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ABSTRACT

Fitting a Complex Markov Chain Model

for Firm and Market Productivity

by

Julia R. Valder

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Richard H. Stockbridge

This thesis develops a methodology of estimating parameters for a complex Markov chain

model for firm productivity. The model consists of two Markov chains, one describing firm-

level productivity and the other modeling the productivity of the whole market. If applicable,

the model can be used to help with optimal decision making problems for labor demand. The

need for such a model is motivated and the economical background of this research is shown.

A brief introduction to the concept of Markov chains and their application in this context

is given. The simulated data that is being used for the estimation is presented in detail.

The underlying economical problem is described as a stochastic process. Available data for

a single firm is limited, therefore a 2-step method is used to estimate the probability matrix

for the firm Markov chain. Under a time homogeneity assumption, maximum likelihood

estimation techniques are used to estimate the parameters of a Markov chain for one firm

based on all firms in the market. These parameters are refined using a linear combination

approach. The expectation and variance of the proposed estimator are analyzed. The

method’s validity is established using various goodness-of-fit tests. Theoretical explorations

for the estimation of a market Markov chain are made. In the end, a summary of results

and an outlook for further research directions is given.
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Introduction and Motivation

This chapter motivates the thesis. The given economical model and a suggested mathemat-

ical model are described. The thesis goal is stated and distinction from previous work is

established.

I.1 Optimal Decision Making Problems

In economics, a central question is: Is there an “optimal” action policy concerning hiring and

firing of workers? This question is an example of the problem of optimal decision making

under uncertainty. Firms face adjustment costs for hiring and firing and must therefore be

careful not to act precipitously. Having to correct a mistake means increased costs. Firms

can also be “paralyzed” by uncertainty and might lose productivity by not making necessary

adjustments (see Rota (2004), Cooper et al. (2007), Elsby and Michaels (2014)). A model

to predict productivity based on labor demand in a single firm or a market would be highly

useful in order to avoid unnecessary adjustments or to make sure that adjustments happen

in time. If such a model is given, it should explain real life data and be in accordance with

empirical facts.

I.2 Labor Productivity Model

The proposed model considers workers and firms under non-convex adjustments costs in the

presence of firm-level (also referred to as idiosyncratic) and market-level (also referred to as
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aggregate) shocks. These shocks affect labor productivity and change the desired number of

employees in order to achieve maximum profit. Therefore productivity should be maximized

while costs are minimized. The non-convex adjustment costs create an environment where

firms do not adjust continuously but keep their employment level constant for some intervals

of time. Jumps in this level are observed occasionally.

At the beginning of a time period, firms observe their productivity level (Z) and the

aggregate productivity (A). If, based on Z and A, the firm decides to adjusts its workforce

(L), it faces adjustment costs denoted by τ . The firm’s productivity is then given by the pro-

duction function y = AZH(L), where H is an increasing and concave function of workforce.

We also consider a wage rate w. For the purpose of this thesis, it is an exogenously given

constant. In the future, w could also be modeled by a Markov chain given wage negotiations

can happen.

Using the aforementioned quantities, the total discounted profit of a firm during a period

of time is given by the following equation:

π(L−1, Z, A) = sup
L
{AZH(L)− wL− τI{L6=L−1} − τ+(L)I{L>L−1} − τ−(L)I{L<L−1} + βπ+1}

where L−1 denotes the employment level in the previous time period, I is the indicator

function that takes the value 1 if its argument is true and 0 otherwise. τ is the fixed

adjustment cost, τ+ is the cost of hiring, τ− is the cost of firing and βπ+1 is the expected

profit of the next period, discounted for inflation, which is represented by β. This model

is a version or extension of earlier models, such as in Cooper et al. (2007) and Elsby and

Michaels (2014).

In order to maximize the profit over the employment level L, the productivity is max-

imized while all the costs are minimized. In this thesis, the focus lies on the productivity

function y = AZH(L). The profit can only be maximized using this equation if the param-

eters of the underlying processes are known.
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I.3 Using Stochastic Processes

The described profit model works with discrete time periods, in each of which a realization

of the production function can be observed; y can also be formulated as a stochastic pro-

cess dependent on the time t. The time periods are individually labeled by an index set

T = {0, 1, 2, ...} so that we can refer to each time period individually. From here on, the

production function will be considered a stochastic process on these time periods, given by

Y (t) = A(t)Z(t)H(L(t)), t ∈ T

The process L(t) describes the level of employment that the firm can adjust at the beginning

of each time period. It is therefore viewed as a control variable that only depends on past

and present information, and doesn’t anticipate future developments. The processes A(t)

and Z(t) capture the aggregate and idiosyncratic productivity. It is proposed in Khan and

Thomas (2004) that A and Z can be viewed as independent Markov chains that evolve

randomly over time and that the process P (t) = A(t)Z(t) is also a Markov Chain.

I.4 Thesis Goal

This thesis looks to create a method of estimating the time-homogeneous parameters of

the Markov chains A(t) and Z(t). Appropriate state spaces for both Markov chains are

proposed. Maximum likelihood estimation techniques are used on simulated data examples

in order to find the transition probability matrices of A and Z. These matrices are refined

using linear combination methods. All calculations are done with the a statistical software

package R. The goal of this thesis is to showcase the methodology of estimating the transition

probabilities and using goodness of fit tests to validate the estimation. In doing so, this thesis

sets the stage for further research that may use real life data to fully validate this model and

estimate its parameters, and use it to solve optimal decision making problems in economics.
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I.5 Distinction and Limits

This thesis does not solve any optimal decision making problems, but it gives a solid basis for

further research in this area. Unlike works which develop theoretical approaches to optimal

decision problems, this thesis proposes a parameter estimation technique for the given model

that can be replicated when using real data. However, the method described in this thesis

cannot give a guaranteed proof of the model’s validity. Rather, it creates highly suggestive

data-based evidence that the estimated parameters are correct using established stochastic

methods, given that the model is applicable. While it was originally planned to use real life

data for this fitting, such data is highly proprietary and could not be obtained at this time.

Therefore the method is illustrated using simulated data.
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Mathematical Background

This chapter gives a brief introduction to Markov chains, maximum likelihood estimation

and goodness of fit tests. These concepts are later applied to simulated data and show the

method of estimating model parameters.

II.1 Markov Chains

As described in Karlin and Taylor (1975), a Markov process is a stochastic process where

future behavior, given that the present state is known, does not depend on additional knowl-

edge of the past. They were first studied by Andrey Markov in the early 20th century (see

Gagniuc (2017)).

For the purpose of this thesis, the following notation from Karlin and Taylor (1975) is

used. Markov chains are denoted as X(t) with t being a value from the discrete time space

{1, 2, ..., T}. The state space of a Markov chain is S, meaning X(t) can attain values from

the set S. X(t) refers to the outcome of trial t. A Markov chain has “the property that given

the value of X(t), the values of X(s), s > t do not depend on the values of X(u), u < t”.

When X(t) = i it means that X(t) is in state i ∈ S. The conditional probability of X(t+ 1)

being in state j given that X(t) is in state i is denoted by Pij(t) = P (X(t+1) = j|X(t) = i).

This is called a one-step-transition probability. If the transition probability does not depend

on t, it is denoted by Pij and is called time-homogeneous or stationary. The Markov chains

in this thesis are discrete time, stationary and have a countable infinite or finite state space

S = {1, 2, ..., N}.
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For such Markov chains, the probabilities Pij can be arranged in a matrix, as shown in

Definition 1.1 which is given in Karlin and Taylor (1975).

Definition 1.1. If Pij denotes the transition probability of a Markov chain from state i

to state j, the probabilities are arranged in the so-called transition probability matrix P =

(Pij)i,j=1,...,N (also referred to as transition matrix), so that

P =



P11 P12 . . . . . P1N

P21 P22 . . . . . P2N

...
...

. . .
...

PN1 PN2 . . . . . PNN


,

The ith row of P is the conditional probability distribution of X(t+1) given that X(t) = i.

The probabilities Pij satisfy

Pij ≥ 0, i, j = 0, 1, 2, ..., N

N∑
j=1

Pij = 1, i = 0, 1, 2, ..., N

In this thesis, there are multiple firms k = {1, 2, ..., F} all moving according to their own

Markov chain Zk(t) with distinct transition matrices P k.

II.2 Maximum Likelihood Estimation

Maximum likelihood estimation can be used to estimate the parameters of a distribution. If

data generated by a distribution with unknown parameters is given, the maximum likelihood

method analyses under which parameters the given data sample is the most likely realization.

Maximum likelihood techniques were first introduced by Ronald Fisher in the 1910s and

later popularized by Samuel S. Wilks between 1938 and 1962 (see Pfanzagl and Hamboeker

(1994) and Wilks (1962)). The following formal definitions of the likelihood function and a

6



maximum likelihood estimator are given in Casella and Berger (2001).

Definition 2.1. Let f(x|θ̃) denote the joint probability distribution function (pdf) or proba-

bility mass function (pmf) of the sample X̃ = (X1, ..., Xn) with the parameter θ̃ = (θ1, ..., θk).

Then, given that X̃ = x̃ is observed, the function of θ̃ defined by

L(θ̃|x̃) =
n∏
i=1

f(xi|θ̃)

is called the likelihood function. If X̃ is a discrete random vector, then

L(θ̃|x̃) = Pθ̃(X̃ = x̃).

Definition 2.2. For each sample point x̃, let θ̂(x̃) be a parameter value at which L(θ̃|x̃)

attains its maximum as a function of θ̃, with x̃ held fixed. A maximum likelihood estimator

(MLE) of the parameter θ̃ based on a sample X̃ is θ̂(X̃).

In the context of Markov chains, the parameters (θ1, ..., θk) are the elements of the tran-

sition matrix P . The maximum likelihood estimator of P is the transition matrix, under

which the observed data is the most likely realization of the Markov chain process. The

following maximum likelihood estimation of the transition probabilities in a Markov chain

is given in Bishop (1975). First, the notation is defined.

Definition 2.3. Suppose the Markov chain has N possible states and we observe T − 1 suc-

cessive transitions (the first going from time 1 to time 2). Suppose there are ni(1) individuals

in state i at time 1 and that the {ni(1)}i=1,...,N are multinomially distributed with probabilities

νi and sample size F =
∑N

i=1 ni(1). Finally, let cij(t) be the number of individuals that were

in state i at time t− 1 and are in state j at time t and let ni(t) be the number of individuals

in state i at time t.

