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abstract

associated hypothesis in linear models with
unbalanced data

by

Rica Wedowski

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Jay Beder

In a two-way linear model one can test six different hypotheses regarding the effects in this

model. Those hypotheses can be ranked from less specific to more specific. Therefore the

more specific hypotheses are nested in the less specific ones. To test those nested

hypotheses sequential sums of squares are used. Searle sees a problem with these since they

test an associated hypothesis that has the same sums of squares but involve the sample

sizes. Hypotheses should be generic and not dependent on the data. The proof he uses in

his book Linear Models for Unbalanced Data is not easy to understand. Therefore this

thesis verifies his equations for the associated hypothesis for the nested hypotheses Only A

present given No interaction with an unpublished theorem of Beder. It also shows a way to

derive Searle’s equations for the associated hypothesis from this theorem.
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1 Introduction

In [2] Shayle R. Searle says that using the sequential sums of squares for testing a nested

hypothesis in a linear model leads to some problems. He shows that the actual tested

hypothesis is an associated hypothesis involving the number of samples. He sees them as

not usable, because the hypothesis should be independent from the data used.

This thesis goes through the definition of a linear model and how to formulate constraints

for a linear model. We view a linear model E(Y) = Xβ as a transformation from the

parameter space Rp into the observation space RN . We then can define a constraint for this

model as restricting the parameter β on a subspace of Rp. This can be written as β ∈ W or

as β ⊥ U where U ⊂ Rp and U⊥ = W ⊂ Rp. This can be used to test the restricted model.

We set the restriction as the null-hypothesis and then fit the unrestricted model and the

restricted model. For testing we compare the sums of squares of both fits. We can equally

test nested hypotheses. Saying that H2 implies H1, we test H2 given that H1 is true by

comparing both restricted models with each other using a sequential sum of squares.

Then we will use the above described way of formulating the hypothesis to see how

Searle gets his equations for the associated hypothesis, using a Theorem of Beder [1]. This

is shown for H2 : Only A present given H1 : No interaction in a 2 × 3 model. From those

two hypotheses we can derive a unique subspace W ∗ such that the sum of squares of the

hypothesis β ∈ W ∗ is equal to the sequential sums of squares of the nested hypotheses.

Therefore we can also formulate a vector space U∗ ⊥ W ∗. The thesis shows that the two

contrast vectors we can get from Searle’s equations span the subspace U∗. Finally we use

some data from [2] to show an example of how to derive such equations for the associated

hypothesis, more precisely the two contrast vectors from the vector space U∗.

1



2 Background Knowledge

In this chapter we follow the exposition in [1] to describe some important background knowl-

edge to understand the purpose of this thesis.

2.1 Linear models

A linear model has the form

E(Y) = Xβ. (2.1)

Y is the N × 1 vector of the observations, β is the vector of the unknown parameters.

Its length is denoted by p. X is the N × p design matrix and can be viewed as a linear

transformation from the parameter space Rp to the observation space RN .

2.1.1 Two-way-factorial model

A two-way factorial model involves two factors, A and B. Such a model can be written as a

a× b model, where a denotes the number of levels in the A factor and b the number of levels

in the B factor. The combinations of those two factors can be seen as the numbered cells in

such a diagram:

B

1 2 . . . b

A

1

2

...

a

2



In a two-way factorial experiment the number of observations taken for each cell (i, j) is nij.

We will set
∑

i,j nij = N , the total number of observations. The dimension of the parameter

space is p = a ∗ b. When letting µij = E(Yijk), k = 1, . . . , nij the linear model can be written

as

E



Y11

Y12

...

Yab


=



1n11

1n12

. . .

1nab





µ11

µ12

...

µab


(2.2)

where Yij =

(
Yij1, Yij2, . . . , Yijnij

)′
and 1nij

is the nij× 1 vector of ones for i = 1, . . . , a and

j = 1, . . . , b. (The blank entries in the matrix are zeros.) Note that X is full rank. Here and

elsewhere, the cells are listed in lexicographic order (i.e., row by row).

2.1.2 Linear constraint and hypothesis

A linear constraint is a condition set on the parameter vector β. This can be either a

hypothesis or some overall assumption on the model. A model with a linear constraint of

any kind is called a constrained or reduced model. Considering a linear model Y = Xβ with

β ∈ Rp, a linear constraint about β looks like


c
′
1β = 0

...

c
′

dβ = 0

(2.3)

If we have
∑

j cij = 0 for the coefficients of a vector ci, we call ci a contrast vector. A linear

constraint can be written in different ways:

Lemma 2.1 ([1, Lemma 1.2]). The following are equivalent:

a There exist c1, . . . , cd such that β satisfies (2.3)

3



b There exists a matrix C such that

C
′
β = 0 (2.4)

c There exists a subspace U ⊂ Rp such that

β ⊥ U (2.5)

d There exists a subspace W ⊂ Rp such that

β ∈ W (2.6)

e There exists a matrix W and a vector β0 such that

β = Wβ0 (2.7)

It can be shown that c1, . . . , cd are the columns of C and that they also span U . The

columns w1, . . . ,wk of W span the subspace W . The following theorem shows that a con-

strained model is also a linear model:

Theorem 2.1 ([1, Theorem 1.7]). If E(Y) = Xβ is a linear model and if β is subject to a

linear constraint β ∈ W , then the constrained model is also a linear model

E(Y) = X0β0 (2.8)

where X0 = XW and W and β0 are as in (2.7). We have X(W ) = R(X0). If W ∩N(X) =

(0) then we may choose X0 to have full rank.

