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COCOMPACT CUBULATIONS OF MIXED 3-MANIFOLDS

by

Joseph Tidmore

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Chris Hruska

In this dissertation, we complete the classification of which compact 3-manifolds have a

virtually compact special fundamental group by addressing the case of mixed 3-manifolds.

A compact aspherical 3-manifold M is mixed if its JSJ decomposition has at least one JSJ

torus and at least one hyperbolic block. We show π1M is virtually compact special iff M is

chargeless, i.e. each interior Seifert fibered block has a trivial Euler number relative to the

fibers of adjacent blocks.
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Chapter 1

Introduction

1.1 Statement of Main Result

The special cube complexes of Haglund-Wise [HW08] play a key role in the proof of the

virtual Haken and virtual fibering conjectures. An important step in proving these conjec-

tures is showing that the fundamental groups of hyperbolic 3-manifolds are virtually compact

special i.e., virtually the fundamental group of a compact special cube complex, proved by

Wise [Wis12b] and Agol [Ago13] in the cusped hyperbolic and closed cases respectively. The

main goal of this dissertation is to answer the following question.

Question 1.1.1. Let M be a compact, connected, aspherical 3-manifold whose boundary is

empty or a union of tori. For which M is π1M virtually compact special?

For a geometric manifold M which is not hyperbolic, π1M is virtually compact special if

and only if M admits an E3, H2 × R, S2 × R, or S3 geometry by an observation of Hagen-

Przytycki [HP15]. Question 9.4 of Aschenbrenner, Friedl, and Wilton in [AFW] (an earlier

version of [AFW15]) asked if the above was true when M is non-positively curved. The

main result of Hagen-Przytycki [HP15] answered this question by classifying which graph

manifold groups are virtually compact special, in particular showing many non-positively

curved graph manifold groups are not virtually compact special, and their main result left
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Question 1.1.1 unresolved only in the case when M is a mixed manifold, with mixed defined

as follows: Let M be a compact, connected, orientable, irreducible 3-manifold with ∂M

either empty or a disjoint union of tori. Then M can be cut along tori called JSJ tori so

that each component is a hyperbolic 3-manifold or a Seifert fibered space. The 3-manifold

M is mixed if this decomposition has at least one hyperbolic component and at least one JSJ

torus. Each component of this JSJ decomposition is a block. Przytycki-Wise proved mixed

manifold groups are virtually special in [PW] but did not address the issue of compactness.

In this dissertation, we completely answer Question 1.1.1 by studying the mixed manifold

case.

The answer to Question 1.1 for mixed manifolds is similar to Hagen-Przytycki’s answer for

graph manifolds. They showed the obstruction to virtually compact special for nongeometric

graph manifold groups is the charge. For a Seifert fibered block B of a mixed manifold M

which is interior, meaning B does not contain a boundary torus and is not adjacent to

a hyperbolic block, the charge of B is its Euler number relatively to the S1-fibers of the

adjacent blocks. The 3-manifold M is chargeless if all its interior Seifert fibered blocks are

chargeless.

Main Theorem. Let M be a mixed manifold. The following are equivalent:

1. M is chargeless.

2. π1M is virtually the fundamental group of a compact nonpositively curved cube com-

plex.

3. π1M is virtually compact special.

Przytycki-Wise in [PW] demonstrated that virtually special cubulations of the hyper-

bolic blocks and maximal graph manifold components could be combined using relatively

hyperbolic techniques of Hruska-Wise [HW14] to produce virtually special cubulations of

mixed manifold groups (without addressing the issue of cocompactness). For chargeless
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mixed manifolds, we follow a similar strategy taking extra care to assure we preserve cocom-

pactness. We combine the virtually compact special cubulations of Hagen-Przytycki [HP15]

for the chargeless graph manifold components with a more tightly constrained variation of

Wise’s [Wis12b] virtually compact special cubulations of the hyperbolic blocks to produce

virtually compact special cubulations for chargeless mixed manifold groups.

Showing that the fundamental group of a 3-manifold is virtually compact special has a

number of consequences. Niblo and Reeves in [NR98] showed that cocompactly cubulated

groups are biautomatic.

Corollary 1.1.2. Let M be a chargeless mixed manifold. Then π1M is biautomatic.

Corollary 1.1.2 could also be derived from the main result of Rebecchi’s thesis [Reb01]

since π1M is hyperbolic relative to chargeless graph manifold groups which are biautomatic

by Hagen-Przytycki [HP15] and Niblo-Reeves [NR97].

The fundamental group of a mixed manifold M has a natural relatively hyperbolic struc-

ture described in Chapter 2.3. Aschenbrenner, Friedl, and Wilton make the following con-

jecture for fully relatively quasiconvex subgroups (definition 2.3.5) of π1M :

Conjecture 1.1.3 (Conjecture 7.2.3 of [AFW15]). Let M be a mixed manifold with π1M

equipped with its natural relatively hyperbolic structure. If H is a fully relatively quasiconvex

subgroup of π1M then H is a virtual retract. In particular, H is separable.

Theorem 5.8 of Chesebro, DeBlois, and Wilton [CDW12] states any fully relatively qua-

siconvex subgroup of a relatively hyperbolic, virtually compact special group is a virtual

retract. Thus we can partially answer this conjecture.

Corollary 1.1.4. Let M be a chargeless mixed manifold. Any fully relatively quasiconvex

subgroup of π1M is a virtual retract and, in particular, is separable.

Combining the main theorem with previously known results allows us to completely

answer Question 1.1.
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Theorem 1.1.5. Let M be a compact, aspherical 3-manifold whose boundary is empty or a

disjoint union of tori. Then π1M is virtually compact special iff either of the following holds.

1. M is geometric and its interior admits one of the following five geometries: H3, E3,

H2 × R, S2 × R, or S3.

2. M is nongeometric and chargeless.

1.2 Outline for the proof of the main theorem

In the main theorem, the implication (3) =⇒ (2) is obvious. That (2) =⇒ (1) will be

an application of Hagen-Przytycki [HP15] and Theorem 7.12 of Hruska-Wise [HW14]. Most

of the work in this dissertation is proving (1) =⇒ (3). Our strategy is to construct a

collection of surfaces immersed in a chargeless mixed manifold M and study the induced

action of π1M on the dual CAT (0) cube complex to show that π1M is virtually compact

special. The construction of the dual cube complex, due to Sageev, takes as input a collection

of immersed codimension-1 surfaces in a 3-manifold M and yields a CAT (0) cube complex X̃

dual this collection of surfaces together with an action of π1M on X̃. Combinatorial features

of the collection of immersed surfaces lead to various finiteness properties of the action of

π1M on X̃ such as proper, cocompact, special, etc.

Przytycki-Wise [PW] proved mixed manifold groups are virtually special (without ad-

dressing cocompactness) by combining collections of immersed surfaces due to Przytycki-

Wise [PW14] inducing virtually special cubulations of the graph manifold components and

surfaces due to Wise [Wis12b] inducing virtually compact special cubulations of the hyper-

bolic blocks to produce a certain collection of immersed surfaces in a mixed manifold. They

then study the action on the dual cube complex using a theorem of Hruska-Wise [HW14] to

prove the action is proper with a virtually special quotient.

In general, the surfaces constructed by Przytycki-Wise do not provide a cocompact cubu-

lation. One reason why is that a proper and cocompact actions requires additional constraints
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on how the surfaces intersect the JSJ and boundary tori. To see this, first consider a well-

known example of Sageev’s construction: Suppose we have a collection of closed curves in a

torus T . The slope of a closed curve γ in T is the commensurablility class of 〈γ〉 in π1T . For

a collection of closed curves with n distinct slopes, the dual cube complex is Rn tessellated

by n-cubes. Thus π1T = Z×Z acts properly when n ≥ 2 and acts cocompactly when n ≤ 2.

The action is proper and cocompact iff n = 2. Prztycki-Wise [PW] chose surfaces indepen-

dently in the graph manifold components and hyperoblic blocks guaranteeing at least two

slopes of curves in each JSJ torus T , but not exactly two since the slopes contributed by

each block containing T might not match.

For a chargeless mixed manifold M , we use in each graph manifold component the sur-

faces used by Hagen-Przytycki [HP15] to obtain a virtually compact special cubulation of a

chargeless graph manifold. The surfaces in the graph manifold components put a framing

on each JSJ torus contained in a graph manifold component, i.e. a choice of two slopes. We

then add surfaces to the hyperbolic blocks whose boundary curves intersect the JSJ tori in

the slopes that come from the framing. Our more tightly constriained variation of Wise’s

virtually compact special cubulation for cusped hyperbolic 3-manifold groups [Wis12b] pro-

vides a collection of surfaces that induces a virtually compact special cubulation and that is

true to any given framing of the boundary tori.

Theorem 1.2.1. Let N be a hyperbolic 3-manifold whose boundary is nonempty and a union

of framed tori, ∂N = T1 ∪ · · · ∪ Tk. In each Ti choose simple closed curves Ci and Di whose

slopes are those given by the framing. There is a finite collection S of surfaces properly

immersed in N which are geometrically finite and in general position so that π1N acts freely,

properly, and cocompactly on the cube complex complex X̃ dual to S and X = X̃/π1N is

virtually compact special. Further, if H ⊂ X is an immersed hyperplane of X and a conjugate

of π1H ≤ π1X = π1N intersects some π1Ti then that intersection lies in either π1Ci or π1Di.

In Chapter 2 we define a frame efficient collection of surfaces reducing the proof of the

implication (1) =⇒ (3) in the main theorem to two steps.
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Proposition 1.2.2. Let M be a chargeless mixed manifold. Then M admits a frame efficient

collection of surfaces.

Proposition 1.2.3. Let M be a mixed manifold admitting a frame efficient collection of

surfaces S. Then π1M is virtually compact special.