Then, the likelihood function and the maximum likelihood estimators are derived.
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Theorem 2.4. Under the assumption of time-homogeneity, the likelihood functions of the

probabilities {νi}1≤i≤N and the {Pij}1≤i,j≤N are

L(ν1, ..., νN | n1(1), ..., nN(1)) =
N∏
i=1

ν
ni(1)
i , and

L(P | {cij}i,j=1,...,N) =
N∏
i=1

N∏
j=1

P
cij
ij ,

where cij =
∑T−1

t=1 cij(t).

Theorem 2.5. By maximizing the likelihood functions in Theorem 2.4 as functions of νi

and Pij, the following maximum likelihood estimates of the time-homogeneous transition

probabilities are obtained.

ν̂i =
ni(1)

F

P̂ij =
cij∑T−1

t=1 ni(t− 1)

Later, Theorems 2.4 and 2.5 are used for the first step of the estimation of the idiosyn-

cratic Markov chains.

II.3 Goodness of Fit Tests

After estimating the parameters of a Markov chain, goodness-of-fit tests can be used to

evaluate whether the estimated parameters make for a good fit of the model to the given

data. Specifically, these tests evaluate how likely it is that an observed data sample arose by

chance from the given distribution with the estimated parameters. Many different kinds of

goodness-of-fit tests can be found in the literature; each test has its typical application. In

this thesis, three kinds of goodness-of-fit tests are used, all applicable to different situations

that arise during the estimation process. A goodness-of-fit test is a hypothesis test, which

is described as follows in Casella and Berger (2001).
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Definition 3.1. The two complementary hypotheses in a hypothesis test about a parameter

θ are called the null hypothesis H0 and the alternative hypothesis H1. Typically, H0 : θ ∈ Θ0

and H1 : θ ∈ Θ1 = ΘC
0 . A hypothesis test is a rule that specifies

1. For which sample values the decision is made to not reject H0,

2. For which sample values H0 is rejected and H1 is accepted as true.

The subset of the sample space for which H0 will be rejected is called rejection region. Typi-

cally, a hypothesis test is specified in terms of a test statistic, which is a function of the given

sample.

In goodness-of-fit tests the null hypothesis H0 : θ = θ̂ is tested against the alternative

H1 : θ 6= θ̂ are being tested. In general, goodness-of-fit test statistics are a measure of

deviation. They calculate how much the predicted values differ from the observed values

in a sample. If the parameter estimation is good, the predicted values should be close to

the observed data. Goodness-of-fit test statistics have a known distribution or a known

limiting distribution that can be used to evaluate whether the null hypothesis, claiming that

the estimated parameters are the correct parameters, should be rejected or not (see Bishop

(1975)). A limiting distribution is an approximation of the real distribution that is valid for

large sample sizes.

II.3.1 Pearson-Chi-Square Test

The Pearson-Chi-Square test was first investigated by Karl Pearson (1900). It is one of

many chi-square tests, which all have the feature that their test statistic has a limiting χ2

distribution. As a goodness-of-fit test, it is defined in the following way:

Definition 3.2. In a Pearson-Chi-Square goodness-of-fit test, the null hypothesis H0 : θ̃ = θ̃0

is tested versus H1 : θ̃ 6= θ̃0 as the alternative. θ̃ = (θ1, ..., θN) are the probabilities that an

object falls into category i = 1, ..., N . The test statistic is given by
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χ2(x̃) =
N∑
i=1

(xi − Ei)2

Ei

where xi is the number of times an object of category i is observed and Ei is the expected

number of objects of type i. The expected number of objects is given by the null hypothesis

that the probability of an object being in category i is θi. The test statistic has a limiting

Chi-Square distribution with N degrees of freedom, where n = N − p and p is the number of

independent parameters used. The Pearson-Chi-Square test rejects the null hypothesis for all

x̃ ∈ {x̃ : χ2(x̃) ≥ χ2
1−α;n}, in which χ2

1−α;n is the 1 − α quantile of a chi-square distribution

with n degrees of freedom.

The Pearson-Chi-Square test is only applicable if the expected values are large enough,

meaning the sample size is large. Otherwise, the assumption of a limiting χ2 distribution is

not reasonable.

II.3.2 Exact Multinomial Test

As just explained, the Pearson-Chi-Square test is only applicable for large sample sizes. Also,

the limiting distribution is only known to be a χ2-distribution when the maximum likelihood

estimator for θ̃ is used. When examining the idiosyncratic Markov chain for a single firm,

both of these conditions are likely to be violated since data for a single firm is limited and

a combined estimator is used (see Section III.3).

However, for a small number of states and small sample sizes an exact multinomial test

can be used. Unlike Pearson-Chi-Square which only has a limiting distribution, this test

calculates the exact probability for the observed data to occur under the estimated model

parameters. An exact multinomial test is applicable when the underlying distribution of a

sample is multinomial. This is the case for each row of a transition probability matrix that is

time homogeneous. The multinomial distribution is defined as follows by Read and Cressie

(1988).
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Definition 3.3. Consider observing random variables Yi, i = 1, ..., n which can have one

of N possible outcomes {s1, s2, ..., sN} with probabilities Pi1, Pi2, ..., PiN . The outcomes are

mutually exclusive and
∑N

j=1 Pij = 1. Let C̃ = (C1, C2, ..., CN) where Ck is the number

of Yi’s where Yi = sk, k = 1, ..., N . If the observed Y ’s are independent and identically

distributed, then C̃ has a multinomial distribution with parameters n and P̃ = {Pi1, ..., PiN}.

The probability of obtaining any particular sample c̃ = (c1, ..., cN) is then

P (C̃ = c̃) = N !
N∏
j=1

P
cj
ij

cj!
.

The exact multinomial test calculates the probability of obtaining a particular multino-

mial sample or any sample with a smaller probability (a more extreme sample) under the

null hypothesis that P̃ = P̃0. The null hypothesis is rejected if this probability is smaller

than a defined significance level α, typically α = 0.05 or α = 0.1.

II.3.3 Likelihood Ratio Test and G-Test

While the exact multinomial test can only be feasibly calculated for a small number of

states, a likelihood ratio test can be applied for small sample sizes and a large number of

states. Thus, it closes the gap between Pearson-Chi-Square and the exact multinomial test.

The likelihood ratio test is related to maximum likelihood estimation (see II.2). To test an

estimation for the parameter θ is defined by Casella and Berger (2001) as follows.

Definition 3.4. The likelihood ration test statistic for testing the null hypothesis H0 : θ ∈ Θ0

versus the alternative H1 : θ ∈ Θ1 is

λ(x̃) =
supΘ0

L(θ|x̃)

supΘ L(θ|x̃)
,

where Θ = Θ0 ∪ Θ1. A likelihood ratio test (LRT) is any test that has a rejection region of

the form {x̃ : λ(x̃) ≤ c}, where 0 ≤ c ≤ 1.
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As explained in Casella and Berger (2001), the ratio λ(x̃) is small if there are parameter

points in the alternative parameter space for which the given data sample is much more likely

than for any parameter points in the null hypothesis. Therefore, when the ratio is small, H0

should be rejected. Like in many hypothesis tests, c is selected so that the probability of a

so-called false negative, rejecting H0 when it is actually true, is small. Formally speaking, c

is chosen such that supθ∈Θ0
Pθ(λ(X̃) ≤ c) = α where α is a given constant, typically α = 0.1

or α = 0.05, where the latter is the slightly stricter criterion.

The G-Test is derived from the likelihood ratio test when the underlying model is multi-

nomial. Each row of the transition matrix of a Markov chain represents a multinomial

distribution; therefore the G-Test is applicable. Both the G-Test and the likelihood-ratio

test can be used to test each row of the transition matrix individually when there is a large

number of states. In accordance with Bishop (1975), the G-Test is defined as follows:

Definition 3.5. The test statistic G of a G-Test is given by

G = 2
N∑
i=1

xi ln
( xi
Ei

)
where xi is the number of times an object of type i was observed and Ei was the expected

number of objects of type i. The distribution of G is approximately a Chi-Square distribution

with N − p degrees of freedom, where p is the reduction in degrees of freedom as given in

Definition 3.2.

A G-Test is any test that has a rejection region of the form {x̃ : G ≥ c}, where 0 ≤ c <∞.

When the null hypothesis is H0 : θ = θ0, the constant c is chosen such that Pθ0(G(X̃) ≥ c) =

α, the probability of a false-negative.

The constant p is the reduction in degrees of freedom, which is the number of independent

parameters used in fitting the distribution.

12



Model Fitting

III.1 Stochastic Process Formulation

As described in Chapter I, the productivity of a firm is given by the process Y with

Y (t) = A(t)Z(t)H(L(t)), t = 1, 2, ..., T ,

This thesis focuses on modeling the processes A(t) and Z(t). The process A(t) captures

the aggregate productivity in a certain market. For the purpose of this thesis, the following

definition is used for the aggregate productivity process.

Definition 1.1. Let there be firms k ∈ {1, 2, ..., F} in a certain market and Sk(t) be the total

sales of firm number k in the time period t. Then, the process Â(t) describes the aggregate

productivity of a market as

Â(t) =

∑F
k=1 S

k(t)∑F
k=1 S

k(t− 1)
.

As a consequence of this definition, Â(t) is a dimensionless number which roughly describes

the general growth trend of the market as a whole.

To turn the real-valued process Â(t) into a Markov chain, its values are discretized into

distinct intervals. The discretized version of Â(t) is the aggregate Markov chain A(t). Since

a finite state space is needed for the estimation, the state space SA of A(t) is defined as a
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finite number of intervals.

SA = {[ai, bi) | i = 1, 2, ..., NA, 0 ≤ a1 < b1 ≤ a2 < b2 ≤ ... < bNA
}

In a concrete application of the estimation method, the state intervals for A(t) can be

flexibly defined depending on the available data. It is expected that the values of A(t) range

around 1, since it is a relative growth factor.

The process Z(t) gives a firm-specific measure of productivity. Each firm k in a certain

market has its own firm-specific process Zk(t). In this thesis, Zk(t) is assumed to be a

Markov chain (referred to as an idiosyncratic Markov chain), and is defined in the following

way.

Definition 1.2. For each firm k ∈ {1, 2, ..., F} in a certain market, the process Ẑk(t) de-

scribes the firm-specific productivity as

Ẑk(t) =
Sk(t)

Lk(t)
.

where Sk(t) is the total sales of firm k in the time period t and Lk(t) is the number of

employees for the firm k in the time period t.

To turn this real-values process into the idiosyncratic Markov chain Zk(t), its values are

discretized into intervals. For all k, Zk(t) takes values from the same state space SZ. Like

the aggregate state space in Definition 1.1, the state space SZ consists of a finite number of

intervals.