Here N(X) is the null space of X.

4



2.1.3 Hypotheses in a two-factor design

For the two-factor design there exist six relevant hypotheses. Those are shown in Figure 2.1.

The three underlined are the most easy to describe and will be further explained.

Full model

No A effect No interaction No B effect

Only B present Only interaction present Only A present

No effect

Figure 2.1: Six important hypothesis and their relationships

H0: Only A present. If the hypothesis Only A present holds, the cell means of each row

are the same. So the array should look like this:

B

1 2 . . . b

A

1 µ1 µ1 . . . µ1

2 µ2 µ2 . . . µ2

...
...

...
. . .

...

a µa µa . . . µa

This hypothesis is defined by a(b− 1) independent equations:

µ11 = µ12 = . . . = µ1b

µ21 = µ22 = . . . = µ2b

...

µa1 = µa2 = . . . = µab

(2.9)

5



Each equation can be written in the form ciµ = 0 with i = 1, . . . , a(b − 1). For example,

µ11 = µ12 is c1µ = 0 where c1 = (1,−1, 0, 0, 0, 0)′. All ci are contrast vectors and together

they span the subspace of Rp denoted by UAonly. This is a subspace as in (2.5). From this

follows that dim(UAonly) = a(b− 1).

H0: Only B present. Analogous to ”Only A present”, this hypothesis holds if the cell

means in each column are equal. This can be described by (a− 1)b equations.

µ11 = µ21 = . . . = µa1

µ12 = µ22 = . . . = µb2

...

µ1a = µ2a = . . . = µab

(2.10)

The ensuing subspace is denoted by UBonly and dim(UBonly) = (a− 1)b.

H0: Additivity (No interaction between A and B).

Definition 2.1 ([1, Definition 2.1]). We say that factors A and B are additive if a change

in the level of A produces an equal change in expected response at every level of B. When the

factors are additive, we say that they have no interaction.

In other words, to get the cell means in a row i′ we just need to add a constant to all

cell means in another row i. This holds for all pairs of rows in this model. So to derive the

equations for this hypothesis, it suffices to compare the first row with all other rows since

all other equations are redundant. For example, for the ith row in the jth column,

1 . . . j . . .

1 µ11 . . . µ1j . . .

...
...

...

i µi1 . . . µij . . .

...
...

...

6



H0 holds if µij − µ1j = µi1 − µ11.

Writing this for all other rows and columns, we get the following (a− 1)(b− 1) equations

to describe this hypothesis:

µij − µ1j = µi1 − µ11, i = 2, . . . , a, j = 2, . . . , b (2.11)

or in terms of formula (2.3),

µij − µ1j − µi1 + µ11 = 0, i = 2, . . . , a, j = 2, . . . , b (2.12)

We call the the resulting subspace U12 and dim(U12) = (a− 1)(b− 1).

For the other hypotheses we can formulate these equations:

• No A effect (β ⊥ U1)

µ1· = µ2· = . . . = µa·

dim(U1) = a− 1

with µi· =
∑

j µij for i = 1, . . . , a.

• No B effect (β ⊥ U2)

µ·1 = µ·2 = . . . = µ·b

dim(U2) = b− 1

with µ·j =
∑

i µij for j = 1, . . . , b.

• No effect

µij equal for all i,j (2.13)

7



They are further described in [1].

As Figure 2.1 indicates, some hypotheses are more specific then others. For example Only

A present can be gotten by combining No interaction with the hypothesis No B present.

2.2 Least squares

After observing some data we try to fit the linear model. To estimate the parameter β we

use the method of least squares. We let Ŷ represent the fitted values and Y the vector of

observed values. Both vectors are from the RN and in this case we numerate the elements

by 1, ..., N . This method tries to minimized the quantity
∑N

j=1(Yj− Ŷj)2 or written with the

euclidean norm SSE := ‖Y − Ŷ‖2. The resulting estimator for β is then

β̂ = (X′X)−1X′Y (2.14)

The fitted values can then be calculated by

Ŷ = Xβ̂ (2.15)

= X(X′X)−1X′Y (2.16)

Equation (2.15) gives us that Ŷ ∈ V := R(X), the columnspace of X. Then we can set

P = X(X′X)−1X′ (2.17)

and see that P projects Y on Ŷ. Or in other words P is an orthogonal projection from RN

onto V .