Organization. Chapter 2 establishes notation, gives an overview of the cubulating tech-

niques used in this dissertation, and gives a proof of the implication (2) =⇒ (1) of the

main theorem. Chapter 3 describe a collection of surfaces immersed in a chargeless graph

manifold constructed by Hagen-Przytycki [HP15], called an efficient collection. Chapter 4

constructs the surfaces we use in the hyperbolic blocks and proves Theorem 1.2.1. Chapter

5 constructs a frame efficient collection of surfaces in a chargeless mixed manifold proving

Proposition 1.2.2. Chapter 6 proves Proposition 1.2.3, completing the proof of the main

theorem. Chapter 7 proves Theorem 1.1.5, classifying virtually compact special 3-manifold

groups.
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Chapter 2

Background

We need several tools to prove the main theorem. Section 2.1 provides some background in

3-manifold theory. Section 2.2.1 defines a frame efficient collection of surfaces in a mixed

manifold. Section 2.3 describes a natural relatively hyperbolic structure of mixed manifold

groups and a key result of [HW14] for cubulating relatively hyperbolic groups.

2.1 3-Manifold Background

Here we describe two decompositions for mixed manifolds and present some background in

3-manifold theory. A good reference for many of the results here is [AFW15].

Modified JSJ decomposition. We first describe the classical JSJ composition. Let M

be a compact connected oriented irreducible 3-manifold whose boundary is either empty or

a disjoint union of tori. The 3-manifold M has a unique, up to isotopy, minimal collection

of incompressible tori which are not ∂-parallel called JSJ tori such that when M is cut

open along these tori each component of the cut-open space, called a block of M , is either

atoroidal or admits a Seifert fibered structure. The 3-manifold M is a mixed manifold if it

has at least one JSJ torus and at least one atoroidal block. When M has at least one JSJ

torus, Thurston’s hyperbolization tells us each atoroidal block of M admits a hyperbolic

structure. We refer to the blocks of our mixed manifold as hyperbolic blocks and Seifert
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fibered blocks as appropriate.

Let M0 denote the space obtained by cutting M along all the JSJ tori. Each JSJ torus

T ⊂M is the preimage of two distinct components T1 and T2 of ∂M0. If B1 and B2 are the

blocks containing T1 and T2 respectively we say B1 and B2 each contain T . We also say B1

and B2 are adjacent via T . Note it is possible that B1 = B2 so a block can be adjacent to

itself via some JSJ torus.

As in [PW] we modify the above the decomposition in a way that is useful for mixed

manifolds. Suppose T is either a JSJ or boundary torus of M and is not contained in any

Seifert fibered block. Choose a parallel copy of T in M and call it a JSJ torus also. The

product region T × I bounded T and this parallel copy has many possible Seifert fibered

structures and we call it a thin Seifert fibered block. In this modified JSJ decomposition,

every hyperbolic block is adjacent only to Seifert fibered blocks and each boundary compo-

nent of M lies in a Seifert fibered block, both of which will simplify the proof of Propositon

1.2.2. Throughout this dissertation when we consider a mixed manifold we will refer to this

modified decomposition as its JSJ decomposition.

Transitional decomposition. We also use another decomposition from [PW] for mixed

manifolds. A JSJ torus T of a mixed manifold M is a transitional torus if it is contained in

at least one hyperbolic block. Cutting M along the transitional tori gives us its transitional

decomposition with each component being either a hyperbolic block of M or a graph manifold

which we call a graph manifold cluster of M . If a graph manifold cluster N of M consists

of just a thin Seifert fibered block, N is thin. The other graph manifold clusters are thick.

We define adjacency for components of the transitional decomposition in an analogous way

to that of blocks of the JSJ decomposition. Note the transitional decomposition is bipartite

in that a hyperbolic block is only adjacent to graph manifold clusters and vice versa.

Elevation. Let φ:N →M be a map between manifolds of any dimension and M̂ →M

a covering space. A map φ̂: N̂ → M̂ , with N̂ a cover of N , is an elevation of φ if φ̂ covers φ

and does not factor through any intermediate cover of N .
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The elevations of the JSJ, boundary, and transitional tori of M to its universal cover

M̃ are JSJ, boundary, and transitional planes respectively. Similarly, the elevations of the

hyperbolic and Seifert fibered blocks are hyperbolic and Seifert fibered blocks of M̃ respec-

tively. The elevations of graph manifold clusters to M̃ are graph manifold clusters of M̃ .

This last case is a slight abuse of notation since these elevations are not compact. In our

notation, a graph manifold cluster of M̃ is a connected subspace of M̃ which covers a graph

manifold cluster of M .

Properties of Immersed Surfaces. An connected, immersed (embedded) surface

φ:S → M in a 3-manifold M is properly immersed (embedded) if φ−1(∂M) = ∂S. An

immersed surface φ:S → M which is not a 2-sphere is immersed incompressible if φ is

π1-injective and elevates to an embedding in M̃ .

Pieces of Surfaces. If B is a hyperbolic (Seifert fibered) block of M , any restriction

of φ to a component of φ−1(B) is a hyperbolic (Seifert fibered) piece of S in B. For a graph

manifold cluster N of M , we call a component of φ−1(N) a piece cluster.

Geometrically Finite. The definition of a frame efficient collection will require that

every hyperbolic piece of a surface in our collection is geometrically finite, defined as follows.

Suppose G is a Kleinian group i.e., a discrete subgroup of PSL(2,C) = Isom+(H3). Consider

the spherical boundary S2
∞ of H3. For any x ∈ H3, the limit set of G, denoted by ΛG, is

the set of all accumulation points of Gx in S2
∞. Note this is independent of the choice of

x ∈ H3. Let C(ΛG) denote the convex hull of ΛG in H3∪S2
∞. Then G is geometrically finite if

there is an ε > 0 so that Nε(C(ΛG)∩H3)/G has finite volume. An immersed incompressible

surface S in a hyperbolic 3-manifold N is geometrically finite if π1S ≤ π1N ≤ Isom+(H3) is

geometrically finite.

Horizontal and Vertical. A surface immersed in a Seifert fibered space is horizontal if

it only has transverse intersections with the S1-fibers. It is vertical if it a union of S1-fibers.

Hass showed in [Has84] that every immersed (embedded) surface in a Seifert fibered space

is a homotopic to either a horizontal or vertical immersion (embedding). Rubinstein and
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Wang applied this to show that a surface immersed in a graph manifold can be homotoped

so that each piece is either horizontal or vertical in the Seifert fibered block it maps into.

(Lemma 3.3 of [RW98].) We will assume the piece clusters of any surface we consider to be

homotoped into this form.

Accidental parabolic. Let S → M be a properly immersed surface and C a closed

curve in S. Suppose the image of C in M is freely homotopic in M to a curve lying in some

transitional torus T . Then C is an accidental parabolic if there is a homotopy of S →M so

that both the following hold: The image of C in M lies in the interior of a hyperbolic block,

and C is not freely homotopic in S to a curve that maps into T .

Chargeless. Rather than defining the notion of the charge of a Seifert fibered block, we

instead discuss only the notion of chargeless blocks. This condition concerns interior Seifert

fibered blocks of M , i.e. those that neither contain a boundary torus of M nor are adjacent

to a hyperbolic block.

Definition 2.1.1. Let M be a compact, oriented, irreducible 3-manifold with at least one

JSJ torus and whose boundary is either empty or a union of tori. An interior Seifert fibered

block B of M is chargeless if the following holds:

Let T1, ... ,Tk be the JSJ tori contained in B. For each Ti, let B′i denote the Seifert

fibered block adjacent to B via Ti and Zi a circle in Ti which is a fiber of B′i. Let [Zi] denote

class of Zi in H1(B;Z). B is chargeless if we can assign nonzero integers n1, ... , nk so that

k∑
i=1

ni[Zi] = 0 in H1(B;Z).

We say M is chargeless if every interior Seifert fibered block of M is chargeless.

We will later see the cycle
k∑
i=1

ni[Zi] = 0 in H1(B;Z) bounds an embedded horizontal

surface in B. An analogous property holds for all hyperbolic blocks as a consequence of

Theorem 4.0.3 proved later. In the latter case the cycle
k∑
i=1

ni[Zi] = 0 in H1(B;Z) bounds

a geometrically finite surface. This plays a key role in the construction of a frame efficient
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collection of surfaces.

2.2 Frame Efficient Collection

The goal of this section is to define the notion of a frame efficient collection of properly

immersed surfaces. For this section, let M be a mixed manifold and M̃ its universal cover.

First, we describe how a collection of surfaces gives M̃ the structure of a wallspace in

the sense of Haglund-Paulin. Suppose S is a collection of properly immersed incompressible

surfaces in a mixed manifold M . Let S̃ denote the collection of all elevations of surfaces in

S to M̃ . Each S̃ ∈ S̃ is a wall in M̃ meaning that cutting M̃ along S̃ decomposes it into two

halfspaces U and V . Thus S̃ endows M̃ with a Haglund-Paulin wallspace structure (M̃, S̃).

(We follow the more flexible treatment in [HW14] where U ∩ V can be nonempty.)

The CAT (0) cube complex dual to a family of proper immersed incompressible surfaces

was first constructed by Sageev [Sag95]. Some of its finited properties were studied by

Sageev in [Sag97] and by Rubinstein-Sageev in [RS99]. Later, Nica [Nic04] and Chatterji-

Niblo [CN05] formulated this in the language of Haglund-Paulin wallspaces. We do not

describe the full construction here. For background see e.g. Hruska-Wise [HW14] which

gives a self-contained account similar to the treatment in this dissertation. We need to

highlight some key properties. A midcube of an n-cube [−1, 1]n is a subspace obtained by

restricting one of its coordinates to 0. A hyperplane H̃ of X̃ is a connected subspace which

intersects each cube of X̃ in either a midcube or the empty set. Each wall S̃ ∈ S̃ is associated

to a unique hyperplane H̃ of X̃ and H̃ has the property that stab(S̃) = stab(H̃) implying

π1S ≤ π1M is a finite index subgroup of stab(H̃).

