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ABSTRACT

Triebel-Lizorkin space estimates for evolution equations
with structure dissipation

by

Jingchun Chen

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professors Dashan Fan and Lijing Sun

This work is concerned with the long time decay estimates of the generalized heat equations

and the generalized wave equations in the homogeneous Triebel-Lizorkin spaces. We first

extend the known results for the generalized heat equations in the real Hardy spaces. We

also extend the known results for the generalized wave equations with structure dissipation

in the real Hardy spaces.

The main tools employed are the decomposition of the unit, duality property in Triebel-

Lizorkin spaces and the multiplier theorems in different function spaces such as Lebesgue

spaces, real Hardy spaces and Triebel-Lizorkin spaces.
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Chapter 1

Introduction

Partial differential equations (PDEs) are applied widely, since a rich variety of physical,

chemical, biological, probabilistic and statistical phenomena can be modeled by PDEs. One

of the core problems in PDEs is to study the well-posedness which has attracted much atten-

tion in the history of PDEs. We say that a given problem for a partial differential equation

is well-posed if

(i) the problem in fact has a solution;

(ii) this solution is unique;

(iii) the solution depends continuously on the data given in the problem.

Namely, well-posedness is to study of the existence, uniqueness and stability of the solutions

to PDEs. To get the uniqueness, very often we have to estimate the solutions in some sense.

In this thesis, we are going to study the behavior of the solutions to the generalized heat

equations and the generalized wave equations. To be more specific, we study the long time

decay estimates of the solutions to the generalized heat equations and the generalized wave

equations which are studied in Chapter 3 and Chapter 4 in details.

There are many tools to study PDEs. Here we mainly depend on the multiplier theorem

(Fourier multiplier), interpolation theorem and duality theorem. Since the milestone works

of S.G. Michilin and L.Hömander, Fourier multipliers on function spaces have attracted

much attention for their own sake. For instance, Fourier multipliers on Lebesgue spaces

[12], real Hardy space [25], homogeneous Besov spaces [5] and homogeneous Triebel-Lizorkin

spaces [4] have been treated extensively. For further details, we refer the reader to Chapter

2 in this thesis. Interpolation methods exist essentially two methods: the real interpolation

method by J.L. Lions and J. Peetre, and the complex interpolation method by J.-L. Lions,

A.P. Calderón and S.G. Krejn. An extensive treatment of these abstract methods and many
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references have been given in [31], also J. Bergh, J. Löfström [2]. Originally, both methods

were developed in the framework of Banach space theory. However, it is not difficult to see

(and well-known nowadays) that the real method (at least some of its crucial assertions) can

be extended immediately to quasi-Banach spaces. Dual space is an important concept in

functional analysis since dual spaces are used to describe measures, distributions and other

more complicated function spaces. For instance, the dual space of H1(Rn) is BMO space [8].

As we all know that the properties of the solutions to the same PDE in different function

spaces can be totally different. In order to study PDEs, it is important to find an appropri-

ate function space. In other words, function spaces play a crucial role in PDEs. Since the

1930’s, more sophisticated function spaces have been used in the theory of partial differential

equations, in the first place the Hölder spaces and the Sobolev spaces. Later on, especially

in the 1950’s and 1960’s, many new spaces were created and investigated, e.g. Besov spaces,

Lebesgue spaces, Hardy spaces and the space BMO which is the dual space of H1(Rn).

Additionally, function spaces play an important part in both classical and modern mathe-

matics. Spaces whose elements are continuous, or differentiable, or p-integrable functions

are of interest for their own sake. For example, the embedding theory, duality theory and

interpolation theory were studied extensively in different function spaces. Recently, there are

many literatures involving the study of decompositions or characterizations of the function

spaces, for instance, dyadic decomposition, atomic decomposition, wavelet decomposition

and Riesz transform characterization. In this thesis, we are mainly focus on the homoge-

neous Besov space Ḃs
p,r(Rn) and the homogeneous Triebel-Lizorkin Ḟ s

p,r(Rn) space with the

classical dyadic decomposition since these two families are interesting in their own right,

but their importance also stems from the fact that several of the classical function spaces

such as Lebesgue, Hardy, BMO, Sobolev, and Höder spaces can be recovered as special cases.

The structure of this thesis is as follows.

Chapter 2 contains some preliminary knowledge. This summary contains no new results,

but most of the facts which are required for later chapters.

Chapter 3 presents the results for the generalized heat equations in Triebel-Lizorkin spaces

and Besov spaces. In particular, we derived the long time decay estimates for the solution

of the generalized heat equations in Triebel-Lizorkin spaces. Thus, we extend the known

results for the generalized heat equations in real Hardy spaces.

Chapter 4 is the central part of this thesis which studies the generalized wave equations with
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structure dissipation in Triebel-Lizorkin spaces. More precisely, we obtained the long time

decay estimates for the solution of the generalized wave equations with structure dissipation

in Triebel-Lizorkin spaces. So we extend the known results for the generalized wave equations

with structure dissipation in real Hardy spaces.

Chapter 5 talks about our future research which is related to this thesis.

Chapter 6 contains two appendices. One of them is the well-known Riesz characterization of

the real Hardy spaces. Another one is the proof of the duality property in the homogeneous

Triebel-Lizorkin spaces. They are both quite useful to get the long time decay estimate

for the generalized wave equations with structure dissipation in Triebel-Lizorkin spaces,

especially for the non-effective case when δ < σ < 2δ.
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Chapter 2

Preliminaries

In this chapter, we review some function spaces and their corresponding multiplier theorems.

2.1 Function spaces

2.1.1 Lebesgue spaces

Let dx be the Lebesgue measure on Rn. The Lebesgue space Lp(Rn), 0 < p < ∞, is the set

of all measurable functions f(x) satisfying

∥f∥Lp(Rn) =
(∫

Rn

|f(x)|pdx
) 1

p
< ∞. (2.1)

As well known, when 1 ≤ p < ∞, The Lebesgue space Lp(Rn) is a Banach space. And its

dual space is Lq(Rn), where q satisfies the condition 1
p
+ 1

q
= 1. However, when 0 < p < 1,

its dual space is trivial, namely, it contains only one constant function 0.

For 0 < p < ∞, the space weak Lp(X,µ) is defined as the set of all measurable functions

f(x) such that

∥f∥Lp,∞ = inf
{
C > 0 : µ({x ∈ X : |f(x)| > ζ}) ≤ Cp

ζp
for all ζ > 0

}
< ∞. (2.2)

2.1.2 Real Hardy spaces Hp(Rn)

We recall how the real Hardy spaces Hp(Rn) are presented by Fefferman and Stein in [8]. Fix

φ ∈ S(Rn) which is the Schwartz function space, with integral equal to 1. For u ∈ S ′
(Rn),

we define the maximal function Mφu by

Mφu(x) = sup
0<t<∞

|(u ∗ φt)(x)|,
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where φt(x) = t−nφ(x/t), and S ′
(Rn) is the dual space of S(Rn).

Definition 1 Let 0 < p < ∞. A tempered distribution u ∈ S ′
(Rn) belongs to Hp(Rn) if and

only if Mφu ∈ Lp(Rn), i.e.,

∥u∥Hp := ∥Mφu∥Lp < ∞.

For p = ∞, we set H∞(Rn) = L∞(Rn), for the sake of simplicity.

The definition of Hp(Rn) is independent of the choice of φ ∈ S(Rn) with
∫
Rn φ(x)dx = 1.

For p = 1, ∥u∥H1 is a norm and H1(Rn) is a normed space densely contained in L1(Rn).

For p > 1, ∥u∥Hp is a norm which is equivalent to the usual Lp norm ∥u∥Lp and we denote

Hp(Rn) = Lp(Rn), by abusing notation. For 0 < p ≤ 1, the space Hp(Rn) is a complete

metric space with the distance

d(u, v) = ∥u− v∥pHp , u, v ∈ Hp(Rn).

Although Hp(Rn) is not locally convex for 0 < p < 1 and ∥u∥Hp is not truly a norm (it is a

quasi-norm [30]), we will still refer to ∥u∥Hp as the ”norm” of u, as it is customary.

The dual space of H1(Rn) is BMO(Rn), the space of bounded mean oscillation. Here we

briefly recall that BMO(Rn) is the space of all locally integrable functions f satisfying

∥f∥BMO := sup
1

|B|

∫
B

∣∣∣f(x)− 1

|B|

∫
B

f(t)dt
∣∣∣dx < ∞,

where the sup is taken over all balls B with center x in Rn. It is known that the space

L∞(Rn) is a proper subspace of BMO(Rn) and

log|x| ∈ BMO(Rn)\L∞(Rn).

2.1.3 Triebel-Lizorkin spaces and Besov spaces

For a systematic approach, we also recall the definitions of Triebel-Lizorkin space Ḟ s
p,q(Rn)

and Besov space Ḃs
p,q(Rn). Let A denote the class of Schwartz functions φ on Rn such

that their Fourier transforms φ̂ have support in {1/2 ≤ |ξ| ≤ 2} and |φ̂(ξ)| ≥ c > 0 for

3/5 ≤ |ξ| ≤ 5/3. Given a triple of parameters (s, p, q) ∈ R× (0,∞)× (0,∞], we recall that
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([26], [30]) a tempered distribution f belongs to the homogeneous Triebel-Lizorkin space

Ḟ s
p,q(Rn), modulo polynomials, if the quasi-norm

∥f∥Ḟ s
p,q

=
∥∥∥(∑

j∈Z

(2js|f ∗ φj|q
)1/q∥∥∥

Lp
(2.3)

is finite, with the usual interpretation for q = ∞. An extension to the case p = ∞ reads as

∥f∥Ḟ s
∞,q

= sup
Q

( 1

|Q|

∫
Q

∑
2−j≤l(Q)

(2js|f ∗ φj(x)|qdx
)1/q

, (2.4)

where the supremum is taken over all dyadic cubes Q ([9]).

A tempered distribution f belongs to the homogeneous Besov space Ḃs
p,q(Rn) ([10], [26], [32]),

modulo polynomials, if the quasi-norm

∥f∥Ḃs
p,q

=
(∑

j∈Z

(2js∥f ∗ φj∥Lp)q
)1/q

(2.5)

is finite, where φj(x) = 2jnφ(2jx). A different choice of φ in all definitions above yields

equivalent quasi-norms as long as it is taken from the class A.

2.2 Multipliers

Fourier multipliers form one of the fundamental and most important classes of operators in

harmonic analysis. Their importance is emphasized by their close link to partial differential

operators through the Fourier transform, and there has been a continuous interest in the

study of boundedness properties of multipliers on Lp and other spaces since the work by

Marcinkiewicz [23], Mihlin [24] and Hörmander [13]. Roughly speaking, Fourier multiplier

operator is a type of linear operator which is a special case of a pseudo-differential operator.

For more information, we refer the readers to [29]. Occasionally, the term multiplier operator

itself is shortened simply to be multiplier. Multiplier operators can be defined on any group

G for which the Fourier transform is also defined (in particular, on any locally compact

Abelian group). Here we take the following definition:

Tm(f)(x) =

∫
Rn

m(ξ)f̂(ξ)e2πix·ξdξ = (mf̂)∨, (2.6)

where Tm is called multiplier operator and m(ξ) is said to be the multiplier/symbol of Tm.

As usual, if f ∈ S, the definitions of Fourier transform of f and its inverse are given by
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(F(f))(ξ) = f̂(ξ) = (2π)−
n
2

∫
Rn

f(x)e−ixξdx, ξ ∈ Rn, (2.7)

and

(F−(f))(x) = f̌(x) = (2π)−
n
2

∫
Rn

f(ξ)eixξdξ, x ∈ Rn. (2.8)

To illustrate the importance of the multiplier, we look at the following several classical ex-

amples.

Example 2.1. Derivative d/dx (df(x)
dx

)∧
= 2πiξf̂(ξ).

From this fact, we see that a differential operator converts to a polynomial in the frequency

space after taking Fourier transform.

Example 2.2. The Hilbert transform H is defined as

Hf := p.v.
1

π

∫ ∞

−∞

f(y)

x− y
dy.

Its Fourier multiplier is −isgn(ξ).

Example 2.3. The Riesz transforms Rj, j = 1, 2, · · · , n

Rjf := p.v.cn

∫
Rn

f(y)(xj − yj)

|x− y|n
dy.

Its multiplier is −i
ξj
|ξ| , for each j = 1, 2, · · · , n, and p.v. means the Cauchy principle value,

cn is a constant which depends on the dimension of Rn.

From Example 2.2 and Example 2.3, we can see that Riesz transforms Rj are exten-

sions of the Hilbert transform H in higher dimensions. And they are both classical examples

of singular integrable operator which is a branch of harmonic analysis. These examples

begin to show the importance of multipliers in analysis. In this thesis, we will employ the

generalized multipliers in Triebel-Lizorkin spaces [4] and Besov spaces [5].

In what follows, we recall the multipliers on different function spaces. The first ingredient

is the celebrated Mikhlin- Hörmander multiplier theorem for Lebesgue spaces Lp(Rn).
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2.2.1 The multiplier on Lp(Rn)

Let Mp(Rn), 1 ≤ p < ∞ denote the space of all bounded functions m on Rn such that the

Fourier multiplier operator

Tm(f) = (mf̂)∨, f ∈ S,

is bounded on Lp(Rn) (or is initially defined in a dense subspace of Lp(Rn) and has a bounded

extension on the whole space). The norm of m in Mp(Rn) is defined by

∥m∥Mp = ∥Tm∥Lp→Lp .

