra within the Hopf algebra H.

Lemma 3.4.6. For every pointed or connected bialgebra H, there exists a Hopf monomor-

phism U(P (H))→ H.

Thus, we will state that U(P (H)) is a Hopf subalgebra of H instead of referring to the

natural Hopf monomorphsim.

Since we are working with characteristic zero and U(P (H)) is a cocommutative Hopf

algebra, we can classify all cocommutative connected Hopf algebras.

Theorem 3.4.7. [1, Theorem 2.5.3] If H is a cocommutative connected Hopf algebra then

H = U(P (H)).

Corollary 3.4.8. If H is a connected Hopf algebra, then

1. U(P (H)) is the largest cocommutative Hopf subalgebra of H,

2. U(P (H)) is the smallest Hopf subalgebra of H containing P (H) as a Lie algebra.

Proof. 1. Suppose that A is a cocommutative Hopf subalgebra of H. Since the characteristic

of F is zero, then A = U(P (A)). Since P (A) is a Lie subalgebra of P (H), then A is a Hopf

subalgebra of U .
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2. Suppose that B is a Hopf subalgebra of H such that P (H) ⊆ B, whence P (H) = P (B).

Let iB : P (H) → B and iU : P (H) → U be the inclusion maps. Then there exists a Hopf

algebra homomorphism β : U → B such that β ◦ iU = iB. Since both iU and iB are injective

then so is β.

Now we apply Lemma 3.3.6, Proposition 3.3.7, and Corollary 3.4.8 to the following state-

ment.

Corollary 3.4.9. Let g be any Lie algebra. Then a Hopf subalgebra B of U(g) is normal if

and only if P (B) is an ideal of g. In this case, B = U(P (B)).

Proof. One direction is immediate from Lemma 3.3.6. Assume P (B) is an ideal of g. By

Corollary 3.4.8, U(P (B)) = B. Applying Proposition 3.3.7 gives us the desired result.

Now we see that every connected Hopf algebra H is an algebra extension of the enveloping

algebra U(P (H)). Additionally, many properties of the universal enveloping algebra carry

over to the Hopf algebra.

There have been many papers describing the antipode of Hopf algebras. Thus, we would

like to state how the antipode is effected by connectedness (or pointedness), and mimics the

anti-automorphism property given by the universal enveloping algebra.

Corollary 3.4.10. [18, Corollary 5.2.11] Let H be a Hopf algebra with a cocommutative

coradical. Then the antipode of H is bijective.

Since the universal enveloping algebra is a domain and has a commutative associated

graded algebra, or more precisely a polynomial algebra, then we would like to know if these

properties hold for connected Hopf algebras.

Proposition 3.4.11. [30, Proposition 6.4] If H is a connected Hopf algebra then grH is

commutative.

26



Proposition 3.4.12. [30, Propostion 6.5] If K is an affine, coradically graded Hopf algebra,

i.e. the associated graded algebra of a connected Hopf algebra, then K is algebra-isomorphic

to the commutative polynomial ring in l > 0 variables.

Theorem 3.4.13. [30, Proposition 6.6] If H is a connected Hopf algebra then H is a domain.

We will continually use these facts in the next chapter without reference.

3.5 Anti-Cocommutative Elements

Definition 3.5.1. Let C be a connected coalgebra and τ : C⊗C → C⊗C be the twist map,

i.e. τ : a ⊗ b 7→ b ⊗ a. We say that c ∈ C is anti-cocommutative or anti-symmetric, if

τ ◦ δ(c) = −δ(c), where δ(c) = ∆(c)− (c⊗ 1 + 1⊗ c).

We denote the space of all anti-cocommutative elements of C as P2(C), i.e.

P2(C) = {c ∈ C : τ ◦ δ(c) = −δ(c)}.

The notion of anti-cocommutative elements was presented in [30] and [29]. Therefore, the

following properties about anti-cocommutative elements were given in the referenced papers.

Lemma 3.5.2. [29, Lemma 2.5] Suppose C is a connected coalgebra.

1. Then P (C) is a subcoalgebra of P2(C).

2. P2(C) = {x ∈ C : τ ◦ δ(x) = −δ(x) and δ(x) ∈ P (C)⊗ P (C)}.

3. Then P2(C) is the largest subcoalgebra of C consisting of anti-cocommutative elements

of C.

Example 3.5.3. Let C = F{1, x, y, t} be a coalgebra with ∆(1) = 1⊗1, ∆(x) = x⊗1+1⊗x,

∆(y) = y⊗ 1 + 1⊗ y and ∆(t) = t⊗ 1 + 1⊗ t+ x⊗ y− y⊗ x. We see that C is a connected

coalgebra with C0 = FG(C) = F{1}, P (C) = F{x, y}, and P2(C) contains P (C) and t,

since δ(t) = x⊗ y − y ⊗ x.
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We need to switch from a general coaglebra to Hopf algebras.

Lemma 3.5.4. [29, Lemma 2.5] Suppose H is any Hopf algebra.

1. Then P2(H) is a Lie subalgebra of H if and only if [δ(x), δ(y)] = 0 in H ⊗H, for all

x, y ∈ P2(H).

2. Then P2(H) is a P (H)-module.

3. If P (H) is Abelian, then P2(H) is a Lie subalgebra of H and in H, we have [P2(H), P2(H)] ⊆

P (H).

4. If dimF (P2(H)/P (H)) = 1, then P2(H) is a Lie subalgebra of H.

5. Then dimF (P2(H)/P (H)) ≤
(

dimF P (H)
2

)
.

Note that by [29, Lemma 2.5], P2(C) is the largest subcoalgebra containing anti-cocommutative

elements which is similar to U(P (H)) as the largest subcoalgebra containing cocommutative

elements.

On the other hand, there are other properties that are parallel to properties of the

enveloping algebra.

Lemma 3.5.5. [29, Lemma 2.6] Suppose H is a connected Hopf algebra.

1. If H = U(g) for any Lie algebra g, then P2(H) = g.

2. If P (H) 6= P2(H) then U(P (H)) 6= H and dimF P (H) < GK.dim(H).

3. P2(H) ∼= P2(grH) as coalgebras, and P2(grH)⊕ P (grH)2 = P (grH)⊕H2/H1, where

Hn is the coradical filtration of H.

Finally, if the GK-dimension of a connected Hopf algebra is finite and is close to the

dimension of the space of primitive elements, then said Hopf algebra is an enveloping algebra.

Theorem 3.5.6. [29, Theorem 2.7] Suppose H is a connected Hopf algebra. If GK.dim(H) ≤

dimF P (H) + 1 <∞, then H ∼= U(L) as algebras for some finite dimensional Lie algebra L.
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We will see more examples pertaining to connected Hopf algebras with anti-cocommutative

elements in the next chapter.

3.6 Additional Properties

We now tie in some of the concepts together that were shown in various papers.

[18, Question 3.5.4] asks whether every Hopf algebra is left and right faithfully flat over

any Hopf subalgebra. This question was partially answered by Masuoka.

Theorem 3.6.1. [15] Suppose the coradical H0 of a Hopf algebra H is cocommutative. If

K is a right coideal coalgebra (e.g. Hopf subalgebra) such that S(K0) = K0, then H is a left

and right faithfully flat K-module.

We will be using this result in the next chapter. Moreover, there have been recent studies

in Hopf algebras with certain GK-dimension.

Theorem 3.6.2. [30, Propostion 3.6] Let H be a pointed, or connected Hopf algebra. Then

GK.dim(H) = sup{GK.dim(K) : K is an affine Hopf subalgebra of H}.

Theorem 3.6.3. [30, Theorem 6.9] Given a connected Hopf algebra H, the following state-

ments are equivalent:

1. GK.dim(H) <∞,

2. GK.dim(grH) <∞,

3. grH is an affine algebra,

4. grH is algebra-isomorphic to the polynomial ring of l > 0 variables.

In this case, GK.dim(H) = GK.dim(grH) which is a positive integer.
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The next lemma gives us a comparison between connected Hopf algebras via GK-dimension,

and the following corollary tells us how Hopf subalgebras cannot be close to each other. The

lemma also motivates one of the sections in the next chapter.

Lemma 3.6.4. [30, Lemma 7.2] If K is a Hopf subalgebra of a connected Hopf algebra H,

and if GK.dim(K) = GK.dim(H) <∞, then K = H.

Corollary 3.6.5. If K is a Hopf subalgebra of a connected Hopf algebra H with finite GK-

dimension, and H is a left (or right) finitely generated K-module, then H = K.