8



2.3 Testing a linear hypothesis

To test a hypothesis H0 we have first to fit the initial model E(Y) = Xβ and then fit the

model restricted by H0. After this we compare the SSEs of both models; if those values are

close we can not reject H0. In other words, if the ratio SSER/SSE is sufficient large we will

reject H0. We use a F -Test as a decision criteria. With SSER we denote the Sum of Squares

of the restricted model. To fit both models we use the method of least squares as described

in section 2.2. In order to fit the restricted model we have to write the hypothesis in the

form H0 : β ∈ W . Since W is a subspace of Rp, V0 = X(W ) is a subspace of V = R(X).

Using Theorem 2.1 we can write the restricted model as E(Y) = X0β0 and then we get

V0 = X(W ) = R(X0). The fitted values for the restricted model therefore lie in V0. We

denote them by Ŷ0, the orthogonal projection from Y into V0. For the Sum of Squares we

get

SSER = ‖Y − Ŷ0‖2

Since SSE/SSER does not have a F distribution, we use SS(H0) = ‖Ŷ − Ŷ0‖2 and the

ratio SS(H0)/SSE. This can be done because

‖Y − Ŷ0‖2 = ‖Y − Ŷ‖2 + ‖Ŷ − Ŷ0‖2

⇔ SSER = SSE + SS(H0)

⇔ SSER
SSE

= 1 +
SS(H0)

SSE

and so SSER/SSE is large only if SS(H0)/SSE is large. So we will reject H0 on a signifi-

cance level α if

F =
SS(H0)(r − r0)
SSE(N − r)

> Fα,r−r0,N−r (2.18)

where r = dim(V ) = rank(X), r0 = dim(V0) = rank(X0) and Fα,r−r0,N−r is the (1 − α)-

quantile of the F (r − r0, N − r) distribution. For the degrees of freedom of H0 we have the

9



following corollary:

Corollary 2.1 ([1, Corollary 4.2]). If X is full rank, and if H0 is the statement β ⊥ U , then

df(H0) = dim(U).

The quantity SS(H0) is known as the adjusted sum of squares for testing H0.

2.3.1 Nested hypothesis and sequential sums of squares

An hypothesis H1 is nested in another hypothesis H2 if H1 implies H2. This means, if we

write Hi in the form of β ∈ Wi, H1 is nested in H2 if and only if W1 ⊂ W2. Then we can

write the sequential sums of squares :

SS(β ∈ W1|β ∈ W2) = ‖Ŷ2 − Ŷ1‖2 (2.19)

or

SS(β ∈ W1|β ∈ W2) = SS(β ∈ W1)− SS(β ∈ W2) (2.20)

And we get the sequential degrees of freedom:

df(β ∈ W1|β ∈ W2) = dim(W2)− dim(W1) (2.21)

df(β ⊥ U1|β ⊥ U2) = dim(U1)− dim(U2) (2.22)

2.3.2 Associated hypothesis

Searle claims that using the sequential sums of squares for testing such nested hypotheses

actually tests an associated hypothesis. An associated hypothesis H∗ is the hypothesis whose

adjusted sum of squares SS(β ∈ W ∗) equals the sequential sum of squares SS(β ∈ W1|β ∈

W2) of the nested hypothesis H1 given H2. The associated hypotheses, Searle finds in [2,

page 112], are dependent on the sample size nij in each cell. He says this is why those

hypothesis are not usable, since it should be generic and independent of the data that is

10



used. His equations for the associated hypotheses are described in Table 2.1. The hypotheses

Source of variance df Associated Hypothesis

Mean 1 H : 1
N

∑
i

∑
j nijµij = 0

Rows, adjusted for mean a− 1 H : ρ′i all equal for ρ′i = 1
ni·

∑
j nijµij

Columns, adjusted for rows b− 1 H : γ′j = 1
n·j

∑
i nijρ

′
i∀j for γ′j = 1

n·j

∑
i nijµij

Table 2.1: Searle’s associated hypothesis

he looked at were first comparing the whole model with the hypothesis that all cell means

are equal (Means). Then he tests this hypothesis, given that only the row effect is present

(Rows, adjusted for mean). After this he compares the hypothesis that only the row effect is

present with the hypothesis that there is no interaction between columns in rows, but both

effects might be present (Columns, adjusted for rows ). In other terms, he tests only A effect

given no interaction.

Searle’s proof of the formulas in Table 2.1 is a bit obscure. Using the notation for the

sequential sums of squares from equation (2.19) it is hard to see how the number of samples

comes into those equations for the associated hypothesis. We will use the following theorem

of Beder to derive the associated hypothesis from the sequential hypothesis:

Theorem 2.2 ([1, Theorem 4.4]). Consider the model E(Y) = Xβ, where X (N × p)

has full rank, and let W1 ⊂ W2 ⊂ Rp. Then there is a unique subspace W ∗ satisfying

SS(β ∈ W ∗) = SS(β ∈ W1|β ∈ W2), and we have

df(β ∈ W ∗) = df(β ∈ W1|β ∈ W2). (2.23)

where df(β ∈ W1|β ∈ W2) is given by (2.21). The subspace is given by W ∗ = R(TP∗),

where T = (X
′
X)−1X

′
and P∗ is defined as follows. Let VI = X(Wi), let V = R(X) be the

range (columnspace) of X, and let P and Pi be the orthogonal projections of RN on V and

11



on Vi, respectively. Then P∗ = P−P2 + P1.