The norm space Mp(Rn) are nested, that is, for 1 ≤ p ≤ q ≤ 2 we have

M1 ⊆ Mp ⊆ Mq ⊆ M2 = L∞.

Now let us recall the celebrated Mikhlin- Hörmander multiplier theorem for Lebesgue spaces

Lp(Rn)[12].

Theorem 1 ([12]) Let m(ξ) be a complex-valued bounded function on Rn \{0} that satisfies

for some A < ∞ (∫
R<|ξ|<2R

|∂α
ξ m(ξ)|2dξ

) 1
2 ≤ AR

n
2
−|α| < ∞, (2.9)

for all multi-indices |α| ≤ [n/2] + 1 and all R > 0.

Then for all 1 < p < ∞,m lies in Mp(Rn) and the following estimate is valid:

∥m∥Mp ≤ Cnmax(p, (p− 1)−1)(A+ ∥m∥L∞). (2.10)

Moreover, the operator f 7→ (f̂m)∨ maps L1(Rn) to L1,∞(Rn) with norm at most a dimen-

sional constant multiple of A+ ∥m∥L∞ .

We remark that in most applications, the condition on m in above theorem appears in

the form

|∂α
ξ m(ξ)| ≤ Cα|ξ|−α, (2.11)

which should be, in principle, easier to verify.

The following proposition summarizes some simple properties of multipliers on Lebesgue

spaces Lp(Rn).
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Proposition 1 ([12]) For all m ∈ Mp, 1 ≤ p < ∞, x ∈ Rn, and h > 0 we have

∥τx(m)∥Mp = ∥m∥Mp ,

∥δh(m)∥Mp = ∥m∥Mp ,

∥m̃∥Mp = ∥m∥Mp ,

∥e2πi(·)·x(m)∥Mp = ∥m∥Mp ,

∥m ◦ A∥Mp = ∥m∥Mp ,

where (τxm)(·) = m(· − x), (δhm)(·) = m(h·) and A is an orthogonal matrix Rn → Rn.

2.2.2 The multiplier on Hp(Rn)

We list briefly some of the multiplier theorems to be used in the sequel. The first ingredient

is a version of the celebrated Mikhlin-Hörmander multiplier theorem on Hardy spaces.

Theorem 2 ([25]) Let 0 < p < ∞ and k = max{[n(1/p − 1/2)] + 1, [n/2] + 1}. Suppose

that m ∈ Ck(Rn \ {0}) and
|∂β

ξ m(ξ)| ≤ C|ξ|−β, |β| ≤ k.

Then Tm is continuously bounded from Hp(Rn) into itself.

Variants of this theorem assuming conditions on the support of m(ξ) can be found in

[25]. In particular, we recall the following two main theorems in [25]. In those two theorems,

M(Hp(Rn)) denotes the set of all Fourier multipliers on Hp(Rn).

Theorem 3 ([25]) Let a ≥ 0, b ≥ 0, 0 < p0 < 2, na(1/p0−1/2) = b, and k = max{[n(1/p0−
1/2)] + 1, [n/2] + 1}. Suppose that m ∈ Ck(Rn), m(ξ) = 0 in a neighborhood of the origin,

and ∣∣∣( ∂
∂ξ

)α
m(ξ)

∣∣∣ ≤ |ξ|−b(A|ξ|a−1)|α|, |α| ≤ k, (2.12)

with some constant A ≥ 1. Then m ∈ M(Hp(Rn)) and

∥m∥M(Hp(Rn)) ≤ CAn(1/p−1/2) (2.13)

for 2 ≥ p ≥ p0, where C is a constant independent of A.
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Theorem 4 ([25]) Let c ≥ 0, d ≥ 0, 0 < p0 < 2, nd(1/p0−1/2) = c, and k = max{[n(1/p0−
1/2)] + 1, [n/2] + 1}. Suppose that m ∈ Ck(Rn \ {0}),m(ξ) = 0 if |ξ| ≥ 1, and∣∣∣( ∂

∂ξ

)α
m(ξ)

∣∣∣ ≤ |ξ|c(A|ξ|−1−d)|α|, |α| ≤ k, (2.14)

with some constant A ≥ 1. Then m ∈ M(Hp(Rn)) and

∥m∥M(Hp(Rn)) ≤ CAn(1/p−1/2). (2.15)

for 2 ≥ p ≥ p0, where C is a constant independent of A.

Another useful property of Hardy spaces is a pointwise estimate (see Corollary 7.21 in

[11] or (77) [6]) for the Fourier transform of Hp functions, with p ∈ (0, 1] :

|f̂(ξ)| ≤ C|ξ|n(
1
p
−1)∥f∥Hp , p ∈ (0, 1]. (2.16)

Moreover, the following integral estimate (see Corollary 7.23 in [11] or (78) [6]) holds:(∫
Rn

|ξ|n(p−2)|f̂(ξ)|pdξ
) 1

p ≤ C∥f∥Hp , p ∈ (0, 1]. (2.17)

2.2.3 The multiplier on Ḟ s
p,r(Rn) and Ḃs

p,r(Rn)

Finally, let us recall what kinds of functions m can be the multiplier on Ḟα
p,r [4] and Ḃα

p,r [5].

Give a positive integer l and α ∈ R,m ∈ C l(Rn \ {0}) and

sup
R>0

[
R−n+2α+2|σ|

∫
R<|ξ|<2R

|∂σ
ξ m(ξ)|2dξ

]
≤ Aσ, |σ| ≤ l. (2.18)

When α = 0, it is known as the Hörmander condition. Typical examples are given by the

symbols of the Riesz singular integrals Rj (see Appendix). When α ̸= 0, one of the typical

examples is m(ξ) = |ξ|−α which satisfies condition (2.18) for every positive integer l. For

further multiplier theorems in Ḟ s
p,r(Rn) and Ḃs

p,r(Rn) spaces, we refer the readers to ([4], [5])

and next chapter in this thesis. The following is one of the multiplier theorems in Triebel-

Lizorkin spaces.
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Theorem 5 ([4] Theorem 5.2) Given α ∈ R, 0 < p < ∞ and 0 < r ≤ ∞, let β be any real

number with β < α and let p∗ be determined by

β − n/p∗ = α− n/p, 0 < p∗ ≤ ∞. (2.19)

Assume that m satisfies condition (2.18) with

l >

{
max(n/p, n/r) + n(1/2− 1/r), if 2 ≤ r ≤ ∞,
max(n/p, n/2), if 0 ≤ r ≤ 2.

(2.20)

Then Tm maps Ḟ 0
p,r boundedly into Ḟ β

p∗,q for any 0 < q ≤ ∞ with

∥Tmf∥Ḟβ
p∗,q

≼ ∥f∥Ḟ 0
p,r

. (2.21)
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Chapter 3

Heat equations

3.1 Introduction

We begin with studying the initial value problem for the generalized heat equation{
ut + (−∆)σu = 0, (t, x) ∈ (0,∞)× Rn,
u(0, x) = u0(x),

(3.1)

where σ ∈ (0,∞) and (−∆)σf := F−1(|ξ|2σFf), F(∧) being the Fourier transform with

respect to the spatial variable x and F−1(∨) being the inverse of the Fourier transform.

The initial data u0 belongs to some Triebel-Lizorkin space Ḟ s
p,q(Rn) (Ḟ s

p,q) or some Besov

space Ḃs
p,q(Rn) (Ḃs

p,q). Equation (3.1) is significantly interesting in both physics and partial

differential equations (PDEs), since it is the classical heat equation when σ = 1 and the

Poisson equation when σ = 1/2. Recently, for the non-homogeneous heat equations, in [3]

the authors obtained the estimates of the solution of the heat equation in the real Hardy

space Hp(Rn) and studied the well-posedness of the Cauchy problem related to the heat

equation.

As we know, an efficient way to solve PDEs is trying to transform the PDEs to the

Ordinary Differential Equations (ODEs). By taking the Fourier transform with respect to

the spatial variable x, and then solving the corresponding (ODEs) with respect to time t,

we get the solution of the Cauchy problem (3.1) which is formally written by

u(t, x) = e−t(−∆)σu0(x), (3.2)

where for each fixed t, e−t(−∆)σ is a Fourier multiplier with symbol m(t, ξ) = e−t|ξ|2σ . Thus,

we may rewrite the solution of the Cauchy problem (3.1) as Fourier multiplier operator with

m(t, ξ) = e−t|ξ|2σ :

u(t, x) = F−1(e−t|ξ|2σFu0(ξ))(t, x) = Tmu0(x). (3.3)

12



In this chapter, our aim is to estimate the solution to (3.1). The basic tool employed is the

Fourier multipliers whose symbols satisfy a generalization of Hörmander’s condition (2.18)

on m ([4], [5]).

From then on, the notation A ≼ B means that there is a positive constant C such that

A ≤ CB. A ≈ B means that there exist positive constants c and C such that cA ≤ B ≤ CA.

The constant C and c may depend on the parameters but not on the variable quantities

involved and may vary from line to line. The set of all Fourier multipliers for Ḟα
p,r and Ḃα

p,r

are denoted by ṁp,r and ṁp respectively.

3.2 Some results in Ḟ s
p,r(Rn) and Ḃs

p,r(Rn)

To be convenient for the readers, in this section, we shall collect some known results in

Ḟ s
p,r(Rn) and Ḃs

p,r(Rn) and also prove some lemmas which will be used later on.

Proposition 2 ([4] Proposition 2.1(1)) Let 0 < p, r ≤ ∞. For s ∈ R, Ḟ s
p,r = Iα(Ḟ

0
p,r) so that

f ∈ Ḟ s
p,r if and only if there exists a unique g ∈ Ḟ 0

p,r such that

f = Is(g) and ∥f∥Ḟ s
p,r

≈ ∥g∥Ḟ 0
p,r

.

There is a counterpart of Ḃs
p,r(Rn), which means, with the same assumption above, the fol-

lowing holds:

For s ∈ R, Ḃs
p,r = Is(Ḃ

0
p,r) so that f ∈ Ḃs

p,r if and only if there exists a unique g ∈ Ḃ0
p,r such

that

f = Is(g) and ∥f∥Ḃs
p,r

≈ ∥g∥Ḃ0
p,r

,

where Is denotes the Riesz potential defined by

(Isf)
ˆ(ξ) = |ξ|−sf̂(ξ).

Owning to Proposition 2.1 [4], to prove that a convolution operator T is bounded on the

spaces Ḟ s
p,q and Ḃs

p,q, it suffices to show its boundedness on Ḟ 0
p,q and Ḃ0

p,q. For example, on

the space Ḟ s
p,q, once we prove

∥Tf∥Ḟ 0
p,r

≼ ∥f∥Ḟ 0
p,r

(3.4)
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we have

∥Tf∥Ḟ s
p,r

= ∥TIs(g)∥Ḟ s
p,r

= ∥IsTg∥Ḟ s
p,r

≈ ∥Tg∥Ḟ 0
p,r

≼ ∥g∥Ḟ 0
p,r

≈ ∥f∥Ḟ s
p,r

.

Next is one of the known results of Fourier multipliers on Triebel-Lizorkin space Ḟ s
p,r which

is also called the lifting property.

Theorem 6 ([4] Theorem 5.1) (lifting property). Let α, γ ∈ R, 0 < p < ∞ and 0 < r ≤ ∞.

Suppose that m satisfies condition (2.18) with l > max(n/p, n/r) + n/2. Then

∥Tmf∥Ḟα+γ
p,r

≼ ∥f∥Ḟ γ
p,r

. (3.5)

If l > λ+ n/2 and λ is sufficiently large, then

∥Tmf∥Ḟα+γ
∞,r

≼ ∥f∥Ḟ γ
∞,r

. (3.6)

Corollary 1 ([4] Corollary 5.1) Given α, γ ∈ R, 0 < p < ∞ and 0 < r ≤ ∞, let β be any

real with β < α+ γ and let p∗ be determined by

β − n/p∗ = α+ γ − n/p, 0 < p∗ ≤ ∞. (3.7)

Assume that m satisfies condition (2.18) with (2.20). Then Tm maps Ḟ γ
p,r boundedly into

Ḟ β
p∗,q for any 0 < q ≤ ∞ with

∥Tmf∥Ḟβ
p∗,q

≼ ∥f∥Ḟ γ
p,r

. (3.8)

Also, we have some results of Fourier multipliers on the Besov space Ḃs
p,r.

Theorem 7 ([5] Theorem 1.1) Given α ∈ R, 0 < p < ∞ and 0 < r ≤ ∞, let β be any real

number with β < α and let p∗ be determined by

β − n/p∗ = α− n/p, 0 < p∗ ≤ ∞. (3.9)

Assume that m satisfies condition (2.18) with l > n(1/p+1/2), then Tm maps Ḃ0
p,r boundedly

into Ḃβ
p∗,q for any 0 < q ≤ ∞ with

∥Tmf∥Ḃβ
p∗,q

≼ ∥f∥Ḃ0
p,r

. (3.10)

14



Corollary 2 Given α, γ ∈ R, 0 < p < ∞ and 0 < r ≤ ∞, let β be any real with β < α + γ

and let p∗ be determined by

β − n/p∗ = α+ γ − n/p, 0 < p∗ ≤ ∞. (3.11)

Assume that m satisfies condition (2.18) with l > n(1/p+1/2), then Tm maps Ḃγ
p,r boundedly

into Ḃβ
p∗,q for any 0 < q ≤ ∞ with

∥Tmf∥Ḃβ
p∗,q

≼ ∥f∥Ḃγ
p,r

. (3.12)

To prove Corollary 2, we need the following lemma.