Proof. Using GK-dimension [13, Proposition 5.5], GK.dim(H) = GK.dim(K). Applying [30,

Lemma 7.2] forces H = K, as claimed.

Proposition 3.6.6. [30, Proposition 7.4] Let H be a connected Hopf algebra and d =

GK.dim(H).

1. If d = 0 then H = F , the trivial Hopf algebra.

2. If d = 1 then H = F [x] with x being a primitive element.

3. If d = 2 then H ∼= U(g) as Hopf algebras, where g is either the 2-dimensional Abelian

Lie algebra or the 2-dimensional solvable Lie algebra.

Finally, there exists a classification of connected Hopf algebras with low GK-dimension.

Theorem 3.6.7. [28, Theorem 1.2] Let H be a connected Hopf algebra with GK-dimension

4, and let p = dimF P (H). Then one of the following occurs:

1. If p = 4 then H = U(P (H)).

2. If p = 3 then H ∼= U(L) where L is an anti-cocommutative Lie algebra of dimension 4.

3. If p = 2 then H is not isomorphic to some universal enveloping algebra.
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Chapter 4

Main Results

4.1 Anti-Cocommutative Lie Extensions

In this section we construct not a single algebra but a class of connected Hopf algebras with

a fixed Lie algebra g. We also investigate specific subalgebras within these connected Hopf

algebras.

To start, pick any Lie algebra g. We let A(g) denote the class of locally finite connected

Hopf algebras A, i.e. its coradical filtration is a locally finite filtration, such that P (A) = g,

A is generated by P2(A) as an algebra, and U(g) 6= A.

Because P2(A)/g is isomorphic to some subspace of g∧ g, we will use the wedge notation

[z, x]∧ y which is equivalent to [z, x]⊗ y− y⊗ [z, x] in A⊗A in example 4.1.12 and example

4.1.10.

Now for each A ∈ A(g) one would assume that A is unique up to dimF P2(A). However

that is not the case as example 4.1.1 will show.

Example 4.1.1. Let g = F{x, y} be a Lie algebra, A ∈ A(g) and s = sxy ∈ P2(A) with

∆(s) = s⊗ 1 + 1⊗ s+ x⊗ y − y ⊗ x. In particular P2(A) = g⊕ F{s}.
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1. [29, Lemma 3.2] If [x, y] = 0 then it follows that

δ([x, s]) = x⊗ [x, y]− [x, y]⊗ x = 0,

δ([y, s]) = [y, x]⊗ y − y ⊗ [y, x] = 0.

This implies that [x, s] and [y, s] are primitive elements of A, thus set

[x, s] = α11x+ α12y,

[y, s] = α21x+ α22y,

where αij ∈ F . Now we consider the matrix

α11 α12

α21 α22

. Now for example we could set

every αij = 0 which would imply that A is a commutative connected Hopf algebra. Or

we could set α12 = 1, α11 = α22 = 0 which would imply that [x, s] = y and [y, s] = 0.

With [x, y] = 0 we get that g ⊕ F{s} is isomorphic to the 3-dimensional Heisenberg

algebra as Lie algebras.

2. If [x, y] = x then it follows that

δ([x, s]) = x⊗ [x, y]− [x, y]⊗ x = 0,

δ([y, s]) = [y, x]⊗ y − y ⊗ [y, x] = −(x⊗ y − y ⊗ x) = δ(−s).

Since [x, s] and [y, s] + s are primitive elements of A, then we have

[x, s] = β11x+ β12y,

[y, s] = −s+ β21x+ β22y,

where βij ∈ F . First note that P2(A) is a Lie algebra containing g as a subalgebra.
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Then by the Jacobi identity

0 =[x, [y, s]] + [y, [s, x]] + [s, [x, y]]

= [x,−s+ β21x+ β22y]− [y, β11x+ β12y] + [s, x]

= 2[s, x] + β22x+ β11x

= −2β11x− 2β12y + (β22 + β11)x

= (β22 − β11)x− 2β12y = 0,

which forces β12 = 0 and β22 = β11. Further calculation shows that β11 = 0 whence

β22 = 0 (see [29, Lemma 3.2]). Therefore [x, s] = 0 and [y, s] = −s + β21x. Moreover,

we are free to choose β21 ∈ F , so regardless of whether β21 is zero, s cannnot commute

with y, hence P2(A) is not an Abelian extension of g.

For examples with dimF g ≥ 3, we have dimF P2(A)/g ≥ 3. In this case, given linearly

independent s, t ⊆ P2(A), there might be a relation between s and t.

Additionally, we will be looking at A ⊗ A, so it’s handy to keep in mind the following

small shortcuts.

Lemma 4.1.2. For any Lie algebra g with A ∈ A(g), the following conditions are equivalent

for any h ∈ P2(A) with δ(h) = x⊗ y − y ⊗ x, and x, y, z ∈ g:

1. ad[z](h) ∈ g,

2. [z, x]⊗ y + x⊗ [z, y] = y ⊗ [z, x] + [z, y]⊗ x,

3. δ(h)∆(z) = ∆(z)δ(h) in A⊗ A.

Proof. 2 ⇐⇒ 3. This derives from the following two calculations in A⊗ A:

[∆(z), δ(h)] = [z, x]⊗ y − y ⊗ [z, x] + x⊗ [z, y]− [z, y]⊗ x,

[∆(z), h⊗ 1 + 1⊗ h] = [z, h]⊗ 1 + 1⊗ [z, h].
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Thus, ∆(z)δ(h) = δ(h)∆(z) if and only if [z, x]⊗ y + x⊗ [z, y] = y ⊗ [z, x] + [z, y]⊗ x.

1 ⇐⇒ 3. By definition ad[z](h) = zh − hz = [z, h]. Applying the calculations above

yields,

∆(ad[z](h)) = [∆(z),∆(h)] = [∆(z), h⊗ 1 + 1⊗ h] + [∆(z), δ(h)].

Therefore ad[z](h) ∈ g if and only if ∆(z)δ(h) = δ(h)∆(z).

Sometimes there is a Lie algebra in P2(A) properly containing the Lie algebra g = P (A)

as a Lie subalgebra. So we introduce a definition which describes this property.

Definition 4.1.3. Let g be a Lie F -algebra and H be a connected Hopf algebra with

P (H) = g. An anti-cocommutative Lie extension (or ALE for short) of g is a vector

space L ⊆ P2(H) such that L is an anti-cocommutative coassociative Lie algebra (defined in

[29]), and dimF L = dimF g + 1. When an ALE of g exists, we say that g satisfies the ALE

property.

We provide a few small examples of ALE of a given Lie algebra.

Example 4.1.4. Suppose we have a Lie algebra g with A ∈ A(g).

1. If g is any Abelian Lie algebra, then P2(A) is an ALE of g since (x ⊗ y)(a ⊗ b) =

(a⊗ b)(x⊗ y). Hence s[a,x]y ∈ g for all a, b, x, y ∈ g.

2. If g is a 2-dimensional Lie algebra then dimF P
′
2(A) = 1. We see that P2(A) is an ALE

of g (see Example 4.1.1).

3. From [29, Theorem 2.7]: if H is a connected Hopf F -algebra with

GK.dim(H) = dimF P (H) + 1 <∞,

then H is an enveloping algebra of some ALE of the Lie algebra P (H).
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4. Suppose F = R and g = F{x, y, z} with [x, y] = z, [z, x] = y, and [z, y] = 0. Clearly g

is a solvable Lie algebra but not completely solvable since F{y, z} is a proper ideal of

g. We see that in U(g)⊗ U(g)

[∆(x), y ⊗ z − z ⊗ y] = [x, y]⊗ z − z ⊗ [x, y] + y ⊗ [x, z]− [x, z]⊗ y = 0,

[∆(y), y ⊗ z − z ⊗ y] = y ⊗ [y, z]− [y, z]⊗ y = 0,

[∆(z), y ⊗ z − z ⊗ y] = [z, y]⊗ z − z ⊗ [z, y] = 0.

Now let A ∈ A(g) with syz ∈ P2(A) and δ(syz) = y ⊗ z − z ⊗ y. The calculation has

shown that [∆(g), δ(syz)] = 0, which implies that

∆([g, syz]) = [g, syz]⊗ 1 + 1⊗ [g, syz],

for any g ∈ g. Thus we have that [g, syz] ⊆ g say [g, syz] = ag. So setting h = g⊕F{syz}

and define [, ] : h× h→ h by [g, syz] = ag for all g ∈ g, and (g, [, ]) is the Lie algebra g.