SZ = {[ai, bi)] | i = 1, 2, ..., NZ , 0 ≤ a1 < b1 ≤ a2 < b2 ≤ ... < bNZ
}

Just like for A(t), the intervals can be defined to fit the available data. The methodology

of estimation is not dependent on the concrete intervals. It is assumed that both A(t) and
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all Zk(t) processes evolve randomly according to a Markov chain. That means that A(t) has

a transition probability matrix PA and each Zk(t) process has its own transition probability

matrix P k
Z . In this thesis, the exponent of a matrix always represents the number of the firm

to which it belongs. Matrices are never raised to a power during any calculations or examples.

The employment level L(t) is a stochastic process, but it is not assumed to be a Markov

chain. The firm determines its employment level at the beginning of each time period t,

depending on multiple factors, for example the current firm productivity. It is a control

variable and must only depend on the past and the present, not the future.

III.2 Simulation of Firm Productivity Data

The original intention of this thesis was to fit the model with real life data. However, real firm

productivity data turned out to be proprietary and inaccessible at the time of publication

of this thesis. Therefore, data is simulated in order to illustrate the methodology that has

been developed. To simulate data, the statistical software package R is used. The full R

source code for the simulation can be found in Appendix A.

III.2.1 Simulating Idiosyncratic Markov Chains

The idiosyncratic productivity, which is measured by sales per employee as stated in Def-

inition 1.2, is simulated. The states of the process are given by intervals of productivity

which are ordered from low to high productivity. In order to simplify the notation the in-

tervals from Definition 1.2 are numbered from 1 to N and the state space is denoted as

SZ = {1, 2, ..., NZ}. The distance between two states is defined as follows:

Definition 2.1. Given a state space SZ = {1, 2, 3, ..., NZ}, the distance d(i, j) between two

states i, j ∈ S is given by:

d(i, j) = |i− j|+ 1
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The firms themselves are the individuals moving throughout the Markov chain. Some sensible

assumptions are made about the firms and their productivity for the purpose of simulation.

Hypothesis 2.2. The transition probabilities of the idiosyncratic productivity Markov chains

are time-homogeneous. Therefore, all transition matrices are independent of the time t. This

assumption is given by the economical model described in Chapter I.

Hypothesis 2.3. Large jumps in productivity in either direction are unlikely. It is much

more likely that a firm will keep up their productivity or only slightly increase or decrease

it. In terms of the Markov chains used to model productivity, this means that transitions to

nearby states should be more likely than transitions to states that are more distant.

Hypothesis 2.4. All firms in the same market behave similarly but not quite the same.

Hence, the models will be chosen in such a way that each firm’s transition matrix is a

slight perturbation of a “base matrix”. This base matrix is constructed in accordance with

Hypothesis 2.3.

Hypothesis 2.5. All firms follow a market-wide trend. The higher this trend is, the more

likely firms are to increase their productivity, therefore transition to higher states are more

likely.

Hypothesis 2.6. A firm has its own firm trend, which can be positive or negative. This

firm trend is more likely to be positive the higher the market trend is. If the firm trend is

positive, the firm’s transition probabilities to higher states are slightly increased compared

to the base matrix. If it is negative, the firm’s transition probabilities to higher states are

slightly decreased compared to the base matrix.

The program first generates the base matrix that is later used to create each firm’s

individual transition matrix, according to Hypothesis 2.4. Definition 2.7 states how the base

matrix is generated.
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Definition 2.7. Let SZ = {1, 2, ..., NZ} be a state space of a Markov chain. The base matrix

B is defined as follows:

B =
(bij
γi

)
1≤i,j≤NZ

in which bij =
1

2d(i, j)

and γi =
N∑
j=1

bij.

γi is a normalizing constant which ensures that the probabilities in each row sum up to

1. Otherwise B would not be a transition matrix. This definition can be adapted to create a

higher concentration around same-state transitions, which are transitions from a state back

to the same state. Figure III.1 shows the magnitudes of the bij’s using Definition 2.7, and

Figure III.2 shows the magnitudes using a possible alternative definition bij = 1
2d(i,j)

. In

both cases i = 10 is used as an example. This thesis uses the distribution from Definition

2.7 for the simulation because otherwise some transitions might never occur. Karlin and

Taylor (1975) refer to this phenomenon as “sample zeros”, which means a transition is never

observed although it has a probability that is larger than 0. To avoid sample zeros and to

better illustrate the methodology on examples with few firms, a less concentrated distribu-

tion is desirable. Real life data would comprise samples from many enough firms, such that

sample zeros are highly unlikely.

While the number of states and firms used in the simulation in general is adjustable, the

following example is used in order to illustrate the program’s method.

Example 2.8. Suppose there are the firms {1, 2, ..., F} where F = 10, T transitions, and

there are N = 4 states the firms can be in. Using the source code in Appendix A, the following
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Figure III.1: Magnitude of base matrix
elements using method 1

Figure III.2: Magnitude of base matrix
elements using method 2

base matrix is generated for a 4-state Markov chain:

B4 =



1 2 3 4

1 0.4800 0.2400 0.1600 0.1200

2 0.2143 0.4286 0.2143 0.1429

3 0.1429 0.2143 0.4286 0.2143

4 0.1200 0.1600 0.2400 0.4800


As intended by Hypothesis 2.3, staying in the same state is always the most likely tran-

sition. The larger the distance between two states is, the less likely the transition becomes.

The asymmetry of the base matrix is caused by using the normalization factor 1
γi

. This

factor is different for different i’s since the distance function is not linear.

After computing the base matrix, the program creates a random perturbation for each firm,

which corresponds to Hypothesis 2.4. In order to also honor Hypothesis 2.5 and Hypothesis

2.6, a market trend and firm trends are created.

Definition 2.9. Suppose there are F firms in the market. The market trend m is a realiza-
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tion of a uniform random variable M ∼ U(0, 1). For each firm k = 1, 2, ..., F , the firm trend

fk is also a realization of a random uniform random variable Fk ∼ U(0, 1). All firm trends

and the market trend are independent.

Due to this definition, the higher the market trend is the more likely it is that the firm

trend is smaller than the market trend. If the firm trend is smaller than the market trend,

the program varies the base matrix so that transitions to higher states are more likely than

transitions to smaller states. Thus, if the market trend is high, increases in productivity are

more likely.

The perturbation of each probability is random and normally distributed. The firm trend

dictates whether the mean of the normal distribution used is positive or negative.

Definition 2.10. For each firm k, the time-homogeneous transition matrix P k is defined as

follows.

P k =
(pij
βi

)
1≤i,j≤N

,

in which pij =

 bijxij + bij , when i ≤ j

−bijxij + bij , when i > j
,

and βi =
N∑
j=1

pij

where xij is the realization of a random variable Xij ∼ N (µsign(m− fk), 2µ), µ ∼ U(0, 1/8)

for i 6= j and Xij ∼ N (µ, 2µ), µ ∼ U(0, 1/8) for i = j.

The last part of the definition slightly boosts the transition probability to stay in the

same state. This ensures that Hypothesis 2.3 is honored. The xij’s represent the random

perturbations. Multiplying them with the base matrix probabilities makes them a relative

perturbation rather than an absolute perturbation which could create too much variation

from the base matrix.

Example 2.11. Continuing Example 2.8, realizations of the transition matrices of the first
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two firms are given by:

P1 =



1 2 3 4

1 0.5244 0.2330 0.1408 0.1018

2 0.2030 0.4509 0.2133 0.1328

3 0.1448 0.2160 0.4317 0.2076

4 0.1018 0.1621 0.2187 0.5173



P2 =



1 2 3 4

1 0.5050 0.2328 0.1477 0.1144

2 0.2115 0.4569 0.1978 0.1339

3 0.1454 0.2129 0.4261 0.2156

4 0.1306 0.1594 0.2458 0.4642


While they are similar in their properties, there are slight differences in the individual

probabilities caused by the described randomization. In the simulation of the data, each

firm uses its own transition matrix instead of all firms using the same matrix. This gives

more credibility to the method of estimation shown in this thesis, since it better mimics the

expected behavior of real life data.

Contingency tables contain information about how many firms have moved from one state to

another in a given time period. To generate contingency tables, the program generates T −1

transitions for each firm according to its transition matrix. In each step, a uniform random

number between 0 and 1 is generated for each firm. The distribution of this random number

is given by the row in the transition matrix indexed by the current state of the firm. The

resulting number presents the new state of the firm. Using the same conditions as before,

this process is illustrated in Example 2.12.

Example 2.12. Suppose at time t−1, firm 1 is in state 3. Firm 1 uses the transition matrix
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P 1 as shown above.

P1 =



1 2 3 4

1 0.5244 0.2330 0.1408 0.1018

2 0.2030 0.4509 0.2133 0.1328

3 0.1448 0.2160 0.4317 0.2076

4 0.1018 0.1621 0.2187 0.5173


For the transition, a random number between 1 and 4 is generated according to the distribu-

tion given by row 3. This determines the new state j for time t.

P 1
31 = 0.1448, P 1

32 = 0.2160, P 1
33 = 0.4317, P 1

34 = 0.2076

Once the transition has been determined, it is recorded in the contingency table for this

time step and the firm is placed in the new state.

Example 2.13. This example continues Examples 2.8 and 2.12. At time t = 0, the firms

{1, 2, .., 10} are in the following states:

(states 1 2 3 4

firms 1, 2 3 4, 5 6, 7, 8, 9, 10

)
The following contingency table is recorded for the transition from t = 0 to t = 1.

T1 =



1 2 3 4

1 2 0 0 0

2 1 0 0 0

3 0 1 0 1

4 0 1 3 1


This means that, for example, 2 firms have moved from state 1 to state 1 and 3 firms
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have moved from state 4 to state 3. After the transition occurs, the firms are in the following

states at time t = 1.

(states 1 2 3 4

firms 1, 2, 3 5, 9 6, 7, 10 4, 8

)
This way, the program generates T −1 contingency tables. It also records each individual

firm’s state at every time step. This concludes the data simulation for the idiosyncratic

Markov chains. The data is later used to show how the parameters of the idiosyncratic

Markov chains can be estimated.

III.2.2 Simulating Employment Levels

While this thesis only gives a theoretical approach to estimating A(t), simulated data might

be needed for future methodology testing. In this case, the employment levels, that are

often included in real life data, would be needed for every firm. This section shows how

employment levels can be simulated as a discrete stochastic process L(t). The following

reasonable assumptions are made about L(t).

Hypothesis 2.14. The employment level for each firm k is decided at the beginning of a time

period t and depends on the firms productivity from the last time period, given by Zk(t− 1).