Lemma 1 If m satisfies condition (2.18), then m̃ = m(ξ)|ξ|−γ satisfies condition (2.18) by

replacing α by α̃ = α+ γ.

Proof. For any 0 ≤ |σ| ≤ l, using Leibniz’s formula, we have

∂σ
ξ m̃ = ∂σ

ξ (m(ξ)|ξ|−γ) =
∑
β<σ

Cβ∂
β
ξ m ∂σ−β

ξ |ξ|−γ. (3.13)

Thus,

R−n+2(α+γ)+2|σ|
∫
R<|ξ|<2R

|∂σ
ξ m̃|2dξ ≼ R−n+2(α+γ)+2|σ|

∫
R<|ξ|<2R

|
∑
β<σ

Cβ∂
β
ξ m ∂σ−β

ξ |ξ|−γ|2dξ

≼ R−n+2(α+γ)+2|σ|
∑
β<σ

Cβ

∫
R<|ξ|<2R

|∂β
ξ m|2|∂σ−β

ξ |ξ|−γ|2dξ

≼ R−n+2(α+γ)+2|σ|
∑
β<σ

Cβ

∫
R<|ξ|<2R

|∂β
ξ m|2 1

|ξ|2(γ+|σ|−|β|dξ

≼ R−n+2(α+γ)+2|σ|R−2γ−2|σ|+2|β|
∑
β<σ

Cβ

∫
R<|ξ|<2R

|∂β
ξ m|2dξ

= R−n+2α+2|β|
∑
β<σ

Cβ

∫
R<|ξ|<2R

|∂β
ξ m|2dξ

≼ Aσ,

where we used the assumption imposed on m in the last inequality. So we end the proof of

Lemma 1.

Next we prove Corollary 2.

Proof. For any f ∈ Ḃγ
p,r, by Proposition 2.1 Ḃγ

p,r = Iγ(Ḃ
0
p,r), there exists a unique g ∈ Ḃ0

p,r
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such that f = Iγg with ∥f∥Ḃγ
p,r

≈ ∥g∥Ḃ0
p,r
. Then, we have

∥Tmf∥Ḃβ
p∗,r

= ∥TmIγ(g)∥Ḃβ
p∗,r

= ∥Tm̃g∥Ḃβ
p∗,r

≼ ∥g∥Ḃ0
p,r

≈ ∥f∥Ḃγ
p,r

,

where we employed Lemma 1. So Corollary 2 is proved.

Before we state our main results in this chapter, we prove another lemma related to the

relationship between the multipliers ṁp,r and ṁp.

Lemma 2 Let 0 < p < ∞, 0 < r ≤ ∞, then ṁp,r ⊂ ṁp.

Our proof is based on the results of Theorem 5.1 in [17] which is stated as follows. Before

we give the theorem, let us introduce some notations. Let (·, ·)θ,r stand for the standard

real interpolation bracket. More specifically, consider a compatible couple of quasi-Banach

spaces X0, X1. Given a ∈ X0 +X1 and 0 < t < ∞, Peetre’s K-functional is defined by

K(t, a;X0, X1) := inf{∥x0∥X0 + t∥x1∥X1 : x0 ∈ X0, x1 ∈ X1 such that a = x0 + x1}. (3.14)

Then we introduce the real interpolation spaces as

(X0, X2)θ,r :=
{
a ∈ X0 +X1 : ∥a∥(X0,X2)θ,r :=

(∫ ∞

0

(t−θK(t, a;X0, X1))
r dt

t

)1/r
< ∞

}
,

(3.15)

if 0 < θ < 1, 0 < r < ∞, and

(X0, X2)θ,∞ :=
{
a ∈ X0 +X1 : ∥a∥(X0,X2)θ,∞ := sup

0<t<∞
t−θK(t, a;X0, X1) < ∞

}
, (3.16)

for 0 < θ < 1.

More details regarding the real method of interpolation can be found in [30].

Theorem 8 ([17] Theorem 5.1 ) Let s1, s2 ∈ R, s1 ̸= s2, 0 < r1, r2, r ≤ ∞, 0 < θ <

1, s = (1− θ)s1 + θs2. Then

(F s1
p,r1

, F s2
p,r2

)θ,r = Bs
p,r, 0 < p < ∞, (3.17)

(Bs1
p,r1

, Bs2
p,r2

)θ,r = Bs
p,r, 0 < p ≤ ∞. (3.18)

Furthermore, similar formulas hold for the homogeneous versions of the Besov and Triebel-

Lizorkin spaces.
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Now we start to prove Lemma 2. Owning to the arbitrariness of ri, i = 1, 2 in Theorem 8,

let r1 = r2 = r, we have

(Ḟ s1
p,r, Ḟ

s2
p,r)θ,r = Ḃs

p,r, 0 < p < ∞. (3.19)

Assume m ∈ ṁp,r which equivalently says that

∥Tmf∥Ḟ s
p,r

≼ ∥f∥Ḟ s
p,r
, for any f ∈ Ḟ s

p,r, with s ∈ R. (3.20)

Next we only have to show that

∥Tmf∥Ḃs
p,r

≼ ∥f∥Ḃs
p,r
, for any f ∈ Ḃs

p,r with 0 < r ≼ ∞ and s ∈ R. (3.21)

Indeed, if f ∈ Ḃs
p,r, then f = f1 + f2 with f1 ∈ Ḟ s1

p,r, f1 ∈ Ḟ s1
p,r. Thus Tmf = Tmf1 + Tmf2,

(3.14) and (3.20) imply that

K(t, Tmf ; Ḟ
s1
p,r, Ḟ

s2
p,r) ≼ inf(∥Tmf1∥Ḟ s1

p,r
+ ∥Tmf2∥Ḟ s2

p,r
)

≼ inf(∥f1∥Ḟ s1
p,r

+ ∥f2∥Ḟ s2
p,r
).

By a simple computation, we can prove that (3.21) holds, so the proof of Lemma 2 is finished.

3.3 Main results for the generalized heat equations

Now, we are in a position to state one of the main results for the generalized heat equations.

Theorem 9 Assume that u is the solution to equation (3.1). Then for any 0 < p∗, p, q, r <

∞ with p∗ ≥ p and β, γ ∈ R, we have the following estimate,

∥u(t, ·)∥Ḟβ
p∗,q

≼ t−
n
2σ

( 1
p
− 1

p∗
)t−

β−γ
2σ ∥u0∥Ḟ γ

p,r
p∗ > p, (3.22)

and

∥u(t, ·)∥Ḟβ
p,q

≼ ∥u0∥Ḟβ
p,q

0 < p < ∞. (3.23)

Proof. Let us begin with proving the first inequality (3.22). Note that, for any ξ ∈ Rn\{0}
and any nonnegative real number β̃ which will be determined later, we have the following

identity

m(t, ξ) = e−t|ξ|2σ(t|ξ|2σ)β̃ 1

(t|ξ|2σ)β̃
(3.24)

= m1(t, ξ)m2(t, ξ), (3.25)

where

m1(t, ξ) = e−t|ξ|2σ(t|ξ|2σ)β̃,
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and

m2(t, ξ) =
1

(t|ξ|2σ)β̃
.

Clearly, |m1(t, ξ)| ≤ C holds uniformly with respect to ξ and t ∈ (0,∞), where C is a constant

which depends on β̃. Thus, we can prove that m1(t, ξ) and m2(t, ξ) satisfy condition (2.18)

with α = 0 and α = 2σβ̃ respectively. To be specific,

sup
R>0

[
R−n+2|σ̃|

∫
R<|ξ|<2R

|∂σ̃
ξ m1(t, ξ)|2dξ

]
≤ A1,σ̃, |σ̃| ≤ l, (3.26)

and

sup
R>0

[
R−n+4σβ̃+2|σ̃|

∫
R<|ξ|<2R

|∂σ̃
ξ m2(t, ξ)|2dξ

]
≤ t−β̃A2,σ̃, |σ̃| ≤ l, (3.27)

where A1,σ̃ and A2,σ̃ are some constants.

Thus, combining Theorem 6 with α = 0 and Corollary 1 with α = 2σβ̃, we have

∥u(t, ·)∥Ḟβ
p∗,q

= ∥Tmu0∥Ḟβ
p∗,q

= ∥Tm1m2u0∥Ḟβ
p∗,q

= ∥Tm1Tm2u0∥Ḟβ
p∗,q

≼ ∥Tm2u0∥Ḟβ
p∗,q

≼ t−β̃ ∥u0∥Ḟ γ
p,r

= t−
n
2σ

( 1
p
− 1

p∗
)t−

β−γ
2σ ∥u0∥Ḟ γ

p,r
,

where β̃ is determined by β−n/p∗ = 2σβ̃+ γ−n/p, which derives our desired result (3.22).

To prove the second inequality in (3.23) in Theorem 9, we do not need to decompose the

multiplier as in (3.24). Indeed, the inequality in (3.23) follows immediately from Theorem 6

with α = 0. So we omit the details.

Since Ḟ 0
p,2 = Hp (0 < p < ∞), letting β = γ = 0 and q = r = 2 in Theorem (9), then the

result is exactly the same as the known result in [3] which is stated as follows:

Theorem 10 ([3]) Assume f ∈ Hr(Rn). Then for 0 < r ≤ p ≤ ∞,∥∥∥e−t(−∆)αf
∥∥∥
HpRn)

≼ t−
n
2α

(1/r−1/p) ∥f∥HrRn) . (3.28)

The proof there easily yields∥∥∥∂k
t ∂

β
xe

−t(−∆)αf
∥∥∥
Hp

≼ t−
n
2α

{(1/r−1/p)+|β|}−k ∥f∥Hr(Rn) .

Similarly, we can get the counterpart in Besov spaces.
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Theorem 11 Assume u is the solution to equation (3.1). Then for any 0 < p∗, p, q, r < ∞
with p∗ ≥ p and β, γ ∈ R, we have the following estimate

∥u(t, ·)∥Ḃβ
p∗,q

≼ t−
n
2σ

( 1
p
− 1

p∗
)t−

β−γ
2σ ∥u0∥Ḃγ

p,r
p∗ > p, (3.29)

and

∥u(t, ·)∥Ḃβ
p,q

≼ ∥u0∥Ḃβ
p,r

0 < p < ∞. (3.30)

Proof. The proof is similar to the case in Ḟ γ
p,r space. For any ξ ∈ Rn \ {0} and any

nonnegative real number β̃ which will be determined later, we have the following identity

m(t, ξ) = e−t|ξ|2σ(t|ξ|2σ)β̃ 1

(t|ξ|2σ)β̃
= m1(t, ξ)m2(t, ξ), (3.31)

where m1(t, ξ) = e−t|ξ|2σ(t|ξ|2σ)β̃ and m2(t, ξ) =
1

(t|ξ|2σ)β̃
.

It is easy to prove that m1(t, ξ) and m2(t, ξ) satisfy condition (2.18) with α = 0 and

α = 2σβ̃ respectively. To be specific,

sup
R>0

[
R−n+2|σ̃|

∫
R<|ξ|<2R

|∂σ̃
ξ m1(t, ξ)|2dξ

]
≤ A1,σ̃, |σ̃| ≤ l. (3.32)

and

sup
R>0

[
R−n+4σβ̃+2|σ̃|

∫
R<|ξ|<2R

|∂σ̃
ξ m2(t, ξ)|2dξ

]
≤ t−β̃A2,σ̃, |σ̃| ≤ l. (3.33)

Combining Theorem 6 with α = 0, Lemma 2 and Corollary 2 with α = 2σβ̃, we obtain

∥u(t, ·)∥Ḃβ
p∗,q

= ∥Tmu0∥Ḃβ
p∗,q

= ∥Tm1m2u0∥Ḃβ
p∗,q

= ∥Tm1Tm2u0∥Ḃβ
p∗,q

≼ ∥Tm2u0∥Ḃβ
p∗,q

≼ t−β̃ ∥u0∥Ḃγ
p,r

= t−
n
2σ

( 1
p
− 1

p∗
)t−

β−γ
2σ ∥u0∥Ḃγ

p,r
,

which proves inequality (3.29).

Inequality (3.30) can be derived directly with the application of the Theorem 6 and

Lemma 2. We here skip the details.

Remark. Since m1 ∈ Mp∗ and Mp∗ ⊂ ṁp∗ for 1 < p∗ < ∞, it is not necessary to employ

Theorem 6, Lemma 2 or Corollary 2 in the proof of Theorem 11.
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Chapter 4

Wave Equations

In this central chapter, we shall study the long time decay estimates of the generalized wave

equations in Triebel-Lizorkin spaces.

4.1 Introduction

We begin by studying the Cauchy problem for wave equations with a structure damping

term, {
utt + 2a(−∆)δut + (−∆)σu = 0, (t, x) ∈ (0,∞)× Rn,
(u, ut)(0, x) = (u0, u1)(x),

(4.1)

where 0 < δ < 1, a > 0. The initial data u0 and u1 belong to some Triebel-Lizorkin spaces.