The statement of Theorem 1.2.1 uses the notion of an immersed hyperplane in a non-

positively curve cube complex X so we define this as well. Given a hyperplane H̃ in X̃, the

universal cover of X, with K = stab(H̃) ≤ π1X, the induced map H = H̃/K → X is an

immersed hyperplane of X. Note that H → X is a local isometry and hence π1-injective.
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A cube in a cube complex is maximal if it is not a proper subset of another cube. If the

dual CAT (0) cube complex X̃ is finite-dimensional and we consider a maximal collection

of pairwise crossing (i.e., intersecting) walls then the collection of hyperplanes associated

to those walls is a maximal collection of pairwise crossing hyperplanes. Further, when X̃

is finite-dimensional, each maximal cube of X̃ corresponds to a unique maximal collection

of pairwise crossing hyperplanes. In fact, they cross in that cube. Thus, when X̃ is finite-

dimensional, each maximal collection of pairwise crossing walls corresponds to the unique

maximal cube of X̃. A common strategy for proving a group acts cocompactly on a dual

cube complex is to show there are finitely many orbits of collections of pairwise crossing

walls.

To define a frame efficient collection of surfaces we need some terminology.

Cut-surface. An axis for a nontrivial element g ∈ π1M acting on M̃ is a copy of R

in M̃ on which g acts by nontrivial translation. A cut-surface for g ∈ π1M is an immersed

incompressible surface S →M covered by S̃ ⊂ M̃ such that there is an axis R for g satisfying

S̃ ∩ R = {0}, where the intersection is transverse.

The existence of cut-surfaces is important for proper actions. Suppose S is a collection

of properly immersed incompressible surfaces containing a cut-surface for every nontrivial

element of π1M . If the dual cube complex of S is finite-dimensional, then π1M acts freely

and properly on it. (See Theorem 5.5 of [HW14].)

Strong Separation. Finally, we need to define the Strong Separation property for a

collection of properly immersed surfaces S, which is Definition 2.2 of [PW]. Equip M with

a Riemannian metric and lift it to M̃ . Let S̃ be the collection of all elevations of surfaces in

S to M̃ . Then S satisfies the Strong Separation property if there exists D > 0 so that the

following hold:

1. Suppose S̃, S̃ ′ ∈ S̃ both intersect a hyperbolic block Ñ . If there is no JSJ plane

contained in Ñ intersecting both S̃ and S̃ ′ and S̃ ∩ Ñ and S̃ ′ ∩ Ñ are distance ≥ D

from each other then there is a surface in S̃ which separates S̃ from S̃ ′.

12



2. Suppose S̃, S̃ ′ ∈ S̃ both intersect a graph manifold cluster Ñ ′. If S̃ ∩ Ñ ′ and S̃ ′ ∩ Ñ ′

are distance ≥ D from each other, then there is a surface from S̃ which separates S̃

from S̃ ′.

Note whether or not a collection of surfaces satisfies the Strong Separation property is

independent of the Riemannian metric we chose.

Definition 2.2.1. Let M be a mixed manifold and S a finite collection of properly immersed

incompressible surfaces in M which are in general position. Choose any Seifert fibration of

the thin graph manifold clusters of M . Then S is a frame efficient collection if all of the

following hold:

1. Each nontrivial element of π1M has a cut-surface in S.

2. All JSJ tori belong to S.

3. For any piece cluster S0 ⊂ S, the map S0 → N into a graph manifold cluster is a

virtual embedding for all S ∈ S.

4. Each hyperbolic piece of S is geometrically finite for all S ∈ S.

5. The collection S satisfies the Strong Separation property.

6. Two horizontal Seifert fibered pieces of a surface S ∈ S cannot be directly attached in

the following sense: Suppose B is a Seifert fibered block of M and a piece of S0 ⊂ S is

immersed horizontally in B. If B′ is a Seifert block adjacent to B via a JSJ torus T ,

then each component of S0 ∩ T is an S1-fiber of B′.

7. Let B be a Seifert fibered block. The images of pieces of surfaces immersed horizontally

in B do not intersect one another. Further, each piece immersed horizontally in B maps

into B via the composition of a covering map between surfaces and an embedding into

B.
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8. The accidental parabolics are all vertical in the following sense: Suppose S ∈ S contains

an accidental parabolic C ⊂ S freely homotopic into a transitional torus T . Let B

denote the Seifert fibered block adjacent to T . Then the image of C is freely homotopic

to a fiber of B.

Przytycki-Wise showed a mixed manifold M admits a collection of properly immersed

incompressible surfaces satisfying Definition 2.2.1(1)-(5) (Theorem 2.1 of [PW]) and that

π1M acts freely on the dual CAT (0) cube complex of any such collection with a virtually

special quotient. Criteria (6) and (7) are motivated by the collected of surfaces used by

Hagen-Przytycki in [HP15], which they call an efficient collection. They had embedded

horizontal pieces, but for technical reasons that emerge in Chapter 5 where we construct a

frame efficient collection we need our weaker criterion (7). The significance of criterion (8)

emerges in the following discussion.

Two slopes in each torus. Implicit in Definition 2.2.1 is that the surfaces of a frame

efficient intersect each JSJ and boundary torus T in a collection of closed curves with exactly

two slopes. Definition 2.2.1(1) implies there are at least two slopes in order to provide cut-

surfaces for the elements of these tori subgroups. Definition 2.2.1(7) implies there are at

most two since, if B is the Seifert fibered block containing T , the pieces of surfaces immersed

horizontally in B all intersect T in curves of the same slope. The second slope is the slope

of an S1-fiber of B. When studying cocompactness of the action on the dual cube complex,

accidental parabolics homotopic into T behave similar to curves in T . Definition 2.2.1(8) is

stronger than necessary since we only need to ensure the accidental parabolics do not add

new slopes to T , but requiring that they are vertical in B simplifies the proof of Proposition

1.2.3.

Being aware of the necessary condition that surfaces intersects the JSJ and boundary

tori in two slopes of curves is key to understanding our methods when we later construct a

frame efficient collection, but we never use this condition explicitly when proving the main

theorem. A full explanation of why this condition is necessary requires understanding how
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a subspace of M can be associated to a convex subcomplex of the dual cube complex of

a collection of surfaces, which Hruska-Wise describe in [HW14]. Since we never need to

explicitly use this condition, we do not give the full explanation here.

Constructing a frame efficient collection. To construct a frame efficient collection

we modify the strategy of Przytycki-Wise [PW] for constructing a collection of surfaces

satisfying Definition 2.2.1(1)-(5). They first chose surfaces immersed in the hyperbolic blocks

and graph manifold clusters. These surfaces were not all properly immersed in M , since some

of them had boundary components lying in transtional tori. To extend these surfaces to be

properly immersed in M , they first added extra surfaces in the hyperbolic blocks and graph

manifold clusters with the slopes of their boundary curves chosen so that they match the

slopes of boundary curves from surfaces in adjacent blocks. They then used these extra

surfaces to “cap off” the boundary curves of surfaces in adjacent blocks and obtain surfaces

properly immersed in their mixed manifold. The result of this strategy is a virtually special

cubulation but not, in general, a cocompact cubulation since we could have as many as four

slopes in a JSJ or boundary torus.

To construct a frame efficient collection we first add to each graph manifold cluster the

efficient collection of surfaces used in Hagen-Przytycki [HP15], described in Chapter 3. These

surfaces add exactly two slopes to each transitional torus. The boundary curves from surfaces

in the efficient collections equip each hyperbolic block N with a framing in the sense defined

below.

Definition 2.2.2. Let N be a compact 3-manifold whose boundary is a nonempty union

of tori ∂N = T1 · · ·Tk. A framing of N is a choice in each Ti of two nonhomotopic simple

closed curves Ci and Di. (Alternatively, we could choose a pair of slopes in each Ti.) If a

framing for N is chosen, then N is framed.

A collection of properly immersed surfaces S in N is true to a {Ci, Di}-framing (or true

to the framing if the framing has already been specified) if, for each S ∈ S and each Ti,

every component of ∂S immersed in Ti has the same slope as either Ci or Di.
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In Chapter 4, we prove that a hyperbolic block N with any framing admits a collection

of geometrically finite surfaces that is true to the framing and that provides a cut-surface

for every nontrivial element of π1N . To prove Proposition 1.2.2, we construct in Chapter 5

a frame efficient collection by attaching surfaces from the efficient collections in the graph

manifold clusters to surfaces in the hyperbolic blocks that are true to the framings induced

by the efficient collections in the graph manifold clusters.

2.3 Relatively Hyperbolic Groups and Cube Complexes

In this section we describe a natural relatively hyperbolic structure on the fundamental

group of a mixed manifold M and its role in finding cocompact cubulations. We also prove

Theorem 2.3.11 which proves the implication in the main theorem that π1M being virtually

cocompactly cubulated implies M is chargeless.

Gromov originally introduced the notion of a relatively hyperbolic group in [Gro87].

The definition we give here is due to Bowditch [Bow12]. For finitely generated groups, it

is equivalent to Gromov’s definition. (See [Hru10] for more on the various definitions for

relatively hyperbolic.)

Definition 2.3.1 (Definition 2 of [Bow12]). Suppose G is a group acting on a connected

hyperbolic graph Γ. Suppose the following all hold.

1. Γ is δ-hyperbolic.

2. Γ is a fine graph, meaning that for any positive integer n, each edge of Γ lies in only

finitely many circuits of length n, a circuit being a closed path which does not repeat

any vertices.