Hence h is a ALE of g.

In the last example, note that h is a solvable Lie algebra.

As we can see from the examples that Lie algebras which are at least solvable seem to

have the ALE property. In fact that is what the next proposition will demonstrate.

Proposition 4.1.5. If g is a finite dimensional completely solvable Lie algebra, then g

satisfies the ALE property.

Proof. Let A ∈ A(g). Applying of [6, Corollary 2.4.3], we see that there exists v ∈ P2(A)/g

such that x(v) = λ(x)v for all x ∈ g, where λ : g→ F is an F -linear map. Since x(v) = [x, v]

in A then g⊕ F{v} is an ALE of g.

Proposition 4.1.5 only states the existence of an ALE but does not address which anti-

cocommutative element contributes towards an ALE.
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Recall that a submodule N of a module M is essential if every nonzero submodule

intersects N nontrivially.

Proposition 4.1.6. Let H be a connected Hopf algebra such that H 6= U(P (H)). If V is an

essential U(P (H))-submodule of P (H) ∧ P (H), then V ∩ P2(H) ) P (H).

Proof. Set g = P (H). Naturally there is a coalgebra map φ : F ⊕ P2(H) → F ⊕ g ⊕ (∧2g)

with φ|g = idg. By [18, Lemma 5.3.3], φ is a coalgebra monomorphism. Since V is essential

in ∧2g and g ( P2(H), then φ(F ⊕ P2(H)) ∩ V 6= 0. Again using the fact that φ is injective

and P2(H) 6= g, we have,

V ∩ P2(H) = φ−1(V ) ∩ P2(H) ) g,

as desired.

For an ALE to exist, the Lie algebra must have a 2-dimensional ideal.

Proposition 4.1.7. Fix a Lie algebra g and set A = A(g). Let t ∈ P2(A) non-primitve

with δ(t) = x ⊗ y − y ⊗ x ∈ g ⊗ g. Then g ⊕ F{t} is an ALE if and only if F{x, y} is a

two-dimensional ideal of g.

Proof. Set n = F{x, y} and assume that n is a 2-dimensional ideal of g. Then for any

g ∈ g, we have [g, x], [g, y] ∈ n so set [g, x] = α1x + β1y and [g, y] = α2x + β2y, where

α1, α2, β1, β2 ∈ F . It follows that

δ([g, t]) = [g, x]⊗ y − y ⊗ [g, x] + x⊗ [g, y]− [g, y]⊗ x

= (α1x+ β2y)⊗ y − y ⊗ (α1x+ β2y) + x⊗ (α2x+ β2y)− (α1x+ β2y)⊗ x

= α1(x⊗ yy − y ⊗ x) + β2(x⊗ y − y ⊗ x)

= (α1 + β2)(x⊗ y − y ⊗ x)

= (α1 + β2)δ(t).

36



This shows that [g, t] = t+ g0 for some g0 ∈ g, whence [g, t] ∈ g⊕ F{t}, whence g⊕ F{t} is

an ALE.

Now let n be the ideal in g generated by {x, y}, but assume that g ⊕ F{t} is an ALE.

Suppose that dimF n > 2. Then there exists g ∈ g and z, w ∈ n such that the dimension of

the vector space F{x, y, z, w} is at least 3, and

[g, x] = α1x+ β1y + γ1z,

[g, y] = α2x+ β2y + γ2w,

where α1, α2, β1, β2, γ1, γ2 ∈ F and either γ1 6= 0 or γ2 6= 0. (Otherwise [g, x], [g, y] ∈ n for

all g ∈ g would imply that dimF n = 2.) Let syz, sxw ∈ P2(A) with δ(syz) = y ⊗ z − z ⊗ y

and δ(sxw) = x⊗ w − w ⊗ x. It follows that

δ([g, t]) = [g, x]⊗ y − y ⊗ [g, x] + x⊗ [g, y]− [g, y]⊗ x

= (α1x+ β1y + γ1z)⊗ y − y ⊗ (α1x+ β1y + γ1z)

+ x⊗ (α2x+ β2y + γ2w)− (α2x+ β2y + γ2w)⊗ x

= (α1 + β2)(x⊗ y − y ⊗ x)− γ1(y ⊗ z − z ⊗ y) + γ2(x⊗ w − w ⊗ x)

= (α1 + β2)δ(t)− γ1δ(syz) + γ2δ(sxw).

This shows that [g, t] = (α1 + β2)t− γ1syz + γ2sxw + g0, for some g0 ∈ g. Since either γ1 6= 0

or γ2 6= 0, then [g, t] /∈ g⊕ F{t}, a contradiction. Therefore, we must have dimF n = 2.

Remark 4.1.8. Note that in the proof of Lemma 4.1.7, if adn(g) is represented by a 2× 2

matrix, for any g ∈ g, then α1 + β2 is the trace of of adn(g).

Of course Proposition 4.1.7 would force simple Lie algebras to have no ALE.

Corollary 4.1.9. If g is a simple Lie algebra, then g does not satisfy the ALE property.

Proof. Ideals of g are either 0 or g itself. Since dimF g ≥ 3, then by Proposition 4.1.7, there

are no ALE for g.
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To emphasize Corollary 4.1.9, we take a look at the smallest simple Lie algebra, sl2.

Example 4.1.10. Let g = sl2(F ) = F{e, f, h} with [e, f ] = h, U = U(g), and A ∈ A(g).

Applying the idea that the vector space of anti-cocomutative elements in P2(A), namely

F{sef , seh, sfh} is isomorphic to g ∧ g as g-modules, and thus reverting to the ∧ notation,

we have that

e(e ∧ f) = e ∧ h =⇒ [e, sef ] = seh + g0

f(e ∧ f) = f ∧ h =⇒ [f, sef ] = sfh + g1

h(e ∧ f) = −4e ∧ f =⇒ [h, sef ] = −4sef + g2

e(e ∧ h) = 0 =⇒ [e, seh] = g3

f(e ∧ h) = 2e ∧ f =⇒ [f, seh] = 2sef + g4

h(e ∧ h) = 2e ∧ h =⇒ [h, seh] = 2seh + g5

e(f ∧ h) = 2e ∧ f =⇒ [e, sfh] = 2seh + g6

f(f ∧ h) = 0 =⇒ [f, sfh] = g7

h(f ∧ h) = −2f ∧ h =⇒ [h, sfh] = −2sfh + g8,

where g0, ..., g8 ∈ g.

Now if H is a Hopf subalgebra of A properly containing U as a Hopf subalgebra, then

it follows that H = A. To see this, we have P2(H) 6= g thus P2(H)has a nontrivial anti-

cocommutative element, say g = q1sef + q2seh + q3sfh, where q1, q2, q3 ∈ F . Without loss

of generality asssume that q1, q2, q3 are nonzero. Then in A, [e, g] = 2q2seh + 2q3sef and so

[e, [e, g]] = 2q3seh, which forces seh ∈ P2(H). Furthermore 1
2
[f, seh] = sef + 1

2
g4 and since

1
2
g4 ∈ g ⊆ P2(H), then sef ∈ P2(H). Finally seeing [f, sef ] = sef + g2 we get sef ∈ P2(H).

Therefore P2(H) = P2(A), and since A is generated by the coalgebra F ⊕ P2(A), this forces

H = A.

Remark 4.1.11. In example 4.1.10 we could have used the fact that P2(A)/g ∼= g ∧ g is a
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finite dimensional simple g-module, whence Soc(P2(A)/g) = P2(A)/g, and so any nontrivial

anti-cocommutative element in P2(A) can generate P2(A)/g as a g-module which produces

the basis {sef , seh, sfh}, whence sef , seh, sfh ∈ P2(H).

On rare occasions we do not need to have an algebraically closed field for a finite dimen-

sional solvable Lie algebra to satisfy the ALE property. But for the next example, that is

not the case.

Example 4.1.12. Suppose that F = R, a ∈ F − 0, and g = F{x1, x2, x3, x4} where

[x4, x1] = x1 + ax3, [x4, x2] = x2,

[x4, x3] = x1, [x3, x1] = x2,

[x3, x2] = [x2, x1] = 0.