Hypothesis 2.15. The higher the productivity in the last time period was, the more em-

ployees the firms will hire for this time period. The lower the productivity was the more

employees will be laid off. If the productivity is average, the net employment change should

be near 0.

While these assumptions have an effect on the way L(t) is simulated, they do not affect

the methodology of the parameter estimation in Section III.4. Therefore, the method re-

mains valid when used with real life data.
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The simulation program has all the information from the simulation of the idiosyncratic

data. In every time step, it uses the productivity of the firm in the previous time step to

generate the net employment change, which is defined as follows.

Definition 2.16. Let Lk(t) be the employment level of firm k at time t ∈ {1, ..., T}. Let M

be the average productivity across all states. When the states are equidistant, M = (N+1)/2

can be used. Let D(s) = s−M be the distance of a state s from the average productivity M.

Then the employment level for the firm k for the time period t+ 1 is defined as follows.

For t = 1: Lk(1) = round(|Ek|),

Ek ∼ N (1000,
√

1000),

Lk(t+ 1) =


Lk(t) + |round(Xk)|, when D(Zk(t)) > 0

Lk(t)− |round(Xk)|, when D(Zk(t)) < 0

Lk(t) + round(Xk), when D(Zk(t)) = 0

,

Xk ∼ N
(
D(Zk(t))

Lk(t)

50
, 2
)

where round is the function that rounds its input to an integer number.

The factor Lk(t)
50

makes sure the mean of the change is relative to the previous employment

levels. This avoids huge, unrealistic jumps in employment. It can be adjusted as needed.

III.3 Two-Step Estimation of the Idiosyncratic Markov

Chain

This section develops a two-step method of estimating the transition matrix for the idiosyn-

cratic Markov chains introduced in Definition 1.2. Real life data for firm productivity is

often only available for a limited number of time periods. When looking at the contingency

table for a single firm, there is only one entry in each table that is equal to 1 and all other
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entries are equal to 0, since there is only one firm moving through the Markov chain. A

naive approach would be to use maximum likelihood estimation. Under the time homogene-

ity assumption given by the model, the (T −1) contingency tables can be reduced to a single

contingency table by element-wise addition of all of the contingency tables. But even then,

the number of entries is small and thus a simple maximum likelihood estimation does not

yield a reasonable estimation. This problem is illustrated in Example 3.1.

Example 3.1. For N = 4 states, the data simulation from section III.2 creates the following

transition matrix for firm number 1.

P1 =



1 2 3 4

1 0.5086 0.2222 0.1540 0.1152

2 0.2189 0.4258 0.2110 0.1444

3 0.1335 0.2051 0.4617 0.1996

4 0.1082 0.1463 0.2157 0.5298


After simulating the idiosyncratic Markov chains for T = 12 time periods, this is the reduced

contingency table C for firm number 1.

C1 =



1 2 3 4

1 1 3 0 1

2 1 0 1 0

3 1 0 0 0

4 1 0 0 2


(3.2)

The simple maximum likelihood estimation shown in Theorem II.2.5 yields the following

24



estimated transition matrix P̂ 1
MLE for firm 1.

P̂ 1
MLE =



1 2 3 4

1 0.2 0.6 0 0.2

2 0.5 0 0.5 0

3 1 0 0 0

4 0.33 0 0 0.67


Clearly, the estimation is imprecise because of the small sample size for each state. Instead

of using this naive maximum likelihood approach for a single firm, a new method is developed

which is mainly based on Hypothesis 2.4: All firms in a single market behave in an inherently

similar way with slight individual variations. Therefore, the hypothesized base matrix will

be estimated using a maximum likelihood approach and for an individual firm, the transition

matrix will be refined by increasing the probability of those transitions that have actually

occurred. The method is presented in detail in the following two sections.

III.3.1 Initial Maximum Likelihood Estimation

It is proposed that all firms in a single market follow a similar base behavior. We can use

the maximum likelihood approach from Theorem II.2.5 to obtain an estimate for a transition

matrix under the assumptions that all firms followed the same Markov chain. While this

assumption is generally not regarded as true, the resulting estimate can be used to create

a better estimate in Section III.3.2. Continuing Example 3.1 the following base matrix is

estimated using the R source code in Appendix B.

Example 3.3. For F = 120 firms, the following realization of the reduced contingency table

is obtained.
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C =



1 2 3 4

1 142 58 51 40

2 62 117 84 45

3 59 77 187 88

4 28 37 81 164


Using maximum likelihood estimation results in the following estimate for the base matrix.

B̂4 =



1 2 3 4

1 0.4879 0.1993 0.1753 0.1375

2 0.2013 0.3799 0.2727 0.1461

3 0.1436 0.1873 0.4550 0.2141

4 0.0903 0.1194 0.2613 0.5290


A Pearson-Chi-Square test can be used to assess the goodness of fit for this estimation

for all firms. Since the sample size is large, this test is applicable. The categories for the test

are the states in each time period except the first, so there are a total of N(T −1) categories.

Since we are looking at the number of firms in each state and not the number of transitions

from one state to another, the number of parameters is N since we have N rows of the transi-

tion matrix. However, if the number of firms in the first N −1 states are known, the number

of firms in the last state is determined since the total has to sum up to the number of firms F .

Therefore, the limiting Chi-Square distribution has N(T −1)− (N −1) = (N −1)(T −1)+ 1

degrees of freedom.

A first Pearson-Chi-Square goodness-of-fit test for Example 3.3 results in a test statistic

χ2 = 30.70. The probability of obtaining a test statistic at least this large is approximately

53.2%, which means the fit is fairly good but can be improved. This coincides with the way

the data was simulated, since all firms actually followed their own Markov chains, which
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were similar but slightly different.

To test the fit of this estimation for a single firm in this example, an exact multinomial

test can be used since the sample size and the number of states are both small. If the

number of states is large, a likelihood ratio test can be used instead. The following example

shows the result of the exact multinomial test when fitting the base matrix estimation to

the contingency table of firm number 1 from Example 3.1.

Example 3.4. The reduced contingency table for firm number 1 is given in Equation 3.2 in

Example 3.1. An exact multinomial test is used to test the fit of the estimated base matrix to

firm number 1 specifically. This results in one p-value for each row of the estimated matrix.

Let B̂i denote the ith row of the estimated transition matrix and let ci be the ith row of the

observed reduced contingency table for firm number 1. In this example, the following p-values

are obtained:

PB̂1
(c1) = 0.0947, PB̂2

(c2) = 0.3846, PB̂3
(c3) = 0.1436, PB̂4

(c4) = 0.3250.

This means that, for example, the probability of the first row of the contingency table

to look like this or be more extreme, when the true distribution is B̂1, is 9.47%. The null

hypothesis, that B̂1 is the true distribution of the first row would therefore be rejected to

a significance level of α = 0.1. The other rows have a probability that is higher than the

significance level but still have a seemingly bad fit with low p-values. The estimation for any

firm can be improved by using the method shown in Section III.3.2.

III.3.2 Linear Combination Refinement

The naive estimation in Example 3.1 was imprecise given the true transition matrix but

the multinomial test yields that it is a perfect fit for the single firm contingency table,

meaning that the probability of obtaining this or a more extreme contingency table under the
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maximum likelihood estimation for a single firm is 1, because by definition of the maximum

likelihood estimator the given contingency table is the most likely sample. The maximum

likelihood estimation based on all firms in Example 3.3 is much closer to the actual transition

matrix but its fit was not as good. A logical conclusion from this can be that a good estimate

lies between the maximum likelihood estimate based on the single firm and the maximum

likelihood estimate based on all firms. Therefore, the following estimator is proposed to

compromise between a realistic estimation and a good fit.

Definition 3.5. Let B̂ be the maximum likelihood estimate transition matrix based on all

firms. Let P̂ k
MLE be the maximum likelihood estimate matrix based on the single firm k.

When estimating the transition probability P k
ij for a single firm Markov chain Zk(t), define

the estimator P̂ k
ij to be

P̂ k
ij = (B̂ij + βP̂ k

MLE;ij)
1

γi

where β is any real number that satisfies β ≥ 0. All the transition probabilities can be

arranged in a matrix to create an estimator for the transition matrix P k as a whole, such as

P̂ k = (P̂ k
ij)i,j=1,...,N

The factor γi is a normalizing factor to ensure that all the probabilities in a row sum up

to 1. It is given by

γi =
N∑
l=1

(
B̂il + βP̂ k

MLE;il

)
= 1 + β.

The intuition behind this theorem is to start with the base matrix estimate and then to

slowly increase the probabilities of the transitions that have actually been observed while

simultaneously lowering the probabilities of the transitions that have not been observed.

Goodness-of-fit tests can be used to evaluate the fit of the estimate for different values of

β. Continuing the example in Section III.3, the following example illustrates how different

values of β affect the goodness of fit.
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Example 3.6. Consider a sequence βn = 0.01n for n = 1, ..., 20. Table III.1 shows the

results of multinomial goodness-of-fit tests, which are the probabilities of obtaining this or a

more extreme sample under P̂ 1 given β = βn. The following observations on this table can

be made.

• The average fit is always increasing but sometimes experiences larger jumps.

• The fit of row 1 rises above the significance level of α = 0.1 when β = 0.02.

• The fit of row 3 has a significant jump when β = 0.05

• Row 4 shows a large increase in goodness of fit when β = 0.06.

• Row 2 has a large jump in probability when β = 0.07.

• Row 1 increases its fit by a large amount when β = 0.14.

Since P̂ k
MLE is the perfect fit, larger values of β will always increase the goodness of

fit. Therefore additional criteria must be used to keep β within reasonable bounds. The

following proposition gives some sensible ways of choosing β.

Remark 3.7. When choosing the factor β for the estimator P̂ k, one of the following methods

can be considered.

1. Choose β such that all p-values for the exact multinomial test are larger than a self-

defined satisfactory level.

2. Choose the largest possible β for which Hypothesis 2.3 still holds, meaning that transi-

tions to nearby states are more likely than transitions to states that are far away.

3. Choose the smallest β such that every row has experienced a significant jump in good-

ness of fit.