3. There are only finitely many G-orbits of edges and each edge stabilizer is finite.

4. Each vertex stabilizer is finitely generated.
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Let P be a collection of subgroups consisting on one representative from each conjugacy

class of infinite vertex stabilizers. We say G is hyperbolic relative to P. The subgroups of P

and their conjugates are the peripheral subgroups of G. (In other words, the infinite vertex

stabilizer of G are its peripheral subgroups.) We call Γ a (G, P)-graph.

We will not appeal directly to the definition of relatively hyperbolic, but we make use of

a natural relatively hyperbolic structure on mixed manifold groups first described by Druţu-

Sapir in [DS05]. To prove mixed manifolds have this relatively hyperbolic structure, Druţu-

Sapir used highly intricate techniques combining their results with a result of Kapovich-

Leeb [KL95]. Kapovich-Leeb showed the asymptotic cone of a mixed manifold group is tree-

graded and Druţu-Sapir showed asymptotically tree graded groups are relatively hyperbolic.

For an elementary proof of the theorem below using the (G,P)-graph definition of relatively

hyperbolic, see [BW13].

Theorem 2.3.2 (Druţu-Sapir). Let M be a mixed manifold and let N1, ..., Nk denote the

graph manifold clusters of M . For each Ni choose a conjugate Pi of π1Ni sitting inside π1M .

The group π1M is hyperbolic relative to {Pi}.

We also describe the notion of a relatively quasiconvex subgroup. Introduced by Dahmani

in [Dah03], relative quasiconvexity is also a rich property with many equivalent definitions.

We use a definition in the hyperbolic graph setting due to Mart́ınez-Pedroza and Wise

[MPW11]

Definition 2.3.3. Let G be hyperbolic relative to subgroups {P} and Γ a (G, {P})-graph.

Suppose H ≤ G is a subgroup. Then H is relatively quasiconvex in G if there is a quasi-

isometrically embedded subgraph K of Γ which is H-invariant and has finitely many H-orbits

of edges.

Surfaces in a frame efficient collection correspond to relatively quasiconvex subgroups by

the following application of results of Hruska [Hru10] and Bigdely-Wise [BW13]:
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Proposition 2.3.4 (Przytycki-Wise in [PW]). Let M be a mixed manifold and S → M a

properly immersed incompressible surface. Suppose each piece of S in a hyperbolic block is

geometrically finite. Then π1S maps into π1M as a relatively quasiconvex subgroup.

Proof. If N is a hyperbolic block and S0 → N is a geometrically finite piece of S in N

then π1S0 is relatively quasiconvex in π1N by Corollary 1.3 of [Hru10]. It then follows from

Theorem 4.17 of [BW13] that π1S is relatively hyperbolic in π1M .

Corollary 1.1.4 deals with the notion of fully relatively quasiconvex subgroups, a notion

also introduced by Dahmani [Dah03], so we give this definition as well.

Definition 2.3.5. Let G be a relatively hyperbolic group. A relatively quasiconvex subgroup

H of G is fully relatively quasiconvex if each intersection of H with a peripheral subgroup of

G is either finite or finite index.

To motivate how we use relative hyperbolicity and relative quasiconvexity and provide

some necessary background, let us consider the word hyperbolic case. Let G be a word

hyperbolic group acting on a wallspace (Y,W). Sageev proved in [Sag97] that if there are

finitely many G-orbits of hyperplanes and each hyperplane stabilizer is quasiconvex in G,

then G acts cocompactly on X̃. Note Sageev worked in a different setting where G acts on its

Cayley graph and instead of walls we have codimension-1 subgroups with each codimension-1

subgroup H associated to an H-almost invariant set. There are two steps to his proof. We

need both of these facts for our proof of Proposition 1.2.3 so we state them.

The first step, Lemma 2.3.6, appears implicitly in [Sag97] where Sageev deduced it from

results in [GMRS98]. Our version is a slight modification of Lemma 7.3 of [HW14] tailored

to the wallspace setting.

Lemma 2.3.6 (Sageev). Suppose a group G acts properly and cocompactly by isometries on

a wallspace (Y,W) with Y a δ-hyperbolic space. Suppose there are finitely many G-orbits of

walls and each wall stabilizer is κ-quasiconvex in G. Then for any D ≥ 0 there is a constant
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L = L(D, δ, κ) so that the following holds: Let V ⊂ W be a collection of pairwise D-close

walls in Y . There is a point y0 ∈ Y which is distance ≤ L from each wall of V.

In particular, there are finitely many orbits of pairwise crossing walls.

Whenever the conclusion of Lemma 2.3.6 holds we say y0 is an L-center of V . The second

step is Lemma 2.3.7.

Lemma 2.3.7. Let G be a finitely generated group acting on a wallspace (Y,W). Suppose

G acts cocompactly on a subspace Z ⊂ Y . Suppose for any D > 0 there exists a constant

L = L(D) with the following property: If V ⊂ W is a collection of pairwise D-close walls

in Y then there is a point z0 ∈ Z so that each wall in V is distance ≤ L from z0. Then

there are finitely many orbits of collections of pairwise D-close walls. In particular, G acts

cocompactly on the dual CAT (0) cube complex X̃ of (Y,W).

Proof. For each collection of pairwise D-close walls, choose an L-center in Z for that col-

lection. Since G acts cocompactly on Z we can assume, possibly enlarging L, that we have

finitely many G-orbits of L-centers. A closed ball of radius D can only intersect finitely

many walls. Since there are finitely many orbits of D-centers, this puts an upper bound on

the size of any collection of pairwise D-close walls. In particular, there is an upper bound

on the size of any collection of pairwise crossing walls. Therefore X̃ is finite dimensional and

each cube lies in a maximal cube.

Some of the points we chose might be a center for more than one collection, but they can

each only be a center for finitely many collections. Since there are finitely many G-orbits

of centers this implies W contains finitely many collections of pairwise D-close walls. In

particular, there are finitely many collections of pairwise crossing walls. Therefore G acts

cocompactly on X̃.

When applying Lemma 2.3.7, we will consider the situation where G is a peripheral

subgroup of a mixed manifold group and our wallspace is a Z-wallspace, defined below:
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Definition 2.3.8. Let (Y,W) be a wallspace with Y a metric space. Let Z ⊂ Y be a subspace

with diam(Z) =∞. Let WZ ⊂ W consists of walls all W ∈ W with the following property:

There is r > 0 so that if W decomposes Y into halfspaces U and V then diam(U ∩Nr(Z)) =

diam(V ∩Nr(Z)) =∞.

Then (Y,WZ) is the Z-wallspace of (Y,WZ).

Let C(Z) be the dual CAT (0) cube complex of (Y,WZ). If X̃ is the dual cube complex

of (Y,W), then there is a canonical embedding of C(Z) as a convex subcomplex of X̃. (See

sections 3.4 and 7.2 of Hruska-Wise [HW14].) We call C(P ) the convex subcomplex associated

to P .

The following is our main tool for verifying cocompactness.

Theorem 2.3.9 (Theorem 7.12 [HW14]). Let (Y,W) be a wallspace such that Y is also a

length space. Suppose a group G acts properly and cocompactly by isometries on Y preserving

its wallspace structure. Suppose the action onW has finitely many G-orbits of walls. Suppose

G is hyperbolic relative to a finite collection of subgroups {Pi}. Suppose for each W ∈ W

that H = Stab(W ) acts cocompactly on W and H is relatively quasiconvex in G. For

each peripheral subgroup Pi ∈ {Pi}, let Zi be a nonempty, Pi-invariant, and Pi-cocompact

subspace.

Let X̃ denote the dual CAT (0) cube complex of (X,W). For each Zi, let C(Zi) be the

convex subcomplex associated to Zi. Then there exist a compact subcomplex K ∈ C(X) such

that

1. C(X) = GK ∪ (∪iGC(Zi)),

2. gC(Zi) ∩ C(Zj) ⊂ GK unless j = i and g ∈ Pi, and

3. Pi acts cocompactly on C(Zi) ∩GK.

For a group action in the setting above, we say G acts cocompactly on X̃ relative to

{C(Zi)}.
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The following Corollary is key to proving the implication (2) =⇒ (1) of the main

theorem.

Corollary 2.3.10. Let (G, {Pi}) be a relatively hyperbolic group. If G is cocompactly cubu-

lated then so each peripheral subgroup of G.

Proof. Suppose G acts properly and cocompactly on a CAT (0) cube complex X̃ and let H

denote the collection of hyperplanes of X̃. Cutting along any hyperplane decomposes X̃

into two components (e.g. Theorem 2.13(4)) of [Wis12a]) thus (X̃,H) is a wallspace. It is

well-known that the dual cube complex of (X̃,H) is isomorphic to X̃ via an isomorphism

that preserves the G-action, so we can use the same for both of them.

The action of G on X̃ preserves the wallspace structure. For each H ∈ H, the subgroup

K = stab(H) ≤ G acts cocompactly on H. Further, H is isometrically embedded in X̃ (e.g.

Theorem 2.13(3) of [Wis12a]) implying K is quasi-isometrically embedded in G. Thus K is

relatively quasiconvex in G by Corollary 1.3 of [Hru10]. For each peripheral subgroup Pi,

we can always find a Pi-invariant, Pi-cocompact subspace. E. g., choose any point x0 and

consider its Pi-orbit.

Thus our action satisfies the hypotheses of Theorem 2.3.9. Since G acts cocompactly, we

choose the compact subcomplex K so that GK = X̃. Theorem 2.3.9(3) then implies Pi acts

cocompactly on the associated C(Zi) = C(Zi)∩GK. Therefore Pi is cocompactly cubulated.

We can now prove the implication (2) =⇒ (1) in the main theorem.