We see that F{x1, x2, x3} is a proper ideal of g, whence g is not completely solvable over

F . Consider A ∈ A(g). To shorten the calculation, we use the fact that g acting on anti-

cocommutative elements in P2(A) is the same as g acting on ∧2g. So set tij = xi∧xj ∈ g∧g,

which corresponds to sxixj ∈ P2(A), for all i < j ≤ 4, then it follows that

x1(t12) = x2(t12) = x3(t12) = 0,

x4(t12) = [x4, x1] ∧ x2 + x1 ∧ [x4, x2] = 2x1 ∧ x2 + ax3 ∧ x2 = 2t12 − at23,

x1(t13) = x1 ∧ [x1, x3] = −t12, x2(t13) = 0,

x3(t13) = [x3, x1] ∧ x3 = t23, x4(t13) = [x4, x1] ∧ x3 + x1 ∧ [x4, x3] = t13,

x1(t23) = x2(t23) = x3(t23) = 0,

x4(t23) = [x4, x2] ∧ x3 + x2 ∧ [x4, x3] = t23 − t12,
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while

x1(t14) = x1 ∧ [x1, x4] = −at13, x2(t14) = x1 ∧ [x2, x4] = t12,

x3(t14) = [x3, x1] ∧ x4 + x1 ∧ [x3, x4] = t24,

x4(t14) = [x4, x1] ∧ x4 = t14 + at34,

x1(t24) = x2 ∧ [x1, x4] = t12 − at23, x2(t24) = x2 ∧ [x2, x4] = 0,

x3(t24) = x2 ∧ [x3, x4] = t12, x4(t24) = [x4, x2] ∧ x4 = t24,

x1(t34) = [x1, x3] ∧ x4 + x1 ∧ [x3, x4] = t24, x2(t34) = x3 ∧ [x2, x4] = −t23,

x3(t34) = x3 ∧ [x3, x4] = t13, x4(t34) = [x4, x3] ∧ x4 = −t14.

We see that the submodule F{t12, t23} is an essential module in g ∧ g. Define sij ∈ P2(A)

with δ(sij) = xi ⊗ xj − xj ⊗ xi. Now there are two cases to consider: when a = 2 and when

a 6= 2.

Case a = 2. [x4, (s12 + 2s23)] = 0. This shows that F{s12 + 2s23} is a proper (simple)

submodule of F{s12, s23}, and hence F{s = s12 +2s23} is a simple submodule of C2 such that

xi(s) ∈ g for all i ≤ 4. Moreover, the ideal in g generated by F{x2, 2x3−x1} is 2-dimensional.

Therefore L = g⊕ F{s} is an ALE of g as well as a solvable Lie algebra.

Case a 6= 2. It follows that W = F{s12, s23} is a 2-dimensional simple submodule of

P2(A), since F{s12, s23} is simple. Notice that

δ(s12)δ(s23)− δ(s23)δ(s12) = (x2 ⊗ x2)∆(x2)

in A which implies that [s12, s23] /∈ g⊕W , whence g does not satisfy the ALE property (and

so g does not have any 2-dimensional proper ideal).

Remark 4.1.13. In the last example, 4.5.1, it is unusual that the 4-dimensional Lie algebra
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does not have the ALE property when F = R, but when F = C then it does satisfy the ALE

property regardless of whether a = 2 or not for any a ∈ F by Proposition 4.1.5.

Additionally there is more structure to the example 4.1.12 beyond ALE. See section 4.2

Extending Further with Anti-Cocommutative Elements.

Back to Proposition 4.1.5, if we drop the condition that F is algebraically closed then we

need the Lie algebra to have a richer structure. But in return ALE’s of these Lie algebras

will receive a nice structure as well.

Proposition 4.1.14. If g is a finite dimensional nilpotent Lie algebra, then g satisfies the

ALE property, and any ALE of g is a completely solvable Lie algebra.

Proof. Because g is nilpotent, by Engel’s Theorem there exists s ∈ P2(A) such that x(s) = 0

for all x ∈ g. By Lemma 4.1.2, x(s) = [x, s] ∈ g, therefore g⊕ F{s} is an ALE of g.

In the Abelian case, there is always a nontrivial tower of Lie algebras in P2(A) assuming

that there are enough elements.

Corollary 4.1.15. If g is a finite dimensional Abelian Lie algebra with A ∈ A(g), then

1. every subspace C of P2(A) satisfying dimF C = dimF g + 1 is an ALE.

2. any ALE L1 nilpotent,

3. any subspace L2 ) g of P2(A) with dimF L2 = dimF g + 2 is completely solvable.

Proof. For any s ∈ P2(A), we have L1 = g ⊕ F{s} is a nilpotent Lie algebra. Moreover, if

L2 = g ⊕ F{s, t} for any 2-dimensional subspace {s, t} ⊆ FS2, and since L2 is an ALE of

g⊕ F{s}, then by Proposition 4.1.14, L2 is a completely solvable Lie algebra.

Since finite dimensional nilpotent Lie F -algebras induce ALEs that are completely solv-

able, not all ALE satisfy the ALE property. Take for example the 3-dimensional Heisenberg

algebra.

41



Example 4.1.16. Consider h = F{x, y, z}, where [x, y] = z and [z, x] = [z, y] = 0. In

U(h)⊗ U(h), it follows that

[∆(x), (x⊗ y − y ⊗ x)] = x⊗ z − z ⊗ x,

[∆(y), (x⊗ y − y ⊗ x)] = y ⊗ z − z ⊗ y,

[∆(z), (x⊗ y − y ⊗ x)] = 0,

[∆(g), (x⊗ z − z ⊗ x)] = 0,

[∆(g), (y ⊗ z − z ⊗ y)] = 0,

for all g ∈ g. So if A ∈ A(g) with syz ∈ P2(A) and δ(syz) = y ⊗ z − z ⊗ y, the calculation

shows that L = h ⊕ F{syz} is a ALE which is completely solvable. Without removing the

coalgebra structure on L, we see that

[δ(sxz), δ(syz)] = (z ⊗ z)∆(z),

[δ(sxy), δ(syz)] = (z ⊗ z)∆(y),

which are both nonzero. This shows that both vector spaces L ⊕ F{sxz, syz} and L ⊕

F{sxy, syz} cannnot be Lie algebras.

4.2 Further Extensions with

Anti-Cocommutative Elements

In many cases you’ll have more than one anti-cocommutative element to consider. In this

section we consider this case and ask when the algebra is “nice”, i.e. having finite Gelfand-

Kirillov dimension, Noetherian, etc.

We start with an example that would pave the way for more general techniques. It would

also show that there exists, under certain conditions, extensions beyond an ALE, and that

42



these extensions are not Lie algebras themselves. In example 4.1.16, adjoining U(h) with

the set {sxz, syz} does not make h ⊕ F{sxz, syz} a Lie algebra, but both h ⊕ F{sxz} and

h⊕ F{syz} are Lie algebras (ALE).

Example 4.2.1. Suppose h = F{x, y, z} is the 3-dimensional Heisenberg algebra over F

with [x, y] = z. Consider A ∈ A(h) with dimF P2(A) =
(

dimF P (H)
2

)
. If sxz ∈ P2(A) is anti-

cocomutative with δ(sxz) = x ⊗ z − z ⊗ x, then the subalgebra X generated by the vector

space h⊕ F{sxz, syz} is a Hopf subalgebra of GK-dimension 5.

Denote s, t by sxz, syz ∈ A := A(h), respectively. Then in A⊗ A, we have

[δ(s), δ(t)] = (x⊗ z − z ⊗ x)(y ⊗ z − z ⊗ y)− (y ⊗ z − z ⊗ y)(x⊗ z − z ⊗ x)

= xy ⊗ z2 − xz ⊗ zy − zy ⊗ xz + z2 ⊗ xy

− yx⊗ z2 + yz ⊗ zx+ zx⊗ yz − z2 ⊗ yx

= (xy − yx)⊗ z2 + z2 ⊗ (xy − yx)

= (z ⊗ z)∆(z)

= 1
3
δ(z3).

Additionally we have

[s⊗ 1 + 1⊗ s, δ(t)] = [s, y]⊗ z − z ⊗ [s, y] + [z, s]⊗ y − y ⊗ [z, s]

[δ(s), t⊗ 1 + 1⊗ t] = [x, t]⊗ z − z ⊗ [x, t] + [t, z]⊗ x− x⊗ [t, z].

Before computing ∆([s, t]) we must first compute [h, s] and [h, t]. So let αij ∈ F for all
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i, j ≤ 3, and set

[x, s] = α11x+ α12y + α13z,

[y, s] = α21x+ α22y + α23z,

[z, s] = α31x+ α32y + α33z.