4. Choose β to minimize the variance of P̂ k (see Section III.3.3).
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β Row 1 Row 2 Row 3 Row 4 Average

0.01 0.0961 0.4981 0.152 0.3289 0.2688

0.02 0.1094 0.5005 0.1603 0.3328 0.2758

0.03 0.1229 0.503 0.1685 0.3366 0.2828

0.04 0.1244 0.5055 0.1765 0.3403 0.2867

0.05 0.126 0.508 0.3628 0.344 0.3352

0.06 0.1277 0.5105 0.3688 0.437 0.361

0.07 0.1294 0.639 0.3747 0.4391 0.3955

0.08 0.1312 0.6391 0.5787 0.4411 0.4475

0.09 0.133 0.6393 0.5826 0.6322 0.4968

0.10 0.1348 0.6396 0.5864 0.6322 0.4982

0.11 0.1366 0.6399 0.5901 0.6322 0.4997

0.12 0.1385 0.6402 0.5938 0.6323 0.5012

0.13 0.1405 0.6406 0.5974 0.6323 0.5027

0.14 0.2207 0.641 0.6009 0.6323 0.5237

0.15 0.2424 0.6415 0.6044 0.6324 0.5302

0.16 0.2637 0.642 0.6078 0.6325 0.5365

0.17 0.286 0.6426 0.6111 0.6325 0.5431

0.18 0.3089 0.6431 0.6144 0.6326 0.5498

0.19 0.3328 0.6437 0.6177 0.6327 0.5567

0.20 0.3335 0.6444 0.6208 0.6328 0.5579

Table III.1: Multinomial sample probabilities for different values of β
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III.3.3 Expectation and Variance

When evaluating the estimator in Section III.3.2, it is of interest to know its expectation and

variance. This is especially important for checking unbiasedness and in regard of method 4

in Remark 3.7.

Theorem 3.8. Consider the estimator P̂ k for the transition matrix of single firm k’s Markov

chain. The estimator is given in Definition 3.5. The estimator for a single matrix element

is P̂ k
ij. Its expectation and variance are given by

E
[
P̂ k
ij

]
=
Bij + βP k

ij

1 + β
,

Var
[
P̂ k
ij

]
=

1

(1 + β)2
Var
[
B̂ij

]
+

β2

(1 + β)2
Var
[
P̂ k
MLE;ij

]
+

2β

(1 + β)2
Cov

[
B̂ij, P̂

k
MLE;ij

]
where P k

ij is the true transition probability from state i to state j for firm k. Bij is the true

transition probability from state i to state j in a theoretical Markov chain that all firms follow.

While this Markov chain does not actually exist, it can be seen as the average Markov chain

of all firms, so Bij can be interpreted as the average probability of going from state i to state

j.

Proof.

E
[
P̂ k
ij

]
= E

[
1

1 + β
(B̂ij + βP̂ k

MLE;ij)

]

=
1

1 + β
E
[
B̂ij + βP̂ k

MLE;ij

]
=

1

1 + β

(
E
[
B̂ij

]
+ βE

[
P̂ k
MLE;ij

])
=
Bij + βP k

ij

1 + β
.

The last step can be done because maximum likelihood estimators are inherently unbiased.
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Var
[
P̂ k
ij

]
= Var

[
1

1 + β
(B̂ij + βP̂ k

MLE;ij)

]

=
1

(1 + β)2
Var
[
B̂ij + βP̂ k

MLE;ij

]
=

1

(1 + β)2

(
Var
[
B̂ij

]
+ Var

[
βP̂ k

MLE;ij

]
+ 2Cov

[
B̂ij, βP̂

k
MLE;ij

])

=
1

(1 + β)2
Var
[
B̂ij

]
+

β2

(1 + β)2
Var
[
P̂ k
MLE;ij

]
+

2β

(1 + β)2
Cov

[
B̂ij, P̂

k
MLE;ij

]

For the estimator to be unbiased, the expectation would have to be equal to the true

transition probability P k
ij. However this only happens when P̂ k

ij = Bij, meaning that P k
ij

would have to be exactly equal to the average probability of going from state i to state

j. Given this criterion, unbiasedness cannot be achieved by choosing a certain β rather it

has to be inherent in the given data. However, even though the estimator is not unbiased,

it is better than the maximum likelihood estimator given the small number of entries in a

contingency table for a single firm (see Example 3.1).

Since unbiasedness cannot be generally achieved, the following theorem takes a closer

look at the result of Theorem 3.8 for the variance in order to test the applicability of method

4 in Remark 3.7.

Theorem 3.9. Let Si be the set of all firms that have ever been in state i over all time

periods (firms can be present in Si multiple times) and let ni be the size of Si. Let nki be the

total number of times firm number k has been in state i. Then:

Var
[
B̂ij

]
=

(
1

ni

)2∑
l∈Si

P l
ij(1− P l

ij),

Var
[
P̂ k
MLE;ij

]
=

1

nki
P k
ij(1− P k

ij), and
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Cov
[
B̂ij, P̂

k
MLE;ij

]
=

1

ni
P k
ij(1− P k

ij) =
nki
ni

Var
[
P̂ k
MLE;ij

]
Proof. Let cij be the total number of times a firm has ever moved from state i to state j.

Let ckij be the number of times firm number k has moved from state i to state j. Let I{k,j,a}

denote the indicator of firm k moving to state j at the ath time it is in state i and let I{k,j}

denote the indicator of firm k moving from state i to state j at a non-specified time. Then

the variance of B̂ij is determined as follows.

Var
[
B̂ij

]
= Var

[
cij
ni

]

=

(
1

ni

)2

Var
[
cij
]

=

(
1

ni

)2

Var

[∑
l∈Si

I{l,j}

]

=

(
1

ni

)2∑
l∈Si

Var
[
I{l,j}

]

=

(
1

ni

)2∑
l∈Si

Var
[
I{l,j}

]

=

(
1

ni

)2∑
l∈Si

P l
ij(1− P l

ij)

Next, the evaluation of Var
[
P̂ k
MLE;ij

]
is obtained.
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Var
[
P̂ k
MLE;ij

]
= Var

[
ckij
nki

]

=

(
1

nki

)2

Var
[
ckij
]

=

(
1

nki

)2

Var

[ nk
i∑

a=1

I{k,j,a}

]

=

(
1

nki

)2 nk
i∑

a=1

Var

[
I{k,j,a}

]

=

(
1

nki

)2 nk
i∑

a=1

P k
ij(1− P k

ij)

=

(
1

nki

)2

nkiP
k
ij(1− P k

ij)

=

(
1

nki

)
P k
ij(1− P k

ij)

Finally, observe, that clij and ckij are independent when k 6= l. Then the covariance is

evaluated as follows.

Cov
[
B̂ij, P̂

k
MLE;ij

]
= E

[
B̂ijP̂

k
MLE;ij

]
− E

[
B̂ij

]
E
[
P̂ k
MLE;ij

]
= E

[
cijc

k
ij

ninki

]
−BijP

k
ij

= E

[
F∑
l=1

(clijckij
ninki

)]
−BijP

k
ij

=
F∑
l=1

E

[
clijc

k
ij

ninki

]
−BijP

k
ij
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=
F∑

l=1;l 6=k

(
E
[clij
ni

]
E
[ckij
nki

])
+ E

[(ckij)
2

ninki

]
−BijP

k
ij

=
F∑
l=1

(
E
[clij
ni

]
E
[ckij
nki

])
− E

[ckij
ni

]
E
[ckij
nki

]
+

1

ninki
E
[
(ckij)

2
]
−BijP

k
ij

= BijP
k
ij − E

[ckij
ni

]
P k
ij +

1

ninki
E
[
(ckij)

2
]
−BijP

k
ij

= −
nkiP

k
ij

ni
P k
ij +

1

ninki
E
[
(ckij)

2
]

= −
nkiP

k
ij

ni
P k
ij +

1

ninki
E
[ nk

i∑
a=1

I{k,j,a}
nk
i∑

b=1

I{k,j,b}
]

= −
nkiP

k
ij

ni
P k
ij +

1

ninki
E
[ nk

i∑
a=1

(
I{k,j,a}

nk
i∑

b=1

I{k,j,b}
)]

= −
nkiP

k
ij

ni
P k
ij +

1

ninki

nk
i∑

a=1

(
E
[
I{k,j,a}

nk
i∑

b=1

I{k,j,b}
])

= −
nkiP

k
ij

ni
P k
ij +

1

ninki

nk
i∑

a=1

(
E
[
I{k,j,a}

nk
i∑

b=1;b6=a

I{k,j,b} + I{k,j,a}
])

= −
nkiP

k
ij

ni
P k
ij +

1

ninki

nk
i∑

a=1

(
E
[
I{k,j,a}

]
E
[ nk

i∑
b=1;b6=a

I{k,j,b}
]

+ E
[
I{k,j,a}

])

= −
nkiP

k
ij

ni
P k
ij +

1

ninki

nk
i∑

a=1

(
P k
ij(n

k
i − 1)P k

ij + P k
ij

)
= −

nkiP
k
ij

ni
P k
ij +

1

ninki
nkiP

k
ij

(
nkiP

k
ij − P k

ij + 1
)

= −
nkiP

k
ij

ni
P k
ij +

nkiPij
ni

P k
ij −

P k
ij

ni
P k
ij +

1

ni
P k
ij

=
1

ni
P k
ij(1− P k

ij).

When comparing the two variances, it can be easily seen that Var
[
B̂ij

]
< Var

[
P̂ k
MLE;ij

]
if and only if

nki
ni

<
P k
ij(1− P k

ij)
1
ni

∑
l∈Si

P l
ij(1− P l

ij)
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meaning that the variance of the base matrix estimation is smaller as long as its sample

size is sufficiently large. The expression 1
ni

∑
l∈Si

P l
ij(1 − P l

ij) can be interpreted as the

average variance of clij across all firms l in state i. Therefore, the right side of the expression

will usually be near 1 while the left side decreases when increasing the number of firms.

This means, Var
[
B̂ij

]
is usually smaller than Var

[
P̂ k
MLE;ij

]
. Also, the covariance of the two

estimators is less than Var
[
P̂ k
MLE;ij

]
, since nki ≤ ni. The condition of the covariance being

less than Var
[
B̂ij

]
is

Cov
[
B̂ij, P̂

k
MLE;ij

]
< Var

[
B̂ij

]
nki
ni

Var
[
P̂ k
MLE;ij

]
< Var

[
B̂ij

]
1 <

Var
[
B̂ij

]
nk
i

ni
Var
[
P̂ k
MLE;ij

]

1 <

(
1
ni

)2∑
l∈Si

P l
ij(1− P l

ij)

1
ni
P k
ij(1− P k

ij)

1 <
1
ni

∑
l∈Si

P l
ij(1− P l

ij)

P k
ij(1− P k

ij)

P k
ij(1− P k

ij) <
1

ni

∑
l∈Si

P l
ij(1− P l

ij).