The term 2a(−∆)δut, where(−∆)δf := F−1(|ξ|2δFf), F being the Fourier transform with

respect to the spatial variable x, represents the action of a structural damping, which dis-

sipates the energy of the solution to (4.1), as t → ∞. In other words, the damping term

2a(−∆)δut affects the behavior of the solution to equation (4.1).

First, for generalized wave equations without the damping term 2a(−∆)δut are given by{
utt + (−∆)σu = 0, (t, x) ∈ (0,∞)× Rn,
(u, ut)(0, x) = (u0, u1)(x),

(4.2)

where σ > 0. The energy for (4.2) is given by (see [15])

E(t) = ∥ut(t, ·)∥2L2 + ∥(−∆)
σ
2 u(t, ·)∥2L2 , (4.3)

and it remains constant for the solution to the Cauchy problem (4.2). Equivalently, E
′
(t) = 0

for any t ∈ [0,∞).

Next let us verify that the damping term 2a(−∆)δut does affect the behavior of the

solution to equation (4.1). For simplicity, here we assume the solution u(t, x) of equation
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(4.2) is ”good” enough, which means that we can avoid integrable problems, interchange

integration and differentiation freely without further justification. The extension to general

u in Triebel-Lizorkin spaces is done by a standard density argument. Thus, under our

assumption, we have

E(t) =

∫
Rn

|ut(x, t)|2dx+

∫
Rn

|(−∆)
σ
2 u(x, t)|2dx

=

∫
Rn

|ût(ξ, t)|2dξ +
∫
Rn

|ξσû(ξ, t)|2dξ (by Plancherel’s theorem).

Then, taking the derivative with respect to the time t and with our assumption that the

solution u(t, x) is ”good” enough, we get

E
′
(t) = 2

∫
Rn

ût(ξ, t)ûtt(ξ, t)dξ +

∫
Rn

2ξ2σû(ξ, t)ût(ξ, t)dξ

= 2

∫
Rn

ût(ξ, t)(ûtt(ξ, t) + ξ2σû(ξ, t))dξ

= 2

∫
Rn

ût(ξ, t)(ûtt(ξ, t) + ̂(−∆)σu(ξ, t)dξ

= 2

∫
Rn

ut(x, t)(utt(x, t) + (−∆)σu)dx

= 0,

where, in the last step, we made use of the fact that u(t, x) is the solution of equation (4.2).

However, the energy in (4.3) dissipates as t → ∞ if we add a structural damping term

2a(−∆)δut, where δ ∈ (0, σ). Namely, the energy to the solution to the Cauchy problem

(4.1) satisfies

E
′
(t) = −4a∥(−∆)

δ
2u(t, ·)∥2L2(Rn) ≤ 0.

In fact, taking the derivative with respect to the time t at both sides of the identity (4.3)
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and following the similar procedures as we did above, we get

E
′
(t) = 2

∫
Rn

ut(x, t)(utt(x, t) + (−∆)σu(x, t))dx

= 2

∫
Rn

ut(x, t)(−2a(−∆)δut(x, t))dx (since u(x, t) is the solution of (4.1))

= −4a

∫
Rn

ut(x, t)(−∆)δut(x, t)dx

= −4a

∫
Rn

ût(ξ, t)|ξ|2δût(ξ, t))dx (by Plancherel’s theorem)

= −4a

∫
Rn

|ξ|δût(ξ, t)|ξ|δût(ξ, t)dξ

= −4a

∫
Rn

∣∣∣|ξ|δût(ξ, t)
∣∣∣2dξ

= −4a

∫
Rn

∣∣∣(−∆)
δ
2ut(x, t)

∣∣∣2dx (by Plancherel’s theorem)

= −4a∥(−∆)
δ
2u(t, x)∥2L2(Rn)

≤ 0.

In the last step, the inequality holds because of the restriction on the parameter a with a > 0.

The solution to (4.1), according to the sign of σ − 2δ, has different properties (see [18]).

Also, we classify the damping term in equation (4.1) depending on the sign of σ−2δ. Namely,

in equation (4.1), when 2δ ∈ (0, σ), the damping is called effective, whereas it is called non

effective when σ ∈ (δ, 2δ). This classification was introduced by the first two authors [7] for

more general models of evolution equations with time-dependent structural damping. For

the details, see the paper [7] and the references therein. For the limit case δ = 1 (see [14], [15],

[27], [28]), and for σ = 2δ, we refer the reader to [22]. Here we will not look at them in depth.

Also the partial differential equation (4.1) is significantly interesting in mathematics,

physics, biology and many scientific fields. As known, the equation (4.1) has a lot of vari-

ants. For example, the classical wave equation, the classical heat equation, Laplace equation

and Schrödinger equation which are fundamental types of partial differential equations. Let

us finally mention that there are a lot of papers containing similar results on large time be-

havior of solutions to equations with structure dissipation. Our list of such papers is by no

means exhaustive-we only cite the publications which have a direct influence on this paper.

However, to my knowledge, there are quite few papers about applications to problems in

partial differential equations, especially wave equation, in Triebel-Lizorkin Spaces. I just
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found that some literatures related to applications to the Laplacian and heat equations in

Triebel-Lizorkin space ([16], [17]).

Without loss of generality, we may assume a = 1 in (4.1), since there exists a change of

variables which makes coefficient to be unitary. Following the notation in [18], the solution

to equation (4.1) is given by

u(t, ·) = S(t, ·) ∗ u0(·) + T (t, ·) ∗ u1(·). (4.4)

In the expression above, the linear operators S(t, ·)∗ and T (t, ·)∗ are defined as the Fourier

multiplier operators

F(S(t, ·) ∗ u0(·))(ξ) = mS(t, ξ)û0(ξ), (4.5)

and

F(T (t, ·) ∗ u0(·))(ξ) = mT (t, ξ)û1(ξ), (4.6)

with the symbols

mS(t, ξ) = e−t|ξ|2δ
(
cosh

(
t |ξ|2δ µ

)
+

1

µ
sinh

(
t |ξ|2δ µ

))
, (4.7)

and

mT (t, ξ) = e−t|ξ|2δ
sinh

(
t |ξ|2δ µ

)
µ |ξ|2δ

, (4.8)

where

µ := µ(ξ) =

√
1− |ξ|2(σ−2δ) if |ξ|2(σ−2δ) < 1,

µ := µ(ξ) = i

√
|ξ|2(σ−2δ) − 1 if |ξ|2(σ−2δ) > 1.

When |ξ| = 1, we may replace mS and mT by their limits as |ξ| → 1, namely,

mS(t, ξ) ||ξ|=1= (1 + t)e−t, mT (t, ξ) ||ξ|=1= te−t.

4.2 Some known results in real Hardy spaces

Before we formulate our first main proposition, let us recall the main results in real Hardy

spaces [6].
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Theorem 12 ([6]) Let 2δ ∈ (0, σ). Then the solution u to (4.1) satisfies the decay estimate

∥∥∂k
t ∂

α
xu(t, ·)

∥∥
Hq ≼ t−

1
2(σ−δ)

{(n(1/p−1/q)+|α|}−k (∥u0∥Hp + ∥u1∥Hr)

for p ∈ (0, 1], p ≤ q ≤ ∞, t > 1 and 1/r = 1/p+ 2δ
n
.

Theorem 13 ([6]) Let σ ∈ (δ, 2δ). Then the solution u to (4.1) satisfies the estimate∥∥∂k
t ∂

α
xu(t, ·)

∥∥
Hq ≼ tn(

1
q
− 1

2
)+(1− σ

2δ
)− 1

2δ (n(
1
p
− 1

q
)+|α|+kσ) (∥u0∥Hp + t−(1− σ

2δ
) ∥u1∥Hr

)
for p ∈ (0, 1], p ≤ q ≤ ∞, t > 1 and 1/r = 1/p+ 2δ

n
,

where (x)+ = max{x, 0}, the positive part of x.

Since Ḟ 0
p∗,2 = Hp∗ , our main goal is to extend the results in real Hardy space [6] to the

homogeneous Triebel-Lizorkin space ( the homogeneous Besov spaces). However, due to the

lack of the corresponding multiplier Theorem 4 [25], we could not apply the known results

in [3] or multiplier theorem directly, at least for some indices in Ḟ β
p∗,q, for the non-effective

case. For this reason, it is convenient to distinguish the several cases 1 < p∗ ≤ q ≤ 2,

0 < p∗ ≤ q ≤ 2 with p∗ < 1, and 2 ≤ q ≤ p∗ < ∞, where the interpolation and duality

methods play a crucial role.

4.3 Main results for the generalized wave equations

After these preliminaries, we are in a position to present our first main result in this paper.

Based on the sign of σ− 2δ, we consider the first situation which is effective case σ− 2δ > 0.

Thanks to Theorem 10, we just need to estimate the simplest case of solution of equation

(4.1) without the derivatives.

Case I effective case: σ − 2δ > 0.

Proposition 3 Suppose σ > 2δ > 0, and u(t, ·) is the solution of (4.1). We have

∥u(t, ·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
(1/p−1/p∗)t−

β−r
2(σ−δ) (∥u0∥Ḟ γ

p,r
+ ∥u1∥Ḟ γ̃

p̃,r
) (4.9)

for 0 < p ≤ p∗ ≤ ∞, 1
p̃
= 2δ+γ̃−γ

n
+ 1

p
, and t > 1.

We also have

∥u(t, ·)∥Ḟβ
p∗,q

≼ ∥u0∥Ḟβ
p∗,q

, p = p∗. (4.10)
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To prove inequality (4.9), since u(t, ·) = S(t, ·) ∗ u0(·) + T (t, ·) ∗ u1(·), it suffices to prove

the following two inequalities respectively

∥S(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
(1/p−1/p∗)t−

β−r
2(σ−δ)∥u0∥Ḟ γ

p,r
, (4.11)

and

∥T (t, ·) ∗ u1(·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
(1/p−1/p∗)t−

β−r
2(σ−δ)∥u1∥Ḟ γ̃

p̃,r
. (4.12)

First, we prove (4.11) by dividing its proof into several lemmas. Recall that

S(t, ·) ∗ u0(·) = Sc(t, ·) ∗ u0(·) + Ss(t, ·) ∗ u0(·) (4.13)

where Sc(t, ·)∗ has the symbol e−t|ξ|2δ
(
cosh

(
t |ξ|2δ µ)

))
and Ss(t, ·)∗ has the symbol

e−t|ξ|2δ 1
µ
sinh

(
(t |ξ|2δ µ

)
. Also we know

mT (t, ξ)|ξ|=1 = te−t, mS(t, ξ)|ξ|=1 = (1 + t)e−t.

Proof of (4.11). The proof consists in finding appropriate estimates of Sc(t, ·) ∗ u0(·) and
Ss(t, ·) ∗ u0(·) in (4.13). To show that equality (4.11) holds, it is sufficient to prove that

∥Sc(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
(1/p−1/p∗)t−

β−r
2(σ−δ)∥u0∥Ḟ γ

p,r
, (4.14)

and

∥Ss(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
(1/p−1/p∗)t−

β−r
2(σ−δ)∥u0∥Ḟ γ

p,r
. (4.15)

To apply partition of unit, let Φ0,Φ1,Φ∞ be cut-off nonnegative C∞ functions satisfying

Φ0 + Φ1 + Φ∞ ≡ 1, supp Φ0 ⊂ {|ξ| ≤ 1/2} ,

supp Φ1 ⊂ {1/4 ≤ |ξ| ≤ 4} , supp Φ∞ ⊂ {|ξ| ≥ 2} .

Notice that

e−t|ξ|2δ cosh
(
t |ξ|2δ µ

)
= e−t|ξ|2δ e

t|ξ|2δµ + e−t|ξ|2δµ

2
.

For simplicity, we may assume that the symbol of Sc(t, ·)∗ is e−t|ξ|2δet|ξ|
2δµ.
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Now we write

e−t|ξ|2δet|ξ|
2δµ = e−t|ξ|2δet|ξ|

2δµ (Φ0(ξ) + Φ1(ξ) + Φ∞(ξ)) .

By this decomposition, we have

Sc(t, ·) ∗ u0(·) = Sc,0(t, ·) ∗ u0(·) + Sc,1(t, ·) ∗ u0(·) + Sc,∞(t, ·) ∗ u0(·) (4.16)

where for j = 0, 1,∞, Sc,j(t, ·)∗ has the symbol

e−t|ξ|2δet|ξ|
2δµΦj(ξ).

To get inequality (4.14), we need to prove that

∥Sc,j(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
(1/p−1/p∗)t−

β−r
2(σ−δ)∥u0∥Ḟ γ

p,r
,

for j = 0, 1,∞.

Estimate of Sc,0(t, ·) ∗ u0(·). We start with the estimate of the first term on the right

hand side of (4.16). Note that for |ξ| ≤ 1/2, we may write√
1− |ξ|2(σ−2δ)

= 1− |ξ|2(σ−2δ)

2
+

√
1− |ξ|2(σ−2δ) − 1 +

|ξ|2(σ−2δ)

2

= 1− |ξ|2(σ−2δ)

2
− g(ξ),

where

g(ξ) = 1− |ξ|2(σ−2δ)

2
−
√
1− |ξ|2(σ−2δ). (4.17)

By the Taylor expansion, we have

g(ξ) =
1

8

(
|ξ|2(σ−2δ)

)2
+

1

16

(
|ξ|2(σ−2δ)

)3
+

5

128

(
|ξ|2(σ−2δ)

)4
+ · · · . (4.18)

From the identity in (4.18), it follows that g(ξ) > 0 for any ξ ̸= 0. Therefore, we have that,

for |ξ| ≤ 1/2,

e−t|ξ|2δet|ξ|
2δµ = exp−t |ξ|2δ exp t |ξ|2δ

(
1− |ξ|2(σ−2δ)

2
− g(ξ)

)

= exp−t |ξ|2δ + t |ξ|2δ
(
1− |ξ|2(σ−2δ)

2
− g(ξ)

)
.
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Here, the exponent is

−t |ξ|2δ + t |ξ|2δ
(
1− |ξ|2(σ−2δ)

2
− g(ξ)

)

= −t |ξ|2δ |ξ|2(σ−2δ)

2
− t |ξ|2δ g(ξ)

= −t |ξ|2(σ−δ)

2
− t |ξ|2δ g(ξ).