Because F{x, z, s} is a Lie subalgebra of the Lie algebra h ⊕ F{s}, then α12 = α32 = 0.

Additionally, by the Jacobi identity,

0 = [x, [y, s]] + [s, [x, y]] + [y, [s, x]]

= [x, α21x+ α22y + α23z] + [s, z]− [y, α11x+ α13z]

= α22z − (α31x+ α33z)

= (α22 − α33)z − α31x,

which implies that α31 = 0, and α22 = α33. Similarly, if [x, t] = λ11x + λ12y + λ13z, then it

follows that λ21 = λ31 = 0 since F{y, z, t} is a Lie subalgebra of h⊕ F{t}, and λ32 = 0 and

λ11 = λ33 by the Jacobi identity.
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Back to computing ∆([s, t]), we see that

[s, y]⊗ z − z ⊗ [s, y] + [z, s]⊗ y − y ⊗ [z, s]

= (α21x+ α22y + α23z)⊗ z − z ⊗ (α21x+ α22y + α23z)

+ α33(x⊗ z − z ⊗ x)

= (α21 + α33)(x⊗ z − z ⊗ x) + α22(y ⊗ z − z ⊗ y)

= (α21 + α33)δ(s) + α22δ(t),

[x, t]⊗ z − z ⊗ [x, t] + [t, z]⊗ x− x⊗ [t, z]

= (λ11x+ λ12y + λ13z)⊗ z − z ⊗ (λ11x+ λ12y + λ13z)

+ λ33(z ⊗ x− x⊗ z)

= (λ11 − λ33)(x⊗ z − z ⊗ x) + λ12(y ⊗ z − z ⊗ y)

= −λ22δ(s) + λ12δ(t).

Now we see that

δ([s, t]) = [s⊗ 1 + 1⊗ s, δ(t)] + [δ(s), t⊗ 1 + 1⊗ t] + [δ(s), δ(t)]

= (α21 + α33 − λ22)δ(s) + (α22 + λ12)δ(t) + 1
3
δ(z3).

Finally, if η = α21 + α33 − λ22 and γ = α22 + λ12, then

∆([s, t]− ηs− γt− 1
3
z3) = [s, t]⊗ 1 + 1⊗ [s, t] + δ([s, t])

− η(s⊗ 1 + 1⊗ s− δ(s))− γ(t⊗ 1 + 1⊗ t+ δ(t))

− 1
3
(z3 ⊗ 1 + 1⊗ z3 + δ(z3))

= ([s, t]− ηs− γt− 1
3
z3)⊗ 1 + 1⊗ ([s, t]− ηs− γt− 1

3
z3),

whence [s, t]−ηs−γt− 1
3
z3 ∈ P (A) = h. This implies that [s, t] = 1

3
z3+ηs+γt+a1x+a2y+a3z
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for some a1, a2, a3 ∈ F . Furthermore, in A,

[z, [s, t]] = [z, 1
3
z3 + ηs+ γt+ a1x+ a2y + a3z]

= η(α33z) + γ(λ33z)

[s, [t, z]] = −[s, λ33z] = −α33λ33z

[t, [z, s]] = [s, α33z] = λ33α33z

And so the Jacobi identity yields ηα33 + γλ33 = 0.

Since X is a connected Hopf subalgebra, then its associated graded algebra grX =

F [x, y, z, s, t], since both s, t are of degree 2, whence st = ts. This shows that the Hopf

subalgebra X is Noetherian of GK-dimension 5, as claimed.

To generalize example 4.2.1, we first decompose the linear map δ : H → H ⊗H.

Definition 4.2.2. For any connected coalgebra C, define the linear maps δac, δcc : C → C⊗C

by

δac = 1
2
(δ − τ ◦ δ), δcc = 1

2
(δ + τ ◦ δ).

Notice that δ = δac + δcc.

Lemma 4.2.3. Suppose H is any connected Hopf algebra P = P2(H), and U = U(P (H)).

Then

1. δcc([s, t]) = [δ(s), δ(t)] in H ⊗H, where s, t ∈ P .

2. δac|U = 0 while δcc|U = δ|U .

3. δac|P = δ|P while δcc|P = 0.

Proof. 1. In H ⊗H notice that

δ([s, t]) = [(s⊗ 1 + 1⊗ s), δ(t)] + [δ(s), (t⊗ 1 + 1⊗ t)] + [δ(s), δ(t)].
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Applying the twist map τ yields

τ ◦ δ([s, t]) = −[(s⊗ 1 + 1⊗ s), δ(t)]− [δ(s), (t⊗ 1 + 1⊗ t)] + [δ(s), δ(t)].

Therefore (δ + τ ◦ δ)[s, t] = 2[δ(s), δ(t)], and (δ − τ ◦ δ)[s, t] = 2[(s ⊗ 1 + 1 ⊗ s), δ(t)] +

2[δ(s), (t⊗ 1 + 1⊗ t)], whence δcc([s, t]) = [δ(s), δ(t)].

The rest is straightforward.

In short, δcc preserves the cocommutative part of δ, while δac preserves the anti-cocommutative

part.

Intuitively one would suspect that the anti-cocommutative part would belong to the

largest anti-cocommutative subcoalgebra P2(A), and the cocommutative part would belong

to the largest cocommutative subcoalgebra, the universal enveloping algebra.

Proposition 4.2.4. Let g be a finite dimensional Lie algebra, and A ∈ A(g). Suppose

s, t ∈ P2(A) are non-primitive, and Un is the coradical filration of the Hopf subalgebra U(g).

Then δcc([s, t]) ∈ δ(U3) if and only if δac([s, t]) ∈ δ(P2(A)).

Proof. Assume that δcc([s, t]) ⊆ δ(U3), i.e. δcc([s, t]) = δ(w) for some w ∈ U3. By Lemma

4.2.3 we have

∆([s, t]− w) = ([s, t]− w)⊗ 1 + 1⊗ ([s, t]− w) + δac([s, t]),

hence δ([s, t] − w) = δac([s, t]). Since τ ◦ δac = −δac then [s, t] − w is anti-cocommutative.

Thus by definition [s, t]− w ∈ P2(A). Therefore δ([s, t]− w) = δac([s, t]) ∈ δ(P2(A)).

Now let δac([s, t]) = δ(v) for some v ∈ P2(A). By Lemma 4.2.3 we have

∆([s, t]− v) = ([s, t]− v)⊗ 1 + 1⊗ ([s, t]− v) + δcc([s, t]),

which implies that [s, t] − v is cocommutative. Since U is the largest cocommutative sub-

coalgebra in A by Corollary 3.4.8, then [s, t]− v ∈ U(g). If An is the coradical filtration on
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A, then st ∈ A4, hence

[s, t]− p ∈ A4 ∩ U(g) = U4,

Since δcc(v) = 0, then we have δcc([s, t]) = δ([s, t] − v) ∈ δ(U4). To show that δcc([s, t]) ∈

δ(U3), consider δ(s) = x⊗ y − y ⊗ x and δ(t) = a⊗ b− b⊗ a. Then

δcc([s, t]) = [δ(s), δ(t)]

= xa⊗ yb− xb⊗ ya− ya⊗ xb+ yb⊗ xa− ax⊗ by

+ ay ⊗ bx+ bx⊗ ay − by ⊗ ax

= ax⊗ [y, b] + [y, b]⊗ ax+ by ⊗ [x, a] + [x, a]⊗ by + [x, a]⊗ [y, b]

+ [y, b]⊗ [x, a]− (xb⊗ [y, a] + [y, a]⊗ xb+ ya⊗ [x, b] + [x, b]⊗ ya)

+ [x, b]⊗ [y, a] + [y, a]⊗ [x, b]

∈ (U2/U1)⊗ U1 + U1 ⊗ (U2/U1).

Since [s, t]− p ∈ U4, if [s, t]− v /∈ U3, then δcc([s, t]) = v1 + v2 + u with v1 ∈ (U3/U2)⊗ U1,

p2 ∈ U1 ⊗ (U3/U2) are both nonzero, and u ∈ U2 ⊗ U2. But this is absurd, therefore

[s, t]− v ∈ U3, whence δcc([s, t]) ∈ δ(U3).