This means that the covariance is less than the variance of B̂ij if and only if the variance of

and indicator for firm k going from i to j is less than an expression that can be interpreted

as the average variance of such indicators for all firms.

When looking to minimize the variance of the estimator P̂ k as a function of β, the min-

imizing β will therefore most likely be small since 1
(1+β)2

is decreasing in β and β2

(1+β)2
is

increasing in β and converges to 1. However, because of the covariance term, a minimizing
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β ≥ 0 cannot always be found. The following example shows the structure of the variance

as a function of β.

Example 3.10. Let Var
[
B̂ij

]
= 1, Var

[
P̂ k
MLE;ij

]
= 2 and Cov

[
B̂ij, P̂

k
MLE;ij

]
= 0.5. Fig-

ure III.3 shows the plot of Var
[
P̂ k
ij

]
as a function of β. Similar plots can be found for

different example values of Var
[
B̂ij

]
and Var

[
P̂ k
MLE;ij

]
given that Cov

[
B̂ij, P̂

k
MLE;ij

]
<

Var
[
B̂ij

]
< Var

[
P̂ k
MLE;ij

]
. Figure III.4 shows the shape of the variance function when

Cov
[
B̂ij, P̂

k
MLE;ij

]
> Var

[
B̂ij

]
.

Figure III.3: Example variance of P̂ k
ij with

small covariance

Figure III.4: Example variance of P̂ k
ij with

large covariance

Since the variance for every element of P̂ k is different but uses the same β, one β would

have to minimize all variances at the same time. This is hardly possible. But a value of β

that minimizes the sum of all element variances can be found. It is given by the following

theorem.

Theorem 3.11. Let βmin be the value of β in P̂ k that minimizes

V (β) =
N∑
i=1

N∑
j=1

V ar(P̂ k
ij).
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It is given by

βmin =

∑N
i=1

∑N
j=1 V ar(B̂ij)−

∑N
i=1

∑N
j=1 Cov(B̂ij, P̂MLE;ij)∑N

i=1

∑N
j=1 V ar(P̂MLE;ij)−

∑N
i=1

∑N
j=1 Cov(B̂ij, P̂MLE;ij)

as long as
N∑
i=1

N∑
j=1

V ar(B̂ij) >
N∑
i=1

N∑
j=1

Cov(B̂ij, P̂MLE;ij).

Proof. Let Var(B̂) =
∑N

i=1

∑N
j=1 Var

[
B̂ij

]
, let Var(P̂ k

MLE) =
∑N

i=1

∑N
j=1 Var

[
P̂ k
MLE;ij

]
and let Cov(B̂, P̂ k

MLE) =
∑N

i=1

∑N
j=1 Cov(B̂ij, P̂MLE;ij) Then:

V (β) =
N∑
i=1

N∑
j=1

V ar(P̂ k
ij)

=
N∑
i=1

N∑
j=1

[
1

(1 + β)2
Var
[
B̂ij

]
+

β2

(1 + β)2
Var
[
P̂ k
MLE;ij

]
+

2β

(1 + β)2
Cov

[
B̂ij, P̂

k
MLE;ij

]]

=
1

(1 + β)2

N∑
i=1

N∑
j=1

Var
[
B̂ij

]
+

β2

(1 + β)2

N∑
i=1

N∑
j=1

Var
[
P̂ k
MLE;ij

]
+

2β

(1 + β)2

N∑
i=1

N∑
j=1

Cov
[
B̂ij, P̂

k
MLE;ij

]
=

1

(1 + β)2
Var(B̂) +

β2

(1 + β)2
Var(P̂ k

MLE) +
2β

(1 + β)2
Cov(B̂, P̂MLE)

To minimize this function of β, the derivative is taken and set equal to 0 to obtain a critical

value of β.
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V ′(β) = − 2

(1 + β)3
Var(B̂) +

2β(1 + β)2 − β22(1 + β)

(1 + β)4
Var(P̂ k

MLE)

+
2(1 + β)2 − 4β(1 + β)

(1 + β)4
Cov(B̂, P̂MLE)

= − 2

(1 + β)3
Var(B̂) +

2β(1 + β)− 2β2

(1 + β)3
Var(P̂ k

MLE)

+
2(1 + β)− 4β

(1 + β)3
Cov(B̂, P̂MLE)

= − 2

(1 + β)3
Var(B̂) +

2β

(1 + β)3
Var(P̂ k

MLE) +
2− 2β

(1 + β)3
Cov(B̂, P̂MLE)

=
−2Var(B̂) + 2βVar(P̂ k

MLE) + 2Cov(B̂, P̂MLE)− 2βCov(B̂, P̂MLE)

(1 + β)3

0 =
−2Var(B̂) + 2βVar(P̂ k

MLE) + 2Cov(B̂, P̂MLE)− 2βCov(B̂, P̂MLE)

(1 + β)3

0 = −2Var(B̂) + 2βVar(P̂ k
MLE) + 2Cov(B̂, P̂MLE)− 2βCov(B̂, P̂MLE)

β =
Var(B̂)− Cov(B̂, P̂MLE)

Var(P̂ k
MLE)− Cov(B̂, P̂MLE)

β =

∑N
i=1

∑N
j=1 V ar(B̂ij)−

∑N
i=1

∑N
j=1 Cov(B̂ij, P̂MLE;ij)∑N

i=1

∑N
j=1 V ar(P̂MLE;ij)−

∑N
i=1

∑N
j=1 Cov(B̂ij, P̂MLE;ij)
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To prove that this is in fact a minimum, the second derivative test is used.

V ′′(β) =
6

(1 + β)4
Var(B̂) +

2(1 + β)3 − 6β(1 + β)2

(1 + β)6
Var(P̂ k

MLE)

+
(−2)(1 + β)3 − 3(2− 2β)(1 + β)2

(1 + β)6
Cov(B̂, P̂MLE)

=
6

(1 + β)4
Var(B̂) +

2(1 + β)− 6β

(1 + β)4
Var(P̂ k

MLE)

+
(−2)(1 + β)− (6− 6β)

(1 + β)4
Cov(B̂, P̂MLE)

=
6Var(B̂) + (2− 4β)Var(P̂ k

MLE) + (4β − 8)Cov(B̂, P̂MLE)

(1 + β)4
.

Let β0 =
Var(B̂)− Cov(B̂, P̂MLE)

Var(P̂ k
MLE)− Cov(B̂, P̂MLE)

.

Observe that β0 > 0 if Var(B̂) > Cov(B̂, P̂MLE). Then

V ′′
(
β0

)
=

6Var(B̂) +
(

2− 4β0

)
Var(P̂ k

MLE) + (4β0 − 8)Cov(B̂, P̂MLE)(
1 + β0

)4 .

0 < V ′′
(
β0

)
when the following equivalent statements hold

0 < 6Var(B̂) +
(

2− 4β0

)
Var(P̂ k

MLE) + (4β0 − 8)Cov(B̂, P̂MLE)

0 < 6Var(B̂) + 2Var(P̂ k
MLE)− 4β0Var(P̂ k

MLE) + 4β0Cov(B̂, P̂MLE)− 8Cov(B̂, P̂MLE)

0 < 6
(

Var(B̂)− Cov(B̂, P̂MLE)
)

+ (2− 4β0)
(

Var(P̂ k
MLE)− Cov(B̂, P̂MLE)

)
(4β0 − 2)

(
Var(P̂ k

MLE)− Cov(B̂, P̂MLE)
)
< 6
(

Var(B̂)− Cov(B̂, P̂MLE)
)

2

3
β0 −

1

3
<

Var(B̂)− Cov(B̂, P̂MLE)

Var(P̂ k
MLE)− Cov(B̂, P̂MLE)

2

3
β0 −

1

3
< β0

β0 > −1.

Since this proves that the second derivative is larger than 0 for the critical value, it is in fact
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a minimum. Therefore:

βmin =

∑N
i=1

∑N
j=1 V ar(B̂ij)−

∑N
i=1

∑N
j=1 Cov(B̂ij, P̂MLE;ij)∑N

i=1

∑N
j=1 V ar(P̂MLE;ij)−

∑N
i=1

∑N
j=1 Cov(B̂ij, P̂MLE;ij)

The problem is that the optimal, variance minimizing value of β, βmin, is dependent on

the true transition probabilities of the firms, which are unknown. However, there are two

possible methods of estimating them in order to estimate βmin. The obvious approach is to

use the base matrix estimation from Section III.3.1. This approach might not be optimal in

the sense that it replaces all Pij with the same probability even though it is known that they

are different for different firms. However, the actual estimations P̂ij are dependent on β. So

how can a variance minimizing β be found before the estimates P̂ij are known? A reasonable

approach would be to choose a first β according to the first three methods in Remark 3.7

and then use those estimates to estimate a new, variance minimizing β iteratively.

III.4 Estimating the Aggregate Markov Chain

When estimating the transition probability matrix for the aggregate Markov chain, the

method from the idiosyncratic Markov chain cannot be used. There is only one market and

there is no “base estimation”. The problem is, again, that the number of data points will

be limited in most real life data sets. However, the way the sales of the firms within the

market move is known, or at least can be properly estimated using the method in Section

III.3. This knowledge can be used to estimate the transition probabilities of the aggregate

Markov chain. The methods in this section can be used when sales data is available. In this

thesis, however, data is simulated and sales would have to be calculated from the simulated

productivity and employment data. Using simulated sales data significantly complicates

the process of estimating the aggregate Markov chain. It also introduces the problem that

employment decisions have to be made during the simulation while in real life data these
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decisions have already been made. Therefore, this section explores a theoretical approach to

how estimation would work if real life data were available, rather than showing the estima-

tion with simulated data.

As described in Section III.1, the aggregate productivity is measured by the ratio of the

sales in time period t against the sales in time period t − 1 and its state space is given by

discrete intervals. Like the idiosyncratic Markov chain, it is time-homogeneous. A special

property of the aggregate Markov chain is, that not only the value of A(t−1) is known but all

firms’ sales in the time period t−1 and their transition probabilities are known or estimated.

The transition probabilities of the Markov chain {A(t)}t=1,..,T can then be reformulated as

shown in the following theorem.

Theorem 4.1. Let Aij be the probability that the Markov chain {A(t)}t=1,..,T is in state i at

time t−1 and in state j at time t. Let SA = {I1, I2, ..., INA
} be the state space of {A(t)}t=1,..,T

and let In = (an, bn], where an < bn for all n = 1, ..., NA, be the intervals in that state space.