Thus, we obtain that the symbol of Sc,0(t, ·)∗ is

m̃1(t, ξ) = e−t|ξ|2δet|ξ|
2δ
√

1−|ξ|2(σ−2δ)

Φ0(ξ)

= e−
t|ξ|2(σ−δ)

2 m1,1(t, ξ)

= e−
t|ξ|2(σ−δ)

2 (t|ξ|2(σ−δ))β̃1
1

(t|ξ|2(σ−δ))β̃1
m1,1(t, ξ)

= m1,1(t, ξ)m1,2(t, ξ)m1,3(t, ξ),

where

m1,1(t, ξ) = e−t|ξ|2δg(ξ)Φ0(ξ),

m1,2(t, ξ) = e−
t|ξ|2(σ−δ)

2 (t|ξ|2(σ−δ))β̃1 ,

and

m1,3(t, ξ) =
1

(t|ξ|2(σ−δ))β̃1
.

To apply the Mikhlin-Hörmander multiplier theorem, we will establish the following lemma.

Lemma 3 For any multi-index α,∣∣∣∣ ∂α

∂ξα
m1,1(t, ξ)

∣∣∣∣ ≤ C |ξ|−|α| ,

where the constant C is independent of t.

Proof. Following the definition of multi-index derivative and employing the property of

Φ0(ξ), we can easily get ∣∣∣ ∂α

∂ξα
m1,1(t, ξ)

∣∣∣ ≤ C|v1(t, ξ)|
1

|ξ||α|−|β| ,

where the constant C depends only on δ, σ and α, but does not depend on t, v1(t, ξ) has the

following form

v1(t, ξ) = e−t|ξ|2δg(ξ)(t|ξ|2δ)i ∂
β1

∂ξβ1
g(ξ)

∂β2

∂ξβ2
g(ξ) · · · ∂βl

∂ξβl
g(ξ)gj(ξ)φα(ξ),
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and

0 ≤ i ≤ |α|, 0 ≤ j ≤ |α|, 0 ≤ l ≤ |α|,

0 ≤ |βk| ≤ |α|, k = 1, 2, · · · l, l + j = i.

φα(ξ) is bounded uniformly with respect to ξ.

Note that

g(ξ) > 0,∀ξ ∈ Rn \ {0},∣∣∣ ∂α

∂ξα
g(ξ)

∣∣∣ ≼ g(ξ)

|ξ|α
. (4.19)

Thus, we have ∣∣∣ ∂α

∂ξα
m1,1(t, ξ)

∣∣∣
≤ C|v1(t, ξ)|

1

|ξ||α|−|β|

≤ Ce−t|ξ|2δg(ξ)(t|ξ|2δ)i gl(ξ)

|ξ||β1|+|β2|+···|βl|
gj(ξ)

1

|ξ||α|−|β|

= Ce−t|ξ|2δg(ξ)(t|ξ|2δ)ig(l+j)(ξ)
1

|ξ||α|

= Ce−t|ξ|2δg(ξ)(tg(ξ)|ξ|2δ)i 1

|ξ||α|

≤ C
1

|ξ||α|
,

(4.20)

where, in the last step, we employed the fact |e−t|ξ|2δg(ξ)(tg(ξ)|ξ|2δ)i| ≤ C uniformly with

respect to ξ, t ∈ (0,∞) and any non-negative integer i. So Lemma 3 is proved.

By Lemma 3, we know that m1,1(t, ξ) satisfies condition (2.18). Also, we may verify that

m1,2(t, ξ) and m1,3(t, ξ) also satisfy (2.18) with α = 0 and α = 2(σ− δ)β̃1 respectively, where

β̃1 is a nonnegative real number which will be determined later on.

Thus,
∥Sc,0(t, ·) ∗ u0(·)∥Ḟβ

p∗,q

= ∥Tm1u0∥Ḟβ
p∗,q

= ∥Tm1,1Tm1,2Tm1,3u0∥Ḟβ
p∗,q

≼ ∥Tm1,2Tm1,3u0∥Ḟβ
p∗,q

(by Theorem 6 with α = 0)

≼ ∥Tm1,3u0∥Ḟβ
p∗,q

(by Theorem 6 with α = 0)

≼ t−β̃1 ∥u0∥Ḟ γ
p,r

(by Corollary 1)

= t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) ∥u0∥Ḟ γ

p,r
p∗ > p,

(4.21)
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where β̃1 is determined by β−n/p∗ = 2(σ− δ)β̃1+γ−n/p, which derives our desired result,

obtaining the estimate of Sc,0(t, ·) ∗ u0(·).

Estimate of Sc,∞(t, ·) ∗ u0(·). Recall that the symbol of Sc,∞(t, ·)∗ is

e−t|ξ|2δ cosh

(
it |ξ|2δ

√
|ξ|2(σ−2δ) − 1

)
Φ∞ (ξ)

= Φ∞ (ξ) e−t|ξ|2δ e
it|ξ|2δ

√
|ξ|2(σ−2δ)−1 + e−it|ξ|2δ

√
|ξ|2(σ−2δ)−1

2
.

We proceed the same as before, it suffices to study the symbol

e−t|ξ|2δeit|ξ|
2δ
√

|ξ|2(σ−2δ)−1Φ∞(ξ).

We write √
|ξ|2(σ−2δ) − 1 = |ξ|(σ−2δ)

√
1− |ξ|−2(σ−2δ).

Therefore the symbol of Sc,∞(t, ·)∗ is

m̃2(t, ξ) = e−t|ξ|2δeit|ξ|
2δ |ξ|(σ−2δ)

√
1−|ξ|−2(σ−2δ)

Φ∞(ξ)

= e−t|ξ|2δeit|ξ|
σ
√

1−|ξ|2(2δ−σ)

Φ∞(ξ)

= e−
t
2
|ξ|2δ(t|ξ|2δ)β̃2

1

(t|ξ|2δ)β̃2
m2,1(t, ξ)

= m2,1(t, ξ)m2,2(t, ξ)m2,3(t, ξ),

where

m2,1(t, ξ) = e−
t
2
|ξ|2δeit|ξ|

σ
√

1−|ξ|2(2δ−σ)

Φ∞(ξ)

= e−
t
2
|ξ|2δeit|ξ|

σh(ξ)Φ∞(ξ),

m2,2(t, ξ) = e−
t
2
|ξ|2δ(t|ξ|2δ)β̃2 ,

and

m2,3(t, ξ) =
1

(t|ξ|2δ)β̃2
,

where β̃2 is a nonnegative real number which will be determined later on and h(ξ) =√
1− |ξ|2(2δ−σ), ξ ∈ supp Φ∞.

To proceed, we also need to prove the following lemma.

Lemma 4 For any multi-index α,∣∣∣∣ ∂α

∂ξα
m2,1(t, ξ)

∣∣∣∣ ≤ C |ξ|−|α| ,

where the constant C is independent of t.
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Proof. Following the definition of multi-index derivative and employing the property of

Φ∞, we have

∣∣∣ ∂α

∂ξα
m2,1(t, ξ)

∣∣∣ ≤ C|v2(t, ξ)|
1

|ξ||α|−|β| ,

where the constant C depends only on δ, σ and α, but does not depend on t, v2(t, ξ) has the

following form

v2(t, ξ) = e−
t
2
|ξ|2δ(t|ξ|2δ)i(|ξ|σ−2δ)l

∂β1

∂ξβ1
h(ξ)

∂β2

∂ξβ2
h(ξ) · · · ∂βr

∂ξβr
h(ξ)hj(ξ)ωα(t, ξ),

and

0 ≤ i ≤ |α|, 0 ≤ j ≤ |α|, 0 ≤ l ≤ |α|,

0 ≤ |βk| ≤ |α|, k = 1, 2, · · · r, r + j = l,

ωα(t, ξ) is bounded uniformly with respect to t and ξ.

Thus, we obtain that∣∣∣ ∂α

∂ξα
m2,1(t, ξ)

∣∣∣ ≤ C|v2(t, ξ)|
1

|ξ||α|−|β|

≤ Ce−
t
2
|ξ|2δ(

t

2
|ξ|2δ)i(|ξ|σ−2δ)l

hr(ξ)

|ξ||β1|+|β2|+···|βl|
hj(ξ)

1

|ξ||α|−|β|

= Ce−
t
2
|ξ|2δ(

t

2
|ξ|2δ)i(|ξ|σ−2δ)lh(r+j)(ξ)

1

|ξ||α|

= Ce−
t
2
|ξ|2δ(

t

2
|ξ|2δ)i(|ξ|σ−2δ)lhl(ξ)

1

|ξ||α|

≤ C(|ξ|2δ−σ)l
1

|ξ||α|

≤ C
1

|ξ||α|
,

where we employed the facts that h(ξ) > 0, ∀ ξ ∈ supp Φ∞ ⊂ {|ξ| ≥ 2},∣∣∣ ∂α

∂ξα
h(ξ)

∣∣∣ ≼ h(ξ)

|ξ|α
,

and

e−
t
2
|ξ|2δ(

t

2
|ξ|2δ)i ≤ C, for any nonnegative integer i.

So we end the proof of Lemma 4 by virtue of the assumption σ > 2δ.

Lemma 4 tells us that m2,1 satisfies the condition (2.18) with α = 0. Similarly, we also may
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prove that m2,2 and m2,3 satisfy the condition (2.18) with α = 0 and α = 2δβ̃2 respectively.

Employing Theorem 6 and Corollary 1, we obtain that, for σ − 2δ > 0,

∥Sc,∞(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

= ∥Tm2u0∥Ḟβ
p∗,q

= ∥Tm2,1Tm2,2Tm2,3u0∥Ḟβ
p∗,q

≼ ∥Tm2,2Tm2,3u0∥Ḟβ
p∗,q

(by Theorem 6 with α = 0)

≼ ∥Tm2,3u0∥Ḟβ
p∗,q

(by Theorem 6 with α = 0)

≼ t−β̃2 ∥u0∥Ḟ γ
p,r

(by Corollary 1)

= t−
n
2δ

( 1
p
− 1

p∗
)t−

β−γ
2δ ∥u0∥Ḟ γ

p,r

≼ t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) ∥u0∥Ḟ γ

p,r
p∗ > p,

(4.22)

where β̃2 is determined by β − n/p∗ = 2δβ̃2 + γ − n/p, which derives our desired result.

Remark. We can choose β̃2 large enough , since the arbitrariness of β̃2, such that β > γ.

Then we obtain better decay estimate since σ > 2δ.

Estimate of ∥Sc,1(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

. It should be the easiest part. In particular, taking

the advantage of the boundedness of supp Φ1 ⊂ {1/4 ≤ |ξ| ≤ 4} and the smoothness of Φ1,

we proceed the same way as we did in Lemma 3 and Lemma 4, then apply Theorem 6 and

Corollary 1, it is not too difficult to obtain the boundedness of ∥Sc,1(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

such

that
∥Sc,1(t, ·) ∗ u0(·)∥Ḟβ

p∗,q
≼ t−

n
2δ

( 1
p
− 1

p∗
)t−

β−γ
2δ ∥u0∥Ḟ γ

p,r

≼ t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) ∥u0∥Ḟ γ

p,r
p∗ > p.

(4.23)

Combining (4.21)-(4.23), we finish the proof of (4.14).

Remark. For the multiplier of Sc,1(t, ·)∗, it seems that there is a singularity at |ξ| = 1 because

of the denominator µ. Indeed we do not have to worry about it at all. Since

mS(t, ξ) = e−t|ξ|2δ
(
cosh

(
t |ξ|2δ µ

)
+

1

µ
sinh

(
t |ξ|2δ µ

))
= e−t|ξ|2δ cosh

(
t |ξ|2δ µ

)
+ e−t|ξ|2δ 1

µ
sinh

(
t |ξ|2δ µ

)
employing the Taylor expansion of cosh(x) =

∑∞
k=0

x2k

(2k)!
and sinh(x) =

∑∞
k=0

x2k+1

(2k+1)!
, we get

mS(t, ξ) = e−t|ξ|2δ
∞∑
k=0

(t |ξ|2δ µ)2k

(2k)!
+ e−t|ξ|2δ 1

µ

∞∑
k=0

(t |ξ|2δ µ)2k+1

(2k + 1)!

= e−t|ξ|2δ
∞∑
k=0

(t |ξ|2δ µ)2k

(2k)!
+ e−t|ξ|2δ

∞∑
k=0

(t |ξ|)2δ)2k+1µ2k

(2k + 1)!
.
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Similarly, to show inequality (4.15) holds, we estimate the boundedness of ∥Ss,i(t, ·)∗u0(·)∥Ḟβ
p∗,q

term by term, where i = 0, 1,∞.