If we want to use the notation β ⊥ U∗ for the associated hypothesis we can apply this

corollary:

Corollary 2.2 ([1, Corollary 4.7]). Given the assumptions and notation of Theorem 2.2, the

subspace U∗ is given by U∗ = N(P∗T′).

In the next chapter we are going to show how the equation for the associated hypothesis

Searle gives in [2] for Columns, adjusted for Rows can be verified by Theorem 2.2 in a 2× 3

model.

12



3 Associated Hypothesis

3.1 Associated hypothesis in a 2× 3 case

The goal of this chapter is to verify the equation for the associated hypothesis Searle claims

in his book with help of Theorem 2.2 in a 2 × 3 model. Here we have a = 2, b = 3 and so

p = 2 ∗ 3 = 6. Our observation space has the dimension N =
∑2

i=1

∑3
j=1 nij. Therefore we

can look at the following array for the cell means:

µ11 µ12 µ13 µ1·

µ21 µ22 µ23 µ2·

µ·1 µ·2 µ·3 µ··

(3.1)

And for the number of observations in each cell applies:

n11 n12 n13 n1·

n21 n22 n23 n2·

n·1 n·2 n·3 n·· = N

(3.2)

The case we are looking at is, as Searle calls it, Columns, adjusted for rows. He says that an

equation for the associated hypothesis for this source of variation looks like

H : γ
′

j =
1

n·j

2∑
i=1

nijρ
′

i for j = 1, 2 (3.3)

with for each j

γ
′

j =
1

n·j

2∑
i=1

nijµij (3.4)

13



and for each i

ρ
′

i =
1

ni·

3∑
j=1

nijµij (3.5)

In the notation of this thesis we are looking for the hypotheses H1:Only A present (No B

present and no interaction) given H2: No interaction. It can be seen that H1 is the more

specific hypothesis and so for the subspaces W1 and W2 of R6 belonging to H1 and H2 we

have W1 ⊂ W2 ⊂ R6.

Theorem 2.2 says that the unique subspace W ∗ belonging to the associated hypothesis

equals to the range of TP∗ or, using Corollary 2.2, that U∗ with β ⊥ U∗ is the nullspace of

P∗T
′
. If Searle’s equation for the associated hypothesis can be derived from Theorem 2.2,

then we can find contrast vectors ci using his equations that span the vector space U∗. The

number of contrast vectors we need to derive equals the dimension of U∗, so the degrees of

freedom he gives for the associated hypothesis have to equal dim(U∗).

Searle says that the degrees of freedoms for Columns, adjusted for rows are (b − 1) =

3 − 1 = 2. So we can get two contrast vectors from his associated hypothesis. We have to

take (3.3) and replace γ′ and ρ′ with the formulas (3.4) and (3.5).

γ
′

1 =
1

n·1

2∑
i=1

ni1ρ
′

i

⇔ 1

n·1

2∑
i=1

ni1µi1 =
1

n·1

2∑
i=1

ni1
1

ni·

3∑
k=1

nikµik

⇔ 1

n·1
[n11µ11 + n21µ21] =

1

n·1
[
1

n1·
(n211µ11 + n11n12µ12 + n11n13µ13) +

1

n2·
(n221µ21 + n21n22µ22 + n21n23µ23)]

⇔0 =
1

n1·
[−n11(n12 + n13)µ11 + n11n12µ12 + n11n13µ13] +

1

n2·
[−n21(n22 + n23)µ21 + n21n22µ22 + n21n23µ23]

γ
′

2 =
1

n·2

2∑
i=1

ni2ρ
′

i

⇔ 1

n·2

2∑
i=1

ni2µi2 =
1

n·2

2∑
i=1

ni2
1

ni·

3∑
k=1

nikµik

⇔ 1

n·2
[n12µ12 + n22µ22] =

1

n·2
[
1

n1·
(n11n12µ11 + n212µ12 + n12n13µ13) +

1

n2·
(n21n22µ21 + n222µ22 + n22n23µ23)]

⇔0 =
1

n1·
[n11n12µ11 − n12(n11 + n13)µ12 + n12n13µ13] +

1

n2·
[n21n22µ21 − n22(n21 + n23)µ22 + n22n23µ23]

14



The two contrast vectors are

c1 =



−n11(n12+n13)
n11+n12+n13

n11n12

n11+n12+n13

n11n13

n11+n12+n13

−n21(n22+n23)
n21+n22+n23

n21n22

n21+n22+n23

n21n23

n21+n22+n23


, c2 =



n11n12

n11+n12+n13

−n12(n11+n13)
n11+n12+n13

n12n13

n11+n12+n13

n21n22

n21+n22+n23

−n22(n21+n23)
n21+n22+n23

n22n23

n21+n22+n23


(3.6)

It can easily be seen that for both vectors ci

6∑
j=1

cij = 0

is true. The next step would be to show that both vectors c1, c2 are in the nullspace of P∗T′

or in other words that

P∗T′ci = 0, for i = 1, 2 (3.7)

where 0 equals a vector of zeros. If this is the case, those vectors span U∗ and they can

be used to formulate the associated hypothesis for testing H1 : Only A effect given H2: No

interaction. First we need the matrix P∗ and the matrix T.