Let F be the number of firms in the market. Let S(t) denote the total sales in the market

and let Sk(t) denote the sales at firm k in time period t. Then, by the definition of A(t),

Aij = P (S(t) ≤ bjS(t− 1) | Sk(t− 1) = skt−1∀k = 1, ..., F )

− P (S(t) ≤ ajS(t− 1) | Sk(t− 1) = skt−1∀k = 1, ..., F ).

Proof.

Aij = P (A(t) ∈ Ij | A(t− 1) ∈ Ii)

= P (A(t) ∈ (aj, bj] | Sk(t− 1) = skt−1∀k = 1, ..., F )

= P (S(t) ∈ (ajS(t− 1), bjS(t− 1)] | Sk(t− 1) = skt−1∀k = 1, ..., F )

= P (S(t) ≤ bjS(t− 1) | Sk(t− 1) = skt−1∀k = 1, ..., F )

− P (S(t) ≤ ajS(t− 1) | Sk(t− 1) = skt−1∀k = 1, ..., F ).
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However, to move forward the sales and their transition probabilities have to be known.

The sales are usually available in real life data. When divded into intervals, they can be seen

as a Markov chain, similar to Zk(t).

Definition 4.2. For each firm k ∈ {1, 2, ..., F} in a certain market, the process Sk(t) de-

scribes the firm’s sales in time period t. The process satisfies

Sk(t) ∈ (aktL
k(t), bktL

k(t)],

where Lk(t) is the number of employees for the firm k in the time period t and (akt , b
k
t ] is the

state of Zk(t), the firm-specific productivity process, at time t.

Calculating these transition probabilities directly from Z and L is difficult since the two

processes are not independent and L is not a Markov chain. Instead, a reasonable approach

is to assume that Sk(t) moves according to a Markov chain with transition probabilities Sij

and for all k, Sk(t) takes values from the same state space I which consists of a finite number

of intervals.

I = {Ii = [ci, di)] | i = 1, 2, ...,M, 0 ≤ a1 < b1 ≤ a2 < b2 ≤ ... < bM}.

If Sk(t) is a Markov chain, its transition probabilities, denoted as Sij,can be estimated in the

exact same way described for Zk in Section III.3, given that real life sales data is available.

The next theorem shows what the probability for the total sales in time period t being less

than a certain number is, while the sales of all firms in time period t− 1 are given.

Theorem 4.3. Let P (Ij = x | St−1) denote the conditional probability that there are x or

less firms in state Ij ∈ I at time t. Let St−1 denote the knowledge that Sk(t− 1) = skt−1∀k =
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1, ..., F . Then

P (S(t) ≤ s | St−1)

≥
∑
x̃∈XU

P (I1 = x1 | St−1) P (It = x2 | St−1) ... P (IM−1 = xM−1 | St−1)

where

XU = {x̃ = (x1, ..., xM) | x1 + x2 + ...+ xM = F, 0 ≤ xj ≤ Uj ∀j = 1, ...,M}

and

Uj = min

(⌊
1

dj

(
s−

j−1∑
n=1

xndn

)⌋
, F −

j−1∑
i=1

xi

)
.

Also

P (S(t) ≤ s | St−1)

≤
∑
x̃∈XO

P (I1 = x1 | St−1) P (It = x2 | St−1) ... P (IM−1 = xM−1 | St−1)

where

XO = {x̃ = (x1, ..., xM) | x1 + x2 + ...+ xM = F, 0 ≤ xj ≤ Oj ∀j = 1, ...,M}

and

Oj = min

(⌊
1

dj

(
s−

j−1∑
n=1

xndn

)⌋
+ 1, F −

j−1∑
i=1

xi

)
.

dj is the upper bound for the interval Ij from the state space I from the sales Markov chain.

Only the probabilities from 1 to M − 1 need to be multiplied since the last probability is

1 if all other x’s are known. This comes from the constraint that all x’s have to sum up to

the total number of firms. The intuition of this theorem is, that it sums up the probabilities

of all possible firm state combinations that would sum up to total market sales less than

s. This probability interval becomes more accurate the finer the state space is since s is a

number and the states of the sales process are intervals. By using the upper bound of those

intervals in the first inequality, it is made sure that the sales are never greater than s, but
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if the sales are actually in the lower region of an interval, some possible scenarios might be

missed in the summation. But if an additional summand is added to every sum, the sales

might be slightly greater than s. To further evaluate the expression on the right side of the

inequalities, the following theorem can be used.

Theorem 4.4. Let P ((i, j) = x | St−1) denote the conditional probability that x firms go

from state i to state j given St−1. Then, given the history,

P (Ij = x | St−1) =
∑
x̃∈XR

P ((1, j) = x1 | St−1) P ((2, j) = x2 | St−1) ... P (M, j) = xM | St−1),

where

XR = {x̃ = (x1, ..., xM) | x1 + x2 + ...+ xM = x, 0 ≤ xj ≤ Rj ∀j = 1, ...,M}

and

Rj = min

(
nj, x−

j−1∑
k=1

xk

)
.

Next, P ((i, j) = x | St−1) is investigated. If all firms had the same transition probabilities

Bij, then P ((i, j) = x | St−1) =
(
ni

t

)
(Bij)

x(1 − Bij)
ni−x. However, every firm has different

transition probabilities Skij for the sales Markov chain. The following theorem gives a more

accurate representation of P ((i, j) = x | St−1).

Theorem 4.5. Let Sx,a,i denote the ath subset of size x of the firms that were in state i in

the last time period (firms can appear in this set multiple times). Then

P ((i, j) = x | St−1) =

(ni
x )∑

a=1

∏
k∈Sx,a,i

Skij
∏

k/∈Sx,a,i

(1− Skij).

The following simple example better illustrates the whole procedure.

Example 4.6. Let the sales process have M = 3 states and F = 3 firms moving in it through
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T = 4 time periods. The state space of the sales process is I = {(0, 100], (100, 200], (200, 300]}.

Let s = 500. The following reduced contingency table was recorded.

C =



1 2 3

1 1 1 0

2 2 0 2

3 0 2 1


To set up the first two inequalities, the index sets XU and XO must be defined. In this case

XU = {(0, 2, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (3, 0, 0)},

XO = {(0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (3, 0, 0)}.

Then, the first inequality resolves to

P (S(t) ≤ 500 | St−1) = P (I1 = 0 | St−1)P (I2 = 2 | St−1) + P (I1 = 1 | St−1)P (I2 = 2 | St−1)

+ P (I1 = 2 | St−1)P (I2 = 0 | St−1) + P (I1 = 2 | St−1)P (I2 = 1 | St−1)

+ P (I1 = 3 | St−1).

Then, for example, for the equation of P (I1 = 2 | St−1), the set XR must be defined. In

this case

XR = {(0, 0, 2), (0, 1, 1), (0, 2, 0), (1, 1, 0), (1, 0, 1), (2, 0, 0)}.

This means that for example in the first tuple, 0 firms move from state 1 to state 1, 0

firms move from state 2 to state 1, but 2 firms move from state 3 to state 1. Now, the

equation of P (I1 = 2 | St−1) resolves to
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P (I1 = 2 | St−1) = P ((1, 1) = 0 | St−1)P ((2, 1) = 0 | St−1)P ((3, 1) = 2 | St−1) + ...

+ P ((1, 1) = 2 | St−1)P ((2, 1) = 0 | St−1)P ((3, 1) = 0 | St−1).

Next, the individual probabilities in this equation are resolved. The ni needed for this can be

taken from the contingency table C. For example,

P ((1, 2) = 1 | St−1) =
2∑

a=1

∏
k∈S1,a,1

P k
ij

∏
k/∈S1,a,1

(1− P k
ij).

So, if the firms in state 1 were Firm 1 and Firm 2, then there are only two possible subsets

of size 1:

S1,1,1 = {1}, S1,2,1 = {2}.

Then, the probability resolves to

P ((1, 2) = 1 | St−1) = S1
ij(1− S2

ij) + S2
ij(1− S1

ij).

The transition probabilities Skij must be estimated using the methods in Section III.3.

In further research, the transition probabilities of A might be directly calculated from the

processes Z and L. Once the transition probabilities Aij are estimated, either an exact

multinomial test or a likelihood ratio test can be used to test the goodness of fit of A to the

market movement.
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Summary and Outlook

IV.1 Summary of Results

In this thesis, a methodology of estimating the parameters of a complex Markov model for

firm and aggregate productivity was developed. A single firm’s productivity is assumed to

follow a Markov chain with its own transition probability matrix. Maximum likelihood es-

timation often yields unsatisfying results with a large variance since data for a single firm

is limited. However, if it is assumed that all firms in a market follow a similar behavior,

a variation of a base estimation can be used to find an estimate for a single firm’s produc-

tivity Markov chain. This estimator starts with a maximum likelihood estimate based on

all firms in the market and slightly increases the probabilities of the transitions that have

actually occurred for this firm. The level of increase depends on a factor β. Under certain

conditions this factor can also be chosen to minimize the variance of the new estimator.

Different goodness-of-fit tests can be used to test the fit of the new estimate for a single

firm. If the sample size and number of states are small, a multinomial test can be used,

otherwise a likelihood ratio test is applicable. A Pearson-Chi-Square test can be used for

the base estimation or when a lot of single firm data is available. While increasing the

factor β always increases the goodness-of-fit, it also increases the estimators variance if it

cannot be minimized. Therefore, different methods of choosing β are proposed, for example

a goodness-of-fit condition.
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While this thesis uses simulated data to illustrate this methodology, applications would

use real life data which often includes employment levels and sales. If sales data is avail-

able, it can be used to estimate the transition probabilities of the aggregate productivity

Markov chain. This estimation is complex and depends on sales processes from all firms in

the market. This thesis explores a theoretical approach to this estimation and breaks down

the formulas in an example. Both estimation methods, for the firm and aggregate Markov

chains, can be used on real life data to help with solving optimal decision making problems

for employment levels.

IV.2 Outlook

Many different steps can be taken to incorporate the results of this thesis in further research.

The obvious next step is to use the methods developed in this thesis on real life data to

estimate idiosyncratic and aggregate Markov chains. When these Markov chains have been

estimated, the rest of the profit formula that was shown in the introduction could be analyzed.