Notice that

e−t|ξ|2δ sinh
(
t |ξ|2δ µ

)
µ

= e−t|ξ|2δ e
t|ξ|2δµ + e−t|ξ|2δµ

2µ
.

For simplicity, we may assume the symbol of Sc(t, x)∗ is

e−t|ξ|2δet|ξ|
2δµ

µ
.

Now we may write

e−t|ξ|2δet|ξ|
2δµ

µ
=

e−t|ξ|2δet|ξ|
2δµ

µ
(Φ0(ξ) + Φ1(ξ) + Φ∞(ξ)) .

By this decomposition, we have

Ss(t, ·) ∗ u0(·) = Ss,0(t, ·) ∗ u0(·) + Ss,1(t, ·) ∗ u0(·) + Ss,∞(t, ·) ∗ u0(·), (4.24)

where for j = 0, 1,∞, Ss,j(t, ·)∗ has the symbol

e−t|ξ|2δet|ξ|
2δµΦj(ξ)

µ
.

Same as before, we now need to prove that

∥Ss,j(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) ∥u0∥Ḟ γ

p,r

for j = 0, 1,∞.

Estimate of Ss,0(t, ·) ∗ u0(·). For |ξ| ≤ 1/2, we write√
1− |ξ|2(σ−2δ) = 1− |ξ|2(σ−2δ)

2
− g(ξ),

where g(ξ) is the same as (4.17) which means

g(ξ) = 1− |ξ|2(σ−2δ)

2
−
√
1− |ξ|2(σ−2δ),
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and g(ξ) > 0 for any ξ ̸= 0. Therefore, we have that for |ξ| ≤ 1/2,

e−t|ξ|2δet|ξ|
2δµ = exp−t |ξ|2δ exp t |ξ|2δ

(
1− |ξ|2(σ−2δ)

2
− g(ξ)

)

= exp−t |ξ|2δ + t |ξ|2δ
(
1− |ξ|2(σ−2δ)

2
− g(ξ)

)
.

Here, the exponent is

−t |ξ|2δ + t |ξ|2δ
(
1− |ξ|2(σ−2δ)

2
− g(ξ)

)

= −t |ξ|2δ |ξ|2(σ−2δ)

2
− t |ξ|2δ g(ξ)

= −t |ξ|2(σ−δ)

2
− t |ξ|2δ g(ξ).

Thus, we obtain that the symbol of Ss,0(t, x)∗ is

m3(t, ξ) =
e−t|ξ|2δet|ξ|

2δ
√

1−|ξ|2(σ−2δ)

Φ0(ξ)

µ

= e−
t|ξ|2(σ−δ)

2 (t|ξ|2(σ−δ))β̃3
1

(t|ξ|2(σ−δ))β̃3
m3,1(t, ξ)

= m3,1(t, ξ)m3,2(t, ξ)m3,3(t, ξ)

where

m3,1(t, ξ) =
e−t|ξ|2δg(ξ)Φ0(|ξ|)

µ

=
m1,1(t, ξ)

µ
,

m3,2(t, ξ) = e−
t
2
|ξ|2(σ−δ)

(t|ξ|2(σ−δ))β̃3 ,

m3,3(t, ξ) =
1

(t|ξ|2(σ−δ))β̃3
,

and β̃3 is a nonnegative real number which will be determined later on.

Since we have the following estimates for σ − 2δ > 0,∣∣∣∣ ∂β

∂ξβ
m1,1(t, ξ)

∣∣∣∣ ≤ C |ξ|−|β| ,

and ∣∣∣∣ ∂γ

∂ξγ
1

µ(t, ξ)

∣∣∣∣ ≤ C |ξ|−|γ| .
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Leibniz’s formula

∂α(fg) =
∑

β+γ=α

α!

β!γ!
(∂βf)(∂γg),

yields that ∣∣∣∣ ∂α

∂ξα
m3,1(t, ξ)

∣∣∣∣ ≤ C |ξ|−|α| .

All above estimates imply that m3,1(t, ξ),m3,2(t, ξ),m3,3(t, ξ) satisfy condition (2.18) with

α = 0, α = 0 and α = 2(σ − δ)β̃3, separately. Combining Theorem 6 and Corollary 1, then

we have

∥Ss,0(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

= ∥Tm3u0∥Ḟβ
p∗,q

= ∥Tm3,1Tm3,2Tm3,3u0∥Ḟβ
p∗,q

≼ ∥Tm3,2Tm3,3u0∥Ḟβ
p∗,q

(by Theorem 6 with α = 0)

≼ ∥Tm3,3u0∥Ḟβ
p∗,q

(by Theorem 6 with α = 0)

≼ t−β̃3 ∥u0∥Ḟ γ
p,r

(by Corollary 1)

= t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) ∥u0∥Ḟ γ

p,r
p∗ > p,

(4.25)

where β̃3 is determined by β − n/p∗ = 2(σ − δ)β̃1 + γ − n/p.

Following the proof of Lemma 2.2, we can get the estimate

∥Ss,∞(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) ∥u0∥Ḟ γ

p,r
p∗ > p. (4.26)

For the same reason as the boundedness of ∥Sc,1(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

, we can get the following

estimate

∥Ss,1(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) ∥u0∥Ḟ γ

p,r
, p∗ > p. (4.27)

By the decomposition (4.24), combining (4.25)-(4.27), we end the proof of (4.15).

We now come to the proof of the second main equality (4.12). Accordingly, we shall give

both the low and high frequency estimates.

Proof of (4.12). Similarly, by partition of unit, we can rewrite the symbol of T (t, ·)∗ as

e−t|ξ|2δ sinh
(
t |ξ|2δ µ

)
|ξ|2δ µ

(Φ0(ξ) + Φ1(ξ) + Φ∞(ξ)) = mT0 +mT1 +mT∞,

where mTj =
e−t|ξ|2δ sinh(t|ξ|2δµ)

|ξ|2δµ Φj, j = 0, 1,∞.
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First, we consider the first part of symbol of T (x, t)∗

mT0 =

e−t|ξ|2δ sinh

(
t |ξ|2δ

√
1− |ξ|2(σ−2δ)

)
|ξ|2δ

√
1− |ξ|2(σ−2δ)

Φ0(ξ)

= e−t|ξ|2δ e
t|ξ|2δ

√
1−|ξ|2(σ−2δ) − e−t|ξ|2δ

√
1−|ξ|2(σ−2δ)

2 |ξ|2δ
√
1− |ξ|2(σ−2δ)

Φ0(ξ)

= e−t|ξ|2δ e
t|ξ|2δ

√
1−|ξ|2(σ−2δ)

(1− e−2t|ξ|2δ
√

1−|ξ|2(σ−2δ)

)

2 |ξ|2δ
√

1− |ξ|2(σ−2δ)
Φ0(ξ).

We may write Φ0(ξ) = Φ2
0(ξ). Thus the above symbol can be written as mT0 = m4m5m6,

where

m4 =
e−t|ξ|2δet|ξ|

2δ
√

1−|ξ|2(σ−2δ)√
1− |ξ|2(σ−2δ)

Φ0(ξ),

m5 =
(1− e−2t|ξ|2δ

√
1−|ξ|2(σ−2δ)

)

2
Φ0(ξ),

m6 =
1

|ξ|2δ
.

Note that m4 =
e−t|ξ|2δ et|ξ|

2δ
√

1−|ξ|2(σ−2δ)

√
1−|ξ|2(σ−2δ)

Φ0(ξ) is exactly the same as the symbol of Ss,0(t, ·) ∗ .
So we just need to show one more lemma about the multiplier m5(t, ξ).

Lemma 5 For any multi-index α,∣∣∣∣ ∂α

∂ξα
m5(t, ξ)

∣∣∣∣ ≤ C |ξ|−|α| ,

where the constant C is independent of t.

Proof. Again, by taking the multi-index derivative and employing the property of Φ0, we

obtain ∣∣∣∣ ∂α

∂ξα
m5(t, ξ)

∣∣∣∣ ≤ C(t|ξ|2δ−1)|α|e−2t|ξ|2δ
√

1−|ξ|2(σ−2δ)

.

Since e−2t|ξ|2δ
√

1−|ξ|2(σ−2δ) ≤ C(t |ξ|2δ
√

1− |ξ|2(σ−2δ))−r for any non-negative real number r,

choosing r = |α| yields our desired result. So the proof of Lemma 5 is finished.
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By Lemma 5 and Corollary 1, we have the boundedness of ∥T0(t, ·) ∗ u1(·)∥Ḟβ
p∗,q

, such that

∥T0(t, ·) ∗ u1(·)∥Ḟβ
p∗,q

=
∥∥TmT0

u1

∥∥
Ḟβ
p∗,q

= ∥Tm4Tm5Tm6u1∥Ḟβ
p∗,q

≼ ∥Tm4Tm6u1∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
(1/p−1/p∗)t−

β−γ
2(σ−δ)∥Tm6u1∥Ḟ γ

p,r

≼ t−
n

2(σ−δ)
(1/p−1/p∗)t−

β−γ
2(σ−δ)∥u1∥Ḟ γ̃

p̃,r
,

(4.28)

where 1
p̃
= 2δ+γ̃−γ

n
+ 1

p
.

Next, we study the boundedness of ∥T∞(t, ·) ∗ u1(·)∥Ḟβ
p∗,q

.

The symbol of T∞(t, ·)∗ is

mT∞ =
e−t|ξ|2δ sinh

(
t |ξ|2δ µ

)
|ξ|2δ µ

Φ∞(ξ)

=
e−t|ξ|2δ sinh

(
t |ξ|2δ µ

)
µ

Φ∞(ξ)
1

|ξ|2δ
= m6m7,

where

m7 =
e−t|ξ|2δ sinh

(
t |ξ|2δ µ

)
µ

Φ∞(ξ),

and

m6 =
1

|ξ|2δ
.

Note that m7 is the same as the symbol of Ss,∞(t, ·)∗, we may immediately derive the

boundedness of ∥T∞(t, ·) ∗ u1(·)∥Ḟβ
p∗,q

, that is

∥T∞(t, ·) ∗ u1(·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
(1/p−1/p∗)t−

β−γ
2(σ−δ)∥u1∥Ḟ γ̃

p̃,r
, (4.29)

and also we have

∥T1(t, ·) ∗ u1(·)∥Ḟβ
p∗,q

≼ t−
n

2(σ−δ)
(1/p−1/p∗)t−

β−γ
2(σ−δ)∥u1∥Ḟ γ̃

p̃,r
, (4.30)

where 1
p̃
= 2δ+γ̃−γ

n
+ 1

p
.

Combing (4.42)-(4.30), we finish the proof of (4.12). So the case p < p∗, in Proposition 3, is

proved. For p = p∗ case, we will omit the proof since we can drive the result easily from the
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lifting property in Triebel-Liorkin spaces.

Now we start to deal with the case II with δ < σ < 2δ, which is non-effective case.

In general, this case is more difficult, since the non diffusive structure appearing at low

frequencies is related to the long time decay estimates. For this reason, it is convenient to

consider several cases based on the indices of Triebel-Lizorkin spaces Ḟ β
p∗,q.

We now in a position to sate our second main result.

Case II non-effective case: δ < σ < 2δ.

Proposition 4 Suppose δ < σ < 2δ, 0 < p ≤ p∗ ≤ q ≤ 2, or 0 ≤ p∗ ≤ q ≤ 2 with p∗ < 1 or

2 ≤ q ≤ p∗ < ∞ and u(t, ·) is the solution of (4.1). We have

∥u(t, ·)∥Ḟβ
p∗,q

≼ tn|1/p∗−1/2|(1− σ
2δ

)t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) (∥u0∥Ḟ γ

p,r
+ t−(1− σ

2δ
)∥u1∥Ḟ γ̃

p̃,r
) p∗ > p,

(4.31)

and

∥u(t, ·)∥Ḟβ
p∗,q

≼ tn|1/p∗−1/2|(1− σ
2δ

)(∥u0∥Ḟ γ
p,r

+ t−(1− σ
2δ

)∥u1∥Ḟ γ̃
p̃,r
) p∗ = p, (4.32)

where 1
p̃
= 2δ+γ̃−γ

n
+ 1

p
, and t > 1.

Again we shall treat only the case p∗ > p. To prove inequality (4.31), since u(t, ·) = S(t, ·) ∗
u0(·) + T (t, ·) ∗ u1(·), it suffices to prove the following two inequalities respectively

∥S(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ tn|1/p∗−1/2|(1− σ
2δ

)t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ)∥u0∥Ḟ γ

p,r
, (4.33)

and

∥T (t, ·) ∗ u1(·)∥Ḟβ
p∗,q

≼ tn|1/p∗−1/2|(1− σ
2δ

)t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) t−(1− σ

2δ
)∥u1∥Ḟ γ̃

p̃,r
, (4.34)

Since the proofs of (4.33) and (4.34) in Proposition 4 are quite similar. Here we just

give the proof of (4.33) which only involves the convolution operator S. Additionally, we just

focus on the lower frequency and higher frequency terms.

Proof of (4.33). Notice that

e−t|ξ|2δ cosh
(
t |ξ|2δ µ

)
= e−t|ξ|2δ e

t|ξ|2δµ + e−t|ξ|2δµ

2
.