Theorem 2.3.11. Suppose M is a mixed manifold and π1M is virtually cocompactly cubu-

lated. Then M is chargeless.

Proof. By Theorem B of [HP15], it is sufficient to show that for any thick graph manifold

cluster N of M , its fundamental group π1N is virtually cocompactly cubulated. If M̂ is a

finite-sheeted cover of M with π1M̂ cocompactly cubulated, then Corollary 2.3.10 implies

the fundamental group of each graph manifold cluster of M̂ is cocompactly cubulated. This
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implies the fundamental group of each graph manifold cluster of M is virtually cocompactly

cubulated. Therefore each graph manifold cluster of M is chargeless by Theorem B of [HP15]

and hence so is M .
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Chapter 3

Surfaces in Chargeless Graph

Manifold Clusters

The goal of the next three chapters is to prove Proposition 1.2.2 which states that a chargeless

mixed manifold M admits a frame efficient collection of surfaces. This chapter contains

preliminary results used in Chapter 5 to construct a frame efficient collection. Recall from

Chapter 2.2 our strategy for constructing the properly immersed surfaces of a frame efficient

collection is to attach surfaces from efficient collections in graph manifold clusters to surfaces

in hyperbolic blocks true to the framing induced by the efficient collections together along

boundary curves. In this chapter we define an efficient collection and prove Theorem 3.0.2

which shows that the graph manifold clusters of M admit efficient collections.

Hagen-Przytycki [HP15] constructed in a chargeless graph manifold a collection of sur-

faces they call an efficient collection. The definition below highlights the key properties of

the collection they constructed.

Definition 3.0.1. Let N be a graph a manifold. A finite collection S of properly immersed

imcompressible surfaces in N which are in general position is an efficient collection if S has

the following properties:

1. Each element of π1N has a cut-surface in S.
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2. All JSJ tori belong to S.

3. Each S ∈ S is virtually embedded in N .

4. Let B be a Seifert fibered block. The horizontal pieces in B are all embedded and do

not intersect one another.

5. Two horizontal pieces of a surface S ∈ S cannot be directly attached in the following

sense: If S0 ⊂ S is a piece of S embedded horizontally in a Seifert fibered block B and

B′ is a block adjacent to B via a JSJ torus T , then each component of S0 ∩ B′ is a

fiber of B′.

6. For a boundary torus T in a block B, there are exactly two surfaces S, S ′ ∈ S inter-

secting T where S ∩B is horizontal and S ′ ∩B is vertical.

Theorem 3.0.2 is minor modification of a result of Hagen-Przytycki [HP15]. Hagen-

Przytycki worked in a setting where Seifert fibered spaces are not considered graph manifolds.

We extend their proof to cover a Seifert fibered space with boundary using a trivial version

of their argument. Note that although sol manifolds can be treated as graph manifolds, they

are excluded from the statement below since sol manifolds are not chargeless.

Theorem 3.0.2 (Hagen-Przytycki in [HP15]). Let N be either a chargeless graph manifold

or a Seifert fibered space with boundary. Then N admits an efficient collection of surfaces.

The proof depends on the following Proposition.

Proposition 3.0.3. Suppose N is a chargeless graph manifold with at least one JSJ torus.

Let B be a Seifert fibered block of N and T1, ..., Tk the JSJ tori of N contained in B. For

each Ti, let B′i denote the Seifert fibered block of N adjacent to B via Ti. There is a properly

embedded horizontal surface S ⊂ B with the following property: For each Ti, every component

of S ∩ Ti is an S1-fiber of B′i.
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Proof. Obtain a Seifert fibered space B̄ from B using the following process: For every Ti,

perform a Dehn filling along a fiber of B′i.

First assume B is interior. In [LW97], Lueke and Wu define the Euler number of B

relative to the framing by the fibers of adjacent blocks to be the Euler number of B̄. This

relative Euler number differs from the charge by only a sign (See Chapter 1.3 of [BS04] where

they give a full definition of charge and observe this fact.) and is therefore 0. Thus B̄ has

Euler number 0. Proposition 2.2 of [Hat07] then implies B̄ contains an embedded horizontal

surface S. Each component of S ∩ Ti ⊂ B̄ bounds a disk in B̄ is therefore isotopic to a

fiber of B′i since we performed our Dehn filling along a fiber. It follows S ∩B is the desired

surface.

Assume now B intersects ∂N . Then B̄ has nonempty boundary, so Proposition 2.2

of [Hat07] implies it contains an embedded horizontal surface S and we get the desired

surface from the argument as above.

We now prove Theorem 3.0.2.

Proof of Theorem 3.0.2. The proof is by construction. Most of the proof is found in [HP15].

We summarize the key steps, with careful attention to the additional case of a Seifert fibered

space with boundary.

We consider thick and thin graph manifolds separately.

Thick graph manifold. We review Hagen-Przytycki’s construction in [HP15] with an

added detail for a thick graph manifold which is a Seifert fibered space with boundary. Their

collection of surfaces is built from smaller subcollections.

Turbine collection. First assume N contains at least one JSJ torus. For a Seifert fibered

block B of N , choose two copies of the embedded horizontal surface S provided by Propo-

sition 3.0.3. Let T be a JSJ torus intersecting B and B′ the block adjacent to B via T .

Choose in B′ an embedded, vertical, non-∂-parallel annulus A with boundary contained in
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T . For each curve C ⊂ S ∩T , cap off the two copies of C in the two copies of S using a copy

of A. Do this for every component of S ∩ T and every JSJ torus contained in B to obtain a

new surface S ′. The turbine collection consists of one surface of this type for every block of

N .

If N is a Seifert space space, choose any embedded horizontal surface. The turbine

collection then consists of this one surface.

Vertical collection. For each block B, consider a finite cover F×S1 → B with F a compact

hyperbolic surface with boundary of positive genus. In F , choose a family of geodesic simple

closed curves C with the following property: When F is cut along every curve of C, each

component of the resulting space is either a closed disc or an annulus which contains a

component of ∂F . We say C fills F .

Consider the family of vertical tori whose base curves in F corresponded to the curves

in C. If B intersects ∂N then for each component T of B ∩ ∂N add a vertical non-∂-parallel

annulus whose boundary curves lie in T . Map these vertical surfaces down into B. Construct

such a family of vertical surfaces in every block of N to obtain the vertical collection.

Let S be the collection consisting of all the surfaces in the turbine and vertical collections

together with all the JSJ tori of N . As explained by Hagen-Przytycki [HP15], S contains a

cut surface for every nontrivial element of π1N and its surfaces are all virtually embedded

so S is an efficient collection.

Thin graph manifold. For a thin graph manifold N = T × I, choose two embedded

annuli which are not homotopic to each other. N has many possible Seifert fibrations. Fixing

a fibration we may assume one of the annuli is vertical and the other horizontal.
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Chapter 4

Virtually compact special cubulations

of cusped hyperbolic 3-manifolds with

restricted boundary slopes

This chapter contains more preliminary results we use in Chapter 5 to construct a frame

efficient collection of surfaces in a chargeless mixed manifold. Recall our strategy for con-

structing properly immersed surfaces in a frame efficient collection is to glue surfaces from

efficient collections in the graph manifold clusters to surfaces true to the induced framing

in the hyperbolic blocks together along boundary curves. In the previous chapter we con-

structed the surfaces used in the graph manifold clusters. The main goals of this chapter are

to prove Theorem 4.0.1 which establishes the existence of the surfaces used in the hyperbolic

blocks and then to prove Theorem 1.2.1 by showing that the surfaces provided by Theo-

rem 4.0.1 produce a virtually compact special cubulation of a cusped hyperbolic 3-manifold

group.

Przytycki-Wise [PW] showed, using Wise’s virtually compact special cubulation for hy-

perbolic 3-manifolds [Wis12b], there exists a collection of properly immersed, geometrically

finite surfaces in a hyperbolic 3-manifold N which provides a cut-surface for every nontrivial
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element of π1N . Our Theorem 4.0.1 strengthens Theorem 4.1 of [PW] by allowing these

surfaces to be chosen to be true to a given framing.

Theorem 4.0.1. Let N be a framed hyperbolic 3-manifold whose boundary is a disjoint

union of tori written ∂N = T1 ∪ · · · ∪ Tk. There is a finite collection S of surfaces properly

immersed incompressible in N which are in general position and geometrically finite such

that S is true to the framing and contains a cut-surface for all the nontrivial elements of

π1N . Moreover, the surfaces of S have no accidental parabolics.

Before proving Theorem 4.0.1, we need to prove Theorem 4.0.2 which is our more tightly

constrained variation of Wise’s virtually compact special cubulation in [Wis12b].

Theorem 4.0.2. Let N be a hyperbolic 3-manifold whose boundary is nonempty, disjoin

union of tori ∂N = T1, ..., Tk. In each Ti, choose nonhomotopic simple closed curves Ci

and Di. Then π1N is virtually the fundamental group of a compact special cube complex

X with the property that if H ⊂ X is an immersed hyperplane of X and a conjugate of

π1H ≤ π1X = π1N intersects some π1Ti, then that intersection lies in either π1Ci or π1Di.

We are not yet ready to prove Theorem 4.0.2 but can outline the two-step strategy.

Passing to a finite cover N̂ , Wise found a properly embedded, incompressible, geometrically

finite surface S in N̂ which intersects each boundary torus. This adds one slope to each

Ti, the slope of each component of ∂S ∩ Ti. Our first step is Proposition 4.0.3 which states

that we can choose S so that it intersects each Ti in curves with the same slope as the

respective curve Ci. Cutting along this surface decomposes N̂ into a graph of spaces with

corresponding graph of groups satisfying the hypotheses of Theorem 16.28 in [Wis12b] where,

in particular, each vertex group is word hyperbolic and virtually compact special. In the

proof of Theorem 16.28 in [Wis12b], Wise constructs a virtually compact special cubulation

of π1N̂ . This process involves choosing a second curve in each Ti which adds a second slope.