Ultimately, an approach to solving labor demand problems can be developed. A possible

direct extension of this thesis would be to analyze the expectation and variance of the

aggregate estimator. Another way of refining the model is to incorporate the wage rate as a

stochastic process and estimate it using similar methods as in this thesis. If the approach of

using Markov chains is in question, methods as proposed by Eggar (2002) could be employed

to validate the Markov model itself.
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Appendix

A Data Simulation in R

l i b r a r y (expm)
l i b r a r y ( pracma )

#Simulat ing F N−s t a t e markov chain over T time per iods ,
#each having s l i g h t l y d i f f e r e n t t r a n s i t i o n matr i ce s

F=10
N=4
T=3

stateNames = seq (10000 ,10000∗N,10000)
f o r ( k in 1 :N){
stateNames [ k]= toS t r i ng ( stateNames [ k ] )
}

#base t r a n s i t i o n matrix that makes i t l e s s l i k e l y
#to t r a n s i t i o n to s t a t e s that are f a r away
normal = 0
basematr ix = matrix (0L , nrow=N, nco l=N)
f o r ( i in 1 :N){
vec = seq (0 , 0 , l ength . out=N)
normal = 0
f o r ( j in 1 :N){
p = 1/2∗1/( abs ( i−j )+1)
normal = normal+p
vec [ j ]=p
}
basematr ix [ i , ]= vec ∗1/ normal
}
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#vary the t r a n s i t i o n matrix f o r each f i rm −− STARTING HERE
matr ixL i s t = l i s t ( )

#Randomly c r e a t e market trend
mtrend = r u n i f (1 )

f o r ( k in 1 :F){
matr ixL i s t [ [ k ] ]= matrix (0L , nrow=N, nco l=N)

#Does the f i rm tend to do b e t t e r or worse ?
#The b e t t e r the market trend i s , the more l i k e l y the f i rm i s to do we l l
f = r u n i f (1 )
f t r end = r u n i f (1 )
f t r end = s ign ( mtrend−f )∗ f t r end ∗1/8

f o r ( i in 1 :N){
vec = seq (0 , 0 , l ength . out=N)
normal = 0
f o r ( j in 1 :N){

i f ( i−j <0){
#i f the trend i s p o s i t i v e the p r o b a b i l i t y o f g e t t i n g
#in to a h igher s a l e s c l a s s in i n c r ea s e d
pInc = rnorm (1 , f t rend ,2∗ abs ( f t r end ) )∗ basematr ix [ i , j ]

+basematr ix [ i , j ]
} e l s e i f ( i−j>0) {
#i f the trend i s p o s i t i v e the p r o b a b i l i t y o f f a l l i n g
#in to a lower s a l e s c l a s s i s decreased
pInc = rnorm (1 ,(−1)∗ f t rend ,2∗ abs ( f t r end ) )∗ basematr ix [ i , j ]
+basematr ix [ i , j ]

} e l s e {
pInc = rnorm (1 ,1/16 ,1/8)∗ basematr ix [ i , j ]+ basematr ix [ i , j ]
}
normal = normal+pInc
vec [ j ]= pInc
}
matr ixL i s t [ [ k ] ] [ i , ]= vec ∗1/ normal
}

}

#vary the t r a n s i t i o n matrix f o r each f i rm −− ENDING HERE
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#Randomized s t a r t i n g vec to r a s s i g n s f i rms to the s t a t e s ( s t a t e boundar ies )

n = matrix (0 , nrow=T, nco l=N+1)
n [ 1 , ] = c (0 , s o r t ( round ( r u n i f (N−1)∗F) ) ,F)

#Simulate the t r a n s i t i o n s and c r e a t e cont ing i ency t a b l e s −− STARTING HERE
f i rms = array ( rep ( c ( 1 :F) ,T) , dim=c (F ,T) )

cont in = l i s t ( )

f o r ( k in 1 : (T−1)){
cont in [ [ k ] ]= matrix (0 , nco l=N, nrow=N)
}

statesNew = l i s t ( )
#Create T−1 cont ing i ency t a b l e s
f o r ( k in 1 : (T−1)){

#Create Matrix f o r new s t a t e ass ignments
f o r ( i in 1 :N){
statesNew [ [ i ] ]= vec to r ( )
}

f o r ( j in 1 :N){
f o r ( i in f i rms [ ( n [ k , j ]+1) : n [ k , j +1] ,k ] ) {
#For a l l f i rms in t h i s s t a t e

#Generate random number to dec ide new s t a t e
x1 = r u n i f (1 )

#Find the index o f the f i r s t cumulat ive P where x1<=P us ing the
#t r a n s i t i o n matrix f o r t h i s f i rm
ns = 1
whi le ( x1>sum( matr ixL i s t [ [ i ] ] [ j , 1 : ns ] ) ) {

ns = ns+1
}

statesNew [ [ ns ] ]= c ( statesNew [ [ ns ] ] , i )
cont in [ [ k ] ] [ j , ns ] = cont in [ [ k ] ] [ j , ns ]+1
}

}
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#as s i gn new s t a t e boundar ies
f o r ( i in 2 :N){

l ength = 0
f o r ( j in 1 : ( i −1)){

l ength = length + length ( statesNew [ [ j ] ] )
}
n [ k+1, i ]= length

}
n [ k+1,N+1]=F

#as s i gn new order o f the f i rms
newFirms=vecto r ( )
f o r ( i in 1 :N){
newFirms = c ( newFirms , statesNew [ [ i ] ] )
}
f i rms [ , k+1] = newFirms
}

#Simulate the t r a n s i t i o n s and c r e a t e cont ing i ency t a b l e s −− ENDING HERE

#Simulate employment l e v e l s −− STARTING HERE

L = matrix (0 , nco l=T, nrow=F)

L[ ,1 ]= round (1000∗ abs ( rnorm (F, 0 , 1 ) ) )

Av = (N+1)/2

f o r ( k in 2 :T){
f o r ( f in 1 :F){
index = match ( f , f i rms [ , k−1])
s = 0
whi le ( index>n [ k−1, s +1]){

s = s + 1
}

#At time k−1, f i rm f was in s t a t e s

i f ( s−Av>0){
newemp = abs ( round ( rnorm ( 1 , ( s−Av)∗L [ f , k−1 ]/50 ,2) ) )
} e l s e i f ( s−Av<0){

newemp = −abs ( round ( rnorm ( 1 , ( s−Av)∗L [ f , k−1 ]/50 ,2) ) )
} e l s e {
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newemp = round ( rnorm ( 1 , 0 , 2 ) )
}

L [ f , k]=L [ f , k−1]+newemp

}
}

#Simulate employment l e v e l s −− ENDING HERE

B Parameter Estimation in R

l i b r a r y ( XNomial )
#Estimating base−matrix −− STARTING HERE

P hat=matrix (0 , nrow=N, nco l=N)

#sum up a l l cont ingency matr ices , because o f time−homogenuity
sumcontin = Reduce ( ’+ ’ , cont in )

f o r ( i in 1 :N){

f o r ( j in 1 :N){
P hat [ i , j ] = sumcontin [ i , j ] / sum( sumcontin [ i , ] )

}

}

basematrix−P hat

#Estimating base−matrix −− ENDING HERE

#Goodness o f f i t t e s t , Pearson Chi Square f o r the base matrix

X2 = 0

f o r ( k in 1 : (T−1)){
f o r ( i in 1 :N){

Oi = sum( cont in [ [ k ] ] [ , i ] )
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u=vecto r ( )
f o r ( j in 1 :N){
u = c (u , sum( cont in [ [ k ] ] [ j , ] ) )
}

Ei = (u%∗%P hat ) [ i ]

X2 = X2 + ( Oi−Ei )ˆ2/ Ei

}
}

X2
1−pchi sq (X2 , N∗(T−N) )

#Estimate t r a n s i t i o n p r o b a b i l i t i e s f o r s i n g l e f i rm −− START HERE

#Finding cont ingency tab l e o f s i n g l e f i rm f

f=2

c o n t i n s f = matrix (0 , nrow=N, nco l=N)

f o r ( k in 2 :T){

c o n t i n s f [ s t a t e s [ f , k−1] , s t a t e s [ f , k ] ]
= c o n t i n s f [ s t a t e s [ f , k−1] , s t a t e s [ f , k ] ]+1

}
c o n t i n s f

#Use maximum l i k e l i h o o d es t imat ion

P hats f = matrix (0 , nrow=N, nco l=N)

f o r ( i in 1 :N){

f o r ( j in 1 :N){
P hats f [ i , j ] = c o n t i n s f [ i , j ] / sum( c o n t i n s f [ i , ] )

}

}

#Estimate t r a n s i t i o n p r o b a b i l i t i e s f o r s i n g l e f i rm −− ENDING HERE
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#Goodness o f f i t t e s t ( Mult inomial ) f o r s i n g l e f i rm with base
#matrix e s t imat ion

M=vecto r ( )

f o r ( i in 1 :N){

observed = c o n t i n s f [ i , ]
i f (sum( observed )>0){

expected = P hat [ i , ]

V=N
j=1
whi l e ( j<=V){

i f ( expected [ j ]==0 && observed [ j ]==0){
observed=observed [− j ]
expected=expected [− j ]
j=j−1
V=V−1

}
j=j+1

}

mul = xmult i ( observed , expected , d e t a i l =2);

M = c (M, mul$pProb )
}

}

M

sum(M)/ length (M)

#Improve goodness o f f i t by l i n e a r combination approach

beta = seq ( 0 . 0 1 , 0 . 2 , by=0.01)

P h a t r e f i n e d = l i s t ( )

f o r ( k in 1 : ( l ength ( beta ) ) ){

P h a t r e f i n e d [ [ k ] ] = P hat+beta [ k ]∗ P hats f

normal = vecto r ( )
f o r ( i in 1 :N){
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normal [ i ]=sum( P h a t r e f i n e d [ [ k ] ] [ i , ] )
}

f o r ( i in 1 :N){
P h a t r e f i n e d [ [ k ] ] [ i , ]= P h a t r e f i n e d [ [ k ] ] [ i , ] ∗ 1 / normal [ i ]

}

}

#Test goodness o f f i t f o r the new r e f i n e d P hat e s t imat ion

k t e s t = 2

M=matrix (0 , nrow=length ( beta ) , nco l=N)
s ink (” output . txt ”)
f o r ( k in 1 : l ength ( beta ) ){
f o r ( i in 1 :N){

observed = c o n t i n s f [ i , ]
i f (sum( observed )>0){

expected = P h a t r e f i n e d [ [ k ] ] [ i , ]

V=N
j=1
whi le ( j<=V){

i f ( expected [ j ]==0 && observed [ j ]==0){
observed=observed [− j ]
expected=expected [− j ]
j=j−1
V=V−1

}
j=j+1

}

mul = xmult i ( observed , expected , d e t a i l =2);

M[ k , i ]=mul$pProb
}

}
}
s ink ( )

M

M avg = vecto r ( )
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f o r ( k in 1 : l ength ( beta ) ){
M avg [ k]=sum(M[ k , ] ) / l ength (M[ k , ] )

}
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