In other words, Proposition 4.2.4 states that instead of looking at δ([, ]) as a whole, we

may observe either δcc([, ]) or δac([, ]). If the computation allows us to pullback to some

anti-cocommutative or cocommutative element, then there is a possibility of a “nice” Hopf

subalgebra that is not the enveloping algebra.

Theorem 4.2.5. Let g be a finite dimensional Lie algebra, and A ∈ A(g). Suppose U = U(g)

and t1, ..., tn ∈ P2(A) are non-primitive elements satisfying the following conditions:

1. V = F{t1, ..., tn} is an n-dimensional vector space,

2. for every i, j ≤ n, δac([ti, tj]) ∈ δ(P2(A)), and
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3. g⊕ V is a g-module.

Then GK.dim(B) = n+ dimF g, where B is the Hopf subalgebra of A generated by g⊕ V .

Proof. By Proposition 4.2.4, δcc([ti, tj]) ∈ δ(U3) for all i, j ≤ n. Applying Lemma 4.2.3 shows

that

∆([ti, tj]− wij − uij) = ([ti, tj]− wij − uij)⊗ 1 + 1⊗ ([ti, tj]− wij − uij),

i.e. [ti, tj] − wij − uij ∈ g where w ∈ P2(A) with δac(wij) = δac([ti, tj]) and uij ∈ U3

with δcc(uij) = δcc([ti, tj]). Without loss of generality, assume that [ti, tj] = wij + uij. By

the hypothesis [g ⊕ V, g] ∈ g ⊕ V in A, therefore in grA, we have that [ti, x] = 0 for

any x ∈ g and any i ≤ n, and [ti, tj] = 0 for all i, j ≤ n, since wij + uij ∈ A3/A2 and

titj ∈ A4/A3 (as An represents the coradical filtration on A). This shows that if B is the

Hopf subalgebra of A generated by g ⊕ V , we have that grB is exactly the commutative

polynomial algebra F [g ⊕ V ]. Hence GK.dim(grB) = n + dimF g and so by [30, Theorem

6.9], GK.dim(B) = n+ dimF g.

Corollary 4.2.6. Let g be a finite dimensional Lie algebra, and A ∈ A(g). Suppose U =

U(g) and t1, ..., tn ∈ P2(A) are non-primitive elements satisfying the following conditions:

1. V = F{t1, ..., tn} is an n-dimensional vector space,

2. for every i, j ≤ n, δac([ti, tj]) ∈ δ(P2(A)), and

3. for every i ≤ n, the vector space g⊕ F{ti} is an ALE.

Then GK.dim(B) = n+ dimF g, where B is the Hopf subalgebra generated of A by g⊕ V .

Proof. Having g⊕ F{ti} informs us that [g, ti] ⊆ g⊕ F{ti} for all i ≤ n, whence U ⊕ V is a

(left) U -module. Now apply Theorem 4.2.5.

Example 4.2.1 satisfies Corollary 4.2.6, and hence the desired result.
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Now we add normality in these algebras. In particular, if the largest cocommutative

Hopf algebra is also a normal Hopf subalgebra in a connected Hopf algebra we would see a

concept that was mentioned many times over.

Proposition 4.2.7. Suppose g is a finite dimensional Lie algebra and A ∈ A(g). Suppose

t ∈ P2(A) is non-primitive, and let B be the Hopf subalgebra of A generated by the g⊕F{t}.

Then U(g) ⊆ B is a normal Hopf subalgebra of B if and only if [g, t] ⊆ g in B.

Proof. Set δ(t) = x⊗ y − y ⊗ x. Denote adr[t] with ad[t]. It follows that S(t) = −t+ [x, y],

and in A we have that

ad[t](g) = S(t)g + gt− xgy + ygx

= −tg + xyg − yxg + gt+ ygx− xgy

= [t, g] + y[g, x] + x[y, g].

So if U(g) is a normal Hopf subalgebra of B, then [t, g] ∈ U(g), and since [t, g] ∈ P2(A) we

have that [t, g] ∈ U(g) ∩ P2(A) = P2(U(g)) = g. And conversely the assumption [t, g] ⊆

g forces ad[t](g) ⊆ U(g). Since ad[ba] = ad[a] ◦ ad[b] for any a, b ∈ A, we have that

ad[A](U(g)) ⊆ U(g). This argument holds for the left adjoint,

adl[t](g) = [t, g] + [g, x]y + [y, g]x,

therefore U(g) is a normal Hopf sublagebra of B.

Recall that since P2(H)/g can be embedded in g∧g, there exists a connected Hopf algebra

A ∈ A(g) such that P2(A)/g is isomorphic to g ∧ g.

Corollary 4.2.8. Let g be a finite dimensional Lie algebra with dimF Z(g) ≥ 3. There exists

A ∈ A(g) such that U(g) is a normal Hopf subalgebra of A and

dimF (P2(A)/g) ≥ 3.
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Proof. Set F{x1, ..., xn} = Z(g). We know that there exists H ∈ A(g) with

dimF (P2(H)/g) =

(
dimF g

2

)
.

So consider sij ∈ P2(H) so that δ(sij) = xi ⊗ xj − xj ⊗ xi with i < j ≤ n. It follows that

[δ(sij),∆(g)] = 0 for all i < j ≤ n, hence [sij, g] ⊆ g for all g ∈ g. Therefore if A is Hopf

algebra generated by g⊕F{sij : i < j ≤ n}, then A ∈ A(g) and P2(A) = F{sij : i < j ≤ n}.

Moreover, by Proposition 4.2.7, U(g) is a normal Hopf subalgebra of B.

To apply Proposition 4.2.7, when working with certain Lie algebras its enveloping algebra

cannot achieve normality in any connected Hopf algebra.

Corollary 4.2.9. Suppose g is a finite dimensional simple Lie algebra, then U(g) cannot be

a normal Hopf subalgebra of A, for any A ∈ A(g).

Proof. If U(g) is a normal Hopf subalgebra, then g satisfies the ALE property which contra-

dicts Corollary 4.1.9.

Additionally if U(g) is a normal Hopf subalgebra, then g⊕ F{t} is an ALE. Thus under

normality we can achieve one of the main results.

Theorem 4.2.10. Suppose g is a finite dimensional Lie algebra and A ∈ A(g). If U(g) is a

normal Hopf subalgebra of A, then GK.dim(A) = dimF P2(A).

Proof. With U := U(g) normal in A, we have that g ⊕ F{t} is an ALE and [t, g] ⊆ g for

all non-primitive t ∈ P2(A) by Proposition 4.2.7, respectively. So consider t12, t34 ∈ P2(A)

where δ(t12) = x1 ⊗ x2 − x2 ⊗ x1 and δ(t34) = x3 ⊗ x4 − x4 ⊗ x3. Then by Lemma 4.2.3, in
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A⊗ A we have

δac([t12, t34]) = δ([t12, t34])− [δ(t12), δ(t34)]

= [t12 ⊗ 1 + 1⊗ t12, δ(t34)] + [δ(t12), t34 ⊗ 1 + 1⊗ t34]

= [t12, x3]⊗ x4 − x4 ⊗ [t12, x3] + x3 ⊗ [t12, x4]− [t12, x4]⊗ x3]

+ [x1, t34]⊗ x2 − x2 ⊗ [x1, t34] + x1 ⊗ [x2, t34]− [x2, t34]⊗ x1

= b3 ⊗ x4 − x4 ⊗ b3 + x3 ⊗ b4 − b4 ⊗ x3

+ a1 ⊗ x2 − x2 ⊗ a1 + x1 ⊗ a2 − a2 ⊗ x1,

where bi = [t12, xi] ∈ g with i = 3, 4 and aj = [xj, t34] ∈ g with j = 1, 2. This shows that

δac([t12, t34]) ∈ δ(P2(A)), or in particular

δac([t12, t34]) = δ(sb3x4 + sx3b4 + sa1x2 + sx1a2),

where δ(sb3x4) = b3 ⊗ x4 − x4 ⊗ b3. Therefore Corollary 4.2.6 implies that GK.dim(A) =

dimF (P2(A)/g) + dimF g = dimF P2(A), as desired.

Thus with normality there exists a “nice” Hopf algebra.

Corollary 4.2.11. If H is a connected Hopf algebra and U(P (H)) is a normal Hopf subal-

gebra of H, then GK.dim(A) = dimF P2(H), where A is the Hopf subalgebra of H generated

by P2(H). Moreover A is a Noetherian (Auslander-regular) algebra.

Proof. Immediately follows from Theorem 4.2.10 and the Noetherian condition follows from

[30, Corollary 6.10].