Getting T is very easy. After Theorem 2.2 the formula for it is T = (X′X)−1X′. The

design matrix X in a linear model looks like

X =



1n11

1n12

1n13

1n21

1n22

1n23


(3.8)
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So we get

X′X =



n11

n12

n13

n21

n22

n23



⇒ (X′X)−1 =



1
n11

1
n12

1
n13

1
n21

1
n22

1
n23



and then finally

T = (X′X)−1X′ =



1
n11

1n11

1
n12

1n12

1
n13

1n13

1
n21

1n21

1
n22

1n22

1
n23

1n23


(3.9)

The next step is to calculate P∗ = P − P2 + P1. To get P we need to project the

observation space RN on the columnspace of X, here denoted by V = R(X). We use
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equation (2.17) for P given in section 2.2:

P = X(X
′
X)−1X

′
(3.10)

Using (3.8) for X we get:

P = X(X′X)−1X′ =



1
n11

Jn11

1
n12

Jn12

1
n13

Jn13

1
n21

Jn21

1
n22

Jn22

1
n23

Jn23


(3.11)

With Jn denoting the n× n matrix of ones.

Before deriving the matrices P1 and P2, we need the vector spaces W1 and W2 which

belong to the two hypotheses.

H2: No interaction For the hypothesis No interaction the following equations have to be

true:

µ22 − µ12 = µ21 − µ11 ⇔ µ22 = µ12 + µ21 − µ11 (3.12)

µ23 − µ13 = µ21 − µ11 ⇔ µ23 = µ13 + µ21 − µ11 (3.13)
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Using these equations, the subspace W2 can be written as follows:

W2 = span(



1

0

0

0

−1

−1


,



0

1

0

0

1

0


,



0

0

1

0

0

1


,



0

0

0

1

1

1


) (3.14)

So W2 is the columnspace of the matrix

W2 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 1 0 1

−1 0 1 1


. (3.15)

P2 is the hardest to get. To calculate P2 we can use the formula (3.10), but replacing X

with X2. First we need to calculate X2, the image of W2 using X. This gives us

X2 = XW2 =



1n11 0 0 0

0 1n12 0 0

0 0 1n13 0

0 0 0 1n21

−1n22 1n22 0 1n22

−1n23 0 1n23 1n23


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After this, calculating X2(X
′
2X2)

−1X
′
2 is not easy since getting the inverse of

X
′

2X2 =



n11 + n22 + n23 −n22 −n23 −n22 − n23

−n22 n12 + n22 0 n22

−n23 0 n13 + n23 n23

−n22 − n23 n22 n23 n21 + n22 + n23


is hard to do manually. Using a software for symbolic calculations 1 gives us

P2 =
1

d2

[
A B

]
(3.16)

with

A =



(n13n21n·2+(n13+n21)n23n·2+n12n22n·3)Jn11 n21n22n·3Jn11n12 n21n23n·2Jn11n13

n21n22n·3Jn12n11
(n13n22n·1+(n13+n22)n23n·1+n11n21n·3)Jn12

n22n23n·1Jn12n13

n21n23n·2Jn13n11
n22n23n·1Jn13n12

(n12n22n·1+(n12+n22)n23n·1+n11n21n·2)Jn13

(n12n22n·3+n13n23n·2)Jn21n11 −n11n22n·3Jn21n12 −n11n23n·2Jn21n13

−n12n21n·3Jn22n11
(n11n21n·3+n13n23n·1)Jn22n12

−n12n23n·1Jn22n13

−n13n21n·2Jn23n11
−n13n22n·1Jn23n12

(n11n21n·2+n12n22n·1)Jn23n13



B =



(n12n22n·3+n13n23n·2)Jn11n21 −n12n21n·3Jn11n22 −n13n21n·2Jn11n23

−n11n22n·3Jn12n21
(n11n21n·3+n13n23n·1)Jn12n22

−n13n22n·1Jn12n23

−n11n23n·2Jn13n21
−n12n23n·1Jn13n22

(n11n21n·2+n12n22n·1)Jn13n23

(n11n13n·2+(n11+n13)n23n·2+n12n22n·3)Jn21 n11n12n·3Jn21n22 n11n13n·2Jn21n23

n11n12n·3Jn22n21
(n11n12n·3+(n11+n12)n21n·3+n13n23n·1)Jn22

n12n13n·1Jn22n23

n11n13n·2Jn23n21
n12n13n·1Jn23n22

(n11n13n·2+(n11+n13)n21n·2+n12n22n·)Jn23



and

d2 = n·1n·2n13n23 + n·1n12n22n·3 + n11n21n·2n·3

H1: Only A effect (No B effect, No interaction) The hypothesis Only A effect is

a specialization of H2: No interaction since we not only assume the missing interaction

between both effects, but also that no B effect exists. Hence the resulting vector space W2

1sympy, python library for symbolic calculations
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has to be a subspace of W1. The equations that describe this hypothesis are