For simplicity, we may assume the symbol of Sc(t, ·)∗ is

e−t|ξ|2δet|ξ|
2δµ.
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Now we write

e−t|ξ|2δet|ξ|
2δµ = e−t|ξ|2δet|ξ|

2δµ (Φ0(ξ) + Φ1(ξ) + Φ∞(ξ)) .

By this decomposition, we have

Sc(t, ·) ∗ u0(·) = Sc,0(t, ·) ∗ u0(·) + Sc,1(t, ·) ∗ u0(·) + Sc,∞(t, ·) ∗ u0(·)

where for j = 0, 1,∞ and Sc,j(t, ·)∗ has the symbol

e−t|ξ|2δet|ξ|
2δµΦj(ξ).

We now need to prove that

∥Sc,j(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ tn|1/p∗−1/2|(1− σ
2δ

)t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ)∥u0∥Ḟ γ

p,r
,

for j = 0, 1,∞.

Estimate of Sc,0(t, ·) ∗ u0(·). For |ξ| ≤ 1/2, since 2δ > σ > δ, we have

µ(ξ) = i |ξ|(σ−2δ)

√
1− |ξ|2(2δ−σ).

Therefore, we have that, for |ξ| ≤ 1/2,

e−t|ξ|2δet|ξ|
2δµ = e−t|ξ|2δeit|ξ|

2δ |ξ|(σ−2δ)
√

1−|ξ|2(2δ−σ)

= e−
t
2
|ξ|2δ

(
e−

t
2
|ξ|2δeit|ξ|

σ
√

1−|ξ|2(2δ−σ)
)
.

Thus, we may write

m8(t, ξ) = e−t|ξ|2δet|ξ|
2δµΦ0(ξ)

= e−
t
2
|ξ|2δeit|ξ|

σ
√

1−|ξ|2(2δ−σ)

Φ0(ξ)e
− t

2
|ξ|2δ(t|ξ|2δ)β̃4

1

(t|ξ|2δ)β̃4

= m8,1(t, ξ)m8,2(t, ξ)m8,3(t, ξ),

where

m8,1(t, ξ) =
(
e−

t
2
|ξ|2δeit|ξ|

σ
√

1−|ξ|2(2δ−σ)
)
Φ0(ξ),

m8,2(t, ξ) = e−
t
2
|ξ|2δ(t|ξ|2δ)β̃4 ,

and

m8,3(t, ξ) =
1

(t|ξ|2δ)β̃4
.

Before we continue, we need the following lemma.
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Lemma 6 For any multi-index α,∣∣∣∣ ∂α

∂ξα
m8,1(t, ξ)

∣∣∣∣ ≤ Ct|α|(1−
σ
2δ

) |ξ|−|α| ,

where C is independent of t.

Proof. Taking the α-order derivative of eit|ξ|
σ
√

1−|ξ|2(2δ−σ)

yields one factor containing the

following term

(t|ξ|σ−1)|α| = t|α||ξ|σ|α||ξ|−|α|.

Noting that e−
t
2
|ξ|2δ( t

2
|ξ|2δ)r ≤ C for any non-negative real number r. Let r be σ|α|

2δ
, we will

get the desired result which ends the proof of Lemma 6 .

Next we estimate the boundedness of ∥Sc,0(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

by considering several cases.

Now assume p∗ ∈ (1, 2]. Since Hp∗ = Ḟ 0
p∗,2, by Theorem 4 in real Hardy space with A = t1−

σ
2δ ,

we have the same conclusion for Ḟ 0
p∗,2, that is

∥Tm8,1f∥Ḟ 0
p∗,2

≤ Ctn(1−
σ
2δ

)( 1
p∗

− 1
2
)∥f∥Ḟ 0

p∗,2
. (4.35)

By the definition of Triebel-Lizorkin spaces, we get

∥∥Tm8,1u0

∥∥p∗
Ḟ 0
p∗,p∗

=

∥∥∥∥∥(∑
k∈Z

|φk ∗ Tm8,1u0|p∗)1/p∗
∥∥∥∥∥
p∗

Lp∗

=

∫
Rn

∑
k∈Z

|φk ∗ Tm8,1u0|p∗dx

=
∑
k∈Z

∥∥Tm8,1(φk ∗ u0)
∥∥p∗
Lp∗

≤ Ctn(1−
σ
2δ

)( 1
p∗

− 1
2
)
∑
k∈Z

∥φk ∗ u0∥p∗Lp∗

= Ctn(1−
σ
2δ

)( 1
p∗

− 1
2
) ∥u0∥p∗Ḟ 0

p∗,p∗
,

where we used the fact that Hp∗ = Lp∗ (1 < p∗ < ∞). Thus, we obtain that

∥Tm8,1u0∥Ḟ 0
p∗,p∗

≤ Ctn(1−
σ
2δ

)( 1
p∗

− 1
2
)∥u0∥Ḟ 0

p∗,p∗
. (4.36)

An interpolation yields that

∥Tm8,1u0∥Ḟ 0
p∗,q

≤ Ctn(1−
σ
2δ

)( 1
p∗

− 1
2
)∥u0∥Ḟ 0

p∗,q
, (4.37)

for any 1 < p∗ ≤ q ≤ 2.
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If p∗ ∈ (0, 1], again by Theorem 4 in real Hardy space with A = t1−
σ
2δ , we have

∥Tm8,1u0∥Ḟ 0
p∗,2

≤ Ctn(1−
σ
2δ

)( 1
p∗

− 1
2
)∥u0∥Ḟ 0

p∗,2
. (4.38)

By the definition of Triebel-Lizorkin spaces, we have

∥∥Tm8,1u0

∥∥p∗
Ḟ 0
p∗,p∗

=

∥∥∥∥∥(∑
k∈Z

|φk ∗ Tm8,1u0|p∗)1/p∗
∥∥∥∥∥
p∗

Lp∗

=

∫
Rn

∑
k∈Z

|φk ∗ Tm8,1u0|p∗dx

=
∑
k∈Z

∥∥Tm8,1(φk ∗ u0)
∥∥p∗
Lp∗

≤
∑
k∈Z

∥∥Tm8,1(φk ∗ u0)
∥∥p∗
Hp∗

≤ Ctn(1−
σ
2δ

)( 1
p∗

− 1
2
)
∑
k∈Z

∥φk ∗ u0∥p∗Hp∗ .

We now pass to the Triebel-Lizorkin norm by using the Riesz transform characterization (see

Appendix), ∑
k∈Z

∥φk ∗ u0∥p∗Hp∗ ≤
∑
J

∑
k∈Z

∥RJφk ∗ u0∥p∗Lp∗ , (4.39)

where
∑

J is a sum of finite terms. Now since the definition of Triebel-Lizorkin space is

independent of the choice of {φk}, it is easy to check that {φ̃k} = {RJφk} = {(RJφ)k} is

another family of generating functions. Thus we obtain that

∥Tm8,1u0∥Ḟ 0
p∗,p∗

≤ Ctn(1−
σ
2δ

)( 1
p∗

− 1
2
)∥u0∥Ḟ 0

p∗,p∗
. (4.40)

An interpolation yields that

∥Tm8,1u0∥Ḟ 0
p∗,q

≤ Ctn(1−
σ
2δ

)( 1
p∗

− 1
2
)∥u0∥Ḟ 0

p∗,q
. (4.41)

for any 0 < p∗ ≤ q ≤ 2 with p∗ ≤ 1.
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Using duality, for any 2 ≤ q ≤ p∗ < ∞, we have that∥∥Tm8,1u0

∥∥
Ḟ 0
p∗,q

= sup
∥g∥

Ḟ0

p
′
∗,q

′
≤1

| < Tm8,1u0, g > |

= sup
∥g∥

Ḟ0

p
′
∗,q

′
≤1

| < u0, Tm8,1g > |

≼ sup
∥g∥

Ḟ0

p
′
∗,q

′
≤1

∥u0∥Ḟ 0
p∗,q

∥Tm8,1g∥Ḟ 0

p
′
∗,q

′

≤ Ct
n(1− σ

2δ
)( 1

p
′
∗
− 1

2
)
∥u0∥Ḟ 0

p∗,q

= Ctn(1−
σ
2δ

)( 1
2
− 1

p∗
)∥u0∥Ḟ 0

p∗,q
.

As usual, p
′
∗ and q

′
are the conjugates of p∗ and q separately. We applied the duality property,

in the first inequality, in the homogenous Triebel-Lizorkin spaces (see Appendix).

Thus, for 1 < p∗ ≤ q ≤ 2, or 0 < p∗ ≤ q ≤ 2 with p∗ ≤ 1, we have

∥Sc,0(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

= ∥Tm8u0∥Ḟβ
p∗,q

= ∥Tm8,1Tm8,2Tm8,3u0∥Ḟβ
p∗,q

≼ tn(1/p∗−1/2)(1− σ
2δ

)∥Tm8,2Tm8,3u0∥Ḟβ
p∗,q

≼ tn(1/p∗−1/2)(1− σ
2δ

)∥Tm8,3u0∥Ḟβ
p∗,q

≼ tn(1/p∗−1/2)(1− σ
2δ

)t−β̃4 ∥u0∥Ḟ γ
p,r

= tn(1/p∗−1/2)(1− σ
2δ

)t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) ∥u0∥Ḟ γ

p,r
,

where β̃4 is determined by β − n/p∗ = 2δβ̃4 + γ − n/p.

Also, we have, as 2 ≤ q ≤ p∗ < ∞,

∥Sc,0(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

= ∥Tm8u0∥Ḟβ
p∗,q

= ∥Tm8,1Tm8,2Tm8,3u0∥Ḟβ
p∗,q

≼ tn(1/2−1/p∗)(1− σ
2δ

)∥Tm8,2Tm8,3u0∥Ḟβ
p∗,q

≼ tn(1/2−1/p∗)(1− σ
2δ

)∥Tm8,3u0∥Ḟβ
p∗,q

≼ tn(1/2−1/p∗)(1− σ
2δ

)t−β̃4 ∥u0∥Ḟ γ
p,r

= tn(1/2−1/p∗)(1− σ
2δ

)t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) ∥u0∥Ḟ γ

p,r
.

Estimate of ∥Sc,∞(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

.Note that the symbol of Sc,∞(t, ·)∗ is e−t|ξ|2δet|ξ|
2δµΦ∞(ξ).

When |ξ| ≥ 2, δ < σ < 2δ, then µ(ξ) =
√

1− |ξ|2(σ−2δ). So this estimate should be the same
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as e−t|ξ|2δet|ξ|
2δµΦ0(ξ) in the case σ − 2δ > 0.

Finally, to complete the proof of Proposition 4, we have to show

∥Ss(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ tn|1/p∗−1/2|(1− σ
2δ

)t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ)∥u0∥Ḟ γ

p,r
.

Indeed, we may get a better decay, namely,

∥Ss(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ tn|1/p∗−1/2|(1− σ
2δ

)t−
n

2(σ−δ)
( 1
p
− 1

p∗
)t−

β−γ
2(σ−δ) t−(1− σ

2δ
)∥u0∥Ḟ γ

p,r
.

Estimate of ∥Ss,0(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

. For simplicity, as we did with Sc,0(t, ·)∗, we may assume

the symbol of Ss,0(t, ·)∗ is

m9(t, ξ) =
e−t|ξ|2δet|ξ|

2δµ

µ
Φ0(ξ)

=
e−t|ξ|2δeit|ξ|

σ
√

1−|ξ|2(2δ−σ)

i |ξ|(σ−2δ)
√
1− |ξ|2(2δ−σ)

Φ0(ξ)

= e−
t
2
|ξ|2δ(t|ξ|2δ)β̃5

1

(t|ξ|2δ)β̃5

e−
t
2
|ξ|2δeit|ξ|

σ
√

1−|ξ|2(2δ−σ)

i |ξ|(σ−2δ)
√

1− |ξ|2(2δ−σ)
Φ0(ξ)

= m9,1(t, ξ)m9,2(t, ξ)m9,3(t, ξ),

where

m9,1(t, ξ) =

 e−
t
2
|ξ|2δeit|ξ|

σ
√

1−|ξ|2(2δ−σ)

i |ξ|(σ−2δ)
√

1− |ξ|2(2δ−σ)

Φ0(ξ)

=
m8,1(t, ξ)

i |ξ|(σ−2δ)
√

1− |ξ|2(2δ−σ)
,

m9,2(t, ξ) = e−
t
2
|ξ|2δ(t|ξ|2δ)β̃5 ,

and

m9,3(t, ξ) =
1

(t|ξ|2δ)β̃5
.

As we did in Lemma 6 , after we take the α-order derivative of eit|ξ|
σ
√

1−|ξ|2(2δ−σ)

contained

in m9,1, there is a factor containing (t|ξ|σ−1)|α| = t|α||ξ|σ|α||ξ|−|α|. Since |e− t
2
|ξ|2δ( t

2
|ξ|2δ)r| ≤ C

for any non-negative real number r, in order to make m9,1 satisfy the conditions of multiplier

theorem, we choose r to be σ|α|+2δ−σ
2δ

. Then, we obtain that∣∣∣∣ ∂α

∂ξα
m9,1(t, ξ)

∣∣∣∣ ≤ t|α|(1−
σ
2δ

)t−(1− σ
2δ

) |ξ|−|α| .
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Applying Theorem 4 and the product rule of derivatives in higher dimension, following the

similar steps to show the boundedness of ∥Sc,0(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

, we get the desired estimates

of ∥Ss,0(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

such that

∥Ss,0(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ tn(1/q−1/2)(1− σ
2δ

)t−
1
2δ

(n(1/p−1/q)t−(1− σ
2δ

) ∥u0∥Ḟ γ
p,r

.