Our second step is showing we can choose that second curve in each Ti to be Di respectively.

The following is a modification of Proposition 4.6 of [PW].
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Proposition 4.0.3. There is a finite index cover N̂ → N with a properly embedded incom-

pressible, possibly disconnected surface S ⊂ N̂ where each component is geometrically finite,

and S has the following property: For each boundary torus Ti of N and each boundary torus

T̂ij of N̂ covering Ti, the surface S has a nonempty intersection with T̂ij consisting of parallel

copies of a curve in T̂ij covering Ci. Further, the components of S contain no accidental

parabolics.

Proof. In the proof of Proposition 4.6 in [PW], Przytycki-Wise find a finite cover N̂ and

a properly embedded, possibly disconnected surface S ′ ⊂ N̂ with the following properties:

Each component of S ′ is incompressible and geometrically finite. Further, for each Ti and

each JSJ torus Tij of N̂ covering Ti, the intersection S ′ ∩ Tij is nonempty and consists of

parallel copies of a curve covering Ci.

The components of S ′ might contain accidental parabolics, but by Lemma 14.22 and

Remark 14.23 of [Wis12b] there is a properly embedded surface S with each component

geometrically finite such that S has no accidental parabolics and ∂S ′ ⊂ ∂S. If an embedded

surface intersects a boundary torus in multiple curves, they have to have the same slope, so

the components of ∂S − ∂S ′ do not add new slopes to the boundary tori.

We now show how to modify the proof of Theorem 16.28 in [Wis12b] to prove our Theorem

4.0.2.

Proof of Theorem 4.0.2. Let N̂ and S be the finite cover and embedded surface guaranteed

by Proposition 4.0.3 where we choose S so that for each boundary torus Tij of N̂ covering a

boundary torus Ti of N , the intersection S ∩ Tij is nonempty and consists of closed curves

with the same slope as a curve covering Ci. To simplify notation assume N̂ = N . Passing to

a further finite cover we may assume that for each boundary torus Ti that Ci and Di form

a basis for π1Ti.

As in the proof of Theorem 14.29 of [Wis12b], S splits π1N as a graph of groups where
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each vertex group is word hyperbolic and virtually compact special and each edge group is

quasi-isometrically embedded. The proof of Theorem 16.28 in [Wis12b] extends this splitting

to a cubulation of π1N . The proof involves a lot of machinery, so we just explain how to

modify this proof in order to make an arbitrary choice for the second slope in each boundary

torus.

Choose a component E of S and let Ti be a boundary torus intersecting E. In step 3 of

Wise’s proof, he gives the torus Ti a cubical structure with Ci as a 1-cube and attaches it to

a cubulation of a subgroup of π1N called the expanded edge group π1E
+ of π1E. Obtain the

extended edge space E+ of E by taking the union of E together with all the boundary tori

intersecting E. The subgroup π1E
+ ≤ π1N is the expanded edge group of π1E. It consists of

π1E together with multiple HNN extensions corresponding to the intersections of π1E with

the tori subgroups of π1N .

Equip Ti with a cubical structure that uses Ci and Di as 1-cubes. Choose a compact

cubulation B of E. The group π1E is free so it’s well-known that such cubulations exist.

Attach Ti to B along a local isometry representing π1Ci → π1E. This may require subdivid-

ing the cubical structure for Ti. (In general, Wise passes to a further finite index subgroup

π1N before carrying out this process.)

Doing this for every boundary torus interesting E yields cocompact cubulation π1E
+.

Repeat this process for every component of S noting that each boundary torus intersects

some component of S. The rest of the proof in [Wis12b] extends these cubulations to a

virtually compact special cubulation of π1N .

Having proved Theorem 4.0.2, we can now prove Theorem 4.0.1.

Proof of Theorem 4.0.1. Most of the proof is found as the proof of Theorem 4.1 of [PW].

We outline the construction and explain how the slopes in the tori are controlled.

In each boundary torus Ti choose simple closed curves Ci and Di. We may assume, by

passing to a finite cover and applying Theorem 4.0.2, that π1N = π1X for a compact special
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cube complex X with universal cover X̃ and that any conjugate of an immersed hyperplane

subgroup of π1X only intersecting some π1Ti intersects in either π1Ci or π1Di.

Let g ∈ π1N . Choose an axis for g in X̃ and a hyperplane H̃ which intersects that axis

transversally. Let K = stab(H̃) ≤ π1N .

Let Ñ be the universal cover of N and let N̂ → N be the π1H̃ cover of N . Let L be the

hyperbolic convex core of the cover N̂ and L̃ an elevation of L to Ñ . Since Ñ and X̃ are

quasi-isometric, any axis for g intersects L̃ transversally. Thus there is an elevation S̃ ⊂ ∂Ñ

of a component S of ∂N which intersects the axis transversally. Immersing S into N gives

us a cut-surface for g. As explained in the proof of Theorem 4.1 of [PW], S is geometrically

finite and can be made to have no accidental parabolics.

We now prove Theorem 1.2.1 by showing that the collection of surfaces provided by

Theorem 4.0.1 is dual to a virtually compact special cubulation.

Proof. Let S be the collection of surfaces provided by Theorem 4.0.1 that is true to the

framing on N . The action of π1M on X̃ is free and proper since S contains a cut-surface for

every non-trivial element of π1N . Each hyperplane subgroup of π1X is commensurable to a

conjugate of a surface subgroup π1S with S ∈ S so the interactions with tori subgroups are

as desired. Since the surfaces intersect each boundary torus in only two slopes of curves, it

is a straightforward exercise applying Theorem 2.3.9 to show the action is cocompact.

It remains to show X is special. Passing to finite-sheeted cover, we can assume π1X =

π1M is special. Since X is compact, the hyperplane subgroups are quasi-isometrically em-

bedded, so by Theorem 16.23 of [Wis12b] they are separable in π1X and satisfy double coset

separability. Theorem 9.19 of [HW08] then implies X is virtually special.

In Chapter 2.2 we mentioned that Przytycki-Wise used additional “capping off” surfaces

to construct a collection of surfaces satisfying Definition 2.2.1 (1)-(5). When constructing a
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frame efficient collection, we use their capping off surfaces in the hyperbolic blocks.

Proposition 4.0.4 (Prop. 4.6 of [PW]). Let C1, ... , Ck be essential closed curves in the

respective boundary tori T1, ... , Tk of N . There exists a geometrically finite immersed

incompressible surface S → N with S ∩ ∂N covering C1 such that all the parabolic elements

of π1S are conjugate into some π1Ci.
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Chapter 5

Constructing a Frame Efficient

Collection

In this chapter we prove Proposition 1.2.2, which states that a chargeless mixed manifold M

admits a frame efficient collection of surfaces. In the previous two chapters, we constructed

an efficient collection of surfaces in the graph manifold clusters of M and a collection of

surfaces in each hyperbolic block true to the framing induced by the efficient collections. We

construct properly immersed surfaces in a frame efficient collection by attaching surfaces from

these collections together along their boundary curves. To illustrate the two key challenges of

this process, suppose S and S ′ are both surfaces immersed in M with some of their boundary

components mapping into a transitional torus T . Suppose at least some of those boundary

components have the same slope. The first challenge is that these boundary curves of S and

S ′ might map onto their images with different degrees. The second is that S and S ′ might

have different numbers of boundary components mapping into T with that particular slope.

We deal with matching the degrees in Lemma 5.0.1, which is a fact Przytycki-Wise [PW]

proved as part of the proof of their Theorem 2.1. A main part of the proof of Proposition

1.2.2 involves matching the multiplicities.

Lemma 5.0.1 (Matching the degrees.). Let M be a 3-manifold with boundary and S a
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collection of surfaces immersed in M , but not necessarily properly immersed. There is a

constant d > 0 with the following property: For every S ∈ S and every boundary arc C ⊂ ∂S

there is a finite cover Ŝ → S so that for any curve Ĉ ⊂ ∂Ŝ covering C, the map Ĉ → M

obtained by restricting the composition Ŝ → S →M maps onto it image with degree d.

The second challenge to constructing properly immersed surfaces in a frame efficient is

the main focus of the proof of Proposition 1.2.2. Before proving this result, we prove the

following which gathers all the surfaces we use in the graph manifold clusters and hyperbolic

blocks to construct a frame efficient collection.

Lemma 5.0.2 (Gathering materials in preparation for construction.). Let M be a chargeless

mixed manifold. There is a collection of surfaces S immersed in M with the following

properties:

1. Each S ∈ S is either properly immersed in a graph manifold cluster or properly im-

mersed in a hyperbolic block. Note they are not, in general, properly immersed in M .

2. For each hyperbolic block or graph manifold cluster N of M and each nontrivial element

g ∈ π1N , there is a surface S ∈ S immersed in N which is a cut-surface for g.

3. All JSJ tori belong to S.

4. Each S ∈ S immersed in a graph manifold cluster is virtually embedded.

5. Each S ∈ S in a hyperbolic block is geometrically finite.

6. Two horizontal pieces cannot be directly attached in the following sense: Let S ∈ S and

B be a Seifert fibered block. Suppose S has a piece S0 immersed in B which is horizontal

and B′ is a Seifert block adjacent to B via a JSJ torus T . Then each component of

S0 ∩ T is an S1-fiber of B′.

7. Let B be a Seifert fibered block. The images of horizontal pieces immersed in B are

disjoint. Further, each horizontal piece is the composition of a covering map between

surfaces and an embedding into M .
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8. The accidental parabolics are all vertical in the following sense: Suppose S ∈ S contains

an accidental parabolic C ⊂ S freely homotopic into a transitional torus T . Let B

denote the Seifert fibered block adjacent to T . Then the image of C is freely homotopic

to a fiber of B.