4.3 Application: Global Dimension

In this section, we focus on the global dimension of connected Hopf algebras, and apply the

ideas of anti-cocommutative Lie extensions.

52



By comparison, the papers [30] and [29], the authors use the Gelfand-Kirillov dimension

(GK-dim) to characterize and classify certain connected Hopf algebras. While [29, Corollary

6.10] does mention global dimension when having finite GK-dimension, our main focus will

be on global dimension in this section.

Lemma 4.3.1. Suppose H is a connected Hopf algebra and A is any Hopf subalgebra of H.

Then it follows that

1. r.gl.dim(A) ≤ r.gl.dim(H), when A is right Noetherian with finite right global dimen-

sion.

2. gl.dim(U(P (H))) ≤ r.gl.dim(H) when dimF P (H) <∞.

Proof. 1. Since A is a Hopf subalgebra of H, then by [15, Theorem 1.3], H is a faithfully flat

left and right A-module. Applying [16, Theorem 7.2.6] yields r.gl.dim(A) ≤ r.gl.dim(H).

2. Given dimF P (H) < ∞ then U is Noetherian with gl.dim(U) = dimF P (H). Apply

part 1.

Theorem 4.3.2. If H is any connected Hopf algebra such that

r.gl.dim(H) = dimF P (H) <∞,

and P (H) is completely solvable, then H = U(P (H)).

Proof. Assume that H 6= U(P (H)), then by [29, Lemma 2.4], P2(H) 6= P (H). Let A

be the subalgebra of H generated by the coalgebra P2(H). Clearly A ∈ A(P (H)) with

P2(A) = P2(H). By Proposition 4.1.5, there exists t ∈ P2(A) such that P (H) ⊕ F{t} is a

finite dimensional ALE of P (H). Thus if A′ is the sublagebra of A generated by the coalgebra

P (H) ⊕ F{t}, then A′ ∼= U(g) as algebras, for some finite dimensional Lie algebra g with

dimF g > dimF P (H). Since A′ is a Noetherian Hopf subalgebra of H, then by Lemma 4.3.1,

r.gl.dim(H) ≥ gl.dim(A′) > dimF P (H) = gl.dim(U(P (H))),
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which is absurd. Therefore we have H = U(P (H)).

We may want to replace P (H) being completely solvable with U(P (H)) being a normal

Hopf subalgebra to achieve the same result.

Theorem 4.3.3. Suppose H is a connected Hopf algebra with

r.gl.dim(H) = dimF P (H) <∞.

If U(P (H)) is a normal Hopf subalgebra of H, then H = U(P (H)).

Proof. Assume the contrary, H 6= U(P (H)). Then P2(H) 6= P (H) by [29, Lemma 2.4],

thus by Corollary 4.2.11, h = P (H) ⊕ F{t} is an ALE which implies that if A is the

Hopf subalgebra of H generated by h, then A ∼= U(h) as algebras, hence gl.dim(A) =

dimF P (H)+1. Because A is a Noetherian Hopf subalgebra of H with finite global dimension,

we have that

r.gl.dim(H) ≥ gl.dim(A) > dimF P (H),

thus a contradiction. Therefore H = U(P (H)).

Additionally we may also apply the same technique for Krull dimension. However to

mimic Theorem 4.3.2 we need to improve the structure of the Lie algebra.

We denote the right Krull dimension of an algebra A by K.dim(AA).

Lemma 4.3.4. Suppose H is a right Noetherian connected Hopf algebra and A is a Hopf

subalgebra of H. Then K.dim(AA) ≤ K.dim(HH).

Proof. Since H is right Noetherian then so is A by [15, Theorem 1.3] and [11, Exercise 17T].

Apply [11, Exercise 15U].
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Theorem 4.3.5. If H is any right Noetherian connected Hopf algebra such that

K.dim(HH) = dimF P (H) <∞,

and P (H) is nilpotent, then H = U(P (H)).

Proof. (Similar to the proof of Theorem 4.3.2.) Assume the contrary; H 6= U(P (H)). Let

A be subalgebra of A generated by the coalgebra P2(H). Obviously A ∈ A(P (H)), so by

Proposition 4.1.5, there exists t ∈ P2(A) = P2(H) such that P (H)⊕F{t} is an ALE. If A′ is a

the subalgebra of A generated by the coalgebra P (H)⊕F{t}, then A′ ∼= U(g) as algebras for

some finite dimensional Lie algebra g with dimF g > dimF P (H). Additionally P (H)⊕F{t} is

a finite dimensional completely solvable Lie algebra and so is g since the algebra-isomorphism

is the identity restricted on P (H)⊕F{t}. By [11], K.dim(A′A′) = dimF g. Applying Lemma

4.3.4 shows that

K.dim(HH) ≥ K.dim(A′A′) > dimF P (H),

which is a contradiction. Therefore H = U(P (H)).

Note that both Theorem 4.3.2, Theorem 4.3.3, and Theorem 4.3.5 are analogous to [30,

Lemma 7.2] with additional conditions. We have the following result about low dimensional

connected Hopf algebras with finite dimensional Lie algebras that is also analogous to [30,

Lemma 7.4].

Corollary 4.3.6. If H is a connected Hopf algebra with r.gl.dim(H) ≤ 2 and P (H) is finite

dimensional, then H = U(g) for some Lie algebra g.

Proof. There are two cases to consider: d = 0 and 0 < d ≤ 2, where d = r.gl.dim(H). If

d = 0, then H is a semisimple algebra, hence Artinian, and so by the main theorem of [14]

and [10, Proposition 3.5.19], H = F .
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Now let d ≤ 2. Applying Lemma 4.3.1 shows that dimF P (H) ≤ 2. If both dimF P (H)

and d are 2, then by Theorem 4.3.2, H = U(g) where g = P (H). If dimF P (H) = 1, then

by [29, Lemma 1.3], H = F [x] where x ∈ P (H) whence H = U(P (H)).

4.4 Extra: The Antipode

In this section we focus on the antipode of A = A(g) ∈ A(g) for any Lie algebra g. We

will see that the antipode of A has only two outcomes in regards to its order. And if the

invariant subalgebra A〈S
2〉 is exactly the universal enveloping algebra, then we retrieve some

information about the Lie algebra.

Recall that the antipode of any pointed, whence connected, Hopf algebra is bijective due

to [18, Corollary 5.2.11]. We will be using this result later but first a simple fact about the

antipode of pointed Hopf algebras.

Lemma 4.4.1. If H 6= F is a connected Hopf algebra with antipode S and P (H) 6= 0, then

either Sm = idH for some even number m, or Sm 6= idH for any m ∈ N. In other words, S

has either even order or infinite order.

Proof. Suppose that the order of S is finite but Sk = idH for some odd number k. Then for

any x ∈ P (H) − 0 we have Sk(x) = S(x), since S2|P (H) = idP (H). Thus x = −x and given

the characteristic of F is not 2 then x = 0, a contradiction. Therefore k must be an even

number.

The next proposition states that given a finite dimensional Lie algebra g, the antipode

of A ∈ A(g) has only two options.

Proposition 4.4.2. Let g be any Lie algebra, and consider A ∈ A(g). If S is the antipode

of A, then either S2 = idA, or Sk 6= idA for any k ∈ Z − 0. In other words, either A is

involutive or S has infinite order.
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Proof. First notice that for any t ∈ P2(A) with δ(t) = x⊗ y− y⊗x, where x, y ∈ g, we have

0 = ε(t) = (idA ∗ S)(t) = t+ S(t) + xS(y)− yS(x)

= t+ S(t) + [y, x].

Therefore S(t) = −t+ [x, y].

Let’s assume that Sk = idA with 2 ≤ k < ∞. Since A is generated by the coalgebra

P2(A), then we only need to consider t ∈ P2(A)/g. Set δ(t) = x⊗ y− y⊗x for some x, y ∈ g

with x 6= y. Then we have S(t) = −t+ [x, y]. If [x, y] = 0 then S2(t) = t, and thus [g, g] = 0

if and only if S2|P2(A) = idP2(A).

Let’s assume that [x, y] 6= 0, whence k > 2. Then S2(t) = −S(t) + S([x, y]) = t− 2[x, y],

and so by induction, Sn(t) = (−1)n(t − n[x, y]) for all n ∈ N. By our assumption, t =

(−1)k(t−k[x, y]). If k is even, we have 0 = −k[x, y], and since the characteristic of F is zero,

[x, y] = 0 which contradicts our previous assumption. If k is odd, we have 2t = k[x, y] which

shows that t is cocommutative which is absurd. (A similar argument can be applied for Sm

where m is a negative integer.) Therefore either S2 = idA, or Sk 6= idA for any k ∈ Z−0.