µ11 = µ12 = µ13 (3.17)

µ21 = µ22 = µ23. (3.18)

From this we can derive the following subspace

W1 = span(



1

1

1

0

0

0


,



0

0

0

1

1

1


) (3.19)

the columnspace of

W1 =



1 0

1 0

1 0

0 1

0 1

0 1


(3.20)

Analogous to calculate P2 we can again use (3.10) to get P1 by replacing X with X1.
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For X1 we get

X1 = XW1 =



1n11 0

1n12 0

1n13 0

0 1n21

0 1n22

0 1n23


(3.21)

This time calculating P1 can be easily done manually:

X
′

1X1 =

n1· 0

0 n2·

⇒ (X
′

1X1)
−1 =

 1
n1·

0

0 1
n2·



⇒ P1 = X1(X
′

1X1)
−1X

′

1 (3.22)

=



1
n1.

Jn11

1
n1.

Jn11n12

1
n1.

Jn11n13 0 0 0

1
n1.

Jn12n11

1
n1.

Jn12

1
n1.

Jn12n13 0 0 0

1
n1.

Jn13n11

1
n1.

Jn13n12

1
n1.

Jn13 0 0 0

0 0 0 1
n2.

Jn21

1
n2.

Jn21n22

1
n2.

Jn21n23

0 0 0 1
n2.

Jn22n21

1
n2.

Jn22

1
n2.

Jn22n23

0 0 0 1
n2.

Jn23n21

1
n2.

Jn23n22

1
n2.

Jn23


(3.23)

=

 1
n1·

Jn1· 0

0 1
n2·

Jn2·

 (3.24)

With T, P, P1 and P2 we now can verify whether c1 and c2 span the subspace U∗ =
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N(P∗T′). To calculate P∗T′ we get

P∗T′ = (P−P2 + P1)T
′ = PT′ −P2T

′ + P1T
′

and so we have to show for both vectors ci, i = 1, 2

P∗T′ci = (PT′ −P2T
′ + P1T

′)ci = PT′ci −P2T
′ci + P1T

′ci = 0 (3.25)