Thus, for 1 < p∗ ≤ q ≤ 2, or 0 < p∗ ≤ q ≤ 2 with p∗ ≤ 1, we have

∥Ss,0(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

= ∥Tm9u0∥Ḟβ
p∗,q

= ∥Tm9,1Tm9,2Tm9,3u0∥Ḟβ
p∗,q

≼ tn(1/p∗−1/2)(1− σ
2δ

)t−(1− σ
2δ

)∥Tm9,2Tm9,3u0∥Ḟβ
p∗,q

≼ tn(1/p∗−1/2)(1− σ
2δ

)t−(1− σ
2δ

)∥Tm9,3u0∥Ḟβ
p∗,q

≼ tn(1/p∗−1/2)(1− σ
2δ

)t−(1− σ
2δ

)t−β̃5 ∥u0∥Ḟ γ
p,r

= tn(1/p∗−1/2)(1− σ
2δ

)t−(1− σ
2δ

)t−
n
2δ

( 1
p
− 1

p∗
)t−

β−γ
2δ ∥u0∥Ḟ γ

p,r
,

where β̃5 is determined by β − n/p∗ = 2δβ̃5 + γ − n/p.

Estimate of ∥Ss,∞(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

. Note that the symbol of the operator Ss,∞(t, ·)∗ is

e−t|ξ|2δsinh(t|ξ|2δµ)
µ

Φ∞(ξ)

=
e−t|ξ|2δ(et|ξ|

2δµ − e−t|ξ|2δµ)

2µ
Φ∞(ξ)

= e−
t
2
|ξ|2δ e

− t
2
|ξ|2δ(et|ξ|

2δµ − e−t|ξ|2δµ)

2µ
Φ∞(ξ)

= e−
t
2
|ξ|2δ e

− t
2
|ξ|2δet|ξ|

2δµ

2µ
Φ∞(ξ)(1− e−2t|ξ|2δµ)

= e−
t
2
|ξ|2δ e

− t
2
|ξ|2δet|ξ|

2δ
√

1−|ξ|2(σ−2δ)

2
√

1− |ξ|2(σ−2δ)
Φ∞(ξ)(1− e−2t|ξ|2δ

√
1−|ξ|2(σ−2δ)

)

= m10(t, ξ)m11(t, ξ)m12(t, ξ),

where

m10(t, ξ) = e−
t
2
|ξ|2δ ,

m11(t, ξ) =
e−

t
2
|ξ|2δet|ξ|

2δ
√

1−|ξ|2(σ−2δ)

2
√

1− |ξ|2(σ−2δ)
Φ∞(ξ),

and

m12(t, ξ) = 1− e−2t|ξ|2δ
√

1−|ξ|2(σ−2δ)
.
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As |ξ| ≥ 2, δ < σ < 2δ, we have

µ =
√
1− |ξ|2(σ−2δ) ≈ |ξ|σ−2δ.

In fact, by the Taylor expansion√
1− |ξ|2(σ−2δ) = 1− 1

2
|ξ|2(σ−2δ) +

1
2
(1
2
− 1)

2!
|ξ|2(σ−2δ) + · · ·

So 1− µ ≈ |ξ|2(σ−2δ), which implies (1− µ)
1
2 ≈ |ξ|(σ−2δ).

Then µ =
√
1− |ξ|2(σ−2δ) ≈ |ξ|σ−2δ because of µ ≈ (1− µ)

1
2 . Technically, we may deal with

m11(t, ξ) the same as we did with the symbol of Ss,0(t, ·) ∗ .
Thus, we obtain

∥Ss,∞(t, ·) ∗ u0(·)∥Ḟβ
p∗,q

≼ tn(1/q−1/2)+(1− σ
2δ

)t−
1
2δ

(n(1/p−1/q)t−(1− σ
2δ

) ∥u0∥Ḟ γ
p,r

,

which ends the proof of Proposition 4 for p∗ > p in Triebel-Lizorkin spaces.

Remark. For the case p∗ = p in Triebel-Lizorkin spaces, we can get the estimates im-

mediately from the known results of multipliers on Triebel-Lizorkin spaces. Following the

similar way, we also can get the counterpart for Besov spaces , we omit the details.
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Chapter 5

Future Research

(i) Fourier Multipliers with Parameters.

Since the milestone works of S.G. Michilin and L. Hörmander, Fourier multipliers for

function spaces have attracted much attention for their own sake. However, due to the re-

strictions on indices (1 < p < ∞) and function spaces (Lp(Rn)), Fourier multipliers remain

very much open to investigation. In [25], Miyachi derived optimal estimates of some Fourier

multipliers with parameters for real Hardy spaces Hp(Rn) with (0 < p < 2). In 2016, with

an application of the results in [25], M.D’Abbico et al obtained the long time decay estimate

for the evolution equations with structural dissipation in real Hardy spaces Hp(Rn). Since

Ḟ 0
p,2(Rn) = Hp(Rn) with (0 < p < ∞), it seems natural to study the Fourier multiplier with

parameters in Ḟ s
p,q(Rn) spaces which will probably to get the long time decay estimate for

the generalized wave equation in Triebel-Lizorkin spaces for all indices.

(ii) Characterizations and Decompositions of Function Spaces

Function spaces have been studied for a long time and are an important part of harmonic

analysis and PDEs. Usually different characterizations or decompositions of function spaces

provide different advantages. For example, in [25], the Riesz transform characterization of

Hp(Rn) simplified the core proof to get the optimal estimates of Fourier multiplier with

parameters, which is useful to solve our time decay problems. And in [6], (p, 2)- atom de-

composition of f ∈ Hp(Rn) with 0 < p ≤ 1 guarantees the upper boundedness of the |f̂(ξ)|
(the absolute value of the Fourier transform), which is helpful for obtaining the boundedness

of Fourier multiplier operators in real Hardy spaces Hp(Rn). To the best of my knowledge, so

far, there seems no corresponding Riesz transform characterization of Triebel-Lizorkin spaces
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Ḟ s
p,q(Rn). The Riesz transform characterization of the Triebel-Lizorkin spaces Ḟ s

p,q(Rn) and

its applications to derive the optimal estimates of the corresponding Fourier multiplier with

parameters will open a new chapter in harmonic analysis and partial differential equations.

Furthermore, a very modern characterization of spaces, wavelet characterization, which ex-

tends the classical atom decomposition, is also used in studying PDEs [21]. So it is challeng-

ing and worthy to study characterizations and decompositions of function spaces.
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Appendix

Firstly, let us recall the characterization of Hp(Rn) by the Riesz transforms. Let RJ , J =

(j1, · · · , js) ∈ {0, 1, · · · , n}s, will be the Riesz transform of order s, i.e. the Fourier multiplier

transformation Tm with

m(ξ) = mJ(ξ) = (−i
ξj1
|ξ|

) · · · (−i
ξjs
|ξ|

) ξ ∈ Rn, (5.1)

where the factor (−iξj/|ξ|) should be replaced by 1 if j = 0. With this assumption, we have

the following theorem.

Theorem 14 ([25]) Let p > (n − 1)/(n − 1 + s). Then f ∈ L2(Rn)
∩

Hp(Rn) if and only

if RJf ∈ L2(Rn)
∩
Lp(Rn) for all J ∈ {0, 1, · · · , n}s; and there exist constants C and C

′

depending only on p, n, and s such that

C
∑
J

∥RJf∥Lp ≤ ∥f∥Hp ≤ C
′∥RJf∥Lp , f ∈ L2(Rn)

∩
Hp(Rn). (5.2)

Next we recall an important version of Lp−Lq estimates for fractional integration in the

context of Hardy spaces [29]. Let Ir be the Riesz potential with order r > 0, defined by

means of Irf(x) := F−(|ξ|−rFf(ξ)). We notice that Ir(Isf) = Ir+sf . If r ∈ (0, n), the Riesz

potential may be represented for sufficiently smooth f by

Irf(x) = cn,r

∫
Rn

f(y)

|x− y|n−r
dy, (5.3)

for suitable cn,r.

Theorem 15 ([6]) Consider r > 0 and 0 < p < n/r. Then, there exists C = C(r, p) > 0

such that

∥Irf∥Hq(Rn) ≤ C∥f∥Hp(Rn),
1

q
=

1

p
− r

n
.

We end this appendix by proving the following duality property in the homogeneous

Triebel-Lizorkin spaces which is stated as below.

Proposition 5 Assume u ∈ Ḟ s
p,q, v ∈ Ḟ−s

p′ ,q′
, then

| < u, v > | ≼ ∥u∥Ḟ s
p,q
∥v∥Ḟ−s

p
′
,q
′
.
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To prove the duality property in Triebel-Lizorkin spaces, we need to prove an elementary

inequality which is stated as follows:∑
|j−j′ |≤1

|ajbj′ | ≤ ∥{aj}∥lqj∥{bj}∥lq′
j
′
∥1|l|≤1∥l1l ≼ ∥{aj}∥lqj∥{bj}∥lq′

j
′

(5.4)

1|l|≤1(k) =

{
1, |k| ≤ l,
0, others,

(5.5)

where j, j
′
, k, l ∈ Z, l ≥ 1 and ∥{aj}∥lq := (

∑
j∈Z |aj|q)

1
q .

Proof. We have, thanks to Hölder’s inequality and Young’s inequality in discrete form,∑
|j−j

′ |≤1

|ajbj′ | =
∑
j

∣∣∣aj ∑
|j−j

′ |≤1

bj′
∣∣∣

=
∑
j

∣∣∣aj∑
j′

{bj′} ∗ {1l}(j)
∣∣∣ (where l = j − j

′
)

≤ ∥{aj}∥lqj∥{bj′} ∗ {1l}(j)∥lq′j
( Hölder′s inequality in discrete form)

≤ ∥{aj}∥lqj∥{bj}∥lq′
j
′
∥1l∥l1l (Young’s inquality in discrete form)

= 3∥{aj}∥lqj∥{bj}∥lq′
j
′
.

To proceed, we also need the following two lemmas.

Lemma 7 Suppose un → u in Lp, vn → v in Lp
′
and

∫
Rn unvmdx = 0, then we have∫

Rn

uvdx = 0,

where un, vm ∈ C∞
c , and 1

p
+ 1

p
′ = 1.

Proof. By the assumption, we have ∥un − u∥Lp → 0 as n → ∞ and ∥vm − v∥Lp, → 0 as

m → ∞. Then

lim
n→∞

< un, vm >=< u, vm >, (for fixed m).

In fact,

| < un − u, vm > | ≤ ∥un − u∥Lp∥vm∥Lp
′ → 0, as n → ∞.

Similarly,

lim
m→∞

lim
n→∞

< un, vm >= lim
m→∞

< u, vm >=< u, v > .

So we derive ∫
Rn

uvdx =< u, v >= lim
m→∞

lim
n→∞

< un, vm >= 0.
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Lemma 8 Suppose un → u in Lp, then we have

∆̇jun → ∆̇ju in Lp,

where un ∈ C∞
c , and ∆̇ju := φj ∗ u.

Proof. By the definition of ∆̇ju := φj ∗ u with φj(x) = 2jnh(2jx), we have

∥∆̇jun − ∆̇ju∥Lp = ∥φj ∗ un − φj ∗ u∥Lp

= ∥φj ∗ (un − u)∥Lp

≤ ∥φj∥L1∥un − u∥Lp → 0, as n → ∞,

where, in the last step, we used Young’s inequality and the fact that φj ∈ L1.

Now we are in the position to prove the duality Proposition 5 in Triebel-Lizorkin spaces.

Proof. By the assumption, we have 2−js∆̇ju ∈ Lp, 2j
′
s∆̇

′
jv ∈ Lp

′
. Thus, for |j − j

′| ≤ 1,

we have

| < u, v > | = | <
∑
j

∆̇ju,
∑
j′

∆̇j
′v > |

=

∫
Rn

∑
|j−j

′ |≤1

2(−j+j
′
)s2js∆̇ju2

−j
′
s∆̇j′vdx

≤
∫
Rn

∑
|j−j

′ |≤1

2|−j+j
′ ||s||2js∆̇ju||2−j

′
s∆̇j′v|dx

≤ 2|s|
∫
Rn

∑
|j−j

′ |≤1

|2js∆̇ju||2−j
′
s∆̇j′v|dx (since |j − j

′| ≤ 1)

= 2|s|
∫
Rn

∑
|j−j

′ |≤1|

|ajbj′ |dx (where aj = {2js∆̇ju}bj′ = {2−j
′
s∆̇j′v})

≤ 2|s|
∫
Rn

∥{aj}∥lqj∥{bj}∥lq′
j
′
∥1|l|≤1∥l1l dx (by the elementary inequality above)

≼ 3 · 2|s|
∫
Rn

∥{aj}∥lqj∥{bj}∥lq′
j
′
dx

≤ 3 · 2|s|
∥∥∥∥{aj}∥lqj∥∥∥∥Lp

∥∥∥{bj}∥
lq

′

j
′

∥∥∥
Lp

′ (Hölder’s inequality)

= 3 · 2|s|∥u∥Ḟ s
p,q
∥v∥Ḟ−s

p
′
,q
′
.

Remark. The same result holds for Besov spaces. We refer the reader to [1] for the details.
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