Additionally, the antipode of A(g) tells us more about the Lie algebra g.

Corollary 4.4.3. If H is a connected Hopf algebra such that S2 = idH , H 6= U(P (H)), and

dimF P (H) = 2, then P (H) is Abelian.

Proof. Consider P (H) = F{x, y}, Since H 6= U(P (H)), then by [29, Lemma 2.4], P2(H) 6=

P (H). So let t ∈ P2(H) be non-primitive with δ(t) = x⊗ y − y ⊗ x. As F is characteristic

zero, S2(t) = t− 2[x, y] = t which forces [x, y] = 0.

Corollary 4.4.4. Assume H is a connected Hopf algebra such that

dimF [P2(H)/P (H)] =

(
dimF P (H)

2

)
.

If S2 = idH then P (H) is Abelian.
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Proof. Since S|2A = idA where A is the Hopf subalgebra of H generated by P2(H), then by

Proposition 4.4.2, P (H) is Abelian.

Example 4.4.5. Let g be a finite dimensional Lie algebra. If H ( A is a Hopf subalgebra,

then S|2H = idH does not imply that g is Abelian. For example, let h = F{x, y, z} be the

3-dimensional Heisenberg algebra over F with z ∈ Z(h), and let t = syz ∈ A(h). We know

that g = h ⊕ F{t} is an ALE of h, and S(t) = −t + zy − yz = −t, hence S|2H = idH where

H = U(g). However, h is not Abelian since [x, y] = z.

Proposition 4.4.6. Suppose g is a finite dimensional Lie algebra and A ∈ A(g) with

dimF g ≥ 3. If the invariant subalgebra A〈S
2〉 = U(g) then g is a semisimple Lie algebra.

Proof. Assuming dimF g ≥ 3, hence dimF (P2(A)/g) ≥ 3, and suppose that A〈S
2〉 = U . Let

j be an Abelian ideal of g; so showing that j = 0 implies that g is semisimple. Consider

a ∈ j, then for any x ∈ g − 0, z = [x, a] ∈ j and thus [a, z] = 0. Since saz ∈ A with

δ(saz) = a ⊗ z − z ⊗ a, then it follows that S(saz) = −saz + [z, a] = −saz. Hence saz ∈ X

which is impossible since saz is not cocommutative. This shows that a = 0 or [x, a] = 0. If

[x, a] = 0 then again we have that sax ∈ X where δ(sax) = a⊗ x− x⊗ a, which forces a = 0

since x 6= 0. Hence j = 0, as desired.

Remark 4.4.7. The reason why we need dimF P (H) ≥ 3 in Proposition 4.4.6 is that if

g = F{x, y} is the 2-dimensional non-Abelian Lie algebra, then S(sxy) = −sxy + x, where

sxy ∈ P2(A(g)). This shows that X = U but g is obviously not semisimple.

Additionally we have the following property about the linear map S2 − idA.

Lemma 4.4.8. For any Lie algebra g with A ∈ A(g), the linear map D = S2 − idA is a

locally nilpotent skew-derivation on A.

Proof. It is clear that S2 is a Hopf automorphism; S is a bijective anit-homomorphism on A

by [18, Corollary 5.2.11], and

∆ ◦ S2 = τ ◦ (S ⊗ S) ◦ τ ◦ (S ⊗ S) ◦∆ = (S2 ⊗ S2) ◦∆,
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hence S2 is also a coalgebra homomorphism, hence S2 is a Hopf automorphism. If G is the

group of all Hopf automorphisms on A, then in the pointed Hopf algebra FG, D = S2− idA

is a skew-primitve element, therefore D is a skew derivation on A.

To see that D is locally nilpotent, we see that D(g) = 0 while D(P2(A)) ⊆ g, whence

D2(P2(A)) = 0. Using the fact that D is a linear map then for any word t = t1, ..., tk ∈ A,

where t1, ..., tk are elements of the basis of P2(A), we have by induction

Dn(t) =
n∑
O

De1(t1)De2(t2) · · ·Dek(tk),

where O = {(e1, ..., ek) ∈ Nk :
∑k

i=1 ei = n}. Since every ti ∈ P2(A), setting n = k + 1

implies that some ei ≥ 2 therefore D(t) = 0, as desired.

4.5 Minor Result & Further Questions

Lastly one of the useful facts about ALE is that it can describe the algebra A(g). So the next

proposition uses and generalizes one of Passman’s result on universal enveloping algebras.

Proposition 4.5.1. Given a Lie algebra g, if A ∈ A(g) is PI, then A is commutative.

Proof. By Passman’s result, the subalgebra U(g) is PI, hence it’s commutative. But this

implies that P2(A) is an ALE of g, hence A ∼= U(h) as algebras, where h = P2(A). Therefore

U(h) is PI, hence commutative, hence A is commutative.

This begs the following question.

Question 4.5.2. If a connected Hopf algebra is affine PI, is it commutative?

We have seen that global dimension can be just as effective as the Gelfand-Kirillov di-

mension given the right conditions, which leads to the following question.

Question 4.5.3. Does there exist a connected Hopf algebra H with infinite GK-dimension

but both dimF P (H) and r.gl.dim(H) are finite?
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Another question we can ask is if there are any free subalgebras. So the next question is

not only the main motivation for this research, but can answer the previous question.

Question 4.5.4. Given any finite dimensional Lie algebra g, does some A ∈ A(g) have a

free subalgebra?

Analogous to classifying via GK-dimension, we ask to same using global dimension.

Question 4.5.5. If H is a connected Hopf algebra of global dimesnion up to 4, what are

the possible algebra structures on H?

We end with asking the obligatory Noetherian condition.

Question 4.5.6. If H is an affine connected Hopf algebra with finite dimensional P (H), is

H Noetherian?
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• Plücker Coordinates via Stasheff Polytopes April 2016
Algebra Seminar UWM

• A Basic Introduction to Locally Nilpotent Derivations March 2016
Graduate Colloquium UWM

• The Gelfand-Kirillov Dimension on Algebras and Groups October 2015
Graduate Colloquium UWM

• Geometry of Syzygies: Monomial Ideals and Simplicial Complexes October 2015
Algebra Seminar UWM

• Tilting Modules February 2015
Algebra Seminar UWM

• The Fourier Transform and its Properties September 2013
Analysis Seminar UWM

• Introduction to Polynomial Invariance under Finite Group Actions September 2013
Algebra Seminar UWM

Awards, Grants & Honors

64



Travel Funds [Algebra Extravaganza Conference] . . . . . . . . . . . . . . . . . . . . . . . Summer 2017
Mark Lawrence Teply Award . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spring 2017
AMS Travel Grant [Sectional Meeting, Bowdoin College] . . . . . . . . . . . . . . . . . . . . . . Fall 2016
GAANN Fellowship [UWM Math] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summer 2015
UWM Graduate Travel Fund [AMS Meeting in Chicago] . . . . . . . . . . . . . . . . . . . . . . Fall 2015
UWM Graduate Travel Fund [Hopf Algebra Workshop, Seattle] . . . . . . . . . . . . . . . . . . Fall 2014
GAANN Fellowship [UWM Math] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summer 2013
GAANN Fellowship [UWM Math] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spring 2013
GAANN Fellowship [UWM Math] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summer 2012

Publications & Pre-Prints

• A list of publications and pre-prints is available upon request.

References

• Allen Bell
Advisor, Professor UWM

– adbell@uwm.edu
– (414) 229-4233

• Bruce Wade
Department Chair UWM

– wade@uwm.edu
– (414) 229-3371

• Yi Ming Zou
Associate Chair, Graduate Program Chair UWM

– ymzou@uwm.edu
– (414) 229-5110

• Craig Guilbault
Professor UWM

– craigg@uwm.edu
– (414) 229-4568

• Ian Musson
Professor UWM

– musson@uwm.edu
– (414) 229-5953

• Jeb Willenbring
Professor UWM

– jw@uwm.edu
– (414) 229-3371

65


	University of Wisconsin Milwaukee
	UWM Digital Commons
	August 2017

	Extensions of Enveloping Algebras Via Anti-cocommutative Elements
	Daniel Owen Yee
	Recommended Citation


	MergedFile