First we get

PT′ =



1
n11

Jn11

1
n12

Jn12

1
n13

Jn13

1
n21

Jn21

1
n22

Jn22

1
n23

Jn23


∗



1
n11

1n11

1
n12

1n12

1
n13

1n13

1
n21

1n21

1
n22

1n22

1
n23

1n23



=



1
n11

1n11

1
n12

1n12

1
n13

1n13

1
n21

1n21

1
n22

1n22

1
n23

1n23


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⇒ PT′c1 =



1
n11

1n11

1
n12

1n12

1
n13

1n13

1
n21

1n21

1
n22

1n22

1
n23

1n23


∗



−n11(n12+n13)
n11+n12+n13

n11n12

n11+n12+n13

n11n13

n11+n12+n13

−n21(n22+n23)
n21+n22+n23

n21n22

n21+n22+n23

n21n23

n21+n22+n23


=



− n12+n13

n11+n12+n13
1n11

n11

n11+n12+n13
1n12

n11

n11+n12+n13
1n13

− n22+n23

n21+n22+n23
1n21

n21

n21+n22+n23
1n22

n21

n21+n22+n23
1n23


Analogous we can calculate

P1T
′ =

 1
n1·

Jn1· 0

0 1
n2·

Jn2·

∗



1
n11

1n11

1
n12

1n12

1
n13

1n13

1
n21

1n21

1
n22

1n22

1
n23

1n23



=



1
n1·

1n11

1
n1·

1n11

1
n1·

1n11 0 0 0

1
n1·

1n12

1
n1·

1n12

1
n1·

1n12 0 0 0

1
n1·

1n13

1
n1·

1n13

1
n1·

1n13 0 0 0

0 0 0 1
n2·

1n21

1
n2·

1n21

1
n2·

1n21

0 0 0 1
n2·

1n22

1
n2·

1n22

1
n2·

1n22

0 0 0 1
n2·

1n23

1
n2·

1n23

1
n2·

1n23


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⇒ P1T
′c1 =



1
n1·

1n11

1
n1·

1n11

1
n1·

1n11 0 0 0

1
n1·

1n12

1
n1·

1n12

1
n1·

1n12 0 0 0

1
n1·

1n13

1
n1·

1n13

1
n1·

1n13 0 0 0

0 0 0 1
n2·

1n21

1
n2·

1n21

1
n2·

1n21

0 0 0 1
n2·

1n22

1
n2·

1n22

1
n2·

1n22

0 0 0 1
n2·

1n23

1
n2·

1n23

1
n2·

1n23


∗



−n11(n12+n13)
n11+n12+n13

n11n12

n11+n12+n13

n11n13

n11+n12+n13

−n21(n22+n23)
n21+n22+n23

n21n22

n21+n22+n23

n21n23

n21+n22+n23


=



0

0

0

0

0

0


And finally

P2T
′c1 =



− n12+n13

n11+n12+n13
1n11

n11

n11+n12+n13
1n12

n11

n11+n12+n13
1n13

− n22+n23

n21+n22+n23
1n21

n21

n21+n22+n23
1n22

n21

n21+n22+n23
1n23


With those three results we can easily see, that

PT′c1−P2T
′c1+P1T

′c1 =



− n12+n13

n11+n12+n13
1n11

n11

n11+n12+n13
1n12

n11

n11+n12+n13
1n13

− n22+n23

n21+n22+n23
1n21

n21

n21+n22+n23
1n22

n21

n21+n22+n23
1n23


−



− n12+n13

n11+n12+n13
1n11

n11

n11+n12+n13
1n12

n11

n11+n12+n13
1n13

− n22+n23

n21+n22+n23
1n21

n21

n21+n22+n23
1n22

n21

n21+n22+n23
1n23


+



0

0

0

0

0

0


= 0

This shows that c1 lies in U∗. Next we have to do those calculations with c2. This is
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analogous to the above steps and we get

PT′c2−P2T
′c2+P1T

′c2 =



n12

n11+n12+n13
1n11

− n11+n13

n11+n12+n13
1n12

n12

n11+n12+n13
1n13

n22

n21+n22+n23
1n21

− n21+n23

n21+n22+n23
1n22

n22

n21+n22+n23
1n23


−



n12

n11+n12+n13
1n11

− n11+n13

n11+n12+n13
1n12

n12

n11+n12+n13
1n13

n22

n21+n22+n23
1n21

− n21+n23

n21+n22+n23
1n22

n22

n21+n22+n23
1n23


+



0

0

0

0

0

0


= 0

So we have two vectors that lie in U∗, and since dim(U∗) = df(H∗) = dim(W2)−dim(W1) =

4−2 = 2, we know they span the vector space. This verifies Searle’s equation for the

associated hypothesis for Columns, adjusted for rows with the help of Theorem 2.2 and

Corollary 2.2 in a linear 2×3 model.

3.2 Deriving the associated hypothesis

After verifying Searle’s equation for the associated hypothesis we want to see how to derive

this equation from Theorem 2.2. This means we have to find U∗, so that we can use this to

write equations in the form c′β = 0. Collorary 2.2 says that U∗ is the nullspace of P∗T′.

First we will see how to do this at the following example:

Variety
Soil 1 2 3
1 6 13 14

10 15 22
11

2 12 31 18
15 9
19 12
18

Table 3.1: Number of days to first germination of three varieties of carrot seed grown in two
different potting soils. [2, Table 4.1]
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Example 3.1. In [2] Searle gives some illustrative data for a linear 2×3 model and describes

how the associated hypothesis can look in this case2. The data is given in Table 3.1. We get

the following number of observations in each cell:

n11 = 3 n12 = 2 n13 = 2 n1· = 7

n21 = 4 n22 = 1 n23 = 3 n2· = 8

n·1 = 7 n·2 = 3 n·3 = 5 n·· = N = 15

(3.26)

To derive the associated hypothesis we first need to calculate T. We use (3.9) for this and

insert the values for all nij from (3.26). We get:

T =



1
3
13

1
2
12

1
2
12

1
4
14

11

1
3
13


Next we have to calculate P∗ = P−P2+P1. Again, we can use (3.11), (3.22) and (3.16) for

P, P1 and P2 and insert the values from (3.26):

P =



1
3
J3

1
2
J2

1
2
J2

1
4
J4

J1

1
3
J3


2[2, Table 4.10, page 114]
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P1 =

1
7
J7 0

0 1
8
J8



P2 =
1

376



88J3 20J3,2 36J3,2 28J3,4 −40J3,1 −24J3,3

20J2,3 137J2 21J2,2 −15J2,4 102J2,1 −14J2,3

36J2,3 21J2,2 113J2 −27J2,4 −42J2,1 50J2,3

28J4,3 −15J4,2 −27J4,2 73J4 30J4,1 18J4,3

−40J1,3 102J1,2 −42J1,2 30J1,4 172J1 28J1,3

−24J3,3 −14J3,2 50J3,2 18J3,4 28J3,1 92J3


Then we get for P∗:

P∗ = P−P2+P1

=



239
987

J3
59
658

J3,2
31
658

J3,2 − 7
94

J3,4
5
47

J3,1
3
47

J3,3

59
658

J2,3
733
2632

J2
229
2632

J2,2
15
376

J2,4 − 51
188

J2,1
7

188
J2,3

31
658

J2,3
229
2632

J2,2
901
2632

J2
27
376

J2,4
21
188

J2,1 − 25
188

J2,3

− 7
94

J4,3
15
376

J4,2
27
376

J4,2
17
94

J4
17
376

J4,1
29
376

J4,3

5
47

J1,3 − 51
188

J1,2
21
188

J1,2
17
376

J1,4
251
376

J1
19
376

J1,3

3
47

J3,3
7

188
J3,2 − 25

188
J3,2

29
376

J3,4
19
376

J3,1
241
1128

J3


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Finally we have

P∗T′ =



239
987

59
658

31
658

− 7
94

5
47

3
47

239
987

59
658

31
658

− 7
94

5
47

3
47

239
987

59
658

31
658

− 7
94

5
47

3
47

59
658

733
2632

229
2632

15
376

− 51
188

7
188

59
658

733
2632

229
2632

15
376

− 51
188

7
188

31
658

229
2632

901
2632

27
376

21
188

− 25
188

31
658

229
2632

901
2632

27
376

21
188

− 25
188

− 7
94

15
376

27
376

17
94

17
376

29
376

− 7
94

15
376

27
376

17
94

17
376

29
376

− 7
94

15
376

27
376

17
94

17
376

29
376

− 7
94

15
376

27
376

17
94

17
376

29
376

5
47

− 51
188

21
188

17
376

251
376

19
376

3
47

7
188

− 25
188

29
376

19
376

241
1128

3
47

7
188

− 25
188

29
376

19
376

241
1128

3
47

7
188

− 25
188

29
376

19
376

241
1128



(3.27)

To find the nullspace of P∗T′ we want to find all vectors c where P∗T′c = 0. For this we

write the matrix in reduced row echelon form:
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P∗T′ =



1 0 0 0 9
7

5
7

0 1 0 0 −23
14
− 1

42

0 0 1 0 5
14

−29
42

0 0 0 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



(3.28)

We get the following equations:



c1 = −9
7
c5− 5

7
c6

c2 = 23
14
c5+ 1

42
c6

c3 = − 5
14
c5+ 29

42
c6

c4 = −c5−c6

(3.29)

So we have two degrees of freedom and therefore we can find two linearly independent

vectors c1 = (c11, c12, c13, c14, c15, c16)
′ and c2 = (c21, c22, c23, c24, c25, c26)

′. To calculate c1 we
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set c15 = 1
2

and c16 = 3
2
. Then we can calculate the other coefficients:



c11 = − 9
14
− 15

14
= −12

7

c12 = 23
28

+ 1
28

= 6
7

c13 = − 5
28

+ 29
28

= 6
7

c14 = −1
2
− 3

2
= −2

(3.30)

Analogously we set c25 = −7
8

and c26 = 3
8

and calculate there remaining coefficients of c2:



c21 = 9
8
− 15

56
= 6

7

c22 = −23
16

+ 1
112

= −10
7

c23 = 5
16

+ 29
112

= 4
7

c24 = 7
8
− 3

8
= 1

2

(3.31)

After this we can write equations in form c′iβ = 0 for i = 1, 2 and get:

 c′1β = 0

c′2β = 0

⇔

 −
12
7
µ11+ 6

7
µ12+ 6

7
µ13−2µ21+ 1

2
µ22+ 3

2
µ23 = 0

6
7
µ11− 10

7
µ12+ 4

7
µ13− 1

2
µ21− 7

8
µ22+ 3

8
µ23 = 0

⇔

 3µ11+4µ21 = 3
7
(3µ11+2µ12+2µ13)+ 1

2
(4µ21+µ22+3µ23)

2µ12+µ22 = 2
7
(3µ11+2µ12+2µ13)+ 1

8
(4µ21+µ22+3µ23)

⇔


1
7
(3µ11+4µ21) = 1

7
(3
7
(3µ11+2µ12+2µ13)+ 1

2
(4µ21+µ22+3µ23))

1
3
(2µ12+µ22) = 1

3
(2
7
(3µ11+2µ12+2µ13)+ 1

8
(4µ21+µ22+3µ23))

When we set ρ′1 = 1
7
(3µ11+2µ12+2µ13), ρ

′
2 = 1

8
(4µ21+µ22+3µ23), γ

′
1 = 1

7
(3µ11+4µ21) and
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γ′2 = 1
3
(2µ12+µ22), we can write this hypothesis in the form Searle uses in [2]:

 γ′1 = 1
7
(3ρ′1+4ρ′2)

γ′2 = 1
3
(2ρ′1+ρ′2)

If we want to derive the associated hypothesis in a general 2×3 case, we need to follow

the steps in Example 3.1. Here calculating the nullspace of P∗T′ can be challenging and

expensive. This is why some further algorithm for this should be considered.
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4 Conclusion

In this thesis we could verify the equations for the associated hypothesis Searle gave in [2]

for columns, adjusted for rows using the Theorem 2.2 from Beder in [1] in a linear 2×3

model. We derived two contrast vectors from Searle’s equations and showed that they span

the subspace U∗. The sum of squares of β ⊥ U∗ equals the sequential sum of squares of the

hypothesis Only A present given No interaction.

While verifying the associated hypothesis we can see that the matrix P2 is very compli-

cated. Therefore P∗ is also complicated and calculating the nullspace from P∗T′ is challeng-

ing, but this is necessary to derive equations for the associated hypothesis from Theorem

2.2. Example 3.1 shows the typical steps that one may use to derive the equations. Further

one should examine if a more efficient algorithm can be found to calculate a basis for U∗ in

the general 2×3 case.

Furthermore calculating P2 manually was very difficult, especially calculating (X′2X2)
−1.

Therefore we used a software library for symbolic calculations, but this cannot be used for

verifying the associated hypothesis in a general a×b model. Therefore some more mathe-

matics have to be found that help to do this.
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