9. S includes “capping off” surfaces. Suppose S ∈ S and a boundary curve C ⊂ ∂S maps

into a transitional torus T . Then there is another surface S ′ ∈ S immersed in the

hyperbolic block adjacent to T so that ∂S maps only into T and the image consists of

closed curves with the same slope as C.

10. There is a uniform degree d so that for every surface S ∈ S, the immersion S → M

maps each boundary curve C ⊂ ∂S onto its image with degree d. Further, if C maps

into a transitional torus T , then there is exactly one surface S ′ in the graph manifold

cluster adjacent to T such that S ′ ∩ T is nonempty consisting of curves homotopic to

C.

Proof. Each graph manifold cluster of M is either a Seifert fibered space with boundary or

a chargeless graph manifold and therefore admits a collection of surface satisfying Theorem

3.0.2 and hence criteria (1), (3), (5), and (6) of our lemma. Let S1 denote the union of these

collections over all the graph manifold clusters of M . For each transitional torus T of M ,

there are exactly two surfaces S, S ′ ∈ S1 which intersect T . Let αT and βT denote the slope

of the components of S ∩ T and S ′ ∩ T respectively.

The surfaces in S1 put a framing on every hyperbolic of M . By Theorem 4.0.1, we can

choose in every hyperbolic block a collection of properly immersed satisfying criteria (1) and

(4) of our lemma which are true to the framing induced by surfaces in S1. Further, these

surfaces have no accidental parabolics. Let S2 denote the union of these collections over all

the hyperbolic blocks of M .

For each transitional torus T of M , Proposition 4.0.4 says the hyperbolic block adjacent

to T contains a properly immersed, geometrically finite surface S whose boundary curves all
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map into T and have slope αT . Further, any accidental parabolic of S is freely homotopic

to an S1-fiber of an adjacent Seifert fibered block. We can construct a capping off surface

for the slope βT similarly.

Let S consists of all the surfaces in S1 and S2 together with the capping off surfaces

constructed above. By Lemma 5.0.1 we may replace each surface of S with a finite cover as

needed so that their boundary curves map onto their images with a uniform degree. Note

that after applying this process S still satisfies criteria (7).

We are now ready to prove Proposition 1.2.2, which involves matching the multiplicities.

Proof of Proposition 1.2.2. This proof is similar to the proof of Theorem 2.1 in [PW] but in

order to ensure cocompactness we need to be more delicate in certain places. Let S be the

collection of surfaces guaranteed by Lemma 5.0.2. For each transitional torus T of M , the

boundary curves of the surfaces of S which map into T form two families of curves with the

same slope. Label these slopes αT and βT respectively.

Let H and G denote the collections of all the hyperbolic blocks of M and all the graph

manifold clusters of M respectively. For each hyperbolic block Q ∈ H, let SQ ⊂ S denote

the subcollection of surfaces which map into Q. For each N ∈ G, define SN similarly.

Choose Q ∈ H and S ∈ SQ. If T is a transitional torus with S ∩ T nonempty, let N be

the graph manifold cluster containing T and S ′, S ′′ ∈ SN the pair of surfaces intersecting T

in curves of slope αT and βT respectively. If S ∩ T contains components with slope αT then

let m denote the number of such components and n denote the number of components of

S ′ ∩ T . Choose k so that kn ≤ m and add k copies of S ′ to N attaching them to S so that

every boundary component of S is attached to a copy of S ′. If S ∩ T contains components

with slope βT follow the same process using S ′′. Repeat this for every transitional torus

intersecting ∂S to obtain a new surface S∗.

We now attach “capping off” surfaces to S∗. Let T denote the collection of transitional

tori which intersect ∂S∗. For each T ∈ T , let STα and STβ denote the capping off surfaces
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in S which intersect T in curves with slope αT and βT respectively. Further, let rT and sT

denote the the number of components of S∗ ∩ T with slope αT and βT respectively. Let aT

and bT denote the number of components of ∂STα and ∂STβ respectively. Note some rT and

sT could be 0.

If every rT and sT were nonzero we could define ` to be the least common multiple of all

the constants given above; ie, define ` = lcm({rT , sT , aT , bT}T∈T ). (Yikes! That’s a lot of

numbers.) In general, we define ` to be the lcm of the ones that are nonzero.

Take ` copies of S∗, and, for each T ∈ T , take rT `/aT of copies of STα and sT `/bT copies

of STβ . Attaching these surfaces together creates a surface properly immersed in M . Repeat

this process for every Q ∈ H and every S ∈ SQ to obtain a collection S′ of surfaces properly

immersed in M . If N ∈ G and S ∈ SN intersects a transitional torus, then some surface of

S′ has an piece which is a copy of S, so we do not repeat this gluing process for surfaces in

the graph manifold clusters. Construct a frame efficient collection S from S′ by adding the

surfaces from S which were already properly immersed in M as well as all the transitional

tori of M . (The other JSJ tori were already in S.)

The surfaces of S are properly immersed incompressible, in general position, and satisfy

Definition 2.2.1(3)-(4) and (6)-(8) since the surfaces from Lemma 5.0.2 in have these prop-

erties. The collection S contains a cut-surface for every nontrivial element of π1M since it

contains all the JSJ tori and the pieces of surfaces in S provide cut-surfaces in all the blocks

of M . The proof in [PW] that their collection of surfaces satisfies the strong separation goes

through without change for our collection S so we refer the reader there. From all this it

follows S is a frame efficient collection.
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Chapter 6

Dual Cube Complex of a Frame

Efficient Collection

In Chapter 5 we constructed a frame efficient collection of surfaces in a chargeless mixed

manifold M . In this chapter, we prove Proposition 1.2.3 which states that for a mixed

manifold M admitting a frame efficient collection, π1M is virtually compact special. Most

of the work in the proof is verifying cocompactness. We will use Theorem 2.3.9 to show the

action of π1M on X̃ is cocompact relative to a collection of convex subcomplexes associated

to the graph manifold subgroups described in Chapter 2.3. We will then show that each

graph manifold subgroup acts cocompactly on its associated convex subcomplex.

When studying the convex subcomplex associated to a graph manifold subgroup π1N ,

the proof is simplest when every surface containing an accidental parabolic homotopic into

N actually intersects N . The following will allow us to assume we are always in this case:

Proposition 6.0.1. Let M be a mixed manifold admitting a frame efficient collection of

surfaces S. Then M also admits an efficient collection S′ with the following property: If

S ∈ S contains an accidental parabolic C ⊂ S then C is homotopic in S to a curve that

maps into a thin graph manifold block N . In particular, the image of S intersects N .

Proof. Let S ∈ S and supposed C ⊂ S is an accidental parabolic. Apply the accidental
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parabolic removal process described in the proof of Lemma 14.32 of [Wis12b] to obtain a

new surface S ′ with two new boundary components intersecting T . Cap off these boundary

components with a vertical annulus in B. If B is a Seifert-fibered block of a thick graph

manifold, then we can choose the annulus so that it is not ∂-parallel and therefore eliminate

the accidental parabolic.

To prove Proposition 1.2.3, we also need the following Lemma:

Lemma 6.0.2. Let M be a mixed manifold with universal cover M̃ . Let S be a frame efficient

collection and S̃ all the elevations of surfaces in S to M̃ . There exists R > 0 so that the

following holds: Let S̃, S̃ ′ ∈ S̃ and let B̃ be a Seifert fibered block of M̃ . If both S̃ ∩ B̃ and

S̃ ′ ∩ B̃ are non-empty and are distance at least R from each other, then S̃ and S̃ ′ do not

intersect in M̃ .

The proof of Lemma 6.0.2 uses the following two lemmas due to Przytycki-Wise [PW]:

Lemma 6.0.3 (Lemma 2.5 of [PW]). Let S be a finite family of geometrically finite immersed

incompressible surfaces in a compact hyperbolic 3-manifold N . Let Ñ denote the universal

cover of N and S̃ all the elevations of surfaces in S to Ñ . There exists R′ = R′(N,S)

such that if the stabilizer of an elevation S̃ ∈ S̃ intersects the stabilizer of a boundary plane

T̃ ⊂ ∂N along an infinite cyclic group, then N = NR(S̃) ∩ T̃ is nonempty.

Moreover, assume that we have two such elevations S̃, S̃ ′ of possibly distinct surfaces.

If S̃ ∩ T̃ and S̃ ′ ∩ T̃ are nonempty and at distance ≥ R in the intrinsic metric on T̃ (resp.

NR(S̃) ∩ T̃ and NR(S̃ ′) ∩ T̃ are sufficiently far with respect to some r), then S̃ and S̃ ′ are

disjoint. (resp. at distance ≥ r) and T̃ is the only boundary plane of Ñ intersecting both S̃

and S̃ ′.

Lemma 6.0.4 (Remark 3.6 of [PW]). Let S be a finite family of immersed incompressible

surfaces in a thick graph manifold N . There exists R′ = R′(N,S) with the following property:

Let B ⊂ N be a Seifert fibered block with elevation B̃ ⊂ Ñ and let S̃, S̃ ′ be elevations to Ñ
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of surfaces in S. Suppose S̃o = S̃ ∩ B̃ and S̃ ′o = S̃ ′ ∩ B̃ are both vertical and that there is

JSJ-plane T̃ ⊂ ∂B̃ intersecting both S̃o and S̃ ′o. If the distance between the lines S̃o ∩ T̃ and

S̃ ′o ∩ T̃ is ≥ R in the intrinsic metric on T̃ , then S̃o and S̃ ′o are disjoint and T̃ is the only

JSJ-plane contained in B̃ intersecting both S̃ and S̃ ′.

Proof of Lemma 6.0.2. For each graph manifold cluster or hyperbolic block N of M , let SN

denote the collection of all pieces of surfaces in S which map into N . Choose R′ satisfying

Lemma 6.0.3 and Lemma 6.0.4 for every pair (N,SN).

Let B̃ be a Seifert fibered block of M̃ . Suppose S̃, S̃ ′ ∈ S̃ both intersect B̃. If there

is no JSJ-plane contained in B̃ which insersects both S̃ and S̃ ′ then B̃ is only block of M̃

intersecting both S̃ and S̃ ′. In this case, being far apart in B̃ clearly implies S̃ and S̃ ′ do

not intersect in M̃ .

Now assume a JSJ-plane T̃ of B̃ intersects both S̃ and S̃ ′. Let B̃′ be the block adjacent

to B̃ via T̃ . We will find R > 0 so that if S̃ ∩ T̃ and S̃ ′ ∩ T̃ are distance at least R from each

other then S̃ and S̃ ′ do not intersect in B̃′ and that T̃ is the only JSJ-plane of B̃ intersecting

both S̃ and S̃ ′. It will follow that that S̃ and S̃ ′ do not intersect in the component of M̃ − B̃

containing B̃′. Since T was chosen arbitrarily, it will then follow that S̃ and S̃ ′ do not

intersect in M̃ .

There are a few cases to consider. First, if one of these elevations has a horizontal piece

in B̃ and the other a vertical piece in B̃, then they cross in B̃. Therefore d(S̃ ∩ B̃, S̃ ′ ∩ B̃) =

0 < R′.

Next assume both S̃ ∩ B̃ and S̃ ′ ∩ B̃ are horizontal and that B̃′ is a hyperbolic block.

If S̃ ∩ T̃ and S̃ ∩ T̃ are both non-empty and at distance at least R′ from each other, then

by Lemma 6.0.3 the elevations S̃ and S̃ ′ do not intersect in B̃′ nor do they intersect any

common JSJ planes of B̃′ other than T̃ . Thus S̃ and S̃ ′ do not intersect in this component

of M̃ − B̃. If B̃′ is a Seifert fibered block, then S̃ ∩ B̃′ and S̃ ′ ∩ B̃′ are vertical in B̃′ and the

same conclusion holds by applying Lemma 6.0.4.

Now assume they are both vertical in B̃. If B̃′ is hyperbolic, R′ still suffices by the same

40



argument as before. The trickier case is when B̃′ is Seifert fibered since then S̃ and S̃ ′ have

pieces horizontal in B̃′. The horizontal pieces in B̃′ do not intersect and it follows that only

finite many can lie R′-close to S̃. Thus, there is some R ≥ R′ so that if S̃ ∩ T̃ and S̃ ′ ∩ T̃ ′

are at distance at least R, then S̃ ∩ B̃′ and S̃ ′ ∩ B̃′ are at distance at least R′ and a previous

case implies S̃ and S̃ ′ do not intersect in M̃ . This choice of R depended only on R′ and the

π1M -orbit of T̃ . Therefore, we can choose R uniformly.

We now prove Proposition 1.2.3, completing the proof of the main theorem.

Proof of Proposition 1.2.3. Let M be a mixed manifold admitting a frame efficient collection

of surfaces S. Let S̃ the collection of all elevations of surfaces in S to M̃ , the universal cover

of M . Choose a Riemannian metric for M and lift it to M̃ . Assume S is as in Proposition

6.0.1. Let X̃ be the CAT (0) cube complex dual to the wallspace (M̃, S̃).

Let N1, . . . , Nk denote the graph manifold clusters of M . For each graph manifold cluster

Ni, choose an elevation Ñi in M̃ and let Pi = stab(Ñi).

Przytycki-Wise have shown that Definition 2.2.1(1)-(5) imply that π1M acts freely and

properly on X̃, that X̃/π1M is virtually special, and that π1M acts cocompactly relative to

{C(Ñi)}. (See Theorems 2.1 and 2.4 of [PW].) Therefore, it remains only to show that each

Pi acts cocompactly on its respective C(Ñi).

Let R > 0 be a constant satisfying Lemma 6.0.2 for M and S. Fix a choice of i. To

show Pi acts cocompactly C(Ñi), we find L > 0 so that each collection of pairwise crossing

walls in S̃i has an L-center in Ñi. Since Pi acts cocompactly on Ñi, Lemma 2.3.7 will then

imply there are finitely many Pi-orbits of pairwise crossing walls. First we show each wall

in S̃i intersects Ñi. If S̃ ∈ S̃i, then stab(S̃) ∩ Pi is infinite. If S is the surface covered by S̃,

this implies S either intersects Ni or has an accidental parabolic homotopic into Ni. Since

S satisfies Proposition 6.0.1, S intersects Ni in the latter case.

Let V ⊂ S̃i be a collection of walls which pairwise cross in M̃ . Now we show there is

a Seifert fibered block of Ñi intersecting every surface of V . The JSJ-planes of M̃ give it
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the structure of a tree of spaces. Let Γ denote the tree dual to the collection of JSJ-planes

of M̃ in which there is a vertex for each block of M̃ and an edge whenever two blocks are

adjacent via a JSJ-plane. For each wall in W ∈ V consider the subtree of ΓW whose vertices

corresponded to blocks intersecting that wall and edges to JSJ-planes intersecting that wall.

These subtrees associated to walls in V pairwise intersect since the surfaces pairwise intersect

in M̃ . Further, each of these subtrees intersects the subtree ΓÑi
consisting of all the blocks

and JSJ-planes contained in Ñi. The Helly Property for trees states that if a collection of a

subtrees in a tree pairwise intersect, then the total intersection of the collection of subtrees is

nonempty. Therefore, (∩W∈VΓW ) ∩ ΓÑi
is nonempty which implies there is a Seifert fibered

block B̃ of Ñi intersecting every wall of V .

Let V ′ denote the collection of all pieces in B̃ of walls in V . By our choice of R > 0, the

pieces in V ′ are pairwise R-close.

We find an R-fiber of B̃ close to the vertical pieces of V ′ then a point on that fiber close

to the horizontal pieces. Since B is a Seifert fibered space with boundary, B̃ has a product

structure of the form E×R respecting the R-fibering of B̃. If Ni is thick, E is a convex subset

of H2. If Ni is thin, B̃ = Ñi and E is an infinite strip. In either case, E is δ-hyperbolic.

Projecting the vertical pieces of V ′ onto E yields a collection of pairwise-close quasigeodesics

in E. By Lemma 2.3.6, there is a constant L1 = L1(B,S) and an L1-center y0 ∈ E for these

quasigeodesics.

Let ` = {y0} × R be the R-fiber L1-close to the vertical pieces of V ′. The horizontal

pieces are all disjoint so there is an upper bound K = K(B,S) on the size of any collection

of pairwise R-close horizontal pieces. Choose a point x0 ∈ ` lying on any horizontal piece in

V ′. Let f be the length of a regular fiber of B and let L2 = fK. Any horizontal piece in V ′

in B is L2-close to x0.

Thus, x0 is an L2-center for V . The constants we chose depended only on B, the Seifert

fibered block covered by B̃, and S, so we can choose them uniformly. Therefore, Pi acts

cocompactly on C(Ñi) by Lemma 2.3.7. This together with Theorem 2.3.9 implies π1M acts
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cocompactly on X̃. Therefore X = X̃/π1M is virtually compact special.
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Chapter 7

Classification of virtually compact

special 3-manifold groups

We conclude by proving Theorem 1.1.5, which gives a classification of virtually compact

special 3-manifold groups in terms of their geometric structure.

Proof of Theorem 1.1.5. The case where M is nongeometric follows from the main theorem

and Theorems A and B of [HP15].

Wise proved π1M is virtually compact special when M is a hyperbolic manifold with

boundary in [Wis12b]. Agol, Groves, and Manning proved π1M is virtually compact special

when M is a closed hyperbolic 3-manifold in [Ago13] building on [Wis12b] and [BW12].

If M is a spherical manifold then π1M is finite and hence virtually trivial implying it is

virtually compact special. For M a sol manifold, then Hagen-Przytycki observed π1M is

not virtually compact special. Indeed, since π1M is solvable but not virtually Abelian, the

solvable subgroup theorem (See e.g. Theorem 7.8 in part II of [BH99].) implies π1M cannot

act properly on a CAT (0) cube complex and therefore is not virtually compact special.

Technically, we could also consider sol manifolds as graph manifold with a nontrivial JSJ

decomposition. Hagen-Przytycki [HP15] exclude this case when studying graph manifolds

but their results still hold since sol manifolds are not chargeless.
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For the remaining cases we study their Seifert fibered structure. These cases are also

discussed in [HP15]. The argument is straightforward so we include it here. Suppose M is

a Seifert fibered space with infinite fundamental group. If M is closed and has a vanishing

Euler number then it has a finite cover which is a product F × S1 where F is a surface. It

is well-known that the fundamental group of a such a manifold is virtually compact special.

The geometries corresponding to a vanishing Euler number are E3, H2×R, and S2×R. (See

e.g. Table 1.1 in [AFW15].) If M has nonempty boundary then it is virtually the product

of a surface with boundary and a circle and admits one of the three geometries above.

If M is a closed Seifert fibered space with a non-vanishing Euler number, then M does

not have a finite cover which is the product of a surface and a circle. Theorem 6.12 in Part

II of [BH99] states that if π1M were to act properly by isometries on a CAT (0) space then

there would be a finite index subgroup with the fiber subgroup as a direct factor. This

would then implies (by e.g. Theorem 2.5.9 of [AFW15]) that M has a finite cover which is

the product of a surface and a circle. It follows that π1M cannot properly on a CAT (0)

cube complex if M has non-vanishing Euler number. This excludes closed 3-manifolds which

admit a S̃L(2,R) or nil geometric structure